tegrakernel/kernel/nvidia/drivers/net/wireless/bcmdhd_pcie/dhd_sdio.c

8463 lines
232 KiB
C
Raw Normal View History

2022-02-16 09:13:02 -06:00
/*
* DHD Bus Module for SDIO
*
* Portions of this code are copyright (c) 2017 Cypress Semiconductor Corporation
*
* Copyright (C) 1999-2017, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
*
* <<Broadcom-WL-IPTag/Open:>>
*
* $Id: dhd_sdio.c 666440 2017-08-21 07:36:37Z $
*/
#include <typedefs.h>
#include <osl.h>
#include <bcmsdh.h>
#ifdef BCMEMBEDIMAGE
#include BCMEMBEDIMAGE
#endif /* BCMEMBEDIMAGE */
#include <bcmdefs.h>
#include <bcmutils.h>
#include <bcmendian.h>
#include <bcmdevs.h>
#include <siutils.h>
#include <hndpmu.h>
#include <hndsoc.h>
#include <bcmsdpcm.h>
#include <hnd_armtrap.h>
#include <hnd_cons.h>
#include <sbchipc.h>
#include <sbhnddma.h>
#include <sdio.h>
#include <sbsdio.h>
#include <sbsdpcmdev.h>
#include <bcmsdpcm.h>
#include <bcmsdbus.h>
#include <proto/ethernet.h>
#include <proto/802.1d.h>
#include <proto/802.11.h>
#include <dngl_stats.h>
#include <dhd.h>
#include <dhd_bus.h>
#include <dhd_proto.h>
#include <dhd_dbg.h>
#include <dhdioctl.h>
#include <sdiovar.h>
#ifdef PROP_TXSTATUS
#include <dhd_wlfc.h>
#endif
#ifdef DHDTCPACK_SUPPRESS
#include <dhd_ip.h>
#endif /* DHDTCPACK_SUPPRESS */
bool dhd_mp_halting(dhd_pub_t *dhdp);
extern void bcmsdh_waitfor_iodrain(void *sdh);
extern void bcmsdh_reject_ioreqs(void *sdh, bool reject);
extern bool bcmsdh_fatal_error(void *sdh);
#ifndef DHDSDIO_MEM_DUMP_FNAME
#define DHDSDIO_MEM_DUMP_FNAME "mem_dump"
#endif
#define QLEN (1024) /* bulk rx and tx queue lengths */
#define FCHI (QLEN - 10)
#define FCLOW (FCHI / 2)
#define PRIOMASK 7
#define TXRETRIES 2 /* # of retries for tx frames */
#define READ_FRM_CNT_RETRIES 3
#ifndef DHD_RXBOUND
#define DHD_RXBOUND 50 /* Default for max rx frames in one scheduling */
#endif
#ifndef DHD_TXBOUND
#define DHD_TXBOUND 20 /* Default for max tx frames in one scheduling */
#endif
#define DHD_TXMINMAX 1 /* Max tx frames if rx still pending */
#define MEMBLOCK 2048 /* Block size used for downloading of dongle image */
#define MAX_DATA_BUF (64 * 1024) /* Must be large enough to hold biggest possible glom */
#ifndef DHD_FIRSTREAD
#define DHD_FIRSTREAD 32
#endif
#if !ISPOWEROF2(DHD_FIRSTREAD)
#error DHD_FIRSTREAD is not a power of 2!
#endif
/* Total length of frame header for dongle protocol */
#define SDPCM_HDRLEN (SDPCM_FRAMETAG_LEN + SDPCM_SWHEADER_LEN)
#define SDPCM_HDRLEN_TXGLOM (SDPCM_HDRLEN + SDPCM_HWEXT_LEN)
#define MAX_TX_PKTCHAIN_CNT SDPCM_MAXGLOM_SIZE
#ifdef SDTEST
#define SDPCM_RESERVE (SDPCM_HDRLEN + SDPCM_TEST_HDRLEN + DHD_SDALIGN)
#else
#define SDPCM_RESERVE (SDPCM_HDRLEN + DHD_SDALIGN)
#endif
/* Space for header read, limit for data packets */
#ifndef MAX_HDR_READ
#define MAX_HDR_READ 32
#endif
#if !ISPOWEROF2(MAX_HDR_READ)
#error MAX_HDR_READ is not a power of 2!
#endif
#define MAX_RX_DATASZ 2048
#define SDIO_FUNC_BLOCK_SIZE_SHIFT 16
#define F2_BLOCK_SIZE_256 256
/* Maximum milliseconds to wait for F2 to come up */
#define DHD_WAIT_F2RDY 3000
/* Bump up limit on waiting for HT to account for first startup;
* if the image is doing a CRC calculation before programming the PMU
* for HT availability, it could take a couple hundred ms more, so
* max out at a 1 second (1000000us).
*/
#if (PMU_MAX_TRANSITION_DLY <= 1000000)
#undef PMU_MAX_TRANSITION_DLY
#define PMU_MAX_TRANSITION_DLY 1000000
#endif
/* hooks for limiting threshold custom tx num in rx processing */
#define DEFAULT_TXINRX_THRES 0
#ifndef CUSTOM_TXINRX_THRES
#define CUSTOM_TXINRX_THRES DEFAULT_TXINRX_THRES
#endif
/* Value for ChipClockCSR during initial setup */
#define DHD_INIT_CLKCTL1 (SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ)
#define DHD_INIT_CLKCTL2 (SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP)
/* Flags for SDH calls */
#define F2SYNC (SDIO_REQ_4BYTE | SDIO_REQ_FIXED)
/* Packet free applicable unconditionally for sdio and sdspi. Conditional if
* bufpool was present for gspi bus.
*/
#define PKTFREE2() if ((bus->bus != SPI_BUS) || bus->usebufpool) \
PKTFREE(bus->dhd->osh, pkt, FALSE);
DHD_SPINWAIT_SLEEP_INIT(sdioh_spinwait_sleep);
/* Device console log buffer state */
#define CONSOLE_LINE_MAX 192
#define CONSOLE_BUFFER_MAX 2024
typedef struct dhd_console {
uint count; /* Poll interval msec counter */
uint log_addr; /* Log struct address (fixed) */
hnd_log_t log; /* Log struct (host copy) */
uint bufsize; /* Size of log buffer */
uint8 *buf; /* Log buffer (host copy) */
uint last; /* Last buffer read index */
} dhd_console_t;
#define REMAP_ENAB(bus) ((bus)->remap)
#define REMAP_ISADDR(bus, a) (((a) >= ((bus)->orig_ramsize)) && ((a) < ((bus)->ramsize)))
#define KSO_ENAB(bus) ((bus)->kso)
#define SR_ENAB(bus) ((bus)->_srenab)
#define SLPAUTO_ENAB(bus) ((SR_ENAB(bus)) && ((bus)->_slpauto))
#define MIN_RSRC_ADDR (SI_ENUM_BASE + 0x618)
#define MIN_RSRC_SR 0x3
#define CORE_CAPEXT_ADDR (SI_ENUM_BASE + 0x64c)
#define CORE_CAPEXT_SR_SUPPORTED_MASK (1 << 1)
#define RCTL_MACPHY_DISABLE_MASK (1 << 26)
#define RCTL_LOGIC_DISABLE_MASK (1 << 27)
#define OOB_WAKEUP_ENAB(bus) ((bus)->_oobwakeup)
#define GPIO_DEV_SRSTATE 16 /* Host gpio17 mapped to device gpio0 SR state */
#define GPIO_DEV_SRSTATE_TIMEOUT 320000 /* 320ms */
#define GPIO_DEV_WAKEUP 17 /* Host gpio17 mapped to device gpio1 wakeup */
#define CC_CHIPCTRL2_GPIO1_WAKEUP (1 << 0)
#define CC_CHIPCTRL3_SR_ENG_ENABLE (1 << 2)
#define OVERFLOW_BLKSZ512_WM 96
#define OVERFLOW_BLKSZ512_MES 80
#define CC_PMUCC3 (0x3)
/* Private data for SDIO bus interaction */
typedef struct dhd_bus {
dhd_pub_t *dhd;
bcmsdh_info_t *sdh; /* Handle for BCMSDH calls */
si_t *sih; /* Handle for SI calls */
char *vars; /* Variables (from CIS and/or other) */
uint varsz; /* Size of variables buffer */
uint32 sbaddr; /* Current SB window pointer (-1, invalid) */
sdpcmd_regs_t *regs; /* Registers for SDIO core */
uint sdpcmrev; /* SDIO core revision */
uint armrev; /* CPU core revision */
uint ramrev; /* SOCRAM core revision */
uint32 ramsize; /* Size of RAM in SOCRAM (bytes) */
uint32 orig_ramsize; /* Size of RAM in SOCRAM (bytes) */
uint32 srmemsize; /* Size of SRMEM */
uint32 bus; /* gSPI or SDIO bus */
uint32 bus_num; /* bus number */
uint32 slot_num; /* slot ID */
uint32 hostintmask; /* Copy of Host Interrupt Mask */
uint32 intstatus; /* Intstatus bits (events) pending */
bool dpc_sched; /* Indicates DPC schedule (intrpt rcvd) */
bool fcstate; /* State of dongle flow-control */
uint16 cl_devid; /* cached devid for dhdsdio_probe_attach() */
char *fw_path; /* module_param: path to firmware image */
char *nv_path; /* module_param: path to nvram vars file */
uint blocksize; /* Block size of SDIO transfers */
uint roundup; /* Max roundup limit */
struct pktq txq; /* Queue length used for flow-control */
uint8 flowcontrol; /* per prio flow control bitmask */
uint8 tx_seq; /* Transmit sequence number (next) */
uint8 tx_max; /* Maximum transmit sequence allowed */
uint8 hdrbuf[MAX_HDR_READ + DHD_SDALIGN];
uint8 *rxhdr; /* Header of current rx frame (in hdrbuf) */
uint16 nextlen; /* Next Read Len from last header */
uint8 rx_seq; /* Receive sequence number (expected) */
bool rxskip; /* Skip receive (awaiting NAK ACK) */
void *glomd; /* Packet containing glomming descriptor */
void *glom; /* Packet chain for glommed superframe */
uint glomerr; /* Glom packet read errors */
uint8 *rxbuf; /* Buffer for receiving control packets */
uint rxblen; /* Allocated length of rxbuf */
uint8 *rxctl; /* Aligned pointer into rxbuf */
uint8 *databuf; /* Buffer for receiving big glom packet */
uint8 *dataptr; /* Aligned pointer into databuf */
uint rxlen; /* Length of valid data in buffer */
uint8 sdpcm_ver; /* Bus protocol reported by dongle */
bool intr; /* Use interrupts */
bool poll; /* Use polling */
bool ipend; /* Device interrupt is pending */
bool intdis; /* Interrupts disabled by isr */
uint intrcount; /* Count of device interrupt callbacks */
uint lastintrs; /* Count as of last watchdog timer */
uint spurious; /* Count of spurious interrupts */
uint pollrate; /* Ticks between device polls */
uint polltick; /* Tick counter */
uint pollcnt; /* Count of active polls */
#ifdef DHD_DEBUG
dhd_console_t console; /* Console output polling support */
uint console_addr; /* Console address from shared struct */
#endif /* DHD_DEBUG */
uint regfails; /* Count of R_REG/W_REG failures */
uint clkstate; /* State of sd and backplane clock(s) */
bool activity; /* Activity flag for clock down */
int32 idletime; /* Control for activity timeout */
int32 idlecount; /* Activity timeout counter */
int32 idleclock; /* How to set bus driver when idle */
int32 sd_divisor; /* Speed control to bus driver */
int32 sd_mode; /* Mode control to bus driver */
int32 sd_rxchain; /* If bcmsdh api accepts PKT chains */
bool use_rxchain; /* If dhd should use PKT chains */
bool sleeping; /* Is SDIO bus sleeping? */
#if defined(SUPPORT_P2P_GO_PS)
wait_queue_head_t bus_sleep;
#endif /* LINUX && SUPPORT_P2P_GO_PS */
uint rxflow_mode; /* Rx flow control mode */
bool rxflow; /* Is rx flow control on */
uint prev_rxlim_hit; /* Is prev rx limit exceeded (per dpc schedule) */
bool alp_only; /* Don't use HT clock (ALP only) */
/* Field to decide if rx of control frames happen in rxbuf or lb-pool */
bool usebufpool;
int32 txinrx_thres; /* num of in-queued pkts */
int32 dotxinrx; /* tx first in dhdsdio_readframes */
#ifdef SDTEST
/* external loopback */
bool ext_loop;
uint8 loopid;
/* pktgen configuration */
uint pktgen_freq; /* Ticks between bursts */
uint pktgen_count; /* Packets to send each burst */
uint pktgen_print; /* Bursts between count displays */
uint pktgen_total; /* Stop after this many */
uint pktgen_minlen; /* Minimum packet data len */
uint pktgen_maxlen; /* Maximum packet data len */
uint pktgen_mode; /* Configured mode: tx, rx, or echo */
uint pktgen_stop; /* Number of tx failures causing stop */
/* active pktgen fields */
uint pktgen_tick; /* Tick counter for bursts */
uint pktgen_ptick; /* Burst counter for printing */
uint pktgen_sent; /* Number of test packets generated */
uint pktgen_rcvd; /* Number of test packets received */
uint pktgen_prev_time; /* Time at which previous stats where printed */
uint pktgen_prev_sent; /* Number of test packets generated when
* previous stats were printed
*/
uint pktgen_prev_rcvd; /* Number of test packets received when
* previous stats were printed
*/
uint pktgen_fail; /* Number of failed send attempts */
uint16 pktgen_len; /* Length of next packet to send */
#define PKTGEN_RCV_IDLE (0)
#define PKTGEN_RCV_ONGOING (1)
uint16 pktgen_rcv_state; /* receive state */
uint pktgen_rcvd_rcvsession; /* test pkts rcvd per rcv session. */
#endif /* SDTEST */
/* Some additional counters */
uint tx_sderrs; /* Count of tx attempts with sd errors */
uint fcqueued; /* Tx packets that got queued */
uint rxrtx; /* Count of rtx requests (NAK to dongle) */
uint rx_toolong; /* Receive frames too long to receive */
uint rxc_errors; /* SDIO errors when reading control frames */
uint rx_hdrfail; /* SDIO errors on header reads */
uint rx_badhdr; /* Bad received headers (roosync?) */
uint rx_badseq; /* Mismatched rx sequence number */
uint fc_rcvd; /* Number of flow-control events received */
uint fc_xoff; /* Number which turned on flow-control */
uint fc_xon; /* Number which turned off flow-control */
uint rxglomfail; /* Failed deglom attempts */
uint rxglomframes; /* Number of glom frames (superframes) */
uint rxglompkts; /* Number of packets from glom frames */
uint f2rxhdrs; /* Number of header reads */
uint f2rxdata; /* Number of frame data reads */
uint f2txdata; /* Number of f2 frame writes */
uint f1regdata; /* Number of f1 register accesses */
#ifdef DHDENABLE_TAILPAD
uint tx_tailpad_chain; /* Number of tail padding by chaining pad_pkt */
uint tx_tailpad_pktget; /* Number of tail padding by new PKTGET */
#endif /* DHDENABLE_TAILPAD */
uint8 *ctrl_frame_buf;
uint32 ctrl_frame_len;
bool ctrl_frame_stat;
uint32 rxint_mode; /* rx interrupt mode */
bool remap; /* Contiguous 1MB RAM: 512K socram + 512K devram
* Available with socram rev 16
* Remap region not DMA-able
*/
bool kso;
bool _slpauto;
bool _oobwakeup;
bool _srenab;
bool readframes;
bool reqbussleep;
uint32 resetinstr;
uint32 dongle_ram_base;
void *glom_pkt_arr[SDPCM_MAXGLOM_SIZE]; /* Array of pkts for glomming */
uint32 txglom_cnt; /* Number of pkts in the glom array */
uint32 txglom_total_len; /* Total length of pkts in glom array */
bool txglom_enable; /* Flag to indicate whether tx glom is enabled/disabled */
uint32 txglomsize; /* Glom size limitation */
#ifdef DHDENABLE_TAILPAD
void *pad_pkt;
#endif /* DHDENABLE_TAILPAD */
} dhd_bus_t;
/* clkstate */
#define CLK_NONE 0
#define CLK_SDONLY 1
#define CLK_PENDING 2 /* Not used yet */
#define CLK_AVAIL 3
#define DHD_NOPMU(dhd) (FALSE)
#if defined(BCMSDIOH_STD)
#define BLK_64_MAXTXGLOM 20
#endif /* BCMSDIOH_STD */
#ifdef DHD_DEBUG
static int qcount[NUMPRIO];
static int tx_packets[NUMPRIO];
#endif /* DHD_DEBUG */
/* Deferred transmit */
const uint dhd_deferred_tx = 1;
extern uint dhd_watchdog_ms;
extern void dhd_os_wd_timer(void *bus, uint wdtick);
int dhd_enableOOB(dhd_pub_t *dhd, bool sleep);
/* Tx/Rx bounds */
uint dhd_txbound;
uint dhd_rxbound;
uint dhd_txminmax = DHD_TXMINMAX;
/* override the RAM size if possible */
#define DONGLE_MIN_RAMSIZE (128 *1024)
int dhd_dongle_ramsize;
uint dhd_doflow = TRUE;
uint dhd_dpcpoll = FALSE;
module_param(dhd_doflow, uint, 0644);
module_param(dhd_dpcpoll, uint, 0644);
static bool dhd_alignctl;
static bool sd1idle;
static bool retrydata;
#define RETRYCHAN(chan) (((chan) == SDPCM_EVENT_CHANNEL) || retrydata)
static uint watermark = 8;
static uint mesbusyctrl = 0;
static const uint firstread = DHD_FIRSTREAD;
/* Retry count for register access failures */
static const uint retry_limit = 2;
/* Force even SD lengths (some host controllers mess up on odd bytes) */
static bool forcealign;
#define ALIGNMENT 4
#if defined(OOB_INTR_ONLY) && defined(HW_OOB)
extern void bcmsdh_enable_hw_oob_intr(void *sdh, bool enable);
#endif
#if defined(OOB_INTR_ONLY) && defined(SDIO_ISR_THREAD)
#error OOB_INTR_ONLY is NOT working with SDIO_ISR_THREAD
#endif /* defined(OOB_INTR_ONLY) && defined(SDIO_ISR_THREAD) */
#define PKTALIGN(osh, p, len, align) \
do { \
uintptr datalign; \
datalign = (uintptr)PKTDATA((osh), (p)); \
datalign = ROUNDUP(datalign, (align)) - datalign; \
ASSERT(datalign < (align)); \
ASSERT(PKTLEN((osh), (p)) >= ((len) + datalign)); \
if (datalign) \
PKTPULL((osh), (p), (uint)datalign); \
PKTSETLEN((osh), (p), (len)); \
} while (0)
/* Limit on rounding up frames */
static const uint max_roundup = 512;
/* Try doing readahead */
static bool dhd_readahead;
/* To check if there's window offered */
#define DATAOK(bus) \
(((uint8)(bus->tx_max - bus->tx_seq) > 1) && \
(((uint8)(bus->tx_max - bus->tx_seq) & 0x80) == 0))
/* To check if there's window offered for ctrl frame */
#define TXCTLOK(bus) \
(((uint8)(bus->tx_max - bus->tx_seq) != 0) && \
(((uint8)(bus->tx_max - bus->tx_seq) & 0x80) == 0))
/* Number of pkts available in dongle for data RX */
#define DATABUFCNT(bus) \
((uint8)(bus->tx_max - bus->tx_seq) - 1)
/* Macros to get register read/write status */
/* NOTE: these assume a local dhdsdio_bus_t *bus! */
#define R_SDREG(regvar, regaddr, retryvar) \
do { \
retryvar = 0; \
do { \
regvar = R_REG(bus->dhd->osh, regaddr); \
} while (bcmsdh_regfail(bus->sdh) && (++retryvar <= retry_limit)); \
if (retryvar) { \
bus->regfails += (retryvar-1); \
if (retryvar > retry_limit) { \
DHD_ERROR(("%s: FAILED" #regvar "READ, LINE %d\n", \
__FUNCTION__, __LINE__)); \
regvar = 0; \
} \
} \
} while (0)
#define W_SDREG(regval, regaddr, retryvar) \
do { \
retryvar = 0; \
do { \
W_REG(bus->dhd->osh, regaddr, regval); \
} while (bcmsdh_regfail(bus->sdh) && (++retryvar <= retry_limit)); \
if (retryvar) { \
bus->regfails += (retryvar-1); \
if (retryvar > retry_limit) \
DHD_ERROR(("%s: FAILED REGISTER WRITE, LINE %d\n", \
__FUNCTION__, __LINE__)); \
} \
} while (0)
#define BUS_WAKE(bus) \
do { \
bus->idlecount = 0; \
if ((bus)->sleeping) \
dhdsdio_bussleep((bus), FALSE); \
} while (0);
/*
* pktavail interrupts from dongle to host can be managed in 3 different ways
* whenever there is a packet available in dongle to transmit to host.
*
* Mode 0: Dongle writes the software host mailbox and host is interrupted.
* Mode 1: (sdiod core rev >= 4)
* Device sets a new bit in the intstatus whenever there is a packet
* available in fifo. Host can't clear this specific status bit until all the
* packets are read from the FIFO. No need to ack dongle intstatus.
* Mode 2: (sdiod core rev >= 4)
* Device sets a bit in the intstatus, and host acks this by writing
* one to this bit. Dongle won't generate anymore packet interrupts
* until host reads all the packets from the dongle and reads a zero to
* figure that there are no more packets. No need to disable host ints.
* Need to ack the intstatus.
*/
#define SDIO_DEVICE_HMB_RXINT 0 /* default old way */
#define SDIO_DEVICE_RXDATAINT_MODE_0 1 /* from sdiod rev 4 */
#define SDIO_DEVICE_RXDATAINT_MODE_1 2 /* from sdiod rev 4 */
#define FRAME_AVAIL_MASK(bus) \
((bus->rxint_mode == SDIO_DEVICE_HMB_RXINT) ? I_HMB_FRAME_IND : I_XMTDATA_AVAIL)
#define DHD_BUS SDIO_BUS
#define PKT_AVAILABLE(bus, intstatus) ((intstatus) & (FRAME_AVAIL_MASK(bus)))
#define HOSTINTMASK (I_HMB_SW_MASK | I_CHIPACTIVE)
#define GSPI_PR55150_BAILOUT
#ifdef SDTEST
static void dhdsdio_testrcv(dhd_bus_t *bus, void *pkt, uint seq);
static void dhdsdio_sdtest_set(dhd_bus_t *bus, uint count);
#endif
static int dhdsdio_checkdied(dhd_bus_t *bus, char *data, uint size);
#ifdef DHD_DEBUG
static int dhd_serialconsole(dhd_bus_t *bus, bool get, bool enable, int *bcmerror);
#endif /* DHD_DEBUG */
#if defined(DHD_FW_COREDUMP)
static int dhdsdio_mem_dump(dhd_bus_t *bus);
#endif /* DHD_FW_COREDUMP */
static int dhdsdio_devcap_set(dhd_bus_t *bus, uint8 cap);
static int dhdsdio_download_state(dhd_bus_t *bus, bool enter);
static void dhdsdio_release(dhd_bus_t *bus, osl_t *osh);
static void dhdsdio_release_malloc(dhd_bus_t *bus, osl_t *osh);
static void dhdsdio_disconnect(void *ptr);
static bool dhdsdio_chipmatch(uint16 chipid);
static bool dhdsdio_probe_attach(dhd_bus_t *bus, osl_t *osh, void *sdh,
void * regsva, uint16 devid);
static bool dhdsdio_probe_malloc(dhd_bus_t *bus, osl_t *osh, void *sdh);
static bool dhdsdio_probe_init(dhd_bus_t *bus, osl_t *osh, void *sdh);
static void dhdsdio_release_dongle(dhd_bus_t *bus, osl_t *osh, bool dongle_isolation,
bool reset_flag);
static void dhd_dongle_setramsize(struct dhd_bus *bus, int mem_size);
static int dhd_bcmsdh_recv_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags,
uint8 *buf, uint nbytes,
void *pkt, bcmsdh_cmplt_fn_t complete, void *handle);
static int dhd_bcmsdh_send_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags,
uint8 *buf, uint nbytes,
void *pkt, bcmsdh_cmplt_fn_t complete, void *handle, int max_retry);
static int dhdsdio_txpkt(dhd_bus_t *bus, uint chan, void** pkts, int num_pkt, bool free_pkt);
static int dhdsdio_txpkt_preprocess(dhd_bus_t *bus, void *pkt, int chan, int txseq,
int prev_chain_total_len, bool last_chained_pkt,
int *pad_pkt_len, void **new_pkt);
static int dhdsdio_txpkt_postprocess(dhd_bus_t *bus, void *pkt);
static int dhdsdio_download_firmware(dhd_bus_t *bus, osl_t *osh, void *sdh);
static int _dhdsdio_download_firmware(dhd_bus_t *bus);
static int dhdsdio_download_code_file(dhd_bus_t *bus, char *image_path);
static int dhdsdio_download_nvram(dhd_bus_t *bus);
#ifdef BCMEMBEDIMAGE
static int dhdsdio_download_code_array(dhd_bus_t *bus);
#endif
static int dhdsdio_bussleep(dhd_bus_t *bus, bool sleep);
static int dhdsdio_clkctl(dhd_bus_t *bus, uint target, bool pendok);
static uint8 dhdsdio_sleepcsr_get(dhd_bus_t *bus);
#ifdef WLMEDIA_HTSF
#include <htsf.h>
extern uint32 dhd_get_htsf(void *dhd, int ifidx);
#endif /* WLMEDIA_HTSF */
static void
dhdsdio_tune_fifoparam(struct dhd_bus *bus)
{
int err;
uint8 devctl, wm, mes;
if (bus->sih->buscorerev >= 15) {
/* See .ppt in PR for these recommended values */
if (bus->blocksize == 512) {
wm = OVERFLOW_BLKSZ512_WM;
mes = OVERFLOW_BLKSZ512_MES;
} else {
mes = bus->blocksize/4;
wm = bus->blocksize/4;
}
watermark = wm;
mesbusyctrl = mes;
} else {
DHD_INFO(("skip fifotune: SdioRev(%d) is lower than minimal requested ver\n",
bus->sih->buscorerev));
return;
}
/* Update watermark */
if (wm > 0) {
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_WATERMARK, wm, &err);
devctl = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err);
devctl |= SBSDIO_DEVCTL_F2WM_ENAB;
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err);
}
/* Update MES */
if (mes > 0) {
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_MESBUSYCTRL,
(mes | SBSDIO_MESBUSYCTRL_ENAB), &err);
}
DHD_INFO(("Apply overflow WAR: 0x%02x 0x%02x 0x%02x\n",
bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err),
bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_WATERMARK, &err),
bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_MESBUSYCTRL, &err)));
}
static void
dhd_dongle_setramsize(struct dhd_bus *bus, int mem_size)
{
int32 min_size = DONGLE_MIN_RAMSIZE;
/* Restrict the ramsize to user specified limit */
DHD_ERROR(("user: Restrict the dongle ram size to %d, min accepted %d\n",
dhd_dongle_ramsize, min_size));
if ((dhd_dongle_ramsize > min_size) &&
(dhd_dongle_ramsize < (int32)bus->orig_ramsize))
bus->ramsize = dhd_dongle_ramsize;
}
static int
dhdsdio_set_siaddr_window(dhd_bus_t *bus, uint32 address)
{
int err = 0;
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW,
(address >> 8) & SBSDIO_SBADDRLOW_MASK, &err);
if (!err)
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID,
(address >> 16) & SBSDIO_SBADDRMID_MASK, &err);
if (!err)
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH,
(address >> 24) & SBSDIO_SBADDRHIGH_MASK, &err);
return err;
}
#ifdef USE_OOB_GPIO1
static int
dhdsdio_oobwakeup_init(dhd_bus_t *bus)
{
uint32 val, addr, data;
bcmsdh_gpioouten(bus->sdh, GPIO_DEV_WAKEUP);
addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_addr);
data = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_data);
/* Set device for gpio1 wakeup */
bcmsdh_reg_write(bus->sdh, addr, 4, 2);
val = bcmsdh_reg_read(bus->sdh, data, 4);
val |= CC_CHIPCTRL2_GPIO1_WAKEUP;
bcmsdh_reg_write(bus->sdh, data, 4, val);
bus->_oobwakeup = TRUE;
return 0;
}
#endif /* USE_OOB_GPIO1 */
/*
* Query if FW is in SR mode
*/
static bool
dhdsdio_sr_cap(dhd_bus_t *bus)
{
bool cap = FALSE;
uint32 core_capext, addr, data;
if (bus->sih->chip == BCM43430_CHIP_ID) {
/* check if fw initialized sr engine */
addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, sr_control1);
if (bcmsdh_reg_read(bus->sdh, addr, 4) != 0)
cap = TRUE;
return cap;
}
if (bus->sih->chip == BCM4324_CHIP_ID) {
addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_addr);
data = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_data);
bcmsdh_reg_write(bus->sdh, addr, 4, 3);
core_capext = bcmsdh_reg_read(bus->sdh, data, 4);
} else if (bus->sih->chip == BCM4330_CHIP_ID) {
core_capext = FALSE;
} else if ((bus->sih->chip == BCM4335_CHIP_ID) ||
(bus->sih->chip == BCM4339_CHIP_ID) ||
(bus->sih->chip == BCM43349_CHIP_ID) ||
(bus->sih->chip == BCM4345_CHIP_ID) ||
(bus->sih->chip == BCM43454_CHIP_ID) ||
(bus->sih->chip == BCM4354_CHIP_ID) ||
(bus->sih->chip == BCM4356_CHIP_ID) ||
(bus->sih->chip == BCM4358_CHIP_ID) ||
(BCM4349_CHIP(bus->sih->chip)) ||
(bus->sih->chip == BCM4350_CHIP_ID)) {
core_capext = TRUE;
} else {
core_capext = bcmsdh_reg_read(bus->sdh, CORE_CAPEXT_ADDR, 4);
core_capext = (core_capext & CORE_CAPEXT_SR_SUPPORTED_MASK);
}
if (!(core_capext))
return FALSE;
if (bus->sih->chip == BCM4324_CHIP_ID) {
/* FIX: Should change to query SR control register instead */
cap = TRUE;
} else if ((bus->sih->chip == BCM4335_CHIP_ID) ||
(bus->sih->chip == BCM4339_CHIP_ID) ||
(bus->sih->chip == BCM43349_CHIP_ID) ||
(bus->sih->chip == BCM4345_CHIP_ID) ||
(bus->sih->chip == BCM43454_CHIP_ID) ||
(bus->sih->chip == BCM4354_CHIP_ID) ||
(bus->sih->chip == BCM4356_CHIP_ID) ||
(bus->sih->chip == BCM4358_CHIP_ID) ||
(bus->sih->chip == BCM4350_CHIP_ID)) {
uint32 enabval = 0;
addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_addr);
data = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_data);
bcmsdh_reg_write(bus->sdh, addr, 4, CC_PMUCC3);
enabval = bcmsdh_reg_read(bus->sdh, data, 4);
if ((bus->sih->chip == BCM4350_CHIP_ID) ||
(bus->sih->chip == BCM4345_CHIP_ID) ||
(bus->sih->chip == BCM43454_CHIP_ID) ||
(bus->sih->chip == BCM4354_CHIP_ID) ||
(bus->sih->chip == BCM4356_CHIP_ID) ||
(bus->sih->chip == BCM4358_CHIP_ID))
enabval &= CC_CHIPCTRL3_SR_ENG_ENABLE;
if (enabval)
cap = TRUE;
} else {
data = bcmsdh_reg_read(bus->sdh,
SI_ENUM_BASE + OFFSETOF(chipcregs_t, retention_ctl), 4);
if ((data & (RCTL_MACPHY_DISABLE_MASK | RCTL_LOGIC_DISABLE_MASK)) == 0)
cap = TRUE;
}
return cap;
}
static int
dhdsdio_srwar_init(dhd_bus_t *bus)
{
bcmsdh_gpio_init(bus->sdh);
#ifdef USE_OOB_GPIO1
dhdsdio_oobwakeup_init(bus);
#endif
return 0;
}
static int
dhdsdio_sr_init(dhd_bus_t *bus)
{
uint8 val;
int err = 0;
if ((bus->sih->chip == BCM4334_CHIP_ID) && (bus->sih->chiprev == 2))
dhdsdio_srwar_init(bus);
val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, NULL);
val |= 1 << SBSDIO_FUNC1_WCTRL_HTWAIT_SHIFT;
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL,
1 << SBSDIO_FUNC1_WCTRL_HTWAIT_SHIFT, &err);
val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WAKEUPCTRL, NULL);
#ifdef USE_CMD14
/* Add CMD14 Support */
dhdsdio_devcap_set(bus,
(SDIOD_CCCR_BRCM_CARDCAP_CMD14_SUPPORT | SDIOD_CCCR_BRCM_CARDCAP_CMD14_EXT));
#endif /* USE_CMD14 */
dhdsdio_devcap_set(bus, SDIOD_CCCR_BRCM_CARDCAP_CMD_NODEC);
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, SBSDIO_FORCE_HT, &err);
bus->_slpauto = dhd_slpauto ? TRUE : FALSE;
bus->_srenab = TRUE;
return 0;
}
/*
* FIX: Be sure KSO bit is enabled
* Currently, it's defaulting to 0 which should be 1.
*/
static int
dhdsdio_clk_kso_init(dhd_bus_t *bus)
{
uint8 val;
int err = 0;
/* set flag */
bus->kso = TRUE;
/*
* Enable KeepSdioOn (KSO) bit for normal operation
* Default is 0 (4334A0) so set it. Fixed in B0.
*/
val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, NULL);
if (!(val & SBSDIO_FUNC1_SLEEPCSR_KSO_MASK)) {
val |= (SBSDIO_FUNC1_SLEEPCSR_KSO_EN << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT);
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, val, &err);
if (err)
DHD_ERROR(("%s: SBSDIO_FUNC1_SLEEPCSR err: 0x%x\n", __FUNCTION__, err));
}
return 0;
}
#define KSO_DBG(x)
#define KSO_WAIT_US 50
#define KSO_WAIT_MS 1
#define KSO_SLEEP_RETRY_COUNT 20
#define KSO_WAKE_RETRY_COUNT 100
#define ERROR_BCME_NODEVICE_MAX 1
#define DEFAULT_MAX_KSO_ATTEMPTS (PMU_MAX_TRANSITION_DLY/KSO_WAIT_US)
#ifndef CUSTOM_MAX_KSO_ATTEMPTS
#define CUSTOM_MAX_KSO_ATTEMPTS DEFAULT_MAX_KSO_ATTEMPTS
#endif
static int
dhdsdio_clk_kso_enab(dhd_bus_t *bus, bool on)
{
uint8 wr_val = 0, rd_val, cmp_val, bmask;
int err = 0;
int try_cnt = 0;
KSO_DBG(("%s> op:%s\n", __FUNCTION__, (on ? "KSO_SET" : "KSO_CLR")));
wr_val |= (on << SBSDIO_FUNC1_SLEEPCSR_KSO_SHIFT);
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, wr_val, &err);
if (on) {
cmp_val = SBSDIO_FUNC1_SLEEPCSR_KSO_MASK | SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK;
bmask = cmp_val;
OSL_SLEEP(3);
} else {
/* Put device to sleep, turn off KSO */
cmp_val = 0;
bmask = SBSDIO_FUNC1_SLEEPCSR_KSO_MASK;
}
do {
rd_val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, &err);
if (((rd_val & bmask) == cmp_val) && !err)
break;
KSO_DBG(("%s> KSO wr/rd retry:%d, ERR:%x \n", __FUNCTION__, try_cnt, err));
if (((try_cnt + 1) % KSO_SLEEP_RETRY_COUNT) == 0) {
OSL_SLEEP(KSO_WAIT_MS);
} else
OSL_DELAY(KSO_WAIT_US);
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, wr_val, &err);
} while (try_cnt++ < CUSTOM_MAX_KSO_ATTEMPTS);
if (try_cnt > 2)
KSO_DBG(("%s> op:%s, try_cnt:%d, rd_val:%x, ERR:%x \n",
__FUNCTION__, (on ? "KSO_SET" : "KSO_CLR"), try_cnt, rd_val, err));
if (try_cnt > CUSTOM_MAX_KSO_ATTEMPTS) {
DHD_ERROR(("%s> op:%s, ERROR: try_cnt:%d, rd_val:%x, ERR:%x \n",
__FUNCTION__, (on ? "KSO_SET" : "KSO_CLR"), try_cnt, rd_val, err));
}
return err;
}
static int
dhdsdio_clk_kso_iovar(dhd_bus_t *bus, bool on)
{
int err = 0;
if (on == FALSE) {
BUS_WAKE(bus);
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
DHD_ERROR(("%s: KSO disable clk: 0x%x\n", __FUNCTION__,
bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, &err)));
dhdsdio_clk_kso_enab(bus, FALSE);
} else {
DHD_ERROR(("%s: KSO enable\n", __FUNCTION__));
/* Make sure we have SD bus access */
if (bus->clkstate == CLK_NONE) {
DHD_ERROR(("%s: Request SD clk\n", __FUNCTION__));
dhdsdio_clkctl(bus, CLK_SDONLY, FALSE);
}
dhdsdio_clk_kso_enab(bus, TRUE);
DHD_ERROR(("%s: sleepcsr: 0x%x\n", __FUNCTION__,
dhdsdio_sleepcsr_get(bus)));
}
bus->kso = on;
BCM_REFERENCE(err);
return 0;
}
static uint8
dhdsdio_sleepcsr_get(dhd_bus_t *bus)
{
int err = 0;
uint8 val = 0;
val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_SLEEPCSR, &err);
if (err)
DHD_TRACE(("Failed to read SLEEPCSR: %d\n", err));
return val;
}
uint8
dhdsdio_devcap_get(dhd_bus_t *bus)
{
return bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_BRCM_CARDCAP, NULL);
}
static int
dhdsdio_devcap_set(dhd_bus_t *bus, uint8 cap)
{
int err = 0;
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_BRCM_CARDCAP, cap, &err);
if (err)
DHD_ERROR(("%s: devcap set err: 0x%x\n", __FUNCTION__, err));
return 0;
}
static int
dhdsdio_clk_devsleep_iovar(dhd_bus_t *bus, bool on)
{
int err = 0, retry;
uint8 val;
retry = 0;
if (on == TRUE) {
/* Enter Sleep */
/* Be sure we request clk before going to sleep
* so we can wake-up with clk request already set
* else device can go back to sleep immediately
*/
if (!SLPAUTO_ENAB(bus))
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
else {
val = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err);
if ((val & SBSDIO_CSR_MASK) == 0) {
DHD_ERROR(("%s: No clock before enter sleep:0x%x\n",
__FUNCTION__, val));
/* Reset clock request */
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR,
SBSDIO_ALP_AVAIL_REQ, &err);
DHD_ERROR(("%s: clock before sleep:0x%x\n", __FUNCTION__,
bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, &err)));
}
}
DHD_TRACE(("%s: clk before sleep: 0x%x\n", __FUNCTION__,
bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, &err)));
#ifdef USE_CMD14
err = bcmsdh_sleep(bus->sdh, TRUE);
#else
err = dhdsdio_clk_kso_enab(bus, FALSE);
if (OOB_WAKEUP_ENAB(bus))
{
err = bcmsdh_gpioout(bus->sdh, GPIO_DEV_WAKEUP, FALSE); /* GPIO_1 is off */
}
#endif /* USE_CMD14 */
} else {
/* Exit Sleep */
/* Make sure we have SD bus access */
if (bus->clkstate == CLK_NONE) {
DHD_TRACE(("%s: Request SD clk\n", __FUNCTION__));
dhdsdio_clkctl(bus, CLK_SDONLY, FALSE);
}
if ((bus->sih->chip == BCM4334_CHIP_ID) && (bus->sih->chiprev == 2)) {
SPINWAIT_SLEEP(sdioh_spinwait_sleep,
(bcmsdh_gpioin(bus->sdh, GPIO_DEV_SRSTATE) != TRUE),
GPIO_DEV_SRSTATE_TIMEOUT);
if (bcmsdh_gpioin(bus->sdh, GPIO_DEV_SRSTATE) == FALSE) {
DHD_ERROR(("ERROR: GPIO_DEV_SRSTATE still low!\n"));
}
}
#ifdef USE_CMD14
err = bcmsdh_sleep(bus->sdh, FALSE);
if (SLPAUTO_ENAB(bus) && (err != 0)) {
OSL_DELAY(10000);
DHD_TRACE(("%s: Resync device sleep\n", __FUNCTION__));
/* Toggle sleep to resync with host and device */
err = bcmsdh_sleep(bus->sdh, TRUE);
OSL_DELAY(10000);
err = bcmsdh_sleep(bus->sdh, FALSE);
if (err) {
OSL_DELAY(10000);
DHD_ERROR(("%s: CMD14 exit failed again!\n", __FUNCTION__));
/* Toggle sleep to resync with host and device */
err = bcmsdh_sleep(bus->sdh, TRUE);
OSL_DELAY(10000);
err = bcmsdh_sleep(bus->sdh, FALSE);
if (err) {
DHD_ERROR(("%s: CMD14 exit failed twice!\n", __FUNCTION__));
DHD_ERROR(("%s: FATAL: Device non-response!\n",
__FUNCTION__));
err = 0;
}
}
}
#else
if (OOB_WAKEUP_ENAB(bus))
{
err = bcmsdh_gpioout(bus->sdh, GPIO_DEV_WAKEUP, TRUE); /* GPIO_1 is on */
}
do {
err = dhdsdio_clk_kso_enab(bus, TRUE);
if (err)
OSL_SLEEP(10);
} while ((err != 0) && (++retry < 3));
if (err != 0) {
DHD_ERROR(("ERROR: kso set failed retry: %d\n", retry));
err = 0; /* continue anyway */
}
#endif /* !USE_CMD14 */
if (err == 0) {
uint8 csr;
/* Wait for device ready during transition to wake-up */
SPINWAIT_SLEEP(sdioh_spinwait_sleep,
(((csr = dhdsdio_sleepcsr_get(bus)) &
SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK) !=
(SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK)), (20000));
DHD_TRACE(("%s: ExitSleep sleepcsr: 0x%x\n", __FUNCTION__, csr));
if (!(csr & SBSDIO_FUNC1_SLEEPCSR_DEVON_MASK)) {
DHD_ERROR(("%s:ERROR: ExitSleep device NOT Ready! 0x%x\n",
__FUNCTION__, csr));
err = BCME_NODEVICE;
}
SPINWAIT_SLEEP(sdioh_spinwait_sleep,
(((csr = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, &err)) & SBSDIO_HT_AVAIL) !=
(SBSDIO_HT_AVAIL)), (10000));
DHD_TRACE(("%s: SBSDIO_FUNC1_CHIPCLKCSR : 0x%x\n", __FUNCTION__, csr));
if (!err && ((csr & SBSDIO_HT_AVAIL) != SBSDIO_HT_AVAIL)) {
DHD_ERROR(("%s:ERROR: device NOT Ready! 0x%x\n",
__FUNCTION__, csr));
err = BCME_NODEVICE;
}
}
}
/* Update if successful */
if (err == 0)
bus->kso = on ? FALSE : TRUE;
else {
DHD_ERROR(("%s: Sleep request failed: kso:%d on:%d err:%d\n",
__FUNCTION__, bus->kso, on, err));
if (!on && retry > 2)
bus->kso = FALSE;
}
return err;
}
/* Turn backplane clock on or off */
static int
dhdsdio_htclk(dhd_bus_t *bus, bool on, bool pendok)
{
#define HT_AVAIL_ERROR_MAX 10
static int ht_avail_error = 0;
int err;
uint8 clkctl, clkreq, devctl;
bcmsdh_info_t *sdh;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
clkctl = 0;
sdh = bus->sdh;
if (!KSO_ENAB(bus))
return BCME_OK;
if (SLPAUTO_ENAB(bus)) {
bus->clkstate = (on ? CLK_AVAIL : CLK_SDONLY);
return BCME_OK;
}
if (on) {
/* Request HT Avail */
clkreq = bus->alp_only ? SBSDIO_ALP_AVAIL_REQ : SBSDIO_HT_AVAIL_REQ;
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err);
if (err) {
ht_avail_error++;
if (ht_avail_error < HT_AVAIL_ERROR_MAX) {
DHD_ERROR(("%s: HT Avail request error: %d\n", __FUNCTION__, err));
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)
else if (ht_avail_error == HT_AVAIL_ERROR_MAX) {
bus->dhd->hang_reason = HANG_REASON_HT_AVAIL_ERROR;
dhd_os_send_hang_message(bus->dhd);
}
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) */
return BCME_ERROR;
} else {
ht_avail_error = 0;
}
/* Check current status */
clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err) {
DHD_ERROR(("%s: HT Avail read error: %d\n", __FUNCTION__, err));
return BCME_ERROR;
}
#if !defined(OOB_INTR_ONLY) || defined(OOB_PARAM)
/* Go to pending and await interrupt if appropriate */
if (1 &&
#if defined(OOB_PARAM)
bus->dhd->oob_disable &&
#endif /* OOB_PARAM */
!SBSDIO_CLKAV(clkctl, bus->alp_only) && pendok) {
/* Allow only clock-available interrupt */
devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err);
if (err) {
DHD_ERROR(("%s: Devctl access error setting CA: %d\n",
__FUNCTION__, err));
return BCME_ERROR;
}
devctl |= SBSDIO_DEVCTL_CA_INT_ONLY;
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err);
DHD_INFO(("CLKCTL: set PENDING\n"));
bus->clkstate = CLK_PENDING;
return BCME_OK;
} else
#endif /* !defined(OOB_INTR_ONLY) || defined(OOB_PARAM) */
{
if (bus->clkstate == CLK_PENDING) {
/* Cancel CA-only interrupt filter */
devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err);
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err);
}
}
/* Otherwise, wait here (polling) for HT Avail */
if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) {
SPINWAIT_SLEEP(sdioh_spinwait_sleep,
((clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, &err)),
!SBSDIO_CLKAV(clkctl, bus->alp_only)), PMU_MAX_TRANSITION_DLY);
}
if (err) {
DHD_ERROR(("%s: HT Avail request error: %d\n", __FUNCTION__, err));
return BCME_ERROR;
}
if (!SBSDIO_CLKAV(clkctl, bus->alp_only)) {
DHD_ERROR(("%s: HT Avail timeout (%d): clkctl 0x%02x\n",
__FUNCTION__, PMU_MAX_TRANSITION_DLY, clkctl));
return BCME_ERROR;
}
/* Mark clock available */
bus->clkstate = CLK_AVAIL;
DHD_INFO(("CLKCTL: turned ON\n"));
#if defined(DHD_DEBUG)
if (bus->alp_only == TRUE) {
#if !defined(BCMLXSDMMC)
if (!SBSDIO_ALPONLY(clkctl)) {
DHD_ERROR(("%s: HT Clock, when ALP Only\n", __FUNCTION__));
}
#endif /* !defined(BCMLXSDMMC) */
} else {
if (SBSDIO_ALPONLY(clkctl)) {
DHD_ERROR(("%s: HT Clock should be on.\n", __FUNCTION__));
}
}
#endif /* defined (DHD_DEBUG) */
bus->activity = TRUE;
#ifdef DHD_USE_IDLECOUNT
bus->idlecount = 0;
#endif /* DHD_USE_IDLECOUNT */
} else {
clkreq = 0;
if (bus->clkstate == CLK_PENDING) {
/* Cancel CA-only interrupt filter */
devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err);
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err);
}
bus->clkstate = CLK_SDONLY;
if (!SR_ENAB(bus)) {
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, clkreq, &err);
DHD_INFO(("CLKCTL: turned OFF\n"));
if (err) {
DHD_ERROR(("%s: Failed access turning clock off: %d\n",
__FUNCTION__, err));
return BCME_ERROR;
}
}
}
return BCME_OK;
}
/* Change idle/active SD state */
static int
dhdsdio_sdclk(dhd_bus_t *bus, bool on)
{
int err;
int32 iovalue;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (on) {
if (bus->idleclock == DHD_IDLE_STOP) {
/* Turn on clock and restore mode */
iovalue = 1;
err = bcmsdh_iovar_op(bus->sdh, "sd_clock", NULL, 0,
&iovalue, sizeof(iovalue), TRUE);
if (err) {
DHD_ERROR(("%s: error enabling sd_clock: %d\n",
__FUNCTION__, err));
return BCME_ERROR;
}
iovalue = bus->sd_mode;
err = bcmsdh_iovar_op(bus->sdh, "sd_mode", NULL, 0,
&iovalue, sizeof(iovalue), TRUE);
if (err) {
DHD_ERROR(("%s: error changing sd_mode: %d\n",
__FUNCTION__, err));
return BCME_ERROR;
}
} else if (bus->idleclock != DHD_IDLE_ACTIVE) {
/* Restore clock speed */
iovalue = bus->sd_divisor;
err = bcmsdh_iovar_op(bus->sdh, "sd_divisor", NULL, 0,
&iovalue, sizeof(iovalue), TRUE);
if (err) {
DHD_ERROR(("%s: error restoring sd_divisor: %d\n",
__FUNCTION__, err));
return BCME_ERROR;
}
}
bus->clkstate = CLK_SDONLY;
} else {
/* Stop or slow the SD clock itself */
if ((bus->sd_divisor == -1) || (bus->sd_mode == -1)) {
DHD_TRACE(("%s: can't idle clock, divisor %d mode %d\n",
__FUNCTION__, bus->sd_divisor, bus->sd_mode));
return BCME_ERROR;
}
if (bus->idleclock == DHD_IDLE_STOP) {
if (sd1idle) {
/* Change to SD1 mode and turn off clock */
iovalue = 1;
err = bcmsdh_iovar_op(bus->sdh, "sd_mode", NULL, 0,
&iovalue, sizeof(iovalue), TRUE);
if (err) {
DHD_ERROR(("%s: error changing sd_clock: %d\n",
__FUNCTION__, err));
return BCME_ERROR;
}
}
iovalue = 0;
err = bcmsdh_iovar_op(bus->sdh, "sd_clock", NULL, 0,
&iovalue, sizeof(iovalue), TRUE);
if (err) {
DHD_ERROR(("%s: error disabling sd_clock: %d\n",
__FUNCTION__, err));
return BCME_ERROR;
}
} else if (bus->idleclock != DHD_IDLE_ACTIVE) {
/* Set divisor to idle value */
iovalue = bus->idleclock;
err = bcmsdh_iovar_op(bus->sdh, "sd_divisor", NULL, 0,
&iovalue, sizeof(iovalue), TRUE);
if (err) {
DHD_ERROR(("%s: error changing sd_divisor: %d\n",
__FUNCTION__, err));
return BCME_ERROR;
}
}
bus->clkstate = CLK_NONE;
}
return BCME_OK;
}
/* Transition SD and backplane clock readiness */
static int
dhdsdio_clkctl(dhd_bus_t *bus, uint target, bool pendok)
{
int ret = BCME_OK;
#ifdef DHD_DEBUG
uint oldstate = bus->clkstate;
#endif /* DHD_DEBUG */
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* Early exit if we're already there */
if (bus->clkstate == target) {
if (target == CLK_AVAIL) {
dhd_os_wd_timer(bus->dhd, dhd_watchdog_ms);
bus->activity = TRUE;
#ifdef DHD_USE_IDLECOUNT
bus->idlecount = 0;
#endif /* DHD_USE_IDLECOUNT */
}
return ret;
}
switch (target) {
case CLK_AVAIL:
/* Make sure SD clock is available */
if (bus->clkstate == CLK_NONE)
dhdsdio_sdclk(bus, TRUE);
/* Now request HT Avail on the backplane */
ret = dhdsdio_htclk(bus, TRUE, pendok);
if (ret == BCME_OK) {
dhd_os_wd_timer(bus->dhd, dhd_watchdog_ms);
bus->activity = TRUE;
#ifdef DHD_USE_IDLECOUNT
bus->idlecount = 0;
#endif /* DHD_USE_IDLECOUNT */
}
break;
case CLK_SDONLY:
/* Remove HT request, or bring up SD clock */
if (bus->clkstate == CLK_NONE)
ret = dhdsdio_sdclk(bus, TRUE);
else if (bus->clkstate == CLK_AVAIL)
ret = dhdsdio_htclk(bus, FALSE, FALSE);
else
DHD_ERROR(("dhdsdio_clkctl: request for %d -> %d\n",
bus->clkstate, target));
if (ret == BCME_OK) {
dhd_os_wd_timer(bus->dhd, dhd_watchdog_ms);
}
break;
case CLK_NONE:
/* Make sure to remove HT request */
if (bus->clkstate == CLK_AVAIL)
ret = dhdsdio_htclk(bus, FALSE, FALSE);
/* Now remove the SD clock */
ret = dhdsdio_sdclk(bus, FALSE);
#ifdef DHD_DEBUG
if (dhd_console_ms == 0)
#endif /* DHD_DEBUG */
if (bus->poll == 0)
dhd_os_wd_timer(bus->dhd, 0);
break;
}
#ifdef DHD_DEBUG
DHD_INFO(("dhdsdio_clkctl: %d -> %d\n", oldstate, bus->clkstate));
#endif /* DHD_DEBUG */
return ret;
}
static int
dhdsdio_bussleep(dhd_bus_t *bus, bool sleep)
{
int err = 0;
bcmsdh_info_t *sdh = bus->sdh;
sdpcmd_regs_t *regs = bus->regs;
uint retries = 0;
DHD_INFO(("dhdsdio_bussleep: request %s (currently %s)\n",
(sleep ? "SLEEP" : "WAKE"),
(bus->sleeping ? "SLEEP" : "WAKE")));
if (bus->dhd->hang_was_sent)
return BCME_ERROR;
/* Done if we're already in the requested state */
if (sleep == bus->sleeping)
return BCME_OK;
/* Going to sleep: set the alarm and turn off the lights... */
if (sleep) {
/* Don't sleep if something is pending */
#ifdef DHD_USE_IDLECOUNT
if (bus->dpc_sched || bus->rxskip || pktq_len(&bus->txq) || bus->readframes ||
bus->ctrl_frame_stat)
#else
if (bus->dpc_sched || bus->rxskip || pktq_len(&bus->txq))
#endif /* DHD_USE_IDLECOUNT */
return BCME_BUSY;
if (!SLPAUTO_ENAB(bus)) {
/* Disable SDIO interrupts (no longer interested) */
bcmsdh_intr_disable(bus->sdh);
/* Make sure the controller has the bus up */
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
/* Tell device to start using OOB wakeup */
W_SDREG(SMB_USE_OOB, &regs->tosbmailbox, retries);
if (retries > retry_limit)
DHD_ERROR(("CANNOT SIGNAL CHIP, WILL NOT WAKE UP!!\n"));
/* Turn off our contribution to the HT clock request */
dhdsdio_clkctl(bus, CLK_SDONLY, FALSE);
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR,
SBSDIO_FORCE_HW_CLKREQ_OFF, NULL);
/* Isolate the bus */
if (bus->sih->chip != BCM4329_CHIP_ID &&
bus->sih->chip != BCM4319_CHIP_ID) {
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL,
SBSDIO_DEVCTL_PADS_ISO, NULL);
}
} else {
/* Leave interrupts enabled since device can exit sleep and
* interrupt host
*/
err = dhdsdio_clk_devsleep_iovar(bus, TRUE /* sleep */);
}
/* Change state */
bus->sleeping = TRUE;
#if defined(SUPPORT_P2P_GO_PS)
wake_up(&bus->bus_sleep);
#endif /* LINUX && SUPPORT_P2P_GO_PS */
} else {
/* Waking up: bus power up is ok, set local state */
if (!SLPAUTO_ENAB(bus)) {
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, 0, &err);
/* Force pad isolation off if possible (in case power never toggled) */
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, 0, NULL);
/* Make sure the controller has the bus up */
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
/* Send misc interrupt to indicate OOB not needed */
W_SDREG(0, &regs->tosbmailboxdata, retries);
if (retries <= retry_limit)
W_SDREG(SMB_DEV_INT, &regs->tosbmailbox, retries);
if (retries > retry_limit)
DHD_ERROR(("CANNOT SIGNAL CHIP TO CLEAR OOB!!\n"));
/* Make sure we have SD bus access */
dhdsdio_clkctl(bus, CLK_SDONLY, FALSE);
/* Enable interrupts again */
if (bus->intr && (bus->dhd->busstate == DHD_BUS_DATA)) {
bus->intdis = FALSE;
bcmsdh_intr_enable(bus->sdh);
}
} else {
err = dhdsdio_clk_devsleep_iovar(bus, FALSE /* wake */);
}
if (err == 0) {
/* Change state */
bus->sleeping = FALSE;
}
}
return err;
}
#ifdef USE_DYNAMIC_F2_BLKSIZE
int dhdsdio_func_blocksize(dhd_pub_t *dhd, int function_num, int block_size)
{
int func_blk_size = function_num;
int bcmerr = 0;
int result;
bcmerr = dhd_bus_iovar_op(dhd, "sd_blocksize", &func_blk_size,
sizeof(int), &result, sizeof(int), IOV_GET);
if (bcmerr != BCME_OK) {
DHD_ERROR(("%s: Get F%d Block size error\n", __FUNCTION__, function_num));
return BCME_ERROR;
}
if (result != block_size) {
DHD_TRACE_HW4(("%s: F%d Block size set from %d to %d\n",
__FUNCTION__, function_num, result, block_size));
func_blk_size = function_num << 16 | block_size;
bcmerr = dhd_bus_iovar_op(dhd, "sd_blocksize", NULL,
0, &func_blk_size, sizeof(int32), IOV_SET);
if (bcmerr != BCME_OK) {
DHD_ERROR(("%s: Set F2 Block size error\n", __FUNCTION__));
return BCME_ERROR;
}
}
return BCME_OK;
}
#endif /* USE_DYNAMIC_F2_BLKSIZE */
#if defined(OOB_INTR_ONLY)
void
dhd_enable_oob_intr(struct dhd_bus *bus, bool enable)
{
#if defined(HW_OOB)
bcmsdh_enable_hw_oob_intr(bus->sdh, enable);
#else
sdpcmd_regs_t *regs = bus->regs;
uint retries = 0;
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
if (enable == TRUE) {
/* Tell device to start using OOB wakeup */
W_SDREG(SMB_USE_OOB, &regs->tosbmailbox, retries);
if (retries > retry_limit)
DHD_ERROR(("CANNOT SIGNAL CHIP, WILL NOT WAKE UP!!\n"));
} else {
/* Send misc interrupt to indicate OOB not needed */
W_SDREG(0, &regs->tosbmailboxdata, retries);
if (retries <= retry_limit)
W_SDREG(SMB_DEV_INT, &regs->tosbmailbox, retries);
}
/* Turn off our contribution to the HT clock request */
dhdsdio_clkctl(bus, CLK_SDONLY, FALSE);
#endif /* !defined(HW_OOB) */
}
#endif
int
dhd_bus_txdata(struct dhd_bus *bus, void *pkt)
{
int ret = BCME_ERROR;
osl_t *osh;
uint datalen, prec;
#if defined(DHD_TX_DUMP)
uint8 *dump_data;
uint16 protocol;
#endif /* DHD_TX_DUMP */
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
osh = bus->dhd->osh;
datalen = PKTLEN(osh, pkt);
#ifdef SDTEST
/* Push the test header if doing loopback */
if (bus->ext_loop) {
uint8* data;
PKTPUSH(osh, pkt, SDPCM_TEST_HDRLEN);
data = PKTDATA(osh, pkt);
*data++ = SDPCM_TEST_ECHOREQ;
*data++ = (uint8)bus->loopid++;
*data++ = (datalen >> 0);
*data++ = (datalen >> 8);
datalen += SDPCM_TEST_HDRLEN;
}
#else /* SDTEST */
BCM_REFERENCE(datalen);
#endif /* SDTEST */
#if defined(DHD_TX_DUMP)
dump_data = PKTDATA(osh, pkt);
dump_data += 4; /* skip 4 bytes header */
protocol = (dump_data[12] << 8) | dump_data[13];
if (protocol == ETHER_TYPE_802_1X) {
DHD_ERROR(("ETHER_TYPE_802_1X [TX]: ver %d, type %d, replay %d\n",
dump_data[14], dump_data[15], dump_data[30]));
}
#endif /* DHD_TX_DUMP */
#if defined(DHD_TX_DUMP) && defined(DHD_TX_FULL_DUMP)
{
int i;
DHD_ERROR(("TX DUMP\n"));
for (i = 0; i < (datalen - 4); i++) {
DHD_ERROR(("%02X ", dump_data[i]));
if ((i & 15) == 15)
printk("\n");
}
DHD_ERROR(("\n"));
}
#endif /* DHD_TX_DUMP && DHD_TX_FULL_DUMP */
prec = PRIO2PREC((PKTPRIO(pkt) & PRIOMASK));
/* Check for existing queue, current flow-control, pending event, or pending clock */
if (dhd_deferred_tx || bus->fcstate || pktq_len(&bus->txq) || bus->dpc_sched ||
(!DATAOK(bus)) || (bus->flowcontrol & NBITVAL(prec)) ||
(bus->clkstate != CLK_AVAIL)) {
bool deq_ret;
int pkq_len;
DHD_TRACE(("%s: deferring pktq len %d\n", __FUNCTION__, pktq_len(&bus->txq)));
bus->fcqueued++;
/* Priority based enq */
dhd_os_sdlock_txq(bus->dhd);
deq_ret = dhd_prec_enq(bus->dhd, &bus->txq, pkt, prec);
dhd_os_sdunlock_txq(bus->dhd);
if (!deq_ret) {
#ifdef PROP_TXSTATUS
if (DHD_PKTTAG_WLFCPKT(PKTTAG(pkt)) == 0)
#endif /* PROP_TXSTATUS */
{
#ifdef DHDTCPACK_SUPPRESS
if (dhd_tcpack_check_xmit(bus->dhd, pkt) == BCME_ERROR) {
DHD_ERROR(("%s %d: tcpack_suppress ERROR!!! Stop using\n",
__FUNCTION__, __LINE__));
dhd_tcpack_suppress_set(bus->dhd, TCPACK_SUP_OFF);
}
#endif /* DHDTCPACK_SUPPRESS */
dhd_txcomplete(bus->dhd, pkt, FALSE);
PKTFREE(osh, pkt, TRUE);
}
ret = BCME_NORESOURCE;
} else
ret = BCME_OK;
dhd_os_sdlock_txq(bus->dhd);
pkq_len = pktq_len(&bus->txq);
dhd_os_sdunlock_txq(bus->dhd);
if (pkq_len >= FCHI) {
bool wlfc_enabled = FALSE;
#ifdef PROP_TXSTATUS
wlfc_enabled = (dhd_wlfc_flowcontrol(bus->dhd, ON, FALSE) !=
WLFC_UNSUPPORTED);
#endif
if (!wlfc_enabled && dhd_doflow) {
dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, ON);
}
}
#ifdef DHD_DEBUG
dhd_os_sdlock_txq(bus->dhd);
if (pktq_plen(&bus->txq, prec) > qcount[prec])
qcount[prec] = pktq_plen(&bus->txq, prec);
dhd_os_sdunlock_txq(bus->dhd);
#endif
/* Schedule DPC if needed to send queued packet(s) */
if (dhd_deferred_tx && !bus->dpc_sched) {
bus->dpc_sched = TRUE;
dhd_sched_dpc(bus->dhd);
}
} else {
int chan = SDPCM_DATA_CHANNEL;
#ifdef SDTEST
chan = (bus->ext_loop ? SDPCM_TEST_CHANNEL : SDPCM_DATA_CHANNEL);
#endif
/* Lock: we're about to use shared data/code (and SDIO) */
dhd_os_sdlock(bus->dhd);
/* Otherwise, send it now */
BUS_WAKE(bus);
/* Make sure back plane ht clk is on, no pending allowed */
dhdsdio_clkctl(bus, CLK_AVAIL, TRUE);
ret = dhdsdio_txpkt(bus, chan, &pkt, 1, TRUE);
if (ret != BCME_OK)
bus->dhd->tx_errors++;
else
bus->dhd->dstats.tx_bytes += datalen;
if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched) {
bus->activity = FALSE;
dhdsdio_clkctl(bus, CLK_NONE, TRUE);
}
dhd_os_sdunlock(bus->dhd);
}
return ret;
}
/* align packet data pointer and packet length to n-byte boundary, process packet headers,
* a new packet may be allocated if there is not enough head and/or tail from for padding.
* the caller is responsible for updating the glom size in the head packet (when glom is
* used)
*
* pad_pkt_len: returns the length of extra padding needed from the padding packet, this parameter
* is taken in tx glom mode only
*
* new_pkt: out, pointer of the new packet allocated due to insufficient head room for alignment
* padding, NULL if not needed, the caller is responsible for freeing the new packet
*
* return: positive value - length of the packet, including head and tail padding
* negative value - errors
*/
static int dhdsdio_txpkt_preprocess(dhd_bus_t *bus, void *pkt, int chan, int txseq,
int prev_chain_total_len, bool last_chained_pkt,
int *pad_pkt_len, void **new_pkt)
{
osl_t *osh;
uint8 *frame;
int pkt_len;
int modulo;
int head_padding;
int tail_padding = 0;
uint32 swheader;
uint32 swhdr_offset;
bool alloc_new_pkt = FALSE;
uint8 sdpcm_hdrlen = bus->txglom_enable ? SDPCM_HDRLEN_TXGLOM : SDPCM_HDRLEN;
*new_pkt = NULL;
osh = bus->dhd->osh;
#ifdef DHDTCPACK_SUPPRESS
if (dhd_tcpack_check_xmit(bus->dhd, pkt) == BCME_ERROR) {
DHD_ERROR(("%s %d: tcpack_suppress ERROR!!! Stop using it\n",
__FUNCTION__, __LINE__));
dhd_tcpack_suppress_set(bus->dhd, TCPACK_SUP_OFF);
}
#endif /* DHDTCPACK_SUPPRESS */
/* Add space for the SDPCM hardware/software headers */
PKTPUSH(osh, pkt, sdpcm_hdrlen);
ASSERT(ISALIGNED((uintptr)PKTDATA(osh, pkt), 2));
frame = (uint8*)PKTDATA(osh, pkt);
pkt_len = (uint16)PKTLEN(osh, pkt);
#ifdef WLMEDIA_HTSF
frame = (uint8*)PKTDATA(osh, pkt);
if (PKTLEN(osh, pkt) >= 100) {
htsf_ts = (htsfts_t*) (frame + HTSF_HOSTOFFSET + 12);
if (htsf_ts->magic == HTSFMAGIC) {
htsf_ts->c20 = get_cycles();
htsf_ts->t20 = dhd_get_htsf(bus->dhd->info, 0);
}
}
#endif /* WLMEDIA_HTSF */
#ifdef DHD_DEBUG
if (PKTPRIO(pkt) < ARRAYSIZE(tx_packets))
tx_packets[PKTPRIO(pkt)]++;
#endif /* DHD_DEBUG */
/* align the data pointer, allocate a new packet if there is not enough space (new
* packet data pointer will be aligned thus no padding will be needed)
*/
head_padding = (ulong)frame % DHD_SDALIGN;
if (PKTHEADROOM(osh, pkt) < head_padding) {
head_padding = 0;
alloc_new_pkt = TRUE;
} else {
uint cur_chain_total_len;
int chain_tail_padding = 0;
/* All packets need to be aligned by DHD_SDALIGN */
modulo = (pkt_len + head_padding) % DHD_SDALIGN;
tail_padding = modulo > 0 ? (DHD_SDALIGN - modulo) : 0;
/* Total pkt chain length needs to be aligned by block size,
* unless it is a single pkt chain with total length less than one block size,
* which we prefer sending by byte mode.
*
* Do the chain alignment here if
* 1. This is the last pkt of the chain of multiple pkts or a single pkt.
* 2-1. This chain is of multiple pkts, or
* 2-2. This is a single pkt whose size is longer than one block size.
*/
cur_chain_total_len = prev_chain_total_len +
(head_padding + pkt_len + tail_padding);
if (last_chained_pkt && bus->blocksize != 0 &&
(cur_chain_total_len > (int)bus->blocksize || prev_chain_total_len > 0)) {
modulo = cur_chain_total_len % bus->blocksize;
chain_tail_padding = modulo > 0 ? (bus->blocksize - modulo) : 0;
}
#ifdef DHDENABLE_TAILPAD
if (PKTTAILROOM(osh, pkt) < tail_padding) {
/* We don't have tail room to align by DHD_SDALIGN */
alloc_new_pkt = TRUE;
bus->tx_tailpad_pktget++;
} else if (PKTTAILROOM(osh, pkt) < tail_padding + chain_tail_padding) {
/* We have tail room for tail_padding of this pkt itself, but not for
* total pkt chain alignment by block size.
* Use the padding packet to avoid memory copy if applicable,
* otherwise, just allocate a new pkt.
*/
if (bus->pad_pkt) {
*pad_pkt_len = chain_tail_padding;
bus->tx_tailpad_chain++;
} else {
alloc_new_pkt = TRUE;
bus->tx_tailpad_pktget++;
}
} else
/* This last pkt's tailroom is sufficient to hold both tail_padding
* of the pkt itself and chain_tail_padding of total pkt chain
*/
#endif /* DHDENABLE_TAILPAD */
tail_padding += chain_tail_padding;
}
DHD_INFO(("%s sdhdr len + orig_pkt_len %d h_pad %d t_pad %d pad_pkt_len %d\n",
__FUNCTION__, pkt_len, head_padding, tail_padding, *pad_pkt_len));
if (alloc_new_pkt) {
void *tmp_pkt;
int newpkt_size;
int cur_total_len;
ASSERT(*pad_pkt_len == 0);
DHD_INFO(("%s allocating new packet for padding\n", __FUNCTION__));
/* head pointer is aligned now, no padding needed */
head_padding = 0;
/* update the tail padding as it depends on the head padding, since a new packet is
* allocated, the head padding is non longer needed and packet length is chagned
*/
cur_total_len = prev_chain_total_len + pkt_len;
if (last_chained_pkt && bus->blocksize != 0 &&
(cur_total_len > (int)bus->blocksize || prev_chain_total_len > 0)) {
modulo = cur_total_len % bus->blocksize;
tail_padding = modulo > 0 ? (bus->blocksize - modulo) : 0;
}
else {
modulo = pkt_len % DHD_SDALIGN;
tail_padding = modulo > 0 ? (DHD_SDALIGN - modulo) : 0;
}
newpkt_size = PKTLEN(osh, pkt) + bus->blocksize + DHD_SDALIGN;
bus->dhd->tx_realloc++;
tmp_pkt = PKTGET(osh, newpkt_size, TRUE);
if (tmp_pkt == NULL) {
DHD_ERROR(("failed to alloc new %d byte packet\n", newpkt_size));
return BCME_NOMEM;
}
PKTALIGN(osh, tmp_pkt, PKTLEN(osh, pkt), DHD_SDALIGN);
bcopy(PKTDATA(osh, pkt), PKTDATA(osh, tmp_pkt), PKTLEN(osh, pkt));
*new_pkt = tmp_pkt;
pkt = tmp_pkt;
}
if (head_padding)
PKTPUSH(osh, pkt, head_padding);
frame = (uint8*)PKTDATA(osh, pkt);
bzero(frame, head_padding + sdpcm_hdrlen);
pkt_len = (uint16)PKTLEN(osh, pkt);
/* the header has the followming format
* 4-byte HW frame tag: length, ~length (for glom this is the total length)
*
* 8-byte HW extesion flags (glom mode only) as the following:
* 2-byte packet length, excluding HW tag and padding
* 2-byte frame channel and frame flags (e.g. next frame following)
* 2-byte header length
* 2-byte tail padding size
*
* 8-byte SW frame tags as the following
* 4-byte flags: host tx seq, channel, data offset
* 4-byte flags: TBD
*/
swhdr_offset = SDPCM_FRAMETAG_LEN;
/* hardware frame tag:
*
* in tx-glom mode, dongle only checks the hardware frame tag in the first
* packet and sees it as the total lenght of the glom (including tail padding),
* for each packet in the glom, the packet length needs to be updated, (see
* below PKTSETLEN)
*
* in non tx-glom mode, PKTLEN still need to include tail padding as to be
* referred to in sdioh_request_buffer(). The tail length will be excluded in
* dhdsdio_txpkt_postprocess().
*/
*(uint16*)frame = (uint16)htol16(pkt_len);
*(((uint16*)frame) + 1) = (uint16)htol16(~pkt_len);
pkt_len += tail_padding;
/* hardware extesion flags */
if (bus->txglom_enable) {
uint32 hwheader1;
uint32 hwheader2;
swhdr_offset += SDPCM_HWEXT_LEN;
hwheader1 = (pkt_len - SDPCM_FRAMETAG_LEN - tail_padding) |
(last_chained_pkt << 24);
hwheader2 = (tail_padding) << 16;
htol32_ua_store(hwheader1, frame + SDPCM_FRAMETAG_LEN);
htol32_ua_store(hwheader2, frame + SDPCM_FRAMETAG_LEN + 4);
}
PKTSETLEN((osh), (pkt), (pkt_len));
/* software frame tags */
swheader = ((chan << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK)
| (txseq % SDPCM_SEQUENCE_WRAP) |
(((head_padding + sdpcm_hdrlen) << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK);
htol32_ua_store(swheader, frame + swhdr_offset);
htol32_ua_store(0, frame + swhdr_offset + sizeof(swheader));
return pkt_len;
}
static int dhdsdio_txpkt_postprocess(dhd_bus_t *bus, void *pkt)
{
osl_t *osh;
uint8 *frame;
int data_offset;
int tail_padding;
int swhdr_offset = SDPCM_FRAMETAG_LEN + (bus->txglom_enable ? SDPCM_HWEXT_LEN : 0);
(void)osh;
osh = bus->dhd->osh;
/* restore pkt buffer pointer, but keeps the header pushed by dhd_prot_hdrpush */
frame = (uint8*)PKTDATA(osh, pkt);
DHD_INFO(("%s PKTLEN before postprocess %d",
__FUNCTION__, PKTLEN(osh, pkt)));
/* PKTLEN still includes tail_padding, so exclude it.
* We shall have head_padding + original pkt_len for PKTLEN afterwards.
*/
if (bus->txglom_enable) {
/* txglom pkts have tail_padding length in HW ext header */
tail_padding = ltoh32_ua(frame + SDPCM_FRAMETAG_LEN + 4) >> 16;
PKTSETLEN(osh, pkt, PKTLEN(osh, pkt) - tail_padding);
DHD_INFO((" txglom pkt: tail_padding %d PKTLEN %d\n",
tail_padding, PKTLEN(osh, pkt)));
} else {
/* non-txglom pkts have head_padding + original pkt length in HW frame tag.
* We cannot refer to this field for txglom pkts as the first pkt of the chain will
* have the field for the total length of the chain.
*/
PKTSETLEN(osh, pkt, *(uint16*)frame);
DHD_INFO((" non-txglom pkt: HW frame tag len %d after PKTLEN %d\n",
*(uint16*)frame, PKTLEN(osh, pkt)));
}
data_offset = ltoh32_ua(frame + swhdr_offset);
data_offset = (data_offset & SDPCM_DOFFSET_MASK) >> SDPCM_DOFFSET_SHIFT;
/* Get rid of sdpcm header + head_padding */
PKTPULL(osh, pkt, data_offset);
DHD_INFO(("%s data_offset %d, PKTLEN %d\n",
__FUNCTION__, data_offset, PKTLEN(osh, pkt)));
return BCME_OK;
}
static int dhdsdio_txpkt(dhd_bus_t *bus, uint chan, void** pkts, int num_pkt, bool free_pkt)
{
int i;
int ret = 0;
osl_t *osh;
bcmsdh_info_t *sdh;
void *pkt = NULL;
void *pkt_chain;
int total_len = 0;
void *head_pkt = NULL;
void *prev_pkt = NULL;
int pad_pkt_len = 0;
int new_pkt_num = 0;
void *new_pkts[MAX_TX_PKTCHAIN_CNT];
bool wlfc_enabled = FALSE;
if (bus->dhd->dongle_reset)
return BCME_NOTREADY;
sdh = bus->sdh;
osh = bus->dhd->osh;
/* init new_pkts[0] to make some compiler happy, not necessary as we check new_pkt_num */
new_pkts[0] = NULL;
for (i = 0; i < num_pkt; i++) {
int pkt_len;
bool last_pkt;
void *new_pkt = NULL;
pkt = pkts[i];
ASSERT(pkt);
last_pkt = (i == num_pkt - 1);
pkt_len = dhdsdio_txpkt_preprocess(bus, pkt, chan, bus->tx_seq + i,
total_len, last_pkt, &pad_pkt_len, &new_pkt);
if (pkt_len <= 0)
goto done;
if (new_pkt) {
pkt = new_pkt;
new_pkts[new_pkt_num++] = new_pkt;
}
total_len += pkt_len;
PKTSETNEXT(osh, pkt, NULL);
/* insert the packet into the list */
head_pkt ? PKTSETNEXT(osh, prev_pkt, pkt) : (head_pkt = pkt);
prev_pkt = pkt;
}
/* Update the HW frame tag (total length) in the first pkt of the glom */
if (bus->txglom_enable) {
uint8 *frame;
total_len += pad_pkt_len;
frame = (uint8*)PKTDATA(osh, head_pkt);
*(uint16*)frame = (uint16)htol16(total_len);
*(((uint16*)frame) + 1) = (uint16)htol16(~total_len);
}
#ifdef DHDENABLE_TAILPAD
/* if a padding packet if needed, insert it to the end of the link list */
if (pad_pkt_len) {
PKTSETLEN(osh, bus->pad_pkt, pad_pkt_len);
PKTSETNEXT(osh, pkt, bus->pad_pkt);
}
#endif /* DHDENABLE_TAILPAD */
/* dhd_bcmsdh_send_buf ignores the buffer pointer if he packet
* parameter is not NULL, for non packet chian we pass NULL pkt pointer
* so it will take the aligned length and buffer pointer.
*/
pkt_chain = PKTNEXT(osh, head_pkt) ? head_pkt : NULL;
ret = dhd_bcmsdh_send_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC,
PKTDATA(osh, head_pkt), total_len, pkt_chain, NULL, NULL, TXRETRIES);
if (ret == BCME_OK)
bus->tx_seq = (bus->tx_seq + num_pkt) % SDPCM_SEQUENCE_WRAP;
/* if a padding packet was needed, remove it from the link list as it not a data pkt */
if (pad_pkt_len && pkt)
PKTSETNEXT(osh, pkt, NULL);
done:
pkt = head_pkt;
while (pkt) {
void *pkt_next = PKTNEXT(osh, pkt);
PKTSETNEXT(osh, pkt, NULL);
dhdsdio_txpkt_postprocess(bus, pkt);
pkt = pkt_next;
}
/* new packets might be allocated due to insufficient room for padding, but we
* still have to indicate the original packets to upper layer
*/
for (i = 0; i < num_pkt; i++) {
pkt = pkts[i];
wlfc_enabled = FALSE;
#ifdef PROP_TXSTATUS
if (DHD_PKTTAG_WLFCPKT(PKTTAG(pkt))) {
wlfc_enabled = (dhd_wlfc_txcomplete(bus->dhd, pkt, ret == 0) !=
WLFC_UNSUPPORTED);
}
#endif /* PROP_TXSTATUS */
if (!wlfc_enabled) {
PKTSETNEXT(osh, pkt, NULL);
dhd_txcomplete(bus->dhd, pkt, ret != 0);
if (free_pkt)
PKTFREE(osh, pkt, TRUE);
}
}
for (i = 0; i < new_pkt_num; i++)
PKTFREE(osh, new_pkts[i], TRUE);
return ret;
}
static uint
dhdsdio_sendfromq(dhd_bus_t *bus, uint maxframes)
{
uint cnt = 0;
uint8 tx_prec_map;
uint16 txpktqlen = 0;
uint32 intstatus = 0;
uint retries = 0;
osl_t *osh;
uint datalen = 0;
dhd_pub_t *dhd = bus->dhd;
sdpcmd_regs_t *regs = bus->regs;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (!KSO_ENAB(bus)) {
DHD_ERROR(("%s: Device asleep\n", __FUNCTION__));
return BCME_NODEVICE;
}
osh = dhd->osh;
tx_prec_map = ~bus->flowcontrol;
#ifdef DHD_LOSSLESS_ROAMING
tx_prec_map &= dhd->dequeue_prec_map;
#endif
for (cnt = 0; (cnt < maxframes) && DATAOK(bus);) {
int i;
int num_pkt = 1;
void *pkts[MAX_TX_PKTCHAIN_CNT];
int prec_out;
dhd_os_sdlock_txq(bus->dhd);
if (bus->txglom_enable) {
uint32 glomlimit = (uint32)bus->txglomsize;
#if defined(BCMSDIOH_STD)
if (bus->blocksize == 64) {
glomlimit = MIN((uint32)bus->txglomsize, BLK_64_MAXTXGLOM);
}
#endif /* BCMSDIOH_STD */
num_pkt = MIN((uint32)DATABUFCNT(bus), glomlimit);
num_pkt = MIN(num_pkt, ARRAYSIZE(pkts));
}
num_pkt = MIN(num_pkt, pktq_mlen(&bus->txq, tx_prec_map));
for (i = 0; i < num_pkt; i++) {
pkts[i] = pktq_mdeq(&bus->txq, tx_prec_map, &prec_out);
if (!pkts[i]) {
DHD_ERROR(("%s: pktq_mlen non-zero when no pkt\n",
__FUNCTION__));
ASSERT(0);
break;
}
PKTORPHAN(pkts[i]);
datalen += PKTLEN(osh, pkts[i]);
}
dhd_os_sdunlock_txq(bus->dhd);
if (i == 0)
break;
if (dhdsdio_txpkt(bus, SDPCM_DATA_CHANNEL, pkts, i, TRUE) != BCME_OK)
dhd->tx_errors++;
else
dhd->dstats.tx_bytes += datalen;
cnt += i;
/* In poll mode, need to check for other events */
if (!bus->intr && cnt)
{
/* Check device status, signal pending interrupt */
R_SDREG(intstatus, &regs->intstatus, retries);
bus->f2txdata++;
if (bcmsdh_regfail(bus->sdh))
break;
if (intstatus & bus->hostintmask)
bus->ipend = TRUE;
}
}
dhd_os_sdlock_txq(bus->dhd);
txpktqlen = pktq_len(&bus->txq);
dhd_os_sdunlock_txq(bus->dhd);
/* Do flow-control if needed */
if (dhd->up && (dhd->busstate == DHD_BUS_DATA) && (txpktqlen < FCLOW)) {
bool wlfc_enabled = FALSE;
#ifdef PROP_TXSTATUS
wlfc_enabled = (dhd_wlfc_flowcontrol(dhd, OFF, TRUE) != WLFC_UNSUPPORTED);
#endif
if (!wlfc_enabled && dhd_doflow && dhd->txoff) {
dhd_txflowcontrol(dhd, ALL_INTERFACES, OFF);
}
}
return cnt;
}
static void
dhdsdio_sendpendctl(dhd_bus_t *bus)
{
bcmsdh_info_t *sdh = bus->sdh;
int ret;
uint8* frame_seq = bus->ctrl_frame_buf + SDPCM_FRAMETAG_LEN;
if (bus->txglom_enable)
frame_seq += SDPCM_HWEXT_LEN;
if (*frame_seq != bus->tx_seq) {
DHD_INFO(("%s IOCTL frame seq lag detected!"
" frm_seq:%d != bus->tx_seq:%d, corrected\n",
__FUNCTION__, *frame_seq, bus->tx_seq));
*frame_seq = bus->tx_seq;
}
ret = dhd_bcmsdh_send_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC,
(uint8 *)bus->ctrl_frame_buf, (uint32)bus->ctrl_frame_len,
NULL, NULL, NULL, 1);
if (ret == BCME_OK)
bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP;
bus->ctrl_frame_stat = FALSE;
dhd_wait_event_wakeup(bus->dhd);
}
int
dhd_bus_txctl(struct dhd_bus *bus, uchar *msg, uint msglen)
{
static int err_nodevice = 0;
uint8 *frame;
uint16 len;
uint32 swheader;
bcmsdh_info_t *sdh = bus->sdh;
uint8 doff = 0;
int ret = -1;
uint8 sdpcm_hdrlen = bus->txglom_enable ? SDPCM_HDRLEN_TXGLOM : SDPCM_HDRLEN;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus->dhd->dongle_reset)
return -EIO;
/* Back the pointer to make a room for bus header */
frame = msg - sdpcm_hdrlen;
len = (msglen += sdpcm_hdrlen);
/* Add alignment padding (optional for ctl frames) */
if (dhd_alignctl) {
if ((doff = ((uintptr)frame % DHD_SDALIGN))) {
frame -= doff;
len += doff;
msglen += doff;
bzero(frame, doff + sdpcm_hdrlen);
}
ASSERT(doff < DHD_SDALIGN);
}
doff += sdpcm_hdrlen;
/* Round send length to next SDIO block */
if (bus->roundup && bus->blocksize && (len > bus->blocksize)) {
uint16 pad = bus->blocksize - (len % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize))
len += pad;
} else if (len % DHD_SDALIGN) {
len += DHD_SDALIGN - (len % DHD_SDALIGN);
}
/* Satisfy length-alignment requirements */
if (forcealign && (len & (ALIGNMENT - 1)))
len = ROUNDUP(len, ALIGNMENT);
ASSERT(ISALIGNED((uintptr)frame, 2));
/* Need to lock here to protect txseq and SDIO tx calls */
dhd_os_sdlock(bus->dhd);
BUS_WAKE(bus);
/* Make sure backplane clock is on */
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
/* Hardware tag: 2 byte len followed by 2 byte ~len check (all LE) */
*(uint16*)frame = htol16((uint16)msglen);
*(((uint16*)frame) + 1) = htol16(~msglen);
if (bus->txglom_enable) {
uint32 hwheader1, hwheader2;
/* Software tag: channel, sequence number, data offset */
swheader = ((SDPCM_CONTROL_CHANNEL << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK)
| bus->tx_seq
| ((doff << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK);
htol32_ua_store(swheader, frame + SDPCM_FRAMETAG_LEN + SDPCM_HWEXT_LEN);
htol32_ua_store(0, frame + SDPCM_FRAMETAG_LEN
+ SDPCM_HWEXT_LEN + sizeof(swheader));
hwheader1 = (msglen - SDPCM_FRAMETAG_LEN) | (1 << 24);
hwheader2 = (len - (msglen)) << 16;
htol32_ua_store(hwheader1, frame + SDPCM_FRAMETAG_LEN);
htol32_ua_store(hwheader2, frame + SDPCM_FRAMETAG_LEN + 4);
*(uint16*)frame = htol16(len);
*(((uint16*)frame) + 1) = htol16(~(len));
} else {
/* Software tag: channel, sequence number, data offset */
swheader = ((SDPCM_CONTROL_CHANNEL << SDPCM_CHANNEL_SHIFT) & SDPCM_CHANNEL_MASK)
| bus->tx_seq | ((doff << SDPCM_DOFFSET_SHIFT) & SDPCM_DOFFSET_MASK);
htol32_ua_store(swheader, frame + SDPCM_FRAMETAG_LEN);
htol32_ua_store(0, frame + SDPCM_FRAMETAG_LEN + sizeof(swheader));
}
if (!TXCTLOK(bus)) {
DHD_INFO(("%s: No bus credit bus->tx_max %d, bus->tx_seq %d\n",
__FUNCTION__, bus->tx_max, bus->tx_seq));
bus->ctrl_frame_stat = TRUE;
/* Send from dpc */
bus->ctrl_frame_buf = frame;
bus->ctrl_frame_len = len;
if (!bus->dpc_sched) {
bus->dpc_sched = TRUE;
dhd_sched_dpc(bus->dhd);
}
if (bus->ctrl_frame_stat) {
dhd_wait_for_event(bus->dhd, &bus->ctrl_frame_stat);
}
if (bus->ctrl_frame_stat == FALSE) {
DHD_INFO(("%s: ctrl_frame_stat == FALSE\n", __FUNCTION__));
ret = 0;
} else {
bus->dhd->txcnt_timeout++;
if (!bus->dhd->hang_was_sent) {
#ifdef CUSTOMER_HW4_DEBUG
uint32 status, retry = 0;
R_SDREG(status, &bus->regs->intstatus, retry);
DHD_TRACE_HW4(("%s: txcnt_timeout, INT status=0x%08X\n",
__FUNCTION__, status));
DHD_TRACE_HW4(("%s : tx_max : %d, tx_seq : %d, clkstate : %d \n",
__FUNCTION__, bus->tx_max, bus->tx_seq, bus->clkstate));
#endif /* CUSTOMER_HW4_DEBUG */
DHD_ERROR(("%s: ctrl_frame_stat == TRUE txcnt_timeout=%d\n",
__FUNCTION__, bus->dhd->txcnt_timeout));
}
ret = -1;
bus->ctrl_frame_stat = FALSE;
goto done;
}
}
bus->dhd->txcnt_timeout = 0;
bus->ctrl_frame_stat = TRUE;
if (ret == -1) {
#ifdef DHD_DEBUG
if (DHD_BYTES_ON() && DHD_CTL_ON()) {
prhex("Tx Frame", frame, len);
} else if (DHD_HDRS_ON()) {
prhex("TxHdr", frame, MIN(len, 16));
}
#endif
ret = dhd_bcmsdh_send_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC,
frame, len, NULL, NULL, NULL, TXRETRIES);
if (ret == BCME_OK)
bus->tx_seq = (bus->tx_seq + 1) % SDPCM_SEQUENCE_WRAP;
}
bus->ctrl_frame_stat = FALSE;
done:
if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched) {
bus->activity = FALSE;
dhdsdio_clkctl(bus, CLK_NONE, TRUE);
}
dhd_os_sdunlock(bus->dhd);
if (ret)
bus->dhd->tx_ctlerrs++;
else
bus->dhd->tx_ctlpkts++;
if (bus->dhd->txcnt_timeout >= MAX_CNTL_TX_TIMEOUT)
return -ETIMEDOUT;
if (ret == BCME_NODEVICE)
err_nodevice++;
else
err_nodevice = 0;
return ret ? err_nodevice >= ERROR_BCME_NODEVICE_MAX ? -ETIMEDOUT : -EIO : 0;
}
int
dhd_bus_rxctl(struct dhd_bus *bus, uchar *msg, uint msglen)
{
int timeleft;
uint rxlen = 0;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus->dhd->dongle_reset)
return -EIO;
/* Wait until control frame is available */
timeleft = dhd_os_ioctl_resp_wait(bus->dhd, &bus->rxlen);
dhd_os_sdlock(bus->dhd);
rxlen = bus->rxlen;
bcopy(bus->rxctl, msg, MIN(msglen, rxlen));
bus->rxlen = 0;
dhd_os_sdunlock(bus->dhd);
if (rxlen) {
DHD_CTL(("%s: resumed on rxctl frame, got %d expected %d\n",
__FUNCTION__, rxlen, msglen));
} else if (timeleft == 0) {
#ifdef DHD_DEBUG
uint32 status, retry = 0;
R_SDREG(status, &bus->regs->intstatus, retry);
DHD_ERROR(("%s: resumed on timeout, INT status=0x%08X\n",
__FUNCTION__, status));
#else
DHD_ERROR(("%s: resumed on timeout\n", __FUNCTION__));
#endif /* DHD_DEBUG */
dhd_os_sdlock(bus->dhd);
dhdsdio_checkdied(bus, NULL, 0);
dhd_os_sdunlock(bus->dhd);
} else {
DHD_CTL(("%s: resumed for unknown reason?\n", __FUNCTION__));
dhd_os_sdlock(bus->dhd);
dhdsdio_checkdied(bus, NULL, 0);
dhd_os_sdunlock(bus->dhd);
}
if (timeleft == 0) {
if (rxlen == 0)
bus->dhd->rxcnt_timeout++;
DHD_ERROR(("%s: rxcnt_timeout=%d, rxlen=%d\n", __FUNCTION__,
bus->dhd->rxcnt_timeout, rxlen));
}
else
bus->dhd->rxcnt_timeout = 0;
if (rxlen)
bus->dhd->rx_ctlpkts++;
else
bus->dhd->rx_ctlerrs++;
if (bus->dhd->rxcnt_timeout >= MAX_CNTL_RX_TIMEOUT)
return -ETIMEDOUT;
if (bus->dhd->dongle_trap_occured)
return -EREMOTEIO;
return rxlen ? (int)rxlen : -EIO;
}
/* IOVar table */
enum {
IOV_INTR = 1,
IOV_POLLRATE,
IOV_SDREG,
IOV_SBREG,
IOV_SDCIS,
IOV_MEMBYTES,
IOV_RAMSIZE,
IOV_RAMSTART,
#ifdef DHD_DEBUG
IOV_CHECKDIED,
IOV_SERIALCONS,
#endif /* DHD_DEBUG */
IOV_SET_DOWNLOAD_STATE,
IOV_SOCRAM_STATE,
IOV_FORCEEVEN,
IOV_SDIOD_DRIVE,
IOV_READAHEAD,
IOV_SDRXCHAIN,
IOV_ALIGNCTL,
IOV_SDALIGN,
IOV_DEVRESET,
IOV_CPU,
#if defined(USE_SDIOFIFO_IOVAR)
IOV_WATERMARK,
IOV_MESBUSYCTRL,
#endif /* USE_SDIOFIFO_IOVAR */
#ifdef SDTEST
IOV_PKTGEN,
IOV_EXTLOOP,
#endif /* SDTEST */
IOV_SPROM,
IOV_TXBOUND,
IOV_RXBOUND,
IOV_TXMINMAX,
IOV_IDLETIME,
IOV_IDLECLOCK,
IOV_SD1IDLE,
IOV_SLEEP,
IOV_DONGLEISOLATION,
IOV_KSO,
IOV_DEVSLEEP,
IOV_DEVCAP,
IOV_VARS,
#ifdef SOFTAP
IOV_FWPATH,
#endif
IOV_TXGLOMSIZE,
IOV_TXGLOMMODE,
IOV_HANGREPORT,
IOV_TXINRX_THRES
};
const bcm_iovar_t dhdsdio_iovars[] = {
{"intr", IOV_INTR, 0, IOVT_BOOL, 0 },
{"sleep", IOV_SLEEP, 0, IOVT_BOOL, 0 },
{"pollrate", IOV_POLLRATE, 0, IOVT_UINT32, 0 },
{"idletime", IOV_IDLETIME, 0, IOVT_INT32, 0 },
{"idleclock", IOV_IDLECLOCK, 0, IOVT_INT32, 0 },
{"sd1idle", IOV_SD1IDLE, 0, IOVT_BOOL, 0 },
{"membytes", IOV_MEMBYTES, 0, IOVT_BUFFER, 2 * sizeof(int) },
{"ramsize", IOV_RAMSIZE, 0, IOVT_UINT32, 0 },
{"ramstart", IOV_RAMSTART, 0, IOVT_UINT32, 0 },
{"dwnldstate", IOV_SET_DOWNLOAD_STATE, 0, IOVT_BOOL, 0 },
{"socram_state", IOV_SOCRAM_STATE, 0, IOVT_BOOL, 0 },
{"vars", IOV_VARS, 0, IOVT_BUFFER, 0 },
{"sdiod_drive", IOV_SDIOD_DRIVE, 0, IOVT_UINT32, 0 },
{"readahead", IOV_READAHEAD, 0, IOVT_BOOL, 0 },
{"sdrxchain", IOV_SDRXCHAIN, 0, IOVT_BOOL, 0 },
{"alignctl", IOV_ALIGNCTL, 0, IOVT_BOOL, 0 },
{"sdalign", IOV_SDALIGN, 0, IOVT_BOOL, 0 },
{"devreset", IOV_DEVRESET, 0, IOVT_BOOL, 0 },
#ifdef DHD_DEBUG
{"sdreg", IOV_SDREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"sbreg", IOV_SBREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"sd_cis", IOV_SDCIS, 0, IOVT_BUFFER, DHD_IOCTL_MAXLEN },
{"forcealign", IOV_FORCEEVEN, 0, IOVT_BOOL, 0 },
{"txbound", IOV_TXBOUND, 0, IOVT_UINT32, 0 },
{"rxbound", IOV_RXBOUND, 0, IOVT_UINT32, 0 },
{"txminmax", IOV_TXMINMAX, 0, IOVT_UINT32, 0 },
{"cpu", IOV_CPU, 0, IOVT_BOOL, 0 },
#ifdef DHD_DEBUG
{"checkdied", IOV_CHECKDIED, 0, IOVT_BUFFER, 0 },
{"serial", IOV_SERIALCONS, 0, IOVT_UINT32, 0 },
#endif /* DHD_DEBUG */
#endif /* DHD_DEBUG */
#ifdef SDTEST
{"extloop", IOV_EXTLOOP, 0, IOVT_BOOL, 0 },
{"pktgen", IOV_PKTGEN, 0, IOVT_BUFFER, sizeof(dhd_pktgen_t) },
#endif /* SDTEST */
#if defined(USE_SDIOFIFO_IOVAR)
{"watermark", IOV_WATERMARK, 0, IOVT_UINT32, 0 },
{"mesbusyctrl", IOV_MESBUSYCTRL, 0, IOVT_UINT32, 0 },
#endif /* USE_SDIOFIFO_IOVAR */
{"devcap", IOV_DEVCAP, 0, IOVT_UINT32, 0 },
{"dngl_isolation", IOV_DONGLEISOLATION, 0, IOVT_UINT32, 0 },
{"kso", IOV_KSO, 0, IOVT_UINT32, 0 },
{"devsleep", IOV_DEVSLEEP, 0, IOVT_UINT32, 0 },
#ifdef SOFTAP
{"fwpath", IOV_FWPATH, 0, IOVT_BUFFER, 0 },
#endif
{"txglomsize", IOV_TXGLOMSIZE, 0, IOVT_UINT32, 0 },
{"fw_hang_report", IOV_HANGREPORT, 0, IOVT_BOOL, 0 },
{"txinrx_thres", IOV_TXINRX_THRES, 0, IOVT_INT32, 0 },
{NULL, 0, 0, 0, 0 }
};
static void
dhd_dump_pct(struct bcmstrbuf *strbuf, char *desc, uint num, uint div)
{
uint q1, q2;
if (!div) {
bcm_bprintf(strbuf, "%s N/A", desc);
} else {
q1 = num / div;
q2 = (100 * (num - (q1 * div))) / div;
bcm_bprintf(strbuf, "%s %d.%02d", desc, q1, q2);
}
}
void
dhd_bus_dump(dhd_pub_t *dhdp, struct bcmstrbuf *strbuf)
{
dhd_bus_t *bus = dhdp->bus;
bcm_bprintf(strbuf, "Bus SDIO structure:\n");
bcm_bprintf(strbuf, "hostintmask 0x%08x intstatus 0x%08x sdpcm_ver %d\n",
bus->hostintmask, bus->intstatus, bus->sdpcm_ver);
bcm_bprintf(strbuf, "fcstate %d qlen %u tx_seq %d, max %d, rxskip %d rxlen %u rx_seq %d\n",
bus->fcstate, pktq_len(&bus->txq), bus->tx_seq, bus->tx_max, bus->rxskip,
bus->rxlen, bus->rx_seq);
bcm_bprintf(strbuf, "intr %d intrcount %u lastintrs %u spurious %u\n",
bus->intr, bus->intrcount, bus->lastintrs, bus->spurious);
bcm_bprintf(strbuf, "pollrate %u pollcnt %u regfails %u\n",
bus->pollrate, bus->pollcnt, bus->regfails);
bcm_bprintf(strbuf, "\nAdditional counters:\n");
#ifdef DHDENABLE_TAILPAD
bcm_bprintf(strbuf, "tx_tailpad_chain %u tx_tailpad_pktget %u\n",
bus->tx_tailpad_chain, bus->tx_tailpad_pktget);
#endif /* DHDENABLE_TAILPAD */
bcm_bprintf(strbuf, "tx_sderrs %u fcqueued %u rxrtx %u rx_toolong %u rxc_errors %u\n",
bus->tx_sderrs, bus->fcqueued, bus->rxrtx, bus->rx_toolong,
bus->rxc_errors);
bcm_bprintf(strbuf, "rx_hdrfail %u badhdr %u badseq %u\n",
bus->rx_hdrfail, bus->rx_badhdr, bus->rx_badseq);
bcm_bprintf(strbuf, "fc_rcvd %u, fc_xoff %u, fc_xon %u\n",
bus->fc_rcvd, bus->fc_xoff, bus->fc_xon);
bcm_bprintf(strbuf, "rxglomfail %u, rxglomframes %u, rxglompkts %u\n",
bus->rxglomfail, bus->rxglomframes, bus->rxglompkts);
bcm_bprintf(strbuf, "f2rx (hdrs/data) %u (%u/%u), f2tx %u f1regs %u\n",
(bus->f2rxhdrs + bus->f2rxdata), bus->f2rxhdrs, bus->f2rxdata,
bus->f2txdata, bus->f1regdata);
{
dhd_dump_pct(strbuf, "\nRx: pkts/f2rd", bus->dhd->rx_packets,
(bus->f2rxhdrs + bus->f2rxdata));
dhd_dump_pct(strbuf, ", pkts/f1sd", bus->dhd->rx_packets, bus->f1regdata);
dhd_dump_pct(strbuf, ", pkts/sd", bus->dhd->rx_packets,
(bus->f2rxhdrs + bus->f2rxdata + bus->f1regdata));
dhd_dump_pct(strbuf, ", pkts/int", bus->dhd->rx_packets, bus->intrcount);
bcm_bprintf(strbuf, "\n");
dhd_dump_pct(strbuf, "Rx: glom pct", (100 * bus->rxglompkts),
bus->dhd->rx_packets);
dhd_dump_pct(strbuf, ", pkts/glom", bus->rxglompkts, bus->rxglomframes);
bcm_bprintf(strbuf, "\n");
dhd_dump_pct(strbuf, "Tx: pkts/f2wr", bus->dhd->tx_packets, bus->f2txdata);
dhd_dump_pct(strbuf, ", pkts/f1sd", bus->dhd->tx_packets, bus->f1regdata);
dhd_dump_pct(strbuf, ", pkts/sd", bus->dhd->tx_packets,
(bus->f2txdata + bus->f1regdata));
dhd_dump_pct(strbuf, ", pkts/int", bus->dhd->tx_packets, bus->intrcount);
bcm_bprintf(strbuf, "\n");
dhd_dump_pct(strbuf, "Total: pkts/f2rw",
(bus->dhd->tx_packets + bus->dhd->rx_packets),
(bus->f2txdata + bus->f2rxhdrs + bus->f2rxdata));
dhd_dump_pct(strbuf, ", pkts/f1sd",
(bus->dhd->tx_packets + bus->dhd->rx_packets), bus->f1regdata);
dhd_dump_pct(strbuf, ", pkts/sd",
(bus->dhd->tx_packets + bus->dhd->rx_packets),
(bus->f2txdata + bus->f2rxhdrs + bus->f2rxdata + bus->f1regdata));
dhd_dump_pct(strbuf, ", pkts/int",
(bus->dhd->tx_packets + bus->dhd->rx_packets), bus->intrcount);
bcm_bprintf(strbuf, "\n\n");
}
#ifdef SDTEST
if (bus->pktgen_count) {
bcm_bprintf(strbuf, "pktgen config and count:\n");
bcm_bprintf(strbuf, "freq %u count %u print %u total %u min %u len %u\n",
bus->pktgen_freq, bus->pktgen_count, bus->pktgen_print,
bus->pktgen_total, bus->pktgen_minlen, bus->pktgen_maxlen);
bcm_bprintf(strbuf, "send attempts %u rcvd %u fail %u\n",
bus->pktgen_sent, bus->pktgen_rcvd, bus->pktgen_fail);
}
#endif /* SDTEST */
#ifdef DHD_DEBUG
bcm_bprintf(strbuf, "dpc_sched %d host interrupt%spending\n",
bus->dpc_sched, (bcmsdh_intr_pending(bus->sdh) ? " " : " not "));
bcm_bprintf(strbuf, "blocksize %u roundup %u\n", bus->blocksize, bus->roundup);
#endif /* DHD_DEBUG */
bcm_bprintf(strbuf, "clkstate %d activity %d idletime %d idlecount %d sleeping %d\n",
bus->clkstate, bus->activity, bus->idletime, bus->idlecount, bus->sleeping);
}
void
dhd_bus_clearcounts(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = (dhd_bus_t *)dhdp->bus;
bus->intrcount = bus->lastintrs = bus->spurious = bus->regfails = 0;
bus->rxrtx = bus->rx_toolong = bus->rxc_errors = 0;
bus->rx_hdrfail = bus->rx_badhdr = bus->rx_badseq = 0;
#ifdef DHDENABLE_TAILPAD
bus->tx_tailpad_chain = bus->tx_tailpad_pktget = 0;
#endif /* DHDENABLE_TAILPAD */
bus->tx_sderrs = bus->fc_rcvd = bus->fc_xoff = bus->fc_xon = 0;
bus->rxglomfail = bus->rxglomframes = bus->rxglompkts = 0;
bus->f2rxhdrs = bus->f2rxdata = bus->f2txdata = bus->f1regdata = 0;
}
#ifdef SDTEST
static int
dhdsdio_pktgen_get(dhd_bus_t *bus, uint8 *arg)
{
dhd_pktgen_t pktgen;
pktgen.version = DHD_PKTGEN_VERSION;
pktgen.freq = bus->pktgen_freq;
pktgen.count = bus->pktgen_count;
pktgen.print = bus->pktgen_print;
pktgen.total = bus->pktgen_total;
pktgen.minlen = bus->pktgen_minlen;
pktgen.maxlen = bus->pktgen_maxlen;
pktgen.numsent = bus->pktgen_sent;
pktgen.numrcvd = bus->pktgen_rcvd;
pktgen.numfail = bus->pktgen_fail;
pktgen.mode = bus->pktgen_mode;
pktgen.stop = bus->pktgen_stop;
bcopy(&pktgen, arg, sizeof(pktgen));
return 0;
}
static int
dhdsdio_pktgen_set(dhd_bus_t *bus, uint8 *arg)
{
dhd_pktgen_t pktgen;
uint oldcnt, oldmode;
bcopy(arg, &pktgen, sizeof(pktgen));
if (pktgen.version != DHD_PKTGEN_VERSION)
return BCME_BADARG;
oldcnt = bus->pktgen_count;
oldmode = bus->pktgen_mode;
bus->pktgen_freq = pktgen.freq;
bus->pktgen_count = pktgen.count;
bus->pktgen_print = pktgen.print;
bus->pktgen_total = pktgen.total;
bus->pktgen_minlen = pktgen.minlen;
bus->pktgen_maxlen = pktgen.maxlen;
bus->pktgen_mode = pktgen.mode;
bus->pktgen_stop = pktgen.stop;
bus->pktgen_tick = bus->pktgen_ptick = 0;
bus->pktgen_prev_time = jiffies;
bus->pktgen_len = MAX(bus->pktgen_len, bus->pktgen_minlen);
bus->pktgen_len = MIN(bus->pktgen_len, bus->pktgen_maxlen);
/* Clear counts for a new pktgen (mode change, or was stopped) */
if (bus->pktgen_count && (!oldcnt || oldmode != bus->pktgen_mode)) {
bus->pktgen_sent = bus->pktgen_prev_sent = bus->pktgen_rcvd = 0;
bus->pktgen_prev_rcvd = bus->pktgen_fail = 0;
}
return 0;
}
#endif /* SDTEST */
static void
dhdsdio_devram_remap(dhd_bus_t *bus, bool val)
{
uint8 enable, protect, remap;
si_socdevram(bus->sih, FALSE, &enable, &protect, &remap);
remap = val ? TRUE : FALSE;
si_socdevram(bus->sih, TRUE, &enable, &protect, &remap);
}
static int
dhdsdio_membytes(dhd_bus_t *bus, bool write, uint32 address, uint8 *data, uint size)
{
int bcmerror = 0;
uint32 sdaddr;
uint dsize;
/* In remap mode, adjust address beyond socram and redirect
* to devram at SOCDEVRAM_BP_ADDR since remap address > orig_ramsize
* is not backplane accessible
*/
if (REMAP_ENAB(bus) && REMAP_ISADDR(bus, address)) {
address -= bus->orig_ramsize;
address += SOCDEVRAM_BP_ADDR;
}
/* Determine initial transfer parameters */
sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK;
if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK)
dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr);
else
dsize = size;
/* Set the backplane window to include the start address */
if ((bcmerror = dhdsdio_set_siaddr_window(bus, address))) {
DHD_ERROR(("%s: window change failed\n", __FUNCTION__));
goto xfer_done;
}
/* Do the transfer(s) */
while (size) {
DHD_INFO(("%s: %s %d bytes at offset 0x%08x in window 0x%08x\n",
__FUNCTION__, (write ? "write" : "read"), dsize, sdaddr,
(address & SBSDIO_SBWINDOW_MASK)));
if ((bcmerror = bcmsdh_rwdata(bus->sdh, write, sdaddr, data, dsize))) {
DHD_ERROR(("%s: membytes transfer failed\n", __FUNCTION__));
break;
}
/* Adjust for next transfer (if any) */
if ((size -= dsize)) {
data += dsize;
address += dsize;
if ((bcmerror = dhdsdio_set_siaddr_window(bus, address))) {
DHD_ERROR(("%s: window change failed\n", __FUNCTION__));
break;
}
sdaddr = 0;
dsize = MIN(SBSDIO_SB_OFT_ADDR_LIMIT, size);
}
}
xfer_done:
/* Return the window to backplane enumeration space for core access */
if (dhdsdio_set_siaddr_window(bus, bcmsdh_cur_sbwad(bus->sdh))) {
DHD_ERROR(("%s: FAILED to set window back to 0x%x\n", __FUNCTION__,
bcmsdh_cur_sbwad(bus->sdh)));
}
return bcmerror;
}
static int
dhdsdio_readshared(dhd_bus_t *bus, sdpcm_shared_t *sh)
{
uint32 addr;
int rv, i;
uint32 shaddr = 0;
if (bus->sih == NULL) {
if (bus->dhd && bus->dhd->dongle_reset) {
DHD_ERROR(("%s: Dongle is in reset state\n", __FUNCTION__));
return BCME_NOTREADY;
} else {
ASSERT(bus->dhd);
ASSERT(bus->sih);
DHD_ERROR(("%s: The address of sih is invalid\n", __FUNCTION__));
return BCME_ERROR;
}
}
if (CHIPID(bus->sih->chip) == BCM43430_CHIP_ID && !dhdsdio_sr_cap(bus))
bus->srmemsize = 0;
shaddr = bus->dongle_ram_base + bus->ramsize - 4;
i = 0;
do {
/* Read last word in memory to determine address of sdpcm_shared structure */
if ((rv = dhdsdio_membytes(bus, FALSE, shaddr, (uint8 *)&addr, 4)) < 0)
return rv;
addr = ltoh32(addr);
DHD_INFO(("sdpcm_shared address 0x%08X\n", addr));
/*
* Check if addr is valid.
* NVRAM length at the end of memory should have been overwritten.
*/
if (addr == 0 || ((~addr >> 16) & 0xffff) == (addr & 0xffff)) {
if ((bus->srmemsize > 0) && (i++ == 0)) {
shaddr -= bus->srmemsize;
} else {
DHD_ERROR(("%s: address (0x%08x) of sdpcm_shared invalid\n",
__FUNCTION__, addr));
return BCME_ERROR;
}
} else
break;
} while (i < 2);
/* Read hndrte_shared structure */
if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)sh, sizeof(sdpcm_shared_t))) < 0)
return rv;
/* Endianness */
sh->flags = ltoh32(sh->flags);
sh->trap_addr = ltoh32(sh->trap_addr);
sh->assert_exp_addr = ltoh32(sh->assert_exp_addr);
sh->assert_file_addr = ltoh32(sh->assert_file_addr);
sh->assert_line = ltoh32(sh->assert_line);
sh->console_addr = ltoh32(sh->console_addr);
sh->msgtrace_addr = ltoh32(sh->msgtrace_addr);
if ((sh->flags & SDPCM_SHARED_VERSION_MASK) == 3 && SDPCM_SHARED_VERSION == 1)
return BCME_OK;
if ((sh->flags & SDPCM_SHARED_VERSION_MASK) != SDPCM_SHARED_VERSION) {
DHD_ERROR(("%s: sdpcm_shared version %d in dhd "
"is different than sdpcm_shared version %d in dongle\n",
__FUNCTION__, SDPCM_SHARED_VERSION,
sh->flags & SDPCM_SHARED_VERSION_MASK));
return BCME_ERROR;
}
return BCME_OK;
}
#define CONSOLE_LINE_MAX 192
#ifdef DHD_DEBUG
static int
dhdsdio_readconsole(dhd_bus_t *bus)
{
dhd_console_t *c = &bus->console;
uint8 line[CONSOLE_LINE_MAX], ch;
uint32 n, idx, addr;
int rv;
/* Don't do anything until FWREADY updates console address */
if (bus->console_addr == 0)
return 0;
if (!KSO_ENAB(bus))
return 0;
/* Read console log struct */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, log);
if ((rv = dhdsdio_membytes(bus, FALSE, addr, (uint8 *)&c->log, sizeof(c->log))) < 0)
return rv;
/* Allocate console buffer (one time only) */
if (c->buf == NULL) {
c->bufsize = ltoh32(c->log.buf_size);
if ((c->buf = MALLOC(bus->dhd->osh, c->bufsize)) == NULL)
return BCME_NOMEM;
}
idx = ltoh32(c->log.idx);
/* Protect against corrupt value */
if (idx > c->bufsize)
return BCME_ERROR;
/* Skip reading the console buffer if the index pointer has not moved */
if (idx == c->last)
return BCME_OK;
/* Read the console buffer */
addr = ltoh32(c->log.buf);
if ((rv = dhdsdio_membytes(bus, FALSE, addr, c->buf, c->bufsize)) < 0)
return rv;
while (c->last != idx) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
if (c->last == idx) {
/* This would output a partial line. Instead, back up
* the buffer pointer and output this line next time around.
*/
if (c->last >= n)
c->last -= n;
else
c->last = c->bufsize - n;
goto break2;
}
ch = c->buf[c->last];
c->last = (c->last + 1) % c->bufsize;
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
printf("CONSOLE: %s\n", line);
#ifdef LOG_INTO_TCPDUMP
dhd_sendup_log(bus->dhd, line, n);
#endif /* LOG_INTO_TCPDUMP */
}
}
break2:
return BCME_OK;
}
#endif /* DHD_DEBUG */
static int
dhdsdio_checkdied(dhd_bus_t *bus, char *data, uint size)
{
int bcmerror = 0;
uint msize = 512;
char *mbuffer = NULL;
char *console_buffer = NULL;
uint maxstrlen = 256;
char *str = NULL;
trap_t tr;
sdpcm_shared_t sdpcm_shared;
struct bcmstrbuf strbuf;
uint32 console_ptr, console_size, console_index;
uint8 line[CONSOLE_LINE_MAX], ch;
uint32 n, i, addr;
int rv;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (DHD_NOCHECKDIED_ON())
return 0;
if (data == NULL) {
/*
* Called after a rx ctrl timeout. "data" is NULL.
* allocate memory to trace the trap or assert.
*/
size = msize;
mbuffer = data = MALLOC(bus->dhd->osh, msize);
if (mbuffer == NULL) {
DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, msize));
bcmerror = BCME_NOMEM;
goto done;
}
}
if ((str = MALLOC(bus->dhd->osh, maxstrlen)) == NULL) {
DHD_ERROR(("%s: MALLOC(%d) failed \n", __FUNCTION__, maxstrlen));
bcmerror = BCME_NOMEM;
goto done;
}
if ((bcmerror = dhdsdio_readshared(bus, &sdpcm_shared)) < 0)
goto done;
bcm_binit(&strbuf, data, size);
bcm_bprintf(&strbuf, "msgtrace address : 0x%08X\nconsole address : 0x%08X\n",
sdpcm_shared.msgtrace_addr, sdpcm_shared.console_addr);
if ((sdpcm_shared.flags & SDPCM_SHARED_ASSERT_BUILT) == 0) {
/* NOTE: Misspelled assert is intentional - DO NOT FIX.
* (Avoids conflict with real asserts for programmatic parsing of output.)
*/
bcm_bprintf(&strbuf, "Assrt not built in dongle\n");
}
if ((sdpcm_shared.flags & (SDPCM_SHARED_ASSERT|SDPCM_SHARED_TRAP)) == 0) {
/* NOTE: Misspelled assert is intentional - DO NOT FIX.
* (Avoids conflict with real asserts for programmatic parsing of output.)
*/
bcm_bprintf(&strbuf, "No trap%s in dongle",
(sdpcm_shared.flags & SDPCM_SHARED_ASSERT_BUILT)
?"/assrt" :"");
} else {
if (sdpcm_shared.flags & SDPCM_SHARED_ASSERT) {
/* Download assert */
bcm_bprintf(&strbuf, "Dongle assert");
if (sdpcm_shared.assert_exp_addr != 0) {
str[0] = '\0';
if ((bcmerror = dhdsdio_membytes(bus, FALSE,
sdpcm_shared.assert_exp_addr,
(uint8 *)str, maxstrlen)) < 0)
goto done;
str[maxstrlen - 1] = '\0';
bcm_bprintf(&strbuf, " expr \"%s\"", str);
}
if (sdpcm_shared.assert_file_addr != 0) {
str[0] = '\0';
if ((bcmerror = dhdsdio_membytes(bus, FALSE,
sdpcm_shared.assert_file_addr,
(uint8 *)str, maxstrlen)) < 0)
goto done;
str[maxstrlen - 1] = '\0';
bcm_bprintf(&strbuf, " file \"%s\"", str);
}
bcm_bprintf(&strbuf, " line %d ", sdpcm_shared.assert_line);
}
if (sdpcm_shared.flags & SDPCM_SHARED_TRAP) {
bus->dhd->dongle_trap_occured = TRUE;
if ((bcmerror = dhdsdio_membytes(bus, FALSE,
sdpcm_shared.trap_addr,
(uint8*)&tr, sizeof(trap_t))) < 0)
goto done;
bcm_bprintf(&strbuf,
"Dongle trap type 0x%x @ epc 0x%x, cpsr 0x%x, spsr 0x%x, sp 0x%x,"
"lp 0x%x, rpc 0x%x Trap offset 0x%x, "
"r0 0x%x, r1 0x%x, r2 0x%x, r3 0x%x, "
"r4 0x%x, r5 0x%x, r6 0x%x, r7 0x%x\n\n",
ltoh32(tr.type), ltoh32(tr.epc), ltoh32(tr.cpsr), ltoh32(tr.spsr),
ltoh32(tr.r13), ltoh32(tr.r14), ltoh32(tr.pc),
ltoh32(sdpcm_shared.trap_addr),
ltoh32(tr.r0), ltoh32(tr.r1), ltoh32(tr.r2), ltoh32(tr.r3),
ltoh32(tr.r4), ltoh32(tr.r5), ltoh32(tr.r6), ltoh32(tr.r7));
addr = sdpcm_shared.console_addr + OFFSETOF(hnd_cons_t, log);
if ((rv = dhdsdio_membytes(bus, FALSE, addr,
(uint8 *)&console_ptr, sizeof(console_ptr))) < 0)
goto printbuf;
addr = sdpcm_shared.console_addr + OFFSETOF(hnd_cons_t, log.buf_size);
if ((rv = dhdsdio_membytes(bus, FALSE, addr,
(uint8 *)&console_size, sizeof(console_size))) < 0)
goto printbuf;
addr = sdpcm_shared.console_addr + OFFSETOF(hnd_cons_t, log.idx);
if ((rv = dhdsdio_membytes(bus, FALSE, addr,
(uint8 *)&console_index, sizeof(console_index))) < 0)
goto printbuf;
console_ptr = ltoh32(console_ptr);
console_size = ltoh32(console_size);
console_index = ltoh32(console_index);
if (console_size > CONSOLE_BUFFER_MAX ||
!(console_buffer = MALLOC(bus->dhd->osh, console_size)))
goto printbuf;
if ((rv = dhdsdio_membytes(bus, FALSE, console_ptr,
(uint8 *)console_buffer, console_size)) < 0)
goto printbuf;
for (i = 0, n = 0; i < console_size; i += n + 1) {
for (n = 0; n < CONSOLE_LINE_MAX - 2; n++) {
ch = console_buffer[(console_index + i + n) % console_size];
if (ch == '\n')
break;
line[n] = ch;
}
if (n > 0) {
if (line[n - 1] == '\r')
n--;
line[n] = 0;
/* Don't use DHD_ERROR macro since we print
* a lot of information quickly. The macro
* will truncate a lot of the printfs
*/
if (dhd_msg_level & DHD_ERROR_VAL)
printf("CONSOLE: %s\n", line);
}
}
}
}
printbuf:
if (sdpcm_shared.flags & (SDPCM_SHARED_ASSERT | SDPCM_SHARED_TRAP)) {
DHD_ERROR(("%s: %s\n", __FUNCTION__, strbuf.origbuf));
}
#if defined(DHD_FW_COREDUMP)
if (sdpcm_shared.flags & SDPCM_SHARED_TRAP) {
/* Mem dump to a file on device */
dhdsdio_mem_dump(bus);
}
#endif /* #if defined(DHD_FW_COREDUMP) */
done:
if (mbuffer)
MFREE(bus->dhd->osh, mbuffer, msize);
if (str)
MFREE(bus->dhd->osh, str, maxstrlen);
if (console_buffer)
MFREE(bus->dhd->osh, console_buffer, console_size);
return bcmerror;
}
#if defined(DHD_FW_COREDUMP)
static int
dhdsdio_mem_dump(dhd_bus_t *bus)
{
int ret = 0;
int size; /* Full mem size */
int start = bus->dongle_ram_base; /* Start address */
int read_size = 0; /* Read size of each iteration */
uint8 *buf = NULL, *databuf = NULL;
/* Get full mem size */
size = bus->ramsize;
buf = MALLOC(bus->dhd->osh, size);
if (!buf) {
printf("%s: Out of memory (%d bytes)\n", __FUNCTION__, size);
return -1;
}
/* Read mem content */
printf("Dump dongle memory");
databuf = buf;
while (size)
{
read_size = MIN(MEMBLOCK, size);
if ((ret = dhdsdio_membytes(bus, FALSE, start, databuf, read_size)))
{
printf("%s: Error membytes %d\n", __FUNCTION__, ret);
if (buf) {
MFREE(bus->dhd->osh, buf, size);
}
return -1;
}
/* Decrement size and increment start address */
size -= read_size;
start += read_size;
databuf += read_size;
}
printf("Done\n");
dhd_save_fwdump(bus->dhd, buf, bus->ramsize);
/* free buf before return !!! */
if (write_to_file(bus->dhd, buf, bus->ramsize))
{
printf("%s: Error writing to files\n", __FUNCTION__);
return -1;
}
/* buf free handled in write_to_file, not here */
return 0;
}
#endif /* DHD_FW_COREDUMP */
int
dhd_socram_dump(dhd_bus_t * bus)
{
#if defined(DHD_FW_COREDUMP)
return (dhdsdio_mem_dump(bus));
#else
return -1;
#endif
}
int
dhdsdio_downloadvars(dhd_bus_t *bus, void *arg, int len)
{
int bcmerror = BCME_OK;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* Basic sanity checks */
if (bus->dhd->up) {
bcmerror = BCME_NOTDOWN;
goto err;
}
if (!len) {
bcmerror = BCME_BUFTOOSHORT;
goto err;
}
/* Free the old ones and replace with passed variables */
if (bus->vars)
MFREE(bus->dhd->osh, bus->vars, bus->varsz);
bus->vars = MALLOC(bus->dhd->osh, len);
bus->varsz = bus->vars ? len : 0;
if (bus->vars == NULL) {
bcmerror = BCME_NOMEM;
goto err;
}
/* Copy the passed variables, which should include the terminating double-null */
bcopy(arg, bus->vars, bus->varsz);
err:
return bcmerror;
}
#ifdef DHD_DEBUG
#define CC_PLL_CHIPCTRL_SERIAL_ENAB (1 << 24)
#define CC_CHIPCTRL_JTAG_SEL (1 << 3)
#define CC_CHIPCTRL_GPIO_SEL (0x3)
#define CC_PLL_CHIPCTRL_SERIAL_ENAB_4334 (1 << 28)
static int
dhd_serialconsole(dhd_bus_t *bus, bool set, bool enable, int *bcmerror)
{
int int_val;
uint32 addr, data, uart_enab = 0;
uint32 jtag_sel = CC_CHIPCTRL_JTAG_SEL;
uint32 gpio_sel = CC_CHIPCTRL_GPIO_SEL;
addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_addr);
data = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol_data);
*bcmerror = 0;
bcmsdh_reg_write(bus->sdh, addr, 4, 1);
if (bcmsdh_regfail(bus->sdh)) {
*bcmerror = BCME_SDIO_ERROR;
return -1;
}
int_val = bcmsdh_reg_read(bus->sdh, data, 4);
if (bcmsdh_regfail(bus->sdh)) {
*bcmerror = BCME_SDIO_ERROR;
return -1;
}
if (bus->sih->chip == BCM4330_CHIP_ID) {
uart_enab = CC_PLL_CHIPCTRL_SERIAL_ENAB;
}
else if (bus->sih->chip == BCM4334_CHIP_ID ||
bus->sih->chip == BCM43340_CHIP_ID ||
bus->sih->chip == BCM43341_CHIP_ID ||
bus->sih->chip == BCM43342_CHIP_ID ||
0) {
if (enable) {
/* Moved to PMU chipcontrol 1 from 4330 */
int_val &= ~gpio_sel;
int_val |= jtag_sel;
} else {
int_val |= gpio_sel;
int_val &= ~jtag_sel;
}
uart_enab = CC_PLL_CHIPCTRL_SERIAL_ENAB_4334;
}
if (!set)
return (int_val & uart_enab);
if (enable)
int_val |= uart_enab;
else
int_val &= ~uart_enab;
bcmsdh_reg_write(bus->sdh, data, 4, int_val);
if (bcmsdh_regfail(bus->sdh)) {
*bcmerror = BCME_SDIO_ERROR;
return -1;
}
if (bus->sih->chip == BCM4330_CHIP_ID) {
uint32 chipcontrol;
addr = SI_ENUM_BASE + OFFSETOF(chipcregs_t, chipcontrol);
chipcontrol = bcmsdh_reg_read(bus->sdh, addr, 4);
chipcontrol &= ~jtag_sel;
if (enable) {
chipcontrol |= jtag_sel;
chipcontrol &= ~gpio_sel;
}
bcmsdh_reg_write(bus->sdh, addr, 4, chipcontrol);
}
return (int_val & uart_enab);
}
#endif
static int
dhdsdio_doiovar(dhd_bus_t *bus, const bcm_iovar_t *vi, uint32 actionid, const char *name,
void *params, int plen, void *arg, int len, int val_size)
{
int bcmerror = 0;
int32 int_val = 0;
bool bool_val = 0;
DHD_TRACE(("%s: Enter, action %d name %s params %p plen %d arg %p len %d val_size %d\n",
__FUNCTION__, actionid, name, params, plen, arg, len, val_size));
if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, IOV_ISSET(actionid))) != 0)
goto exit;
if (plen >= (int)sizeof(int_val))
bcopy(params, &int_val, sizeof(int_val));
bool_val = (int_val != 0) ? TRUE : FALSE;
/* Some ioctls use the bus */
dhd_os_sdlock(bus->dhd);
/* Check if dongle is in reset. If so, only allow DEVRESET iovars */
if (bus->dhd->dongle_reset && !(actionid == IOV_SVAL(IOV_DEVRESET) ||
actionid == IOV_GVAL(IOV_DEVRESET))) {
bcmerror = BCME_NOTREADY;
goto exit;
}
/*
* Special handling for keepSdioOn: New SDIO Wake-up Mechanism
*/
if ((vi->varid == IOV_KSO) && (IOV_ISSET(actionid))) {
dhdsdio_clk_kso_iovar(bus, bool_val);
goto exit;
} else if ((vi->varid == IOV_DEVSLEEP) && (IOV_ISSET(actionid))) {
{
dhdsdio_clk_devsleep_iovar(bus, bool_val);
if (!SLPAUTO_ENAB(bus) && (bool_val == FALSE) && (bus->ipend)) {
DHD_ERROR(("INT pending in devsleep 1, dpc_sched: %d\n",
bus->dpc_sched));
if (!bus->dpc_sched) {
bus->dpc_sched = TRUE;
dhd_sched_dpc(bus->dhd);
}
}
}
goto exit;
}
/* Handle sleep stuff before any clock mucking */
if (vi->varid == IOV_SLEEP) {
if (IOV_ISSET(actionid)) {
bcmerror = dhdsdio_bussleep(bus, bool_val);
} else {
int_val = (int32)bus->sleeping;
bcopy(&int_val, arg, val_size);
}
goto exit;
}
/* Request clock to allow SDIO accesses */
if (!bus->dhd->dongle_reset) {
BUS_WAKE(bus);
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
}
switch (actionid) {
case IOV_GVAL(IOV_INTR):
int_val = (int32)bus->intr;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_INTR):
bus->intr = bool_val;
bus->intdis = FALSE;
if (bus->dhd->up) {
if (bus->intr) {
DHD_INTR(("%s: enable SDIO device interrupts\n", __FUNCTION__));
bcmsdh_intr_enable(bus->sdh);
} else {
DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__));
bcmsdh_intr_disable(bus->sdh);
}
}
break;
case IOV_GVAL(IOV_POLLRATE):
int_val = (int32)bus->pollrate;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_POLLRATE):
bus->pollrate = (uint)int_val;
bus->poll = (bus->pollrate != 0);
break;
case IOV_GVAL(IOV_IDLETIME):
int_val = bus->idletime;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_IDLETIME):
if ((int_val < 0) && (int_val != DHD_IDLE_IMMEDIATE)) {
bcmerror = BCME_BADARG;
} else {
bus->idletime = int_val;
}
break;
case IOV_GVAL(IOV_IDLECLOCK):
int_val = (int32)bus->idleclock;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_IDLECLOCK):
bus->idleclock = int_val;
break;
case IOV_GVAL(IOV_SD1IDLE):
int_val = (int32)sd1idle;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_SD1IDLE):
sd1idle = bool_val;
break;
case IOV_SVAL(IOV_MEMBYTES):
case IOV_GVAL(IOV_MEMBYTES):
{
uint32 address;
uint size, dsize;
uint8 *data;
bool set = (actionid == IOV_SVAL(IOV_MEMBYTES));
ASSERT(plen >= 2*sizeof(int));
address = (uint32)int_val;
bcopy((char *)params + sizeof(int_val), &int_val, sizeof(int_val));
size = (uint)int_val;
/* Do some validation */
dsize = set ? plen - (2 * sizeof(int)) : len;
if (dsize < size) {
DHD_ERROR(("%s: error on %s membytes, addr 0x%08x size %d dsize %d\n",
__FUNCTION__, (set ? "set" : "get"), address, size, dsize));
bcmerror = BCME_BADARG;
break;
}
DHD_INFO(("%s: Request to %s %d bytes at address 0x%08x\n", __FUNCTION__,
(set ? "write" : "read"), size, address));
/* check if CR4 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
/*
* If address is start of RAM (i.e. a downloaded image),
* store the reset instruction to be written in 0
*/
if (set && address == bus->dongle_ram_base) {
bus->resetinstr = *(((uint32*)params) + 2);
}
} else {
/* If we know about SOCRAM, check for a fit */
if ((bus->orig_ramsize) &&
((address > bus->orig_ramsize) || (address + size > bus->orig_ramsize)))
{
uint8 enable, protect, remap;
si_socdevram(bus->sih, FALSE, &enable, &protect, &remap);
if (!enable || protect) {
DHD_ERROR(("%s: ramsize 0x%08x doesn't have %d bytes at 0x%08x\n",
__FUNCTION__, bus->orig_ramsize, size, address));
DHD_ERROR(("%s: socram enable %d, protect %d\n",
__FUNCTION__, enable, protect));
bcmerror = BCME_BADARG;
break;
}
if (!REMAP_ENAB(bus) && (address >= SOCDEVRAM_ARM_ADDR)) {
uint32 devramsize = si_socdevram_size(bus->sih);
if ((address < SOCDEVRAM_ARM_ADDR) ||
(address + size > (SOCDEVRAM_ARM_ADDR + devramsize))) {
DHD_ERROR(("%s: bad address 0x%08x, size 0x%08x\n",
__FUNCTION__, address, size));
DHD_ERROR(("%s: socram range 0x%08x,size 0x%08x\n",
__FUNCTION__, SOCDEVRAM_ARM_ADDR, devramsize));
bcmerror = BCME_BADARG;
break;
}
/* move it such that address is real now */
address -= SOCDEVRAM_ARM_ADDR;
address += SOCDEVRAM_BP_ADDR;
DHD_INFO(("%s: Request to %s %d bytes @ Mapped address 0x%08x\n",
__FUNCTION__, (set ? "write" : "read"), size, address));
} else if (REMAP_ENAB(bus) && REMAP_ISADDR(bus, address) && remap) {
/* Can not access remap region while devram remap bit is set
* ROM content would be returned in this case
*/
DHD_ERROR(("%s: Need to disable remap for address 0x%08x\n",
__FUNCTION__, address));
bcmerror = BCME_ERROR;
break;
}
}
}
/* Generate the actual data pointer */
data = set ? (uint8*)params + 2 * sizeof(int): (uint8*)arg;
/* Call to do the transfer */
bcmerror = dhdsdio_membytes(bus, set, address, data, size);
break;
}
case IOV_GVAL(IOV_RAMSIZE):
int_val = (int32)bus->ramsize;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_RAMSTART):
int_val = (int32)bus->dongle_ram_base;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_SDIOD_DRIVE):
int_val = (int32)dhd_sdiod_drive_strength;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_SDIOD_DRIVE):
dhd_sdiod_drive_strength = int_val;
si_sdiod_drive_strength_init(bus->sih, bus->dhd->osh, dhd_sdiod_drive_strength);
break;
case IOV_SVAL(IOV_SET_DOWNLOAD_STATE):
bcmerror = dhdsdio_download_state(bus, bool_val);
break;
case IOV_SVAL(IOV_SOCRAM_STATE):
bcmerror = dhdsdio_download_state(bus, bool_val);
break;
case IOV_SVAL(IOV_VARS):
bcmerror = dhdsdio_downloadvars(bus, arg, len);
break;
case IOV_GVAL(IOV_READAHEAD):
int_val = (int32)dhd_readahead;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_READAHEAD):
if (bool_val && !dhd_readahead)
bus->nextlen = 0;
dhd_readahead = bool_val;
break;
case IOV_GVAL(IOV_SDRXCHAIN):
int_val = (int32)bus->use_rxchain;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_SDRXCHAIN):
if (bool_val && !bus->sd_rxchain)
bcmerror = BCME_UNSUPPORTED;
else
bus->use_rxchain = bool_val;
break;
case IOV_GVAL(IOV_ALIGNCTL):
int_val = (int32)dhd_alignctl;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_ALIGNCTL):
dhd_alignctl = bool_val;
break;
case IOV_GVAL(IOV_SDALIGN):
int_val = DHD_SDALIGN;
bcopy(&int_val, arg, val_size);
break;
#ifdef DHD_DEBUG
case IOV_GVAL(IOV_VARS):
if (bus->varsz < (uint)len)
bcopy(bus->vars, arg, bus->varsz);
else
bcmerror = BCME_BUFTOOSHORT;
break;
#endif /* DHD_DEBUG */
#ifdef DHD_DEBUG
case IOV_GVAL(IOV_SDREG):
{
sdreg_t *sd_ptr;
uint32 addr, size;
sd_ptr = (sdreg_t *)params;
addr = (uint32)((ulong)bus->regs + sd_ptr->offset);
size = sd_ptr->func;
int_val = (int32)bcmsdh_reg_read(bus->sdh, addr, size);
if (bcmsdh_regfail(bus->sdh))
bcmerror = BCME_SDIO_ERROR;
bcopy(&int_val, arg, sizeof(int32));
break;
}
case IOV_SVAL(IOV_SDREG):
{
sdreg_t *sd_ptr;
uint32 addr, size;
sd_ptr = (sdreg_t *)params;
addr = (uint32)((ulong)bus->regs + sd_ptr->offset);
size = sd_ptr->func;
bcmsdh_reg_write(bus->sdh, addr, size, sd_ptr->value);
if (bcmsdh_regfail(bus->sdh))
bcmerror = BCME_SDIO_ERROR;
break;
}
/* Same as above, but offset is not backplane (not SDIO core) */
case IOV_GVAL(IOV_SBREG):
{
sdreg_t sdreg;
uint32 addr, size;
bcopy(params, &sdreg, sizeof(sdreg));
addr = SI_ENUM_BASE + sdreg.offset;
size = sdreg.func;
int_val = (int32)bcmsdh_reg_read(bus->sdh, addr, size);
if (bcmsdh_regfail(bus->sdh))
bcmerror = BCME_SDIO_ERROR;
bcopy(&int_val, arg, sizeof(int32));
break;
}
case IOV_SVAL(IOV_SBREG):
{
sdreg_t sdreg;
uint32 addr, size;
bcopy(params, &sdreg, sizeof(sdreg));
addr = SI_ENUM_BASE + sdreg.offset;
size = sdreg.func;
bcmsdh_reg_write(bus->sdh, addr, size, sdreg.value);
if (bcmsdh_regfail(bus->sdh))
bcmerror = BCME_SDIO_ERROR;
break;
}
case IOV_GVAL(IOV_SDCIS):
{
*(char *)arg = 0;
bcmstrcat(arg, "\nFunc 0\n");
bcmsdh_cis_read(bus->sdh, 0x10, (uint8 *)arg + strlen(arg), SBSDIO_CIS_SIZE_LIMIT);
bcmstrcat(arg, "\nFunc 1\n");
bcmsdh_cis_read(bus->sdh, 0x11, (uint8 *)arg + strlen(arg), SBSDIO_CIS_SIZE_LIMIT);
bcmstrcat(arg, "\nFunc 2\n");
bcmsdh_cis_read(bus->sdh, 0x12, (uint8 *)arg + strlen(arg), SBSDIO_CIS_SIZE_LIMIT);
break;
}
case IOV_GVAL(IOV_FORCEEVEN):
int_val = (int32)forcealign;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_FORCEEVEN):
forcealign = bool_val;
break;
case IOV_GVAL(IOV_TXBOUND):
int_val = (int32)dhd_txbound;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_TXBOUND):
dhd_txbound = (uint)int_val;
break;
case IOV_GVAL(IOV_RXBOUND):
int_val = (int32)dhd_rxbound;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_RXBOUND):
dhd_rxbound = (uint)int_val;
break;
case IOV_GVAL(IOV_TXMINMAX):
int_val = (int32)dhd_txminmax;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_TXMINMAX):
dhd_txminmax = (uint)int_val;
break;
case IOV_GVAL(IOV_SERIALCONS):
int_val = dhd_serialconsole(bus, FALSE, 0, &bcmerror);
if (bcmerror != 0)
break;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_SERIALCONS):
dhd_serialconsole(bus, TRUE, bool_val, &bcmerror);
break;
#endif /* DHD_DEBUG */
#ifdef SDTEST
case IOV_GVAL(IOV_EXTLOOP):
int_val = (int32)bus->ext_loop;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_EXTLOOP):
bus->ext_loop = bool_val;
break;
case IOV_GVAL(IOV_PKTGEN):
bcmerror = dhdsdio_pktgen_get(bus, arg);
break;
case IOV_SVAL(IOV_PKTGEN):
bcmerror = dhdsdio_pktgen_set(bus, arg);
break;
#endif /* SDTEST */
#if defined(USE_SDIOFIFO_IOVAR)
case IOV_GVAL(IOV_WATERMARK):
int_val = (int32)watermark;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_WATERMARK):
watermark = (uint)int_val;
watermark = (watermark > SBSDIO_WATERMARK_MASK) ? SBSDIO_WATERMARK_MASK : watermark;
DHD_ERROR(("Setting watermark as 0x%x.\n", watermark));
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_WATERMARK, (uint8)watermark, NULL);
break;
case IOV_GVAL(IOV_MESBUSYCTRL):
int_val = (int32)mesbusyctrl;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_MESBUSYCTRL):
mesbusyctrl = (uint)int_val;
mesbusyctrl = (mesbusyctrl > SBSDIO_MESBUSYCTRL_MASK)
? SBSDIO_MESBUSYCTRL_MASK : mesbusyctrl;
DHD_ERROR(("Setting mesbusyctrl as 0x%x.\n", mesbusyctrl));
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_MESBUSYCTRL,
((uint8)mesbusyctrl | 0x80), NULL);
break;
#endif
case IOV_GVAL(IOV_DONGLEISOLATION):
int_val = bus->dhd->dongle_isolation;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DONGLEISOLATION):
bus->dhd->dongle_isolation = bool_val;
break;
case IOV_SVAL(IOV_DEVRESET):
DHD_TRACE(("%s: Called set IOV_DEVRESET=%d dongle_reset=%d busstate=%d\n",
__FUNCTION__, bool_val, bus->dhd->dongle_reset,
bus->dhd->busstate));
ASSERT(bus->dhd->osh);
/* ASSERT(bus->cl_devid); */
dhd_bus_devreset(bus->dhd, (uint8)bool_val);
break;
/*
* softap firmware is updated through module parameter or android private command
*/
case IOV_GVAL(IOV_DEVRESET):
DHD_TRACE(("%s: Called get IOV_DEVRESET\n", __FUNCTION__));
/* Get its status */
int_val = (bool) bus->dhd->dongle_reset;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_KSO):
int_val = dhdsdio_sleepcsr_get(bus);
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_DEVCAP):
int_val = dhdsdio_devcap_get(bus);
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DEVCAP):
dhdsdio_devcap_set(bus, (uint8) int_val);
break;
case IOV_GVAL(IOV_TXGLOMSIZE):
int_val = (int32)bus->txglomsize;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_TXGLOMSIZE):
if (int_val > SDPCM_MAXGLOM_SIZE) {
bcmerror = BCME_ERROR;
} else {
bus->txglomsize = (uint)int_val;
}
break;
case IOV_SVAL(IOV_HANGREPORT):
bus->dhd->hang_report = bool_val;
DHD_ERROR(("%s: Set hang_report as %d\n", __FUNCTION__, bus->dhd->hang_report));
break;
case IOV_GVAL(IOV_HANGREPORT):
int_val = (int32)bus->dhd->hang_report;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_TXINRX_THRES):
int_val = bus->txinrx_thres;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_TXINRX_THRES):
if (int_val < 0) {
bcmerror = BCME_BADARG;
} else {
bus->txinrx_thres = int_val;
}
break;
default:
bcmerror = BCME_UNSUPPORTED;
break;
}
exit:
if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched) {
bus->activity = FALSE;
dhdsdio_clkctl(bus, CLK_NONE, TRUE);
}
dhd_os_sdunlock(bus->dhd);
return bcmerror;
}
static int
dhdsdio_write_vars(dhd_bus_t *bus)
{
int bcmerror = 0;
uint32 varsize, phys_size;
uint32 varaddr;
uint8 *vbuffer;
uint32 varsizew;
#ifdef DHD_DEBUG
uint8 *nvram_ularray;
#endif /* DHD_DEBUG */
/* Even if there are no vars are to be written, we still need to set the ramsize. */
varsize = bus->varsz ? ROUNDUP(bus->varsz, 4) : 0;
varaddr = (bus->ramsize - 4) - varsize;
varaddr += bus->dongle_ram_base;
if (bus->vars) {
if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev == 7)) {
if (((varaddr & 0x3C) == 0x3C) && (varsize > 4)) {
DHD_ERROR(("PR85623WAR in place\n"));
varsize += 4;
varaddr -= 4;
}
}
vbuffer = (uint8 *)MALLOC(bus->dhd->osh, varsize);
if (!vbuffer)
return BCME_NOMEM;
bzero(vbuffer, varsize);
bcopy(bus->vars, vbuffer, bus->varsz);
/* Write the vars list */
bcmerror = dhdsdio_membytes(bus, TRUE, varaddr, vbuffer, varsize);
#ifdef DHD_DEBUG
/* Verify NVRAM bytes */
DHD_INFO(("Compare NVRAM dl & ul; varsize=%d\n", varsize));
nvram_ularray = (uint8*)MALLOC(bus->dhd->osh, varsize);
if (!nvram_ularray)
return BCME_NOMEM;
/* Upload image to verify downloaded contents. */
memset(nvram_ularray, 0xaa, varsize);
/* Read the vars list to temp buffer for comparison */
bcmerror = dhdsdio_membytes(bus, FALSE, varaddr, nvram_ularray, varsize);
if (bcmerror) {
DHD_ERROR(("%s: error %d on reading %d nvram bytes at 0x%08x\n",
__FUNCTION__, bcmerror, varsize, varaddr));
}
/* Compare the org NVRAM with the one read from RAM */
if (memcmp(vbuffer, nvram_ularray, varsize)) {
DHD_ERROR(("%s: Downloaded NVRAM image is corrupted.\n", __FUNCTION__));
} else
DHD_ERROR(("%s: Download, Upload and compare of NVRAM succeeded.\n",
__FUNCTION__));
MFREE(bus->dhd->osh, nvram_ularray, varsize);
#endif /* DHD_DEBUG */
MFREE(bus->dhd->osh, vbuffer, varsize);
}
phys_size = REMAP_ENAB(bus) ? bus->ramsize : bus->orig_ramsize;
phys_size += bus->dongle_ram_base;
/* adjust to the user specified RAM */
DHD_INFO(("Physical memory size: %d, usable memory size: %d\n",
phys_size, bus->ramsize));
DHD_INFO(("Vars are at %d, orig varsize is %d\n",
varaddr, varsize));
varsize = ((phys_size - 4) - varaddr);
/*
* Determine the length token:
* Varsize, converted to words, in lower 16-bits, checksum in upper 16-bits.
*/
if (bcmerror) {
varsizew = 0;
} else {
varsizew = varsize / 4;
varsizew = (~varsizew << 16) | (varsizew & 0x0000FFFF);
varsizew = htol32(varsizew);
}
DHD_INFO(("New varsize is %d, length token=0x%08x\n", varsize, varsizew));
/* Write the length token to the last word */
bcmerror = dhdsdio_membytes(bus, TRUE, (phys_size - 4),
(uint8*)&varsizew, 4);
return bcmerror;
}
static int
dhdsdio_download_state(dhd_bus_t *bus, bool enter)
{
uint retries;
int bcmerror = 0;
int foundcr4 = 0;
if (!bus->sih)
return BCME_ERROR;
/* To enter download state, disable ARM and reset SOCRAM.
* To exit download state, simply reset ARM (default is RAM boot).
*/
if (enter) {
bus->alp_only = TRUE;
if (!(si_setcore(bus->sih, ARM7S_CORE_ID, 0)) &&
!(si_setcore(bus->sih, ARMCM3_CORE_ID, 0))) {
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
foundcr4 = 1;
} else {
DHD_ERROR(("%s: Failed to find ARM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
}
if (!foundcr4) {
si_core_disable(bus->sih, 0);
if (bcmsdh_regfail(bus->sdh)) {
bcmerror = BCME_SDIO_ERROR;
goto fail;
}
if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find SOCRAM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
si_core_reset(bus->sih, 0, 0);
if (bcmsdh_regfail(bus->sdh)) {
DHD_ERROR(("%s: Failure trying reset SOCRAM core?\n",
__FUNCTION__));
bcmerror = BCME_SDIO_ERROR;
goto fail;
}
/* Disable remap for download */
if (REMAP_ENAB(bus) && si_socdevram_remap_isenb(bus->sih))
dhdsdio_devram_remap(bus, FALSE);
if (CHIPID(bus->sih->chip) == BCM43430_CHIP_ID) {
/* Disabling Remap for SRAM_3 */
si_socram_set_bankpda(bus->sih, 0x3, 0x0);
}
/* Clear the top bit of memory */
if (bus->ramsize) {
uint32 zeros = 0;
if (dhdsdio_membytes(bus, TRUE, bus->ramsize - 4,
(uint8*)&zeros, 4) < 0) {
bcmerror = BCME_SDIO_ERROR;
goto fail;
}
}
} else {
/* For CR4,
* Halt ARM
* Remove ARM reset
* Read RAM base address [0x18_0000]
* [next] Download firmware
* [done at else] Populate the reset vector
* [done at else] Remove ARM halt
*/
/* Halt ARM & remove reset */
si_core_reset(bus->sih, SICF_CPUHALT, SICF_CPUHALT);
}
} else {
if (!si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
if (!(si_setcore(bus->sih, SOCRAM_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find SOCRAM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
if (!si_iscoreup(bus->sih)) {
DHD_ERROR(("%s: SOCRAM core is down after reset?\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
if ((bcmerror = dhdsdio_write_vars(bus))) {
DHD_ERROR(("%s: could not write vars to RAM\n", __FUNCTION__));
goto fail;
}
/* Enable remap before ARM reset but after vars.
* No backplane access in remap mode
*/
if (REMAP_ENAB(bus) && !si_socdevram_remap_isenb(bus->sih))
dhdsdio_devram_remap(bus, TRUE);
if (!si_setcore(bus->sih, PCMCIA_CORE_ID, 0) &&
!si_setcore(bus->sih, SDIOD_CORE_ID, 0)) {
DHD_ERROR(("%s: Can't change back to SDIO core?\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
W_SDREG(0xFFFFFFFF, &bus->regs->intstatus, retries);
if (!(si_setcore(bus->sih, ARM7S_CORE_ID, 0)) &&
!(si_setcore(bus->sih, ARMCM3_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find ARM core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
} else {
/* cr4 has no socram, but tcm's */
/* write vars */
if ((bcmerror = dhdsdio_write_vars(bus))) {
DHD_ERROR(("%s: could not write vars to RAM\n", __FUNCTION__));
goto fail;
}
if (!si_setcore(bus->sih, PCMCIA_CORE_ID, 0) &&
!si_setcore(bus->sih, SDIOD_CORE_ID, 0)) {
DHD_ERROR(("%s: Can't change back to SDIO core?\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
W_SDREG(0xFFFFFFFF, &bus->regs->intstatus, retries);
/* switch back to arm core again */
if (!(si_setcore(bus->sih, ARMCR4_CORE_ID, 0))) {
DHD_ERROR(("%s: Failed to find ARM CR4 core!\n", __FUNCTION__));
bcmerror = BCME_ERROR;
goto fail;
}
/* write address 0 with reset instruction */
bcmerror = dhdsdio_membytes(bus, TRUE, 0,
(uint8 *)&bus->resetinstr, sizeof(bus->resetinstr));
if (bcmerror == BCME_OK) {
uint32 tmp;
/* verify write */
bcmerror = dhdsdio_membytes(bus, FALSE, 0,
(uint8 *)&tmp, sizeof(tmp));
if (bcmerror == BCME_OK && tmp != bus->resetinstr) {
DHD_ERROR(("%s: Failed to write 0x%08x to addr 0\n",
__FUNCTION__, bus->resetinstr));
DHD_ERROR(("%s: contents of addr 0 is 0x%08x\n",
__FUNCTION__, tmp));
bcmerror = BCME_SDIO_ERROR;
goto fail;
}
}
/* now remove reset and halt and continue to run CR4 */
}
si_core_reset(bus->sih, 0, 0);
if (bcmsdh_regfail(bus->sdh)) {
DHD_ERROR(("%s: Failure trying to reset ARM core?\n", __FUNCTION__));
bcmerror = BCME_SDIO_ERROR;
goto fail;
}
/* Allow HT Clock now that the ARM is running. */
bus->alp_only = FALSE;
bus->dhd->busstate = DHD_BUS_LOAD;
}
fail:
/* Always return to SDIOD core */
if (!si_setcore(bus->sih, PCMCIA_CORE_ID, 0))
si_setcore(bus->sih, SDIOD_CORE_ID, 0);
return bcmerror;
}
int
dhd_bus_iovar_op(dhd_pub_t *dhdp, const char *name,
void *params, int plen, void *arg, int len, bool set)
{
dhd_bus_t *bus = dhdp->bus;
const bcm_iovar_t *vi = NULL;
int bcmerror = 0;
int val_size;
uint32 actionid;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
ASSERT(name);
ASSERT(len >= 0);
/* Get MUST have return space */
ASSERT(set || (arg && len));
/* Set does NOT take qualifiers */
ASSERT(!set || (!params && !plen));
/* Look up var locally; if not found pass to host driver */
if ((vi = bcm_iovar_lookup(dhdsdio_iovars, name)) == NULL) {
dhd_os_sdlock(bus->dhd);
BUS_WAKE(bus);
/* Turn on clock in case SD command needs backplane */
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
bcmerror = bcmsdh_iovar_op(bus->sdh, name, params, plen, arg, len, set);
/* Check for bus configuration changes of interest */
/* If it was divisor change, read the new one */
if (set && strcmp(name, "sd_divisor") == 0) {
if (bcmsdh_iovar_op(bus->sdh, "sd_divisor", NULL, 0,
&bus->sd_divisor, sizeof(int32), FALSE) != BCME_OK) {
bus->sd_divisor = -1;
DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, name));
} else {
DHD_INFO(("%s: noted %s update, value now %d\n",
__FUNCTION__, name, bus->sd_divisor));
}
}
/* If it was a mode change, read the new one */
if (set && strcmp(name, "sd_mode") == 0) {
if (bcmsdh_iovar_op(bus->sdh, "sd_mode", NULL, 0,
&bus->sd_mode, sizeof(int32), FALSE) != BCME_OK) {
bus->sd_mode = -1;
DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, name));
} else {
DHD_INFO(("%s: noted %s update, value now %d\n",
__FUNCTION__, name, bus->sd_mode));
}
}
/* Similar check for blocksize change */
if (set && strcmp(name, "sd_blocksize") == 0) {
int32 fnum = 2;
if (bcmsdh_iovar_op(bus->sdh, "sd_blocksize", &fnum, sizeof(int32),
&bus->blocksize, sizeof(int32), FALSE) != BCME_OK) {
bus->blocksize = 0;
DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_blocksize"));
} else {
DHD_INFO(("%s: noted %s update, value now %d\n",
__FUNCTION__, "sd_blocksize", bus->blocksize));
dhdsdio_tune_fifoparam(bus);
}
}
bus->roundup = MIN(max_roundup, bus->blocksize);
if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched) {
bus->activity = FALSE;
dhdsdio_clkctl(bus, CLK_NONE, TRUE);
}
dhd_os_sdunlock(bus->dhd);
goto exit;
}
DHD_CTL(("%s: %s %s, len %d plen %d\n", __FUNCTION__,
name, (set ? "set" : "get"), len, plen));
/* set up 'params' pointer in case this is a set command so that
* the convenience int and bool code can be common to set and get
*/
if (params == NULL) {
params = arg;
plen = len;
}
if (vi->type == IOVT_VOID)
val_size = 0;
else if (vi->type == IOVT_BUFFER)
val_size = len;
else
/* all other types are integer sized */
val_size = sizeof(int);
actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
bcmerror = dhdsdio_doiovar(bus, vi, actionid, name, params, plen, arg, len, val_size);
exit:
return bcmerror;
}
void
dhd_bus_stop(struct dhd_bus *bus, bool enforce_mutex)
{
osl_t *osh;
uint32 local_hostintmask;
uint8 saveclk;
uint retries;
int err;
bool wlfc_enabled = FALSE;
if (!bus->dhd)
return;
osh = bus->dhd->osh;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
bcmsdh_waitlockfree(bus->sdh);
if (enforce_mutex)
dhd_os_sdlock(bus->dhd);
if ((bus->dhd->busstate == DHD_BUS_DOWN) || bus->dhd->hang_was_sent) {
/* if Firmware already hangs disbale any interrupt */
bus->dhd->busstate = DHD_BUS_DOWN;
bus->hostintmask = 0;
bcmsdh_intr_disable(bus->sdh);
} else {
BUS_WAKE(bus);
if (KSO_ENAB(bus)) {
/* Enable clock for device interrupts */
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
/* Disable and clear interrupts at the chip level also */
W_SDREG(0, &bus->regs->hostintmask, retries);
local_hostintmask = bus->hostintmask;
bus->hostintmask = 0;
/* Change our idea of bus state */
bus->dhd->busstate = DHD_BUS_DOWN;
/* Force clocks on backplane to be sure F2 interrupt propagates */
saveclk = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (!err) {
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR,
(saveclk | SBSDIO_FORCE_HT), &err);
}
if (err) {
DHD_ERROR(("%s: Failed to force clock for F2: err %d\n",
__FUNCTION__, err));
}
/* Turn off the bus (F2), free any pending packets */
DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__));
bcmsdh_intr_disable(bus->sdh);
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, SDIO_FUNC_ENABLE_1, NULL);
/* Clear any pending interrupts now that F2 is disabled */
W_SDREG(local_hostintmask, &bus->regs->intstatus, retries);
}
/* Turn off the backplane clock (only) */
dhdsdio_clkctl(bus, CLK_SDONLY, FALSE);
}
#ifdef PROP_TXSTATUS
wlfc_enabled = (dhd_wlfc_cleanup_txq(bus->dhd, NULL, 0) != WLFC_UNSUPPORTED);
#endif
if (!wlfc_enabled) {
#ifdef DHDTCPACK_SUPPRESS
/* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt,
* when there is a newly coming packet from network stack.
*/
dhd_tcpack_info_tbl_clean(bus->dhd);
#endif /* DHDTCPACK_SUPPRESS */
/* Clear the data packet queues */
pktq_flush(osh, &bus->txq, TRUE, NULL, 0);
}
/* Clear any held glomming stuff */
if (bus->glomd)
PKTFREE(osh, bus->glomd, FALSE);
if (bus->glom)
PKTFREE(osh, bus->glom, FALSE);
bus->glom = bus->glomd = NULL;
/* Clear rx control and wake any waiters */
bus->rxlen = 0;
dhd_os_ioctl_resp_wake(bus->dhd);
/* Reset some F2 state stuff */
bus->rxskip = FALSE;
bus->tx_seq = bus->rx_seq = 0;
bus->tx_max = 4;
if (enforce_mutex)
dhd_os_sdunlock(bus->dhd);
}
#if defined(BCMSDIOH_TXGLOM) && defined(BCMSDIOH_STD)
extern uint sd_txglom;
#endif
void
dhd_txglom_enable(dhd_pub_t *dhdp, bool enable)
{
/* can't enable host txglom by default, some platforms have no
* (or crappy) ADMA support and txglom will cause kernel assertions (e.g.
* panda board)
*/
dhd_bus_t *bus = dhdp->bus;
#ifdef BCMSDIOH_TXGLOM
char buf[256];
uint32 rxglom;
int32 ret;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
#ifdef BCMSDIOH_STD
if (enable)
enable = sd_txglom;
#endif /* BCMSDIOH_STD */
if (enable) {
rxglom = 1;
memset(buf, 0, sizeof(buf));
bcm_mkiovar("bus:rxglom", (void *)&rxglom, 4, buf, sizeof(buf));
ret = dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR, buf, sizeof(buf), TRUE, 0);
if (ret >= 0)
bus->txglom_enable = TRUE;
else {
#ifdef BCMSDIOH_STD
sd_txglom = 0;
#endif /* BCMSDIOH_STD */
bus->txglom_enable = FALSE;
}
} else
#endif /* BCMSDIOH_TXGLOM */
bus->txglom_enable = FALSE;
}
int
dhd_bus_init(dhd_pub_t *dhdp, bool enforce_mutex)
{
dhd_bus_t *bus = dhdp->bus;
dhd_timeout_t tmo;
uint retries = 0;
uint8 ready, enable;
int err, ret = 0;
uint8 saveclk;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
ASSERT(bus->dhd);
if (!bus->dhd)
return 0;
if (enforce_mutex)
dhd_os_sdlock(bus->dhd);
/* Make sure backplane clock is on, needed to generate F2 interrupt */
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
if (bus->clkstate != CLK_AVAIL) {
DHD_ERROR(("%s: clock state is wrong. state = %d\n", __FUNCTION__, bus->clkstate));
ret = -1;
goto exit;
}
/* Force clocks on backplane to be sure F2 interrupt propagates */
saveclk = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (!err) {
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR,
(saveclk | SBSDIO_FORCE_HT), &err);
}
if (err) {
DHD_ERROR(("%s: Failed to force clock for F2: err %d\n", __FUNCTION__, err));
ret = -1;
goto exit;
}
/* Enable function 2 (frame transfers) */
W_SDREG((SDPCM_PROT_VERSION << SMB_DATA_VERSION_SHIFT),
&bus->regs->tosbmailboxdata, retries);
enable = (SDIO_FUNC_ENABLE_1 | SDIO_FUNC_ENABLE_2);
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, enable, NULL);
/* Give the dongle some time to do its thing and set IOR2 */
dhd_timeout_start(&tmo, DHD_WAIT_F2RDY * 1000);
ready = 0;
while (ready != enable && !dhd_timeout_expired(&tmo))
ready = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IORDY, NULL);
DHD_ERROR(("%s: enable 0x%02x, ready 0x%02x (waited %uus)\n",
__FUNCTION__, enable, ready, tmo.elapsed));
/* If F2 successfully enabled, set core and enable interrupts */
if (ready == enable) {
/* Make sure we're talking to the core. */
if (!(bus->regs = si_setcore(bus->sih, PCMCIA_CORE_ID, 0)))
bus->regs = si_setcore(bus->sih, SDIOD_CORE_ID, 0);
ASSERT(bus->regs != NULL);
/* Set up the interrupt mask and enable interrupts */
bus->hostintmask = HOSTINTMASK;
/* corerev 4 could use the newer interrupt logic to detect the frames */
if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev == 4) &&
(bus->rxint_mode != SDIO_DEVICE_HMB_RXINT)) {
bus->hostintmask &= ~I_HMB_FRAME_IND;
bus->hostintmask |= I_XMTDATA_AVAIL;
}
W_SDREG(bus->hostintmask, &bus->regs->hostintmask, retries);
if (bus->sih->buscorerev < 15) {
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1, SBSDIO_WATERMARK,
(uint8)watermark, &err);
}
/* Set bus state according to enable result */
dhdp->busstate = DHD_BUS_DATA;
/* Need to set fn2 block size to match fn1 block size.
* Requests to fn2 go thru fn1. *
* faltwig has this code contitioned with #if !BCMSPI_ANDROID.
* It would be cleaner to use the ->sdh->block_sz[fno] instead of
* 64, but this layer has no access to sdh types.
*/
/* bcmsdh_intr_unmask(bus->sdh); */
bus->intdis = FALSE;
if (bus->intr) {
DHD_INTR(("%s: enable SDIO device interrupts\n", __FUNCTION__));
bcmsdh_intr_enable(bus->sdh);
} else {
DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__));
bcmsdh_intr_disable(bus->sdh);
}
}
else {
/* Disable F2 again */
enable = SDIO_FUNC_ENABLE_1;
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, enable, NULL);
}
if (dhdsdio_sr_cap(bus)) {
dhdsdio_sr_init(bus);
/* Masking the chip active interrupt permanantly */
bus->hostintmask &= ~I_CHIPACTIVE;
W_SDREG(bus->hostintmask, &bus->regs->hostintmask, retries);
DHD_INFO(("%s: disable I_CHIPACTIVE in hostintmask[0x%08x]\n",
__FUNCTION__, bus->hostintmask));
}
else
bcmsdh_cfg_write(bus->sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, saveclk, &err);
/* If we didn't come up, turn off backplane clock */
if (dhdp->busstate != DHD_BUS_DATA)
dhdsdio_clkctl(bus, CLK_NONE, FALSE);
exit:
if (enforce_mutex)
dhd_os_sdunlock(bus->dhd);
return ret;
}
static void
dhdsdio_rxfail(dhd_bus_t *bus, bool abort, bool rtx)
{
bcmsdh_info_t *sdh = bus->sdh;
sdpcmd_regs_t *regs = bus->regs;
uint retries = 0;
uint16 lastrbc;
uint8 hi, lo;
int err;
DHD_ERROR(("%s: %sterminate frame%s\n", __FUNCTION__,
(abort ? "abort command, " : ""), (rtx ? ", send NAK" : "")));
if (!KSO_ENAB(bus)) {
DHD_ERROR(("%s: Device asleep\n", __FUNCTION__));
return;
}
if (abort) {
bcmsdh_abort(sdh, SDIO_FUNC_2);
}
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL, SFC_RF_TERM, &err);
if (err) {
DHD_ERROR(("%s: SBSDIO_FUNC1_FRAMECTRL cmd err\n", __FUNCTION__));
goto fail;
}
bus->f1regdata++;
/* Wait until the packet has been flushed (device/FIFO stable) */
for (lastrbc = retries = 0xffff; retries > 0; retries--) {
hi = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_RFRAMEBCHI, NULL);
lo = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_RFRAMEBCLO, &err);
if (err) {
DHD_ERROR(("%s: SBSDIO_FUNC1_RFAMEBCLO cmd err\n", __FUNCTION__));
goto fail;
}
bus->f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
if ((hi > (lastrbc >> 8)) && (lo > (lastrbc & 0x00ff))) {
DHD_ERROR(("%s: count growing: last 0x%04x now 0x%04x\n",
__FUNCTION__, lastrbc, ((hi << 8) + lo)));
}
lastrbc = (hi << 8) + lo;
}
if (!retries) {
DHD_ERROR(("%s: count never zeroed: last 0x%04x\n", __FUNCTION__, lastrbc));
} else {
DHD_INFO(("%s: flush took %d iterations\n", __FUNCTION__, (0xffff - retries)));
}
if (rtx) {
bus->rxrtx++;
W_SDREG(SMB_NAK, &regs->tosbmailbox, retries);
bus->f1regdata++;
if (retries <= retry_limit) {
bus->rxskip = TRUE;
}
}
/* Clear partial in any case */
bus->nextlen = 0;
fail:
/* If we can't reach the device, signal failure */
if (err || bcmsdh_regfail(sdh))
bus->dhd->busstate = DHD_BUS_DOWN;
}
static void
dhdsdio_read_control(dhd_bus_t *bus, uint8 *hdr, uint len, uint doff)
{
bcmsdh_info_t *sdh = bus->sdh;
uint rdlen, pad;
int sdret;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* Control data already received in aligned rxctl */
if ((bus->bus == SPI_BUS) && (!bus->usebufpool))
goto gotpkt;
ASSERT(bus->rxbuf);
/* Set rxctl for frame (w/optional alignment) */
bus->rxctl = bus->rxbuf;
if (dhd_alignctl) {
bus->rxctl += firstread;
if ((pad = ((uintptr)bus->rxctl % DHD_SDALIGN)))
bus->rxctl += (DHD_SDALIGN - pad);
bus->rxctl -= firstread;
}
ASSERT(bus->rxctl >= bus->rxbuf);
/* Copy the already-read portion over */
bcopy(hdr, bus->rxctl, firstread);
if (len <= firstread)
goto gotpkt;
/* Copy the full data pkt in gSPI case and process ioctl. */
if (bus->bus == SPI_BUS) {
bcopy(hdr, bus->rxctl, len);
goto gotpkt;
}
/* Raise rdlen to next SDIO block to avoid tail command */
rdlen = len - firstread;
if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) {
pad = bus->blocksize - (rdlen % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize) &&
((len + pad) < bus->dhd->maxctl))
rdlen += pad;
} else if (rdlen % DHD_SDALIGN) {
rdlen += DHD_SDALIGN - (rdlen % DHD_SDALIGN);
}
/* Satisfy length-alignment requirements */
if (forcealign && (rdlen & (ALIGNMENT - 1)))
rdlen = ROUNDUP(rdlen, ALIGNMENT);
/* Drop if the read is too big or it exceeds our maximum */
if ((rdlen + firstread) > bus->dhd->maxctl) {
DHD_ERROR(("%s: %d-byte control read exceeds %d-byte buffer\n",
__FUNCTION__, rdlen, bus->dhd->maxctl));
bus->dhd->rx_errors++;
dhdsdio_rxfail(bus, FALSE, FALSE);
goto done;
}
if ((len - doff) > bus->dhd->maxctl) {
DHD_ERROR(("%s: %d-byte ctl frame (%d-byte ctl data) exceeds %d-byte limit\n",
__FUNCTION__, len, (len - doff), bus->dhd->maxctl));
bus->dhd->rx_errors++; bus->rx_toolong++;
dhdsdio_rxfail(bus, FALSE, FALSE);
goto done;
}
/* Read remainder of frame body into the rxctl buffer */
sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC,
(bus->rxctl + firstread), rdlen, NULL, NULL, NULL);
bus->f2rxdata++;
ASSERT(sdret != BCME_PENDING);
/* Control frame failures need retransmission */
if (sdret < 0) {
DHD_ERROR(("%s: read %d control bytes failed: %d\n", __FUNCTION__, rdlen, sdret));
bus->rxc_errors++; /* dhd.rx_ctlerrs is higher level */
dhdsdio_rxfail(bus, TRUE, TRUE);
goto done;
}
gotpkt:
#ifdef DHD_DEBUG
if (DHD_BYTES_ON() && DHD_CTL_ON()) {
prhex("RxCtrl", bus->rxctl, len);
}
#endif
/* Point to valid data and indicate its length */
bus->rxctl += doff;
bus->rxlen = len - doff;
done:
/* Awake any waiters */
dhd_os_ioctl_resp_wake(bus->dhd);
}
int
dhd_process_pkt_reorder_info(dhd_pub_t *dhd, uchar *reorder_info_buf, uint reorder_info_len,
void **pkt, uint32 *pkt_count);
static uint8
dhdsdio_rxglom(dhd_bus_t *bus, uint8 rxseq)
{
uint16 dlen, totlen;
uint8 *dptr, num = 0;
uint16 sublen, check;
void *pfirst, *plast, *pnext;
void * list_tail[DHD_MAX_IFS] = { NULL };
void * list_head[DHD_MAX_IFS] = { NULL };
uint8 idx;
osl_t *osh = bus->dhd->osh;
int errcode;
uint8 chan, seq, doff, sfdoff;
uint8 txmax;
uchar reorder_info_buf[WLHOST_REORDERDATA_TOTLEN];
uint reorder_info_len;
int ifidx = 0;
bool usechain = bus->use_rxchain;
/* If packets, issue read(s) and send up packet chain */
/* Return sequence numbers consumed? */
DHD_TRACE(("dhdsdio_rxglom: start: glomd %p glom %p\n", bus->glomd, bus->glom));
/* If there's a descriptor, generate the packet chain */
if (bus->glomd) {
dhd_os_sdlock_rxq(bus->dhd);
pfirst = plast = pnext = NULL;
dlen = (uint16)PKTLEN(osh, bus->glomd);
dptr = PKTDATA(osh, bus->glomd);
if (!dlen || (dlen & 1)) {
DHD_ERROR(("%s: bad glomd len (%d), ignore descriptor\n",
__FUNCTION__, dlen));
dlen = 0;
}
for (totlen = num = 0; dlen; num++) {
/* Get (and move past) next length */
sublen = ltoh16_ua(dptr);
dlen -= sizeof(uint16);
dptr += sizeof(uint16);
if ((sublen < SDPCM_HDRLEN) ||
((num == 0) && (sublen < (2 * SDPCM_HDRLEN)))) {
DHD_ERROR(("%s: descriptor len %d bad: %d\n",
__FUNCTION__, num, sublen));
pnext = NULL;
break;
}
if (sublen % DHD_SDALIGN) {
DHD_ERROR(("%s: sublen %d not a multiple of %d\n",
__FUNCTION__, sublen, DHD_SDALIGN));
usechain = FALSE;
}
totlen += sublen;
/* For last frame, adjust read len so total is a block multiple */
if (!dlen) {
sublen += (ROUNDUP(totlen, bus->blocksize) - totlen);
totlen = ROUNDUP(totlen, bus->blocksize);
}
/* Allocate/chain packet for next subframe */
if ((pnext = PKTGET(osh, sublen + DHD_SDALIGN, FALSE)) == NULL) {
DHD_ERROR(("%s: PKTGET failed, num %d len %d\n",
__FUNCTION__, num, sublen));
break;
}
ASSERT(!PKTLINK(pnext));
if (!pfirst) {
ASSERT(!plast);
pfirst = plast = pnext;
} else {
ASSERT(plast);
PKTSETNEXT(osh, plast, pnext);
plast = pnext;
}
/* Adhere to start alignment requirements */
PKTALIGN(osh, pnext, sublen, DHD_SDALIGN);
}
/* If all allocations succeeded, save packet chain in bus structure */
if (pnext) {
DHD_GLOM(("%s: allocated %d-byte packet chain for %d subframes\n",
__FUNCTION__, totlen, num));
if (DHD_GLOM_ON() && bus->nextlen) {
if (totlen != bus->nextlen) {
DHD_GLOM(("%s: glomdesc mismatch: nextlen %d glomdesc %d "
"rxseq %d\n", __FUNCTION__, bus->nextlen,
totlen, rxseq));
}
}
bus->glom = pfirst;
pfirst = pnext = NULL;
} else {
if (pfirst)
PKTFREE(osh, pfirst, FALSE);
bus->glom = NULL;
num = 0;
}
/* Done with descriptor packet */
PKTFREE(osh, bus->glomd, FALSE);
bus->glomd = NULL;
bus->nextlen = 0;
dhd_os_sdunlock_rxq(bus->dhd);
}
/* Ok -- either we just generated a packet chain, or had one from before */
if (bus->glom) {
if (DHD_GLOM_ON()) {
DHD_GLOM(("%s: attempt superframe read, packet chain:\n", __FUNCTION__));
for (pnext = bus->glom; pnext; pnext = PKTNEXT(osh, pnext)) {
DHD_GLOM((" %p: %p len 0x%04x (%d)\n",
pnext, (uint8*)PKTDATA(osh, pnext),
PKTLEN(osh, pnext), PKTLEN(osh, pnext)));
}
}
pfirst = bus->glom;
dlen = (uint16)pkttotlen(osh, pfirst);
/* Do an SDIO read for the superframe. Configurable iovar to
* read directly into the chained packet, or allocate a large
* packet and and copy into the chain.
*/
if (usechain) {
errcode = dhd_bcmsdh_recv_buf(bus,
bcmsdh_cur_sbwad(bus->sdh), SDIO_FUNC_2,
F2SYNC, (uint8*)PKTDATA(osh, pfirst),
dlen, pfirst, NULL, NULL);
} else if (bus->dataptr) {
errcode = dhd_bcmsdh_recv_buf(bus,
bcmsdh_cur_sbwad(bus->sdh), SDIO_FUNC_2,
F2SYNC, bus->dataptr,
dlen, NULL, NULL, NULL);
sublen = (uint16)pktfrombuf(osh, pfirst, 0, dlen, bus->dataptr);
if (sublen != dlen) {
DHD_ERROR(("%s: FAILED TO COPY, dlen %d sublen %d\n",
__FUNCTION__, dlen, sublen));
errcode = -1;
}
pnext = NULL;
} else {
DHD_ERROR(("COULDN'T ALLOC %d-BYTE GLOM, FORCE FAILURE\n", dlen));
errcode = -1;
}
bus->f2rxdata++;
ASSERT(errcode != BCME_PENDING);
/* On failure, kill the superframe, allow a couple retries */
if (errcode < 0) {
DHD_ERROR(("%s: glom read of %d bytes failed: %d\n",
__FUNCTION__, dlen, errcode));
bus->dhd->rx_errors++;
if (bus->glomerr++ < 3) {
dhdsdio_rxfail(bus, TRUE, TRUE);
} else {
bus->glomerr = 0;
dhdsdio_rxfail(bus, TRUE, FALSE);
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE(osh, bus->glom, FALSE);
dhd_os_sdunlock_rxq(bus->dhd);
bus->rxglomfail++;
bus->glom = NULL;
}
return 0;
}
#ifdef DHD_DEBUG
if (DHD_GLOM_ON()) {
prhex("SUPERFRAME", PKTDATA(osh, pfirst),
MIN(PKTLEN(osh, pfirst), 48));
}
#endif
/* Validate the superframe header */
dptr = (uint8 *)PKTDATA(osh, pfirst);
sublen = ltoh16_ua(dptr);
check = ltoh16_ua(dptr + sizeof(uint16));
chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]);
bus->nextlen = dptr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET];
if ((bus->nextlen << 4) > MAX_RX_DATASZ) {
DHD_INFO(("%s: got frame w/nextlen too large (%d) seq %d\n",
__FUNCTION__, bus->nextlen, seq));
bus->nextlen = 0;
}
doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
txmax = SDPCM_WINDOW_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
errcode = 0;
if ((uint16)~(sublen^check)) {
DHD_ERROR(("%s (superframe): HW hdr error: len/check 0x%04x/0x%04x\n",
__FUNCTION__, sublen, check));
errcode = -1;
} else if (ROUNDUP(sublen, bus->blocksize) != dlen) {
DHD_ERROR(("%s (superframe): len 0x%04x, rounded 0x%04x, expect 0x%04x\n",
__FUNCTION__, sublen, ROUNDUP(sublen, bus->blocksize), dlen));
errcode = -1;
} else if (SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]) != SDPCM_GLOM_CHANNEL) {
DHD_ERROR(("%s (superframe): bad channel %d\n", __FUNCTION__,
SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN])));
errcode = -1;
} else if (SDPCM_GLOMDESC(&dptr[SDPCM_FRAMETAG_LEN])) {
DHD_ERROR(("%s (superframe): got second descriptor?\n", __FUNCTION__));
errcode = -1;
} else if ((doff < SDPCM_HDRLEN) ||
(doff > (PKTLEN(osh, pfirst) - SDPCM_HDRLEN))) {
DHD_ERROR(("%s (superframe): Bad data offset %d: HW %d pkt %d min %d\n",
__FUNCTION__, doff, sublen, PKTLEN(osh, pfirst),
SDPCM_HDRLEN));
errcode = -1;
}
/* Check sequence number of superframe SW header */
if (rxseq != seq) {
DHD_INFO(("%s: (superframe) rx_seq %d, expected %d\n",
__FUNCTION__, seq, rxseq));
bus->rx_badseq++;
rxseq = seq;
}
/* Check window for sanity */
if ((uint8)(txmax - bus->tx_seq) > 0x70) {
DHD_ERROR(("%s: got unlikely tx max %d with tx_seq %d\n",
__FUNCTION__, txmax, bus->tx_seq));
txmax = bus->tx_max;
}
bus->tx_max = txmax;
/* Remove superframe header, remember offset */
PKTPULL(osh, pfirst, doff);
sfdoff = doff;
/* Validate all the subframe headers */
for (num = 0, pnext = pfirst; pnext && !errcode;
num++, pnext = PKTNEXT(osh, pnext)) {
dptr = (uint8 *)PKTDATA(osh, pnext);
dlen = (uint16)PKTLEN(osh, pnext);
sublen = ltoh16_ua(dptr);
check = ltoh16_ua(dptr + sizeof(uint16));
chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
#ifdef DHD_DEBUG
if (DHD_GLOM_ON()) {
prhex("subframe", dptr, 32);
}
#endif
if ((uint16)~(sublen^check)) {
DHD_ERROR(("%s (subframe %d): HW hdr error: "
"len/check 0x%04x/0x%04x\n",
__FUNCTION__, num, sublen, check));
errcode = -1;
} else if ((sublen > dlen) || (sublen < SDPCM_HDRLEN)) {
DHD_ERROR(("%s (subframe %d): length mismatch: "
"len 0x%04x, expect 0x%04x\n",
__FUNCTION__, num, sublen, dlen));
errcode = -1;
} else if ((chan != SDPCM_DATA_CHANNEL) &&
(chan != SDPCM_EVENT_CHANNEL)) {
DHD_ERROR(("%s (subframe %d): bad channel %d\n",
__FUNCTION__, num, chan));
errcode = -1;
} else if ((doff < SDPCM_HDRLEN) || (doff > sublen)) {
DHD_ERROR(("%s (subframe %d): Bad data offset %d: HW %d min %d\n",
__FUNCTION__, num, doff, sublen, SDPCM_HDRLEN));
errcode = -1;
}
}
if (errcode) {
/* Terminate frame on error, request a couple retries */
if (bus->glomerr++ < 3) {
/* Restore superframe header space */
PKTPUSH(osh, pfirst, sfdoff);
dhdsdio_rxfail(bus, TRUE, TRUE);
} else {
bus->glomerr = 0;
dhdsdio_rxfail(bus, TRUE, FALSE);
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE(osh, bus->glom, FALSE);
dhd_os_sdunlock_rxq(bus->dhd);
bus->rxglomfail++;
bus->glom = NULL;
}
bus->nextlen = 0;
return 0;
}
/* Basic SD framing looks ok - process each packet (header) */
bus->glom = NULL;
plast = NULL;
dhd_os_sdlock_rxq(bus->dhd);
for (num = 0; pfirst; rxseq++, pfirst = pnext) {
pnext = PKTNEXT(osh, pfirst);
PKTSETNEXT(osh, pfirst, NULL);
dptr = (uint8 *)PKTDATA(osh, pfirst);
sublen = ltoh16_ua(dptr);
chan = SDPCM_PACKET_CHANNEL(&dptr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(&dptr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(&dptr[SDPCM_FRAMETAG_LEN]);
DHD_GLOM(("%s: Get subframe %d, %p(%p/%d), sublen %d chan %d seq %d\n",
__FUNCTION__, num, pfirst, PKTDATA(osh, pfirst),
PKTLEN(osh, pfirst), sublen, chan, seq));
ASSERT((chan == SDPCM_DATA_CHANNEL) || (chan == SDPCM_EVENT_CHANNEL));
if (rxseq != seq) {
DHD_GLOM(("%s: rx_seq %d, expected %d\n",
__FUNCTION__, seq, rxseq));
bus->rx_badseq++;
rxseq = seq;
}
#ifdef DHD_DEBUG
if (DHD_BYTES_ON() && DHD_DATA_ON()) {
prhex("Rx Subframe Data", dptr, dlen);
}
#endif
PKTSETLEN(osh, pfirst, sublen);
PKTPULL(osh, pfirst, doff);
reorder_info_len = sizeof(reorder_info_buf);
if (PKTLEN(osh, pfirst) == 0) {
PKTFREE(bus->dhd->osh, pfirst, FALSE);
continue;
} else if (dhd_prot_hdrpull(bus->dhd, &ifidx, pfirst, reorder_info_buf,
&reorder_info_len) != 0) {
DHD_ERROR(("%s: rx protocol error\n", __FUNCTION__));
bus->dhd->rx_errors++;
PKTFREE(osh, pfirst, FALSE);
continue;
}
if (reorder_info_len) {
uint32 free_buf_count;
void *ppfirst;
ppfirst = pfirst;
/* Reordering info from the firmware */
dhd_process_pkt_reorder_info(bus->dhd, reorder_info_buf,
reorder_info_len, &ppfirst, &free_buf_count);
if (free_buf_count == 0) {
continue;
}
else {
void *temp;
/* go to the end of the chain and attach the pnext there */
temp = ppfirst;
while (PKTNEXT(osh, temp) != NULL) {
temp = PKTNEXT(osh, temp);
}
pfirst = temp;
if (list_tail[ifidx] == NULL)
list_head[ifidx] = ppfirst;
else
PKTSETNEXT(osh, list_tail[ifidx], ppfirst);
list_tail[ifidx] = pfirst;
}
num += (uint8)free_buf_count;
}
else {
/* this packet will go up, link back into chain and count it */
if (list_tail[ifidx] == NULL) {
list_head[ifidx] = list_tail[ifidx] = pfirst;
}
else {
PKTSETNEXT(osh, list_tail[ifidx], pfirst);
list_tail[ifidx] = pfirst;
}
num++;
}
#ifdef DHD_DEBUG
if (DHD_GLOM_ON()) {
DHD_GLOM(("%s subframe %d to stack, %p(%p/%d) nxt/lnk %p/%p\n",
__FUNCTION__, num, pfirst,
PKTDATA(osh, pfirst), PKTLEN(osh, pfirst),
PKTNEXT(osh, pfirst), PKTLINK(pfirst)));
prhex("", (uint8 *)PKTDATA(osh, pfirst),
MIN(PKTLEN(osh, pfirst), 32));
}
#endif /* DHD_DEBUG */
}
dhd_os_sdunlock_rxq(bus->dhd);
for (idx = 0; idx < DHD_MAX_IFS; idx++) {
if (list_head[idx]) {
void *temp;
uint8 cnt = 0;
temp = list_head[idx];
do {
temp = PKTNEXT(osh, temp);
cnt++;
} while (temp);
if (cnt) {
dhd_os_sdunlock(bus->dhd);
dhd_rx_frame(bus->dhd, idx, list_head[idx], cnt, 0);
dhd_os_sdlock(bus->dhd);
}
}
}
bus->rxglomframes++;
bus->rxglompkts += num;
}
return num;
}
/* Return TRUE if there may be more frames to read */
static uint
dhdsdio_readframes(dhd_bus_t *bus, uint maxframes, bool *finished)
{
osl_t *osh = bus->dhd->osh;
bcmsdh_info_t *sdh = bus->sdh;
uint16 len, check; /* Extracted hardware header fields */
uint8 chan, seq, doff; /* Extracted software header fields */
uint8 fcbits; /* Extracted fcbits from software header */
uint8 delta;
void *pkt; /* Packet for event or data frames */
uint16 pad; /* Number of pad bytes to read */
uint16 rdlen; /* Total number of bytes to read */
uint8 rxseq; /* Next sequence number to expect */
uint rxleft = 0; /* Remaining number of frames allowed */
int sdret; /* Return code from bcmsdh calls */
uint8 txmax; /* Maximum tx sequence offered */
bool len_consistent; /* Result of comparing readahead len and len from hw-hdr */
uint8 *rxbuf;
int ifidx = 0;
uint rxcount = 0; /* Total frames read */
uchar reorder_info_buf[WLHOST_REORDERDATA_TOTLEN];
uint reorder_info_len;
uint pkt_count;
#if defined(DHD_DEBUG) || defined(SDTEST)
bool sdtest = FALSE; /* To limit message spew from test mode */
#endif
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
bus->readframes = TRUE;
if (!KSO_ENAB(bus)) {
DHD_ERROR(("%s: KSO off\n", __FUNCTION__));
bus->readframes = FALSE;
return 0;
}
ASSERT(maxframes);
#ifdef SDTEST
/* Allow pktgen to override maxframes */
if (bus->pktgen_count && (bus->pktgen_mode == DHD_PKTGEN_RECV)) {
maxframes = bus->pktgen_count;
sdtest = TRUE;
}
#endif
/* Not finished unless we encounter no more frames indication */
*finished = FALSE;
for (rxseq = bus->rx_seq, rxleft = maxframes;
!bus->rxskip && rxleft && bus->dhd->busstate != DHD_BUS_DOWN;
rxseq++, rxleft--) {
#ifdef DHDTCPACK_SUP_DBG
if (bus->dhd->tcpack_sup_mode != TCPACK_SUP_DELAYTX) {
if (bus->dotxinrx == FALSE)
DHD_ERROR(("%s %d: dotxinrx FALSE with tcpack_sub_mode %d\n",
__FUNCTION__, __LINE__, bus->dhd->tcpack_sup_mode));
}
#ifdef DEBUG_COUNTER
else if (pktq_mlen(&bus->txq, ~bus->flowcontrol) > 0) {
tack_tbl.cnt[bus->dotxinrx ? 6 : 7]++;
}
#endif /* DEBUG_COUNTER */
#endif /* DHDTCPACK_SUP_DBG */
/* tx more to improve rx performance */
if (TXCTLOK(bus) && bus->ctrl_frame_stat && (bus->clkstate == CLK_AVAIL)) {
dhdsdio_sendpendctl(bus);
} else if (bus->dotxinrx && (bus->clkstate == CLK_AVAIL) &&
!bus->fcstate && DATAOK(bus) &&
(pktq_mlen(&bus->txq, ~bus->flowcontrol) > bus->txinrx_thres)) {
dhdsdio_sendfromq(bus, dhd_txbound);
#ifdef DHDTCPACK_SUPPRESS
/* In TCPACK_SUP_DELAYTX mode, do txinrx only if
* 1. Any DATA packet to TX
* 2. TCPACK to TCPDATA PSH packets.
* in bus txq.
*/
bus->dotxinrx = (bus->dhd->tcpack_sup_mode == TCPACK_SUP_DELAYTX) ?
FALSE : TRUE;
#endif
}
/* Handle glomming separately */
if (bus->glom || bus->glomd) {
uint8 cnt;
DHD_GLOM(("%s: calling rxglom: glomd %p, glom %p\n",
__FUNCTION__, bus->glomd, bus->glom));
cnt = dhdsdio_rxglom(bus, rxseq);
DHD_GLOM(("%s: rxglom returned %d\n", __FUNCTION__, cnt));
rxseq += cnt - 1;
rxleft = (rxleft > cnt) ? (rxleft - cnt) : 1;
continue;
}
/* Try doing single read if we can */
if (dhd_readahead && bus->nextlen) {
uint16 nextlen = bus->nextlen;
bus->nextlen = 0;
if (bus->bus == SPI_BUS) {
rdlen = len = nextlen;
}
else {
rdlen = len = nextlen << 4;
/* Pad read to blocksize for efficiency */
if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) {
pad = bus->blocksize - (rdlen % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize) &&
((rdlen + pad + firstread) < MAX_RX_DATASZ))
rdlen += pad;
} else if (rdlen % DHD_SDALIGN) {
rdlen += DHD_SDALIGN - (rdlen % DHD_SDALIGN);
}
}
/* We use bus->rxctl buffer in WinXP for initial control pkt receives.
* Later we use buffer-poll for data as well as control packets.
* This is required because dhd receives full frame in gSPI unlike SDIO.
* After the frame is received we have to distinguish whether it is data
* or non-data frame.
*/
/* Allocate a packet buffer */
dhd_os_sdlock_rxq(bus->dhd);
if (!(pkt = PKTGET(osh, rdlen + DHD_SDALIGN, FALSE))) {
if (bus->bus == SPI_BUS) {
bus->usebufpool = FALSE;
bus->rxctl = bus->rxbuf;
if (dhd_alignctl) {
bus->rxctl += firstread;
if ((pad = ((uintptr)bus->rxctl % DHD_SDALIGN)))
bus->rxctl += (DHD_SDALIGN - pad);
bus->rxctl -= firstread;
}
ASSERT(bus->rxctl >= bus->rxbuf);
rxbuf = bus->rxctl;
/* Read the entire frame */
sdret = dhd_bcmsdh_recv_buf(bus,
bcmsdh_cur_sbwad(sdh),
SDIO_FUNC_2,
F2SYNC, rxbuf, rdlen,
NULL, NULL, NULL);
bus->f2rxdata++;
ASSERT(sdret != BCME_PENDING);
/* Control frame failures need retransmission */
if (sdret < 0) {
DHD_ERROR(("%s: read %d control bytes failed: %d\n",
__FUNCTION__, rdlen, sdret));
/* dhd.rx_ctlerrs is higher level */
bus->rxc_errors++;
dhd_os_sdunlock_rxq(bus->dhd);
dhdsdio_rxfail(bus, TRUE,
(bus->bus == SPI_BUS) ? FALSE : TRUE);
continue;
}
} else {
/* Give up on data, request rtx of events */
DHD_ERROR(("%s (nextlen): PKTGET failed: len %d rdlen %d "
"expected rxseq %d\n",
__FUNCTION__, len, rdlen, rxseq));
/* Just go try again w/normal header read */
dhd_os_sdunlock_rxq(bus->dhd);
continue;
}
} else {
if (bus->bus == SPI_BUS)
bus->usebufpool = TRUE;
ASSERT(!PKTLINK(pkt));
PKTALIGN(osh, pkt, rdlen, DHD_SDALIGN);
rxbuf = (uint8 *)PKTDATA(osh, pkt);
/* Read the entire frame */
sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh),
SDIO_FUNC_2,
F2SYNC, rxbuf, rdlen,
pkt, NULL, NULL);
bus->f2rxdata++;
ASSERT(sdret != BCME_PENDING);
if (sdret < 0) {
DHD_ERROR(("%s (nextlen): read %d bytes failed: %d\n",
__FUNCTION__, rdlen, sdret));
PKTFREE(bus->dhd->osh, pkt, FALSE);
bus->dhd->rx_errors++;
dhd_os_sdunlock_rxq(bus->dhd);
/* Force retry w/normal header read. Don't attempt NAK for
* gSPI
*/
dhdsdio_rxfail(bus, TRUE,
(bus->bus == SPI_BUS) ? FALSE : TRUE);
continue;
}
}
dhd_os_sdunlock_rxq(bus->dhd);
/* Now check the header */
bcopy(rxbuf, bus->rxhdr, SDPCM_HDRLEN);
/* Extract hardware header fields */
len = ltoh16_ua(bus->rxhdr);
check = ltoh16_ua(bus->rxhdr + sizeof(uint16));
/* All zeros means readahead info was bad */
if (!(len|check)) {
DHD_INFO(("%s (nextlen): read zeros in HW header???\n",
__FUNCTION__));
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE2();
dhd_os_sdunlock_rxq(bus->dhd);
GSPI_PR55150_BAILOUT;
continue;
}
/* Validate check bytes */
if ((uint16)~(len^check)) {
DHD_ERROR(("%s (nextlen): HW hdr error: nextlen/len/check"
" 0x%04x/0x%04x/0x%04x\n", __FUNCTION__, nextlen,
len, check));
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE2();
dhd_os_sdunlock_rxq(bus->dhd);
bus->rx_badhdr++;
dhdsdio_rxfail(bus, FALSE, FALSE);
GSPI_PR55150_BAILOUT;
continue;
}
/* Validate frame length */
if (len < SDPCM_HDRLEN) {
DHD_ERROR(("%s (nextlen): HW hdr length invalid: %d\n",
__FUNCTION__, len));
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE2();
dhd_os_sdunlock_rxq(bus->dhd);
GSPI_PR55150_BAILOUT;
continue;
}
/* Check for consistency with readahead info */
len_consistent = (nextlen != (ROUNDUP(len, 16) >> 4));
if (len_consistent) {
/* Mismatch, force retry w/normal header (may be >4K) */
DHD_ERROR(("%s (nextlen): mismatch, nextlen %d len %d rnd %d; "
"expected rxseq %d\n",
__FUNCTION__, nextlen, len, ROUNDUP(len, 16), rxseq));
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE2();
dhd_os_sdunlock_rxq(bus->dhd);
dhdsdio_rxfail(bus, TRUE, (bus->bus == SPI_BUS) ? FALSE : TRUE);
GSPI_PR55150_BAILOUT;
continue;
}
/* Extract software header fields */
chan = SDPCM_PACKET_CHANNEL(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
txmax = SDPCM_WINDOW_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
bus->nextlen =
bus->rxhdr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET];
if ((bus->nextlen << 4) > MAX_RX_DATASZ) {
DHD_INFO(("%s (nextlen): got frame w/nextlen too large"
" (%d), seq %d\n", __FUNCTION__, bus->nextlen,
seq));
bus->nextlen = 0;
}
bus->dhd->rx_readahead_cnt ++;
/* Handle Flow Control */
fcbits = SDPCM_FCMASK_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
delta = 0;
if (~bus->flowcontrol & fcbits) {
bus->fc_xoff++;
delta = 1;
}
if (bus->flowcontrol & ~fcbits) {
bus->fc_xon++;
delta = 1;
}
if (delta) {
bus->fc_rcvd++;
bus->flowcontrol = fcbits;
}
/* Check and update sequence number */
if (rxseq != seq) {
DHD_INFO(("%s (nextlen): rx_seq %d, expected %d\n",
__FUNCTION__, seq, rxseq));
bus->rx_badseq++;
rxseq = seq;
}
/* Check window for sanity */
if ((uint8)(txmax - bus->tx_seq) > 0x70) {
DHD_ERROR(("%s: got unlikely tx max %d with tx_seq %d\n",
__FUNCTION__, txmax, bus->tx_seq));
txmax = bus->tx_max;
}
bus->tx_max = txmax;
#ifdef DHD_DEBUG
if (DHD_BYTES_ON() && DHD_DATA_ON()) {
prhex("Rx Data", rxbuf, len);
} else if (DHD_HDRS_ON()) {
prhex("RxHdr", bus->rxhdr, SDPCM_HDRLEN);
}
#endif
if (chan == SDPCM_CONTROL_CHANNEL) {
if (bus->bus == SPI_BUS) {
dhdsdio_read_control(bus, rxbuf, len, doff);
if (bus->usebufpool) {
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE(bus->dhd->osh, pkt, FALSE);
dhd_os_sdunlock_rxq(bus->dhd);
}
continue;
} else {
DHD_ERROR(("%s (nextlen): readahead on control"
" packet %d?\n", __FUNCTION__, seq));
/* Force retry w/normal header read */
bus->nextlen = 0;
dhdsdio_rxfail(bus, FALSE, TRUE);
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE2();
dhd_os_sdunlock_rxq(bus->dhd);
continue;
}
}
if ((bus->bus == SPI_BUS) && !bus->usebufpool) {
DHD_ERROR(("Received %d bytes on %d channel. Running out of "
"rx pktbuf's or not yet malloced.\n", len, chan));
continue;
}
/* Validate data offset */
if ((doff < SDPCM_HDRLEN) || (doff > len)) {
DHD_ERROR(("%s (nextlen): bad data offset %d: HW len %d min %d\n",
__FUNCTION__, doff, len, SDPCM_HDRLEN));
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE2();
dhd_os_sdunlock_rxq(bus->dhd);
ASSERT(0);
dhdsdio_rxfail(bus, FALSE, FALSE);
continue;
}
/* All done with this one -- now deliver the packet */
goto deliver;
}
/* gSPI frames should not be handled in fractions */
if (bus->bus == SPI_BUS) {
break;
}
/* Read frame header (hardware and software) */
sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC,
bus->rxhdr, firstread, NULL, NULL, NULL);
bus->f2rxhdrs++;
ASSERT(sdret != BCME_PENDING);
if (sdret < 0) {
DHD_ERROR(("%s: RXHEADER FAILED: %d\n", __FUNCTION__, sdret));
bus->rx_hdrfail++;
dhdsdio_rxfail(bus, TRUE, TRUE);
continue;
}
#ifdef DHD_DEBUG
if (DHD_BYTES_ON() || DHD_HDRS_ON()) {
prhex("RxHdr", bus->rxhdr, SDPCM_HDRLEN);
}
#endif
/* Extract hardware header fields */
len = ltoh16_ua(bus->rxhdr);
check = ltoh16_ua(bus->rxhdr + sizeof(uint16));
/* All zeros means no more frames */
if (!(len|check)) {
*finished = TRUE;
break;
}
/* Validate check bytes */
if ((uint16)~(len^check)) {
DHD_ERROR(("%s: HW hdr error: len/check 0x%04x/0x%04x\n",
__FUNCTION__, len, check));
bus->rx_badhdr++;
dhdsdio_rxfail(bus, FALSE, FALSE);
continue;
}
/* Validate frame length */
if (len < SDPCM_HDRLEN) {
DHD_ERROR(("%s: HW hdr length invalid: %d\n", __FUNCTION__, len));
continue;
}
/* Extract software header fields */
chan = SDPCM_PACKET_CHANNEL(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
seq = SDPCM_PACKET_SEQUENCE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
doff = SDPCM_DOFFSET_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
txmax = SDPCM_WINDOW_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
/* Validate data offset */
if ((doff < SDPCM_HDRLEN) || (doff > len)) {
DHD_ERROR(("%s: Bad data offset %d: HW len %d, min %d seq %d\n",
__FUNCTION__, doff, len, SDPCM_HDRLEN, seq));
bus->rx_badhdr++;
ASSERT(0);
dhdsdio_rxfail(bus, FALSE, FALSE);
continue;
}
/* Save the readahead length if there is one */
bus->nextlen = bus->rxhdr[SDPCM_FRAMETAG_LEN + SDPCM_NEXTLEN_OFFSET];
if ((bus->nextlen << 4) > MAX_RX_DATASZ) {
DHD_INFO(("%s (nextlen): got frame w/nextlen too large (%d), seq %d\n",
__FUNCTION__, bus->nextlen, seq));
bus->nextlen = 0;
}
/* Handle Flow Control */
fcbits = SDPCM_FCMASK_VALUE(&bus->rxhdr[SDPCM_FRAMETAG_LEN]);
delta = 0;
if (~bus->flowcontrol & fcbits) {
bus->fc_xoff++;
delta = 1;
}
if (bus->flowcontrol & ~fcbits) {
bus->fc_xon++;
delta = 1;
}
if (delta) {
bus->fc_rcvd++;
bus->flowcontrol = fcbits;
}
/* Check and update sequence number */
if (rxseq != seq) {
DHD_INFO(("%s: rx_seq %d, expected %d\n", __FUNCTION__, seq, rxseq));
bus->rx_badseq++;
rxseq = seq;
}
/* Check window for sanity */
if ((uint8)(txmax - bus->tx_seq) > 0x70) {
DHD_ERROR(("%s: got unlikely tx max %d with tx_seq %d\n",
__FUNCTION__, txmax, bus->tx_seq));
txmax = bus->tx_max;
}
bus->tx_max = txmax;
/* Call a separate function for control frames */
if (chan == SDPCM_CONTROL_CHANNEL) {
dhdsdio_read_control(bus, bus->rxhdr, len, doff);
continue;
}
ASSERT((chan == SDPCM_DATA_CHANNEL) || (chan == SDPCM_EVENT_CHANNEL) ||
(chan == SDPCM_TEST_CHANNEL) || (chan == SDPCM_GLOM_CHANNEL));
/* Length to read */
rdlen = (len > firstread) ? (len - firstread) : 0;
/* May pad read to blocksize for efficiency */
if (bus->roundup && bus->blocksize && (rdlen > bus->blocksize)) {
pad = bus->blocksize - (rdlen % bus->blocksize);
if ((pad <= bus->roundup) && (pad < bus->blocksize) &&
((rdlen + pad + firstread) < MAX_RX_DATASZ))
rdlen += pad;
} else if (rdlen % DHD_SDALIGN) {
rdlen += DHD_SDALIGN - (rdlen % DHD_SDALIGN);
}
/* Satisfy length-alignment requirements */
if (forcealign && (rdlen & (ALIGNMENT - 1)))
rdlen = ROUNDUP(rdlen, ALIGNMENT);
if ((rdlen + firstread) > MAX_RX_DATASZ) {
/* Too long -- skip this frame */
DHD_ERROR(("%s: too long: len %d rdlen %d\n", __FUNCTION__, len, rdlen));
bus->dhd->rx_errors++; bus->rx_toolong++;
dhdsdio_rxfail(bus, FALSE, FALSE);
continue;
}
dhd_os_sdlock_rxq(bus->dhd);
if (!(pkt = PKTGET(osh, (rdlen + firstread + DHD_SDALIGN), FALSE))) {
/* Give up on data, request rtx of events */
DHD_ERROR(("%s: PKTGET failed: rdlen %d chan %d\n",
__FUNCTION__, rdlen, chan));
bus->dhd->rx_dropped++;
dhd_os_sdunlock_rxq(bus->dhd);
dhdsdio_rxfail(bus, FALSE, RETRYCHAN(chan));
continue;
}
dhd_os_sdunlock_rxq(bus->dhd);
ASSERT(!PKTLINK(pkt));
/* Leave room for what we already read, and align remainder */
ASSERT(firstread < (PKTLEN(osh, pkt)));
PKTPULL(osh, pkt, firstread);
PKTALIGN(osh, pkt, rdlen, DHD_SDALIGN);
/* Read the remaining frame data */
sdret = dhd_bcmsdh_recv_buf(bus, bcmsdh_cur_sbwad(sdh), SDIO_FUNC_2, F2SYNC,
((uint8 *)PKTDATA(osh, pkt)), rdlen, pkt, NULL, NULL);
bus->f2rxdata++;
ASSERT(sdret != BCME_PENDING);
if (sdret < 0) {
DHD_ERROR(("%s: read %d %s bytes failed: %d\n", __FUNCTION__, rdlen,
((chan == SDPCM_EVENT_CHANNEL) ? "event" :
((chan == SDPCM_DATA_CHANNEL) ? "data" : "test")), sdret));
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE(bus->dhd->osh, pkt, FALSE);
dhd_os_sdunlock_rxq(bus->dhd);
bus->dhd->rx_errors++;
dhdsdio_rxfail(bus, TRUE, RETRYCHAN(chan));
continue;
}
/* Copy the already-read portion */
PKTPUSH(osh, pkt, firstread);
bcopy(bus->rxhdr, PKTDATA(osh, pkt), firstread);
#ifdef DHD_DEBUG
if (DHD_BYTES_ON() && DHD_DATA_ON()) {
prhex("Rx Data", PKTDATA(osh, pkt), len);
}
#endif
deliver:
/* Save superframe descriptor and allocate packet frame */
if (chan == SDPCM_GLOM_CHANNEL) {
if (SDPCM_GLOMDESC(&bus->rxhdr[SDPCM_FRAMETAG_LEN])) {
DHD_GLOM(("%s: got glom descriptor, %d bytes:\n",
__FUNCTION__, len));
#ifdef DHD_DEBUG
if (DHD_GLOM_ON()) {
prhex("Glom Data", PKTDATA(osh, pkt), len);
}
#endif
PKTSETLEN(osh, pkt, len);
ASSERT(doff == SDPCM_HDRLEN);
PKTPULL(osh, pkt, SDPCM_HDRLEN);
bus->glomd = pkt;
} else {
DHD_ERROR(("%s: glom superframe w/o descriptor!\n", __FUNCTION__));
dhdsdio_rxfail(bus, FALSE, FALSE);
}
continue;
}
/* Fill in packet len and prio, deliver upward */
PKTSETLEN(osh, pkt, len);
PKTPULL(osh, pkt, doff);
#ifdef SDTEST
/* Test channel packets are processed separately */
if (chan == SDPCM_TEST_CHANNEL) {
dhdsdio_testrcv(bus, pkt, seq);
continue;
}
#endif /* SDTEST */
if (PKTLEN(osh, pkt) == 0) {
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE(bus->dhd->osh, pkt, FALSE);
dhd_os_sdunlock_rxq(bus->dhd);
continue;
} else if (dhd_prot_hdrpull(bus->dhd, &ifidx, pkt, reorder_info_buf,
&reorder_info_len) != 0) {
DHD_ERROR(("%s: rx protocol error\n", __FUNCTION__));
dhd_os_sdlock_rxq(bus->dhd);
PKTFREE(bus->dhd->osh, pkt, FALSE);
dhd_os_sdunlock_rxq(bus->dhd);
bus->dhd->rx_errors++;
continue;
}
if (reorder_info_len) {
/* Reordering info from the firmware */
dhd_process_pkt_reorder_info(bus->dhd, reorder_info_buf, reorder_info_len,
&pkt, &pkt_count);
if (pkt_count == 0)
continue;
}
else
pkt_count = 1;
/* Unlock during rx call */
dhd_os_sdunlock(bus->dhd);
dhd_rx_frame(bus->dhd, ifidx, pkt, pkt_count, chan);
dhd_os_sdlock(bus->dhd);
}
rxcount = maxframes - rxleft;
#ifdef DHD_DEBUG
/* Message if we hit the limit */
if (!rxleft && !sdtest)
DHD_DATA(("%s: hit rx limit of %d frames\n", __FUNCTION__, maxframes));
else
#endif /* DHD_DEBUG */
DHD_DATA(("%s: processed %d frames\n", __FUNCTION__, rxcount));
/* Back off rxseq if awaiting rtx, update rx_seq */
if (bus->rxskip)
rxseq--;
bus->rx_seq = rxseq;
if (bus->reqbussleep)
{
dhdsdio_bussleep(bus, TRUE);
bus->reqbussleep = FALSE;
}
bus->readframes = FALSE;
return rxcount;
}
static uint32
dhdsdio_hostmail(dhd_bus_t *bus)
{
sdpcmd_regs_t *regs = bus->regs;
uint32 intstatus = 0;
uint32 hmb_data;
uint8 fcbits;
uint retries = 0;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* Read mailbox data and ack that we did so */
R_SDREG(hmb_data, &regs->tohostmailboxdata, retries);
if (retries <= retry_limit)
W_SDREG(SMB_INT_ACK, &regs->tosbmailbox, retries);
bus->f1regdata += 2;
/* Dongle recomposed rx frames, accept them again */
if (hmb_data & HMB_DATA_NAKHANDLED) {
DHD_INFO(("Dongle reports NAK handled, expect rtx of %d\n", bus->rx_seq));
if (!bus->rxskip) {
DHD_ERROR(("%s: unexpected NAKHANDLED!\n", __FUNCTION__));
}
bus->rxskip = FALSE;
intstatus |= FRAME_AVAIL_MASK(bus);
}
/*
* DEVREADY does not occur with gSPI.
*/
if (hmb_data & (HMB_DATA_DEVREADY | HMB_DATA_FWREADY)) {
bus->sdpcm_ver = (hmb_data & HMB_DATA_VERSION_MASK) >> HMB_DATA_VERSION_SHIFT;
if (bus->sdpcm_ver != SDPCM_PROT_VERSION)
DHD_ERROR(("Version mismatch, dongle reports %d, expecting %d\n",
bus->sdpcm_ver, SDPCM_PROT_VERSION));
else
DHD_INFO(("Dongle ready, protocol version %d\n", bus->sdpcm_ver));
/* make sure for the SDIO_DEVICE_RXDATAINT_MODE_1 corecontrol is proper */
if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev >= 4) &&
(bus->rxint_mode == SDIO_DEVICE_RXDATAINT_MODE_1)) {
uint32 val;
val = R_REG(bus->dhd->osh, &bus->regs->corecontrol);
val &= ~CC_XMTDATAAVAIL_MODE;
val |= CC_XMTDATAAVAIL_CTRL;
W_REG(bus->dhd->osh, &bus->regs->corecontrol, val);
val = R_REG(bus->dhd->osh, &bus->regs->corecontrol);
}
#ifdef DHD_DEBUG
/* Retrieve console state address now that firmware should have updated it */
{
sdpcm_shared_t shared;
if (dhdsdio_readshared(bus, &shared) == 0)
bus->console_addr = shared.console_addr;
}
#endif /* DHD_DEBUG */
}
/*
* Flow Control has been moved into the RX headers and this out of band
* method isn't used any more. Leave this here for possibly remaining backward
* compatible with older dongles
*/
if (hmb_data & HMB_DATA_FC) {
fcbits = (hmb_data & HMB_DATA_FCDATA_MASK) >> HMB_DATA_FCDATA_SHIFT;
if (fcbits & ~bus->flowcontrol)
bus->fc_xoff++;
if (bus->flowcontrol & ~fcbits)
bus->fc_xon++;
bus->fc_rcvd++;
bus->flowcontrol = fcbits;
}
/* At least print a message if FW halted */
if (hmb_data & HMB_DATA_FWHALT) {
DHD_ERROR(("INTERNAL ERROR: FIRMWARE HALTED : set BUS DOWN\n"));
dhdsdio_checkdied(bus, NULL, 0);
bus->dhd->busstate = DHD_BUS_DOWN;
}
/* Shouldn't be any others */
if (hmb_data & ~(HMB_DATA_DEVREADY |
HMB_DATA_FWHALT |
HMB_DATA_NAKHANDLED |
HMB_DATA_FC |
HMB_DATA_FWREADY |
HMB_DATA_FCDATA_MASK |
HMB_DATA_VERSION_MASK)) {
DHD_ERROR(("Unknown mailbox data content: 0x%02x\n", hmb_data));
}
return intstatus;
}
static bool
dhdsdio_dpc(dhd_bus_t *bus)
{
bcmsdh_info_t *sdh = bus->sdh;
sdpcmd_regs_t *regs = bus->regs;
uint32 intstatus, newstatus = 0;
uint retries = 0;
uint rxlimit = dhd_rxbound; /* Rx frames to read before resched */
uint txlimit = dhd_txbound; /* Tx frames to send before resched */
uint framecnt = 0; /* Temporary counter of tx/rx frames */
bool rxdone = TRUE; /* Flag for no more read data */
bool resched = FALSE; /* Flag indicating resched wanted */
#ifdef DEBUG_DPC_THREAD_WATCHDOG
bool is_resched_by_readframe = FALSE;
#endif /* DEBUG_DPC_THREAD_WATCHDOG */
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
dhd_os_sdlock(bus->dhd);
if (bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s: Bus down, ret\n", __FUNCTION__));
bus->intstatus = 0;
dhd_os_sdunlock(bus->dhd);
return 0;
}
/* Start with leftover status bits */
intstatus = bus->intstatus;
if (!SLPAUTO_ENAB(bus) && !KSO_ENAB(bus)) {
DHD_ERROR(("%s: Device asleep\n", __FUNCTION__));
goto exit;
}
/* If waiting for HTAVAIL, check status */
if (!SLPAUTO_ENAB(bus) && (bus->clkstate == CLK_PENDING)) {
int err;
uint8 clkctl, devctl = 0;
#ifdef DHD_DEBUG
/* Check for inconsistent device control */
devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err);
if (err) {
DHD_ERROR(("%s: error reading DEVCTL: %d\n", __FUNCTION__, err));
bus->dhd->busstate = DHD_BUS_DOWN;
} else {
ASSERT(devctl & SBSDIO_DEVCTL_CA_INT_ONLY);
}
#endif /* DHD_DEBUG */
/* Read CSR, if clock on switch to AVAIL, else ignore */
clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err) {
DHD_ERROR(("%s: error reading CSR: %d\n", __FUNCTION__, err));
bus->dhd->busstate = DHD_BUS_DOWN;
}
DHD_INFO(("DPC: PENDING, devctl 0x%02x clkctl 0x%02x\n", devctl, clkctl));
if (SBSDIO_HTAV(clkctl)) {
devctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, &err);
if (err) {
DHD_ERROR(("%s: error reading DEVCTL: %d\n",
__FUNCTION__, err));
bus->dhd->busstate = DHD_BUS_DOWN;
}
devctl &= ~SBSDIO_DEVCTL_CA_INT_ONLY;
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_DEVICE_CTL, devctl, &err);
if (err) {
DHD_ERROR(("%s: error writing DEVCTL: %d\n",
__FUNCTION__, err));
bus->dhd->busstate = DHD_BUS_DOWN;
}
bus->clkstate = CLK_AVAIL;
} else {
goto clkwait;
}
}
BUS_WAKE(bus);
/* Make sure backplane clock is on */
dhdsdio_clkctl(bus, CLK_AVAIL, TRUE);
if (bus->clkstate != CLK_AVAIL)
goto clkwait;
/* Pending interrupt indicates new device status */
if (bus->ipend) {
bus->ipend = FALSE;
R_SDREG(newstatus, &regs->intstatus, retries);
bus->f1regdata++;
if (bcmsdh_regfail(bus->sdh))
newstatus = 0;
newstatus &= bus->hostintmask;
bus->fcstate = !!(newstatus & I_HMB_FC_STATE);
if (newstatus) {
bus->f1regdata++;
if ((bus->rxint_mode == SDIO_DEVICE_RXDATAINT_MODE_0) &&
(newstatus == I_XMTDATA_AVAIL)) {
}
else
W_SDREG(newstatus, &regs->intstatus, retries);
}
}
/* Merge new bits with previous */
intstatus |= newstatus;
bus->intstatus = 0;
/* Handle flow-control change: read new state in case our ack
* crossed another change interrupt. If change still set, assume
* FC ON for safety, let next loop through do the debounce.
*/
if (intstatus & I_HMB_FC_CHANGE) {
intstatus &= ~I_HMB_FC_CHANGE;
W_SDREG(I_HMB_FC_CHANGE, &regs->intstatus, retries);
R_SDREG(newstatus, &regs->intstatus, retries);
bus->f1regdata += 2;
bus->fcstate = !!(newstatus & (I_HMB_FC_STATE | I_HMB_FC_CHANGE));
intstatus |= (newstatus & bus->hostintmask);
}
/* Just being here means nothing more to do for chipactive */
if (intstatus & I_CHIPACTIVE) {
/* ASSERT(bus->clkstate == CLK_AVAIL); */
intstatus &= ~I_CHIPACTIVE;
}
/* Handle host mailbox indication */
if (intstatus & I_HMB_HOST_INT) {
intstatus &= ~I_HMB_HOST_INT;
intstatus |= dhdsdio_hostmail(bus);
}
/* Generally don't ask for these, can get CRC errors... */
if (intstatus & I_WR_OOSYNC) {
DHD_ERROR(("Dongle reports WR_OOSYNC\n"));
intstatus &= ~I_WR_OOSYNC;
}
if (intstatus & I_RD_OOSYNC) {
DHD_ERROR(("Dongle reports RD_OOSYNC\n"));
intstatus &= ~I_RD_OOSYNC;
}
if (intstatus & I_SBINT) {
DHD_ERROR(("Dongle reports SBINT\n"));
intstatus &= ~I_SBINT;
}
/* Would be active due to wake-wlan in gSPI */
if (intstatus & I_CHIPACTIVE) {
DHD_INFO(("Dongle reports CHIPACTIVE\n"));
intstatus &= ~I_CHIPACTIVE;
}
if (intstatus & I_HMB_FC_STATE) {
DHD_INFO(("Dongle reports HMB_FC_STATE\n"));
intstatus &= ~I_HMB_FC_STATE;
}
/* Ignore frame indications if rxskip is set */
if (bus->rxskip) {
intstatus &= ~FRAME_AVAIL_MASK(bus);
}
/* On frame indication, read available frames */
if (PKT_AVAILABLE(bus, intstatus)) {
framecnt = dhdsdio_readframes(bus, rxlimit, &rxdone);
if (rxdone || bus->rxskip)
intstatus &= ~FRAME_AVAIL_MASK(bus);
rxlimit -= MIN(framecnt, rxlimit);
}
/* Keep still-pending events for next scheduling */
bus->intstatus = intstatus;
clkwait:
/* Re-enable interrupts to detect new device events (mailbox, rx frame)
* or clock availability. (Allows tx loop to check ipend if desired.)
* (Unless register access seems hosed, as we may not be able to ACK...)
*/
if (bus->intr && bus->intdis && !bcmsdh_regfail(sdh)) {
DHD_INTR(("%s: enable SDIO interrupts, rxdone %d framecnt %d\n",
__FUNCTION__, rxdone, framecnt));
bus->intdis = FALSE;
#if defined(OOB_INTR_ONLY)
OOB_PARAM_IF(!(bus->dhd->oob_disable)) {
bcmsdh_oob_intr_set(bus->sdh, TRUE);
}
#endif /* defined(OOB_INTR_ONLY) */
bcmsdh_intr_enable(sdh);
}
#if defined(OOB_INTR_ONLY) && !defined(HW_OOB)
OOB_PARAM_IF(!(bus->dhd->oob_disable)) {
/* In case of SW-OOB(using edge trigger),
* Check interrupt status in the dongle again after enable irq on the host.
* and rechedule dpc if interrupt is pended in the dongle.
* There is a chance to miss OOB interrupt while irq is disabled on the host.
* No need to do this with HW-OOB(level trigger)
*/
R_SDREG(newstatus, &regs->intstatus, retries);
if (bcmsdh_regfail(bus->sdh))
newstatus = 0;
if (newstatus & bus->hostintmask) {
bus->ipend = TRUE;
resched = TRUE;
}
}
#endif /* defined(OOB_INTR_ONLY) && !defined(HW_OOB) */
#ifdef PROP_TXSTATUS
dhd_wlfc_commit_packets(bus->dhd, (f_commitpkt_t)dhd_bus_txdata, (void *)bus, NULL, FALSE);
#endif
if (TXCTLOK(bus) && bus->ctrl_frame_stat && (bus->clkstate == CLK_AVAIL))
dhdsdio_sendpendctl(bus);
/* Send queued frames (limit 1 if rx may still be pending) */
else if ((bus->clkstate == CLK_AVAIL) && !bus->fcstate &&
pktq_mlen(&bus->txq, ~bus->flowcontrol) && txlimit && DATAOK(bus)) {
framecnt = rxdone ? txlimit : MIN(txlimit, dhd_txminmax);
framecnt = dhdsdio_sendfromq(bus, framecnt);
txlimit -= framecnt;
}
/* Resched the DPC if ctrl cmd is pending on bus credit */
if (bus->ctrl_frame_stat)
resched = TRUE;
/* Resched if events or tx frames are pending, else await next interrupt */
/* On failed register access, all bets are off: no resched or interrupts */
if ((bus->dhd->busstate == DHD_BUS_DOWN) || bcmsdh_regfail(sdh)) {
if ((bus->sih && bus->sih->buscorerev >= 12) && !(dhdsdio_sleepcsr_get(bus) &
SBSDIO_FUNC1_SLEEPCSR_KSO_MASK)) {
/* Bus failed because of KSO */
DHD_ERROR(("%s: Bus failed due to KSO\n", __FUNCTION__));
bus->kso = FALSE;
} else {
DHD_ERROR(("%s: failed backplane access over SDIO, halting operation\n",
__FUNCTION__));
bus->dhd->busstate = DHD_BUS_DOWN;
bus->intstatus = 0;
}
} else if (bus->clkstate == CLK_PENDING) {
/* Awaiting I_CHIPACTIVE; don't resched */
} else if (bus->intstatus || bus->ipend ||
(!bus->fcstate && pktq_mlen(&bus->txq, ~bus->flowcontrol) && DATAOK(bus)) ||
PKT_AVAILABLE(bus, bus->intstatus)) { /* Read multiple frames */
resched = TRUE;
}
bus->dpc_sched = resched;
/* If we're done for now, turn off clock request. */
if ((bus->idletime == DHD_IDLE_IMMEDIATE) && (bus->clkstate != CLK_PENDING)) {
bus->activity = FALSE;
dhdsdio_clkctl(bus, CLK_NONE, FALSE);
}
exit:
if (!resched && dhd_dpcpoll) {
if (dhdsdio_readframes(bus, dhd_rxbound, &rxdone) != 0) {
resched = TRUE;
#ifdef DEBUG_DPC_THREAD_WATCHDOG
is_resched_by_readframe = TRUE;
#endif /* DEBUG_DPC_THREAD_WATCHDOG */
}
}
dhd_os_sdunlock(bus->dhd);
#ifdef DEBUG_DPC_THREAD_WATCHDOG
if (bus->dhd->dhd_bug_on) {
DHD_INFO(("%s: resched = %d ctrl_frame_stat = %d intstatus 0x%08x"
" ipend = %d pktq_mlen = %d is_resched_by_readframe = %d \n",
__FUNCTION__, resched, bus->ctrl_frame_stat,
bus->intstatus, bus->ipend,
pktq_mlen(&bus->txq, ~bus->flowcontrol), is_resched_by_readframe));
bus->dhd->dhd_bug_on = FALSE;
}
#endif /* DEBUG_DPC_THREAD_WATCHDOG */
return resched;
}
bool
dhd_bus_dpc(struct dhd_bus *bus)
{
bool resched;
/* Call the DPC directly. */
DHD_TRACE(("Calling dhdsdio_dpc() from %s\n", __FUNCTION__));
resched = dhdsdio_dpc(bus);
return resched;
}
void
dhdsdio_isr(void *arg)
{
dhd_bus_t *bus = (dhd_bus_t*)arg;
bcmsdh_info_t *sdh;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (!bus) {
DHD_ERROR(("%s : bus is null pointer , exit \n", __FUNCTION__));
return;
}
sdh = bus->sdh;
if (bus->dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s : bus is down. we have nothing to do\n", __FUNCTION__));
return;
}
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* Count the interrupt call */
bus->intrcount++;
bus->ipend = TRUE;
/* Shouldn't get this interrupt if we're sleeping? */
if (!SLPAUTO_ENAB(bus)) {
if (bus->sleeping) {
DHD_ERROR(("INTERRUPT WHILE SLEEPING??\n"));
return;
} else if (!KSO_ENAB(bus)) {
DHD_ERROR(("ISR in devsleep 1\n"));
}
}
/* Disable additional interrupts (is this needed now)? */
if (bus->intr) {
DHD_INTR(("%s: disable SDIO interrupts\n", __FUNCTION__));
} else {
DHD_ERROR(("dhdsdio_isr() w/o interrupt configured!\n"));
}
bcmsdh_intr_disable(sdh);
bus->intdis = TRUE;
#if defined(SDIO_ISR_THREAD) || defined(OOB_PARAM)
OOB_PARAM_IF(bus->dhd->oob_disable) {
DHD_TRACE(("Calling dhdsdio_dpc() from %s\n", __FUNCTION__));
DHD_OS_WAKE_LOCK(bus->dhd);
dhdsdio_dpc(bus);
DHD_OS_WAKE_UNLOCK(bus->dhd);
} OOB_PARAM_ELSE()
#endif /* defined(SDIO_ISR_THREAD) || defined(OOB_PARAM) */
#if !defined(SDIO_ISR_THREAD) || defined(OOB_PARAM)
{
bus->dpc_sched = TRUE;
dhd_sched_dpc(bus->dhd);
}
#endif /* !defined(SDIO_ISR_THREAD) || defined(OOB_PARAM) */
}
#ifdef SDTEST
static void
dhdsdio_pktgen_init(dhd_bus_t *bus)
{
/* Default to specified length, or full range */
if (dhd_pktgen_len) {
bus->pktgen_maxlen = MIN(dhd_pktgen_len, MAX_PKTGEN_LEN);
bus->pktgen_minlen = bus->pktgen_maxlen;
} else {
bus->pktgen_maxlen = MAX_PKTGEN_LEN;
bus->pktgen_minlen = 0;
}
bus->pktgen_len = (uint16)bus->pktgen_minlen;
/* Default to per-watchdog burst with 10s print time */
bus->pktgen_freq = 1;
bus->pktgen_print = dhd_watchdog_ms ? (10000 / dhd_watchdog_ms) : 0;
bus->pktgen_count = (dhd_pktgen * dhd_watchdog_ms + 999) / 1000;
/* Default to echo mode */
bus->pktgen_mode = DHD_PKTGEN_ECHO;
bus->pktgen_stop = 1;
}
static void
dhdsdio_pktgen(dhd_bus_t *bus)
{
void *pkt;
uint8 *data;
uint pktcount;
uint fillbyte;
osl_t *osh = bus->dhd->osh;
uint16 len;
ulong time_lapse;
uint sent_pkts;
uint rcvd_pkts;
/* Display current count if appropriate */
if (bus->pktgen_print && (++bus->pktgen_ptick >= bus->pktgen_print)) {
bus->pktgen_ptick = 0;
printf("%s: send attempts %d, rcvd %d, errors %d\n",
__FUNCTION__, bus->pktgen_sent, bus->pktgen_rcvd, bus->pktgen_fail);
/* Print throughput stats only for constant length packet runs */
if (bus->pktgen_minlen == bus->pktgen_maxlen) {
time_lapse = jiffies - bus->pktgen_prev_time;
bus->pktgen_prev_time = jiffies;
sent_pkts = bus->pktgen_sent - bus->pktgen_prev_sent;
bus->pktgen_prev_sent = bus->pktgen_sent;
rcvd_pkts = bus->pktgen_rcvd - bus->pktgen_prev_rcvd;
bus->pktgen_prev_rcvd = bus->pktgen_rcvd;
printf("%s: Tx Throughput %d kbps, Rx Throughput %d kbps\n",
__FUNCTION__,
(sent_pkts * bus->pktgen_len / jiffies_to_msecs(time_lapse)) * 8,
(rcvd_pkts * bus->pktgen_len / jiffies_to_msecs(time_lapse)) * 8);
}
}
/* For recv mode, just make sure dongle has started sending */
if (bus->pktgen_mode == DHD_PKTGEN_RECV) {
if (bus->pktgen_rcv_state == PKTGEN_RCV_IDLE) {
bus->pktgen_rcv_state = PKTGEN_RCV_ONGOING;
dhdsdio_sdtest_set(bus, bus->pktgen_total);
}
return;
}
/* Otherwise, generate or request the specified number of packets */
for (pktcount = 0; pktcount < bus->pktgen_count; pktcount++) {
/* Stop if total has been reached */
if (bus->pktgen_total && (bus->pktgen_sent >= bus->pktgen_total)) {
bus->pktgen_count = 0;
break;
}
/* Allocate an appropriate-sized packet */
if (bus->pktgen_mode == DHD_PKTGEN_RXBURST) {
len = SDPCM_TEST_PKT_CNT_FLD_LEN;
} else {
len = bus->pktgen_len;
}
if (!(pkt = PKTGET(osh, (len + SDPCM_HDRLEN + SDPCM_TEST_HDRLEN + DHD_SDALIGN),
TRUE))) {;
DHD_ERROR(("%s: PKTGET failed!\n", __FUNCTION__));
break;
}
PKTALIGN(osh, pkt, (len + SDPCM_HDRLEN + SDPCM_TEST_HDRLEN), DHD_SDALIGN);
data = (uint8*)PKTDATA(osh, pkt) + SDPCM_HDRLEN;
/* Write test header cmd and extra based on mode */
switch (bus->pktgen_mode) {
case DHD_PKTGEN_ECHO:
*data++ = SDPCM_TEST_ECHOREQ;
*data++ = (uint8)bus->pktgen_sent;
break;
case DHD_PKTGEN_SEND:
*data++ = SDPCM_TEST_DISCARD;
*data++ = (uint8)bus->pktgen_sent;
break;
case DHD_PKTGEN_RXBURST:
*data++ = SDPCM_TEST_BURST;
*data++ = (uint8)bus->pktgen_count; /* Just for backward compatability */
break;
default:
DHD_ERROR(("Unrecognized pktgen mode %d\n", bus->pktgen_mode));
PKTFREE(osh, pkt, TRUE);
bus->pktgen_count = 0;
return;
}
/* Write test header length field */
*data++ = (bus->pktgen_len >> 0);
*data++ = (bus->pktgen_len >> 8);
/* Write frame count in a 4 byte field adjucent to SDPCM test header for
* burst mode
*/
if (bus->pktgen_mode == DHD_PKTGEN_RXBURST) {
*data++ = (uint8)(bus->pktgen_count >> 0);
*data++ = (uint8)(bus->pktgen_count >> 8);
*data++ = (uint8)(bus->pktgen_count >> 16);
*data++ = (uint8)(bus->pktgen_count >> 24);
} else {
/* Then fill in the remainder -- N/A for burst */
for (fillbyte = 0; fillbyte < len; fillbyte++)
*data++ = SDPCM_TEST_FILL(fillbyte, (uint8)bus->pktgen_sent);
}
#ifdef DHD_DEBUG
if (DHD_BYTES_ON() && DHD_DATA_ON()) {
data = (uint8*)PKTDATA(osh, pkt) + SDPCM_HDRLEN;
prhex("dhdsdio_pktgen: Tx Data", data, PKTLEN(osh, pkt) - SDPCM_HDRLEN);
}
#endif
/* Send it */
if (dhdsdio_txpkt(bus, SDPCM_TEST_CHANNEL, &pkt, 1, TRUE) != BCME_OK) {
bus->pktgen_fail++;
if (bus->pktgen_stop && bus->pktgen_stop == bus->pktgen_fail)
bus->pktgen_count = 0;
}
bus->pktgen_sent++;
/* Bump length if not fixed, wrap at max */
if (++bus->pktgen_len > bus->pktgen_maxlen)
bus->pktgen_len = (uint16)bus->pktgen_minlen;
/* Special case for burst mode: just send one request! */
if (bus->pktgen_mode == DHD_PKTGEN_RXBURST)
break;
}
}
static void
dhdsdio_sdtest_set(dhd_bus_t *bus, uint count)
{
void *pkt;
uint8 *data;
osl_t *osh = bus->dhd->osh;
/* Allocate the packet */
if (!(pkt = PKTGET(osh, SDPCM_HDRLEN + SDPCM_TEST_HDRLEN +
SDPCM_TEST_PKT_CNT_FLD_LEN + DHD_SDALIGN, TRUE))) {
DHD_ERROR(("%s: PKTGET failed!\n", __FUNCTION__));
return;
}
PKTALIGN(osh, pkt, (SDPCM_HDRLEN + SDPCM_TEST_HDRLEN +
SDPCM_TEST_PKT_CNT_FLD_LEN), DHD_SDALIGN);
data = (uint8*)PKTDATA(osh, pkt) + SDPCM_HDRLEN;
/* Fill in the test header */
*data++ = SDPCM_TEST_SEND;
*data++ = (count > 0)?TRUE:FALSE;
*data++ = (bus->pktgen_maxlen >> 0);
*data++ = (bus->pktgen_maxlen >> 8);
*data++ = (uint8)(count >> 0);
*data++ = (uint8)(count >> 8);
*data++ = (uint8)(count >> 16);
*data++ = (uint8)(count >> 24);
/* Send it */
if (dhdsdio_txpkt(bus, SDPCM_TEST_CHANNEL, &pkt, 1, TRUE) != BCME_OK)
bus->pktgen_fail++;
}
static void
dhdsdio_testrcv(dhd_bus_t *bus, void *pkt, uint seq)
{
osl_t *osh = bus->dhd->osh;
uint8 *data;
uint pktlen;
uint8 cmd;
uint8 extra;
uint16 len;
uint16 offset;
/* Check for min length */
if ((pktlen = PKTLEN(osh, pkt)) < SDPCM_TEST_HDRLEN) {
DHD_ERROR(("dhdsdio_restrcv: toss runt frame, pktlen %d\n", pktlen));
PKTFREE(osh, pkt, FALSE);
return;
}
/* Extract header fields */
data = PKTDATA(osh, pkt);
cmd = *data++;
extra = *data++;
len = *data++; len += *data++ << 8;
DHD_TRACE(("%s:cmd:%d, xtra:%d,len:%d\n", __FUNCTION__, cmd, extra, len));
/* Check length for relevant commands */
if (cmd == SDPCM_TEST_DISCARD || cmd == SDPCM_TEST_ECHOREQ || cmd == SDPCM_TEST_ECHORSP) {
if (pktlen != len + SDPCM_TEST_HDRLEN) {
DHD_ERROR(("dhdsdio_testrcv: frame length mismatch, pktlen %d seq %d"
" cmd %d extra %d len %d\n", pktlen, seq, cmd, extra, len));
PKTFREE(osh, pkt, FALSE);
return;
}
}
/* Process as per command */
switch (cmd) {
case SDPCM_TEST_ECHOREQ:
/* Rx->Tx turnaround ok (even on NDIS w/current implementation) */
*(uint8 *)(PKTDATA(osh, pkt)) = SDPCM_TEST_ECHORSP;
if (dhdsdio_txpkt(bus, SDPCM_TEST_CHANNEL, &pkt, 1, TRUE) == BCME_OK) {
bus->pktgen_sent++;
} else {
bus->pktgen_fail++;
PKTFREE(osh, pkt, FALSE);
}
bus->pktgen_rcvd++;
break;
case SDPCM_TEST_ECHORSP:
if (bus->ext_loop) {
PKTFREE(osh, pkt, FALSE);
bus->pktgen_rcvd++;
break;
}
for (offset = 0; offset < len; offset++, data++) {
if (*data != SDPCM_TEST_FILL(offset, extra)) {
DHD_ERROR(("dhdsdio_testrcv: echo data mismatch: "
"offset %d (len %d) expect 0x%02x rcvd 0x%02x\n",
offset, len, SDPCM_TEST_FILL(offset, extra), *data));
break;
}
}
PKTFREE(osh, pkt, FALSE);
bus->pktgen_rcvd++;
break;
case SDPCM_TEST_DISCARD:
{
int i = 0;
uint8 *prn = data;
uint8 testval = extra;
for (i = 0; i < len; i++) {
if (*prn != testval) {
DHD_ERROR(("DIErr@Pkt#:%d,Ix:%d, expected:0x%x, got:0x%x\n",
i, bus->pktgen_rcvd_rcvsession, testval, *prn));
prn++; testval++;
}
}
}
PKTFREE(osh, pkt, FALSE);
bus->pktgen_rcvd++;
break;
case SDPCM_TEST_BURST:
case SDPCM_TEST_SEND:
default:
DHD_INFO(("dhdsdio_testrcv: unsupported or unknown command, pktlen %d seq %d"
" cmd %d extra %d len %d\n", pktlen, seq, cmd, extra, len));
PKTFREE(osh, pkt, FALSE);
break;
}
/* For recv mode, stop at limit (and tell dongle to stop sending) */
if (bus->pktgen_mode == DHD_PKTGEN_RECV) {
if (bus->pktgen_rcv_state != PKTGEN_RCV_IDLE) {
bus->pktgen_rcvd_rcvsession++;
if (bus->pktgen_total &&
(bus->pktgen_rcvd_rcvsession >= bus->pktgen_total)) {
bus->pktgen_count = 0;
DHD_ERROR(("Pktgen:rcv test complete!\n"));
bus->pktgen_rcv_state = PKTGEN_RCV_IDLE;
dhdsdio_sdtest_set(bus, FALSE);
bus->pktgen_rcvd_rcvsession = 0;
}
}
}
}
#endif /* SDTEST */
int dhd_bus_oob_intr_register(dhd_pub_t *dhdp)
{
int err = 0;
#if defined(OOB_INTR_ONLY)
OOB_PARAM_IF(!(dhdp->oob_disable)) {
err = bcmsdh_oob_intr_register(dhdp->bus->sdh, dhdsdio_isr, dhdp->bus);
}
#endif
return err;
}
void dhd_bus_oob_intr_unregister(dhd_pub_t *dhdp)
{
#if defined(OOB_INTR_ONLY)
OOB_PARAM_IF(!(dhdp->oob_disable)) {
bcmsdh_oob_intr_unregister(dhdp->bus->sdh);
}
#endif
}
void dhd_bus_oob_intr_set(dhd_pub_t *dhdp, bool enable)
{
#if defined(OOB_INTR_ONLY)
OOB_PARAM_IF(!(dhdp->oob_disable)) {
bcmsdh_oob_intr_set(dhdp->bus->sdh, enable);
}
#endif
}
void dhd_bus_dev_pm_stay_awake(dhd_pub_t *dhdpub)
{
bcmsdh_dev_pm_stay_awake(dhdpub->bus->sdh);
}
void dhd_bus_dev_pm_relax(dhd_pub_t *dhdpub)
{
bcmsdh_dev_relax(dhdpub->bus->sdh);
}
bool dhd_bus_dev_pm_enabled(dhd_pub_t *dhdpub)
{
bool enabled = FALSE;
enabled = bcmsdh_dev_pm_enabled(dhdpub->bus->sdh);
return enabled;
}
extern bool
dhd_bus_watchdog(dhd_pub_t *dhdp)
{
dhd_bus_t *bus;
DHD_TIMER(("%s: Enter\n", __FUNCTION__));
bus = dhdp->bus;
if (bus->dhd->dongle_reset)
return FALSE;
if (bus->dhd->hang_was_sent) {
dhd_os_wd_timer(bus->dhd, 0);
return FALSE;
}
/* Ignore the timer if simulating bus down */
if (!SLPAUTO_ENAB(bus) && bus->sleeping)
return FALSE;
if (dhdp->busstate == DHD_BUS_DOWN)
return FALSE;
dhd_os_sdlock(bus->dhd);
/* Poll period: check device if appropriate. */
if (!SLPAUTO_ENAB(bus) && (bus->poll && (++bus->polltick >= bus->pollrate))) {
uint32 intstatus = 0;
/* Reset poll tick */
bus->polltick = 0;
/* Check device if no interrupts */
if (!bus->intr || (bus->intrcount == bus->lastintrs)) {
if (!bus->dpc_sched) {
uint8 devpend;
devpend = bcmsdh_cfg_read(bus->sdh, SDIO_FUNC_0,
SDIOD_CCCR_INTPEND, NULL);
intstatus = devpend & (INTR_STATUS_FUNC1 | INTR_STATUS_FUNC2);
}
/* If there is something, make like the ISR and schedule the DPC */
if (intstatus) {
bus->pollcnt++;
bus->ipend = TRUE;
if (bus->intr) {
bcmsdh_intr_disable(bus->sdh);
}
bus->dpc_sched = TRUE;
dhd_sched_dpc(bus->dhd);
}
}
/* Update interrupt tracking */
bus->lastintrs = bus->intrcount;
}
#ifdef DHD_DEBUG
/* Poll for console output periodically */
if (dhdp->busstate == DHD_BUS_DATA && dhd_console_ms != 0) {
bus->console.count += dhd_watchdog_ms;
if (bus->console.count >= dhd_console_ms) {
bus->console.count -= dhd_console_ms;
/* Make sure backplane clock is on */
if (SLPAUTO_ENAB(bus))
dhdsdio_bussleep(bus, FALSE);
else
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
if (dhdsdio_readconsole(bus) < 0)
dhd_console_ms = 0; /* On error, stop trying */
}
}
#endif /* DHD_DEBUG */
#ifdef SDTEST
/* Generate packets if configured */
if (bus->pktgen_count && (++bus->pktgen_tick >= bus->pktgen_freq)) {
/* Make sure backplane clock is on */
if (SLPAUTO_ENAB(bus))
dhdsdio_bussleep(bus, FALSE);
else
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
bus->pktgen_tick = 0;
dhdsdio_pktgen(bus);
}
#endif
/* On idle timeout clear activity flag and/or turn off clock */
#ifdef DHD_USE_IDLECOUNT
if (bus->activity)
bus->activity = FALSE;
else {
bus->idlecount++;
if ((bus->idletime > 0) && (bus->idlecount >= bus->idletime)) {
DHD_TIMER(("%s: DHD Idle state!!\n", __FUNCTION__));
if (SLPAUTO_ENAB(bus)) {
if (dhdsdio_bussleep(bus, TRUE) != BCME_BUSY)
dhd_os_wd_timer(bus->dhd, 0);
} else
dhdsdio_clkctl(bus, CLK_NONE, FALSE);
bus->idlecount = 0;
}
}
#else
if ((bus->idletime > 0) && (bus->clkstate == CLK_AVAIL)) {
if (++bus->idlecount >= bus->idletime) {
bus->idlecount = 0;
if (bus->activity) {
bus->activity = FALSE;
if (SLPAUTO_ENAB(bus)) {
if (!bus->readframes)
dhdsdio_bussleep(bus, TRUE);
else
bus->reqbussleep = TRUE;
}
else
dhdsdio_clkctl(bus, CLK_NONE, FALSE);
}
}
}
#endif /* DHD_USE_IDLECOUNT */
dhd_os_sdunlock(bus->dhd);
return bus->ipend;
}
#ifdef DHD_DEBUG
extern int
dhd_bus_console_in(dhd_pub_t *dhdp, uchar *msg, uint msglen)
{
dhd_bus_t *bus = dhdp->bus;
uint32 addr, val;
int rv;
void *pkt;
/* Address could be zero if CONSOLE := 0 in dongle Makefile */
if (bus->console_addr == 0)
return BCME_UNSUPPORTED;
/* Exclusive bus access */
dhd_os_sdlock(bus->dhd);
/* Don't allow input if dongle is in reset */
if (bus->dhd->dongle_reset) {
dhd_os_sdunlock(bus->dhd);
return BCME_NOTREADY;
}
/* Request clock to allow SDIO accesses */
BUS_WAKE(bus);
/* No pend allowed since txpkt is called later, ht clk has to be on */
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
/* Zero cbuf_index */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, cbuf_idx);
val = htol32(0);
if ((rv = dhdsdio_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0)
goto done;
/* Write message into cbuf */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, cbuf);
if ((rv = dhdsdio_membytes(bus, TRUE, addr, (uint8 *)msg, msglen)) < 0)
goto done;
/* Write length into vcons_in */
addr = bus->console_addr + OFFSETOF(hnd_cons_t, vcons_in);
val = htol32(msglen);
if ((rv = dhdsdio_membytes(bus, TRUE, addr, (uint8 *)&val, sizeof(val))) < 0)
goto done;
/* Bump dongle by sending an empty packet on the event channel.
* sdpcm_sendup (RX) checks for virtual console input.
*/
if ((pkt = PKTGET(bus->dhd->osh, 4 + SDPCM_RESERVE, TRUE)) != NULL)
rv = dhdsdio_txpkt(bus, SDPCM_EVENT_CHANNEL, &pkt, 1, TRUE);
done:
if ((bus->idletime == DHD_IDLE_IMMEDIATE) && !bus->dpc_sched) {
bus->activity = FALSE;
dhdsdio_clkctl(bus, CLK_NONE, TRUE);
}
dhd_os_sdunlock(bus->dhd);
return rv;
}
#endif /* DHD_DEBUG */
#ifdef DHD_DEBUG
static void
dhd_dump_cis(uint fn, uint8 *cis)
{
uint byte, tag, tdata;
DHD_INFO(("Function %d CIS:\n", fn));
for (tdata = byte = 0; byte < SBSDIO_CIS_SIZE_LIMIT; byte++) {
if ((byte % 16) == 0)
DHD_INFO((" "));
DHD_INFO(("%02x ", cis[byte]));
if ((byte % 16) == 15)
DHD_INFO(("\n"));
if (!tdata--) {
tag = cis[byte];
if (tag == 0xff)
break;
else if (!tag)
tdata = 0;
else if ((byte + 1) < SBSDIO_CIS_SIZE_LIMIT)
tdata = cis[byte + 1] + 1;
else
DHD_INFO(("]"));
}
}
if ((byte % 16) != 15)
DHD_INFO(("\n"));
}
#endif /* DHD_DEBUG */
static bool
dhdsdio_chipmatch(uint16 chipid)
{
if (chipid == BCM4325_CHIP_ID)
return TRUE;
if (chipid == BCM4329_CHIP_ID)
return TRUE;
if (chipid == BCM4315_CHIP_ID)
return TRUE;
if (chipid == BCM4319_CHIP_ID)
return TRUE;
if (chipid == BCM4336_CHIP_ID)
return TRUE;
if (chipid == BCM4330_CHIP_ID)
return TRUE;
if (chipid == BCM43237_CHIP_ID)
return TRUE;
if (chipid == BCM43362_CHIP_ID)
return TRUE;
if (chipid == BCM4314_CHIP_ID)
return TRUE;
if (chipid == BCM43242_CHIP_ID)
return TRUE;
if (chipid == BCM43340_CHIP_ID)
return TRUE;
if (chipid == BCM43341_CHIP_ID)
return TRUE;
if (chipid == BCM43143_CHIP_ID)
return TRUE;
if (chipid == BCM43342_CHIP_ID)
return TRUE;
if (chipid == BCM4334_CHIP_ID)
return TRUE;
if (chipid == BCM43239_CHIP_ID)
return TRUE;
if (chipid == BCM4324_CHIP_ID)
return TRUE;
if (chipid == BCM4335_CHIP_ID)
return TRUE;
if (chipid == BCM4339_CHIP_ID)
return TRUE;
if (chipid == BCM43349_CHIP_ID)
return TRUE;
if (chipid == BCM4345_CHIP_ID || chipid == BCM43454_CHIP_ID)
return TRUE;
if (chipid == BCM4350_CHIP_ID)
return TRUE;
if (chipid == BCM4354_CHIP_ID)
return TRUE;
if (chipid == BCM4356_CHIP_ID)
return TRUE;
if (chipid == BCM4358_CHIP_ID)
return TRUE;
if (chipid == BCM43430_CHIP_ID)
return TRUE;
if (BCM4349_CHIP(chipid))
return TRUE;
return FALSE;
}
static void *
dhdsdio_probe(uint16 venid, uint16 devid, uint16 bus_no, uint16 slot,
uint16 func, uint bustype, void *regsva, osl_t * osh, void *sdh)
{
int ret;
dhd_bus_t *bus;
/* Init global variables at run-time, not as part of the declaration.
* This is required to support init/de-init of the driver. Initialization
* of globals as part of the declaration results in non-deterministic
* behavior since the value of the globals may be different on the
* first time that the driver is initialized vs subsequent initializations.
*/
dhd_txbound = DHD_TXBOUND;
dhd_rxbound = DHD_RXBOUND;
dhd_alignctl = TRUE;
sd1idle = TRUE;
dhd_readahead = TRUE;
retrydata = FALSE;
#ifdef DISABLE_FLOW_CONTROL
dhd_doflow = FALSE;
#endif /* DISABLE_FLOW_CONTROL */
dhd_dongle_ramsize = 0;
dhd_txminmax = DHD_TXMINMAX;
forcealign = TRUE;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
DHD_INFO(("%s: venid 0x%04x devid 0x%04x\n", __FUNCTION__, venid, devid));
/* We make assumptions about address window mappings */
ASSERT((uintptr)regsva == SI_ENUM_BASE);
/* BCMSDH passes venid and devid based on CIS parsing -- but low-power start
* means early parse could fail, so here we should get either an ID
* we recognize OR (-1) indicating we must request power first.
*/
/* Check the Vendor ID */
switch (venid) {
case 0x0000:
case VENDOR_BROADCOM:
break;
default:
DHD_ERROR(("%s: unknown vendor: 0x%04x\n",
__FUNCTION__, venid));
goto forcereturn;
}
/* Check the Device ID and make sure it's one that we support */
switch (devid) {
case BCM4325_D11DUAL_ID: /* 4325 802.11a/g id */
case BCM4325_D11G_ID: /* 4325 802.11g 2.4Ghz band id */
case BCM4325_D11A_ID: /* 4325 802.11a 5Ghz band id */
DHD_INFO(("%s: found 4325 Dongle\n", __FUNCTION__));
break;
case BCM4329_D11N_ID: /* 4329 802.11n dualband device */
case BCM4329_D11N2G_ID: /* 4329 802.11n 2.4G device */
case BCM4329_D11N5G_ID: /* 4329 802.11n 5G device */
case 0x4329:
DHD_INFO(("%s: found 4329 Dongle\n", __FUNCTION__));
break;
case BCM4315_D11DUAL_ID: /* 4315 802.11a/g id */
case BCM4315_D11G_ID: /* 4315 802.11g id */
case BCM4315_D11A_ID: /* 4315 802.11a id */
DHD_INFO(("%s: found 4315 Dongle\n", __FUNCTION__));
break;
case BCM4319_D11N_ID: /* 4319 802.11n id */
case BCM4319_D11N2G_ID: /* 4319 802.11n2g id */
case BCM4319_D11N5G_ID: /* 4319 802.11n5g id */
DHD_INFO(("%s: found 4319 Dongle\n", __FUNCTION__));
break;
case 0:
DHD_INFO(("%s: allow device id 0, will check chip internals\n",
__FUNCTION__));
break;
default:
DHD_ERROR(("%s: skipping 0x%04x/0x%04x, not a dongle\n",
__FUNCTION__, venid, devid));
goto forcereturn;
}
if (osh == NULL) {
DHD_ERROR(("%s: osh is NULL!\n", __FUNCTION__));
goto forcereturn;
}
/* Allocate private bus interface state */
if (!(bus = MALLOC(osh, sizeof(dhd_bus_t)))) {
DHD_ERROR(("%s: MALLOC of dhd_bus_t failed\n", __FUNCTION__));
goto fail;
}
bzero(bus, sizeof(dhd_bus_t));
bus->sdh = sdh;
bus->cl_devid = (uint16)devid;
bus->bus = DHD_BUS;
bus->bus_num = bus_no;
bus->slot_num = slot;
bus->tx_seq = SDPCM_SEQUENCE_WRAP - 1;
bus->usebufpool = FALSE; /* Use bufpool if allocated, else use locally malloced rxbuf */
#if defined(SUPPORT_P2P_GO_PS)
init_waitqueue_head(&bus->bus_sleep);
#endif /* LINUX && SUPPORT_P2P_GO_PS */
/* attempt to attach to the dongle */
if (!(dhdsdio_probe_attach(bus, osh, sdh, regsva, devid))) {
DHD_ERROR(("%s: dhdsdio_probe_attach failed\n", __FUNCTION__));
goto fail;
}
/* Attach to the dhd/OS/network interface */
if (!(bus->dhd = dhd_attach(osh, bus, SDPCM_RESERVE))) {
DHD_ERROR(("%s: dhd_attach failed\n", __FUNCTION__));
goto fail;
}
/* Allocate buffers */
if (!(dhdsdio_probe_malloc(bus, osh, sdh))) {
DHD_ERROR(("%s: dhdsdio_probe_malloc failed\n", __FUNCTION__));
goto fail;
}
if (!(dhdsdio_probe_init(bus, osh, sdh))) {
DHD_ERROR(("%s: dhdsdio_probe_init failed\n", __FUNCTION__));
goto fail;
}
if (bus->intr) {
/* Register interrupt callback, but mask it (not operational yet). */
DHD_INTR(("%s: disable SDIO interrupts (not interested yet)\n", __FUNCTION__));
bcmsdh_intr_disable(sdh);
if ((ret = bcmsdh_intr_reg(sdh, dhdsdio_isr, bus)) != 0) {
DHD_ERROR(("%s: FAILED: bcmsdh_intr_reg returned %d\n",
__FUNCTION__, ret));
goto fail;
}
DHD_INTR(("%s: registered SDIO interrupt function ok\n", __FUNCTION__));
} else {
DHD_INFO(("%s: SDIO interrupt function is NOT registered due to polling mode\n",
__FUNCTION__));
}
DHD_INFO(("%s: completed!!\n", __FUNCTION__));
/* if firmware path present try to download and bring up bus */
bus->dhd->hang_report = TRUE;
if (dhd_download_fw_on_driverload) {
if ((ret = dhd_bus_start(bus->dhd)) != 0) {
DHD_ERROR(("%s: dhd_bus_start failed\n", __FUNCTION__));
goto fail;
}
}
else {
/* Set random MAC address during boot time */
get_random_bytes(&bus->dhd->mac.octet[3], 3);
/* Adding BRCM OUI */
bus->dhd->mac.octet[0] = 0;
bus->dhd->mac.octet[1] = 0x90;
bus->dhd->mac.octet[2] = 0x4C;
}
/* Ok, have the per-port tell the stack we're open for business */
if (dhd_register_if(bus->dhd, 0, TRUE) != 0) {
DHD_ERROR(("%s: Net attach failed!!\n", __FUNCTION__));
goto fail;
}
#ifdef BCMHOST_XTAL_PU_TIME_MOD
bcmsdh_reg_write(bus->sdh, 0x18000620, 2, 11);
#ifdef BCM4330_CHIP
bcmsdh_reg_write(bus->sdh, 0x18000628, 4, 0x0000F801);
#else
bcmsdh_reg_write(bus->sdh, 0x18000628, 4, 0x00F80001);
#endif /* BCM4330_CHIP */
#endif /* BCMHOST_XTAL_PU_TIME_MOD */
return bus;
fail:
dhdsdio_release(bus, osh);
forcereturn:
return NULL;
}
static bool
dhdsdio_probe_attach(struct dhd_bus *bus, osl_t *osh, void *sdh, void *regsva,
uint16 devid)
{
int err = 0;
uint8 clkctl = 0;
uint fn;
bus->alp_only = TRUE;
bus->sih = NULL;
/* Return the window to backplane enumeration space for core access */
if (dhdsdio_set_siaddr_window(bus, SI_ENUM_BASE)) {
DHD_ERROR(("%s: FAILED to return to SI_ENUM_BASE\n", __FUNCTION__));
}
#if defined(DHD_DEBUG) && !defined(CUSTOMER_HW4_DEBUG)
DHD_ERROR(("F1 signature read @0x18000000=0x%4x\n",
bcmsdh_reg_read(bus->sdh, SI_ENUM_BASE, 4)));
#endif /* DHD_DEBUG && !CUSTOMER_HW4_DEBUG */
/* Force PLL off until si_attach() programs PLL control regs */
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, DHD_INIT_CLKCTL1, &err);
if (!err)
clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, &err);
if (err || ((clkctl & ~SBSDIO_AVBITS) != DHD_INIT_CLKCTL1)) {
DHD_ERROR(("dhdsdio_probe: ChipClkCSR access: err %d wrote 0x%02x read 0x%02x\n",
err, DHD_INIT_CLKCTL1, clkctl));
goto fail;
}
#ifdef DHD_DEBUG
if (DHD_INFO_ON()) {
uint fn, numfn;
uint8 *cis[SDIOD_MAX_IOFUNCS];
int err = 0;
numfn = bcmsdh_query_iofnum(sdh);
ASSERT(numfn <= SDIOD_MAX_IOFUNCS);
/* Make sure ALP is available before trying to read CIS */
SPINWAIT(((clkctl = bcmsdh_cfg_read(sdh, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, NULL)),
!SBSDIO_ALPAV(clkctl)), PMU_MAX_TRANSITION_DLY);
/* Now request ALP be put on the bus */
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR,
DHD_INIT_CLKCTL2, &err);
OSL_DELAY(65);
for (fn = 0; fn <= numfn; fn++) {
if (!(cis[fn] = MALLOC(osh, SBSDIO_CIS_SIZE_LIMIT))) {
DHD_INFO(("dhdsdio_probe: fn %d cis malloc failed\n", fn));
break;
}
bzero(cis[fn], SBSDIO_CIS_SIZE_LIMIT);
if ((err = bcmsdh_cis_read(sdh, fn, cis[fn], SBSDIO_CIS_SIZE_LIMIT))) {
DHD_INFO(("dhdsdio_probe: fn %d cis read err %d\n", fn, err));
MFREE(osh, cis[fn], SBSDIO_CIS_SIZE_LIMIT);
break;
}
dhd_dump_cis(fn, cis[fn]);
}
while (fn-- > 0) {
ASSERT(cis[fn]);
MFREE(osh, cis[fn], SBSDIO_CIS_SIZE_LIMIT);
}
if (err) {
DHD_ERROR(("dhdsdio_probe: failure reading or parsing CIS\n"));
goto fail;
}
}
#endif /* DHD_DEBUG */
/* si_attach() will provide an SI handle and scan the backplane */
if (!(bus->sih = si_attach((uint)devid, osh, regsva, DHD_BUS, sdh,
&bus->vars, &bus->varsz))) {
DHD_ERROR(("%s: si_attach failed!\n", __FUNCTION__));
goto fail;
}
#ifdef DHD_DEBUG
DHD_ERROR(("F1 signature OK, socitype:0x%x chip:0x%4x rev:0x%x pkg:0x%x\n",
bus->sih->socitype, bus->sih->chip, bus->sih->chiprev, bus->sih->chippkg));
#endif /* DHD_DEBUG */
bcmsdh_chipinfo(sdh, bus->sih->chip, bus->sih->chiprev);
if (!dhdsdio_chipmatch((uint16)bus->sih->chip)) {
DHD_ERROR(("%s: unsupported chip: 0x%04x\n",
__FUNCTION__, bus->sih->chip));
goto fail;
}
if (bus->sih->buscorerev >= 12)
dhdsdio_clk_kso_init(bus);
else
bus->kso = TRUE;
if (CST4330_CHIPMODE_SDIOD(bus->sih->chipst)) {
}
si_sdiod_drive_strength_init(bus->sih, osh, dhd_sdiod_drive_strength);
/* Get info on the ARM and SOCRAM cores... */
if (!DHD_NOPMU(bus)) {
if ((si_setcore(bus->sih, ARM7S_CORE_ID, 0)) ||
(si_setcore(bus->sih, ARMCM3_CORE_ID, 0)) ||
(si_setcore(bus->sih, ARMCR4_CORE_ID, 0))) {
bus->armrev = si_corerev(bus->sih);
} else {
DHD_ERROR(("%s: failed to find ARM core!\n", __FUNCTION__));
goto fail;
}
if (!si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
if (!(bus->orig_ramsize = si_socram_size(bus->sih))) {
DHD_ERROR(("%s: failed to find SOCRAM memory!\n", __FUNCTION__));
goto fail;
}
} else {
/* cr4 has a different way to find the RAM size from TCM's */
if (!(bus->orig_ramsize = si_tcm_size(bus->sih))) {
DHD_ERROR(("%s: failed to find CR4-TCM memory!\n", __FUNCTION__));
goto fail;
}
/* also populate base address */
switch ((uint16)bus->sih->chip) {
case BCM4335_CHIP_ID:
case BCM4339_CHIP_ID:
case BCM43349_CHIP_ID:
bus->dongle_ram_base = CR4_4335_RAM_BASE;
break;
case BCM4350_CHIP_ID:
case BCM4354_CHIP_ID:
case BCM4356_CHIP_ID:
case BCM4358_CHIP_ID:
bus->dongle_ram_base = CR4_4350_RAM_BASE;
break;
case BCM4360_CHIP_ID:
bus->dongle_ram_base = CR4_4360_RAM_BASE;
break;
case BCM4345_CHIP_ID:
case BCM43454_CHIP_ID:
bus->dongle_ram_base = (bus->sih->chiprev < 6) /* from 4345C0 */
? CR4_4345_LT_C0_RAM_BASE : CR4_4345_GE_C0_RAM_BASE;
break;
case BCM4349_CHIP_GRPID:
/* RAM base changed from 4349c0(revid=9) onwards */
bus->dongle_ram_base = ((bus->sih->chiprev < 9) ?
CR4_4349_RAM_BASE: CR4_4349_RAM_BASE_FROM_REV_9);
/* Setting F2 block-size to 256 to align
* with customer releases
*/
fn = 2;
fn = fn << SDIO_FUNC_BLOCK_SIZE_SHIFT | F2_BLOCK_SIZE_256;
if (bcmsdh_iovar_op(sdh, "sd_blocksize", NULL, 0,
&fn, sizeof(fn), TRUE) != BCME_OK) {
DHD_ERROR(("%s: Set F2 Block size error\n",
__FUNCTION__));
goto fail;
}
break;
default:
bus->dongle_ram_base = 0;
DHD_ERROR(("%s: WARNING: Using default ram base at 0x%x\n",
__FUNCTION__, bus->dongle_ram_base));
}
}
bus->ramsize = bus->orig_ramsize;
if (dhd_dongle_ramsize)
dhd_dongle_setramsize(bus, dhd_dongle_ramsize);
pr_info("DHD: dongle ram size is set to %d(orig %d) at 0x%x\n",
bus->ramsize, bus->orig_ramsize, bus->dongle_ram_base);
bus->srmemsize = si_socram_srmem_size(bus->sih);
}
/* ...but normally deal with the SDPCMDEV core */
if (!(bus->regs = si_setcore(bus->sih, PCMCIA_CORE_ID, 0)) &&
!(bus->regs = si_setcore(bus->sih, SDIOD_CORE_ID, 0))) {
DHD_ERROR(("%s: failed to find SDIODEV core!\n", __FUNCTION__));
goto fail;
}
bus->sdpcmrev = si_corerev(bus->sih);
/* Set core control so an SDIO reset does a backplane reset */
OR_REG(osh, &bus->regs->corecontrol, CC_BPRESEN);
bus->rxint_mode = SDIO_DEVICE_HMB_RXINT;
if ((bus->sih->buscoretype == SDIOD_CORE_ID) && (bus->sdpcmrev >= 4) &&
(bus->rxint_mode == SDIO_DEVICE_RXDATAINT_MODE_1))
{
uint32 val;
val = R_REG(osh, &bus->regs->corecontrol);
val &= ~CC_XMTDATAAVAIL_MODE;
val |= CC_XMTDATAAVAIL_CTRL;
W_REG(osh, &bus->regs->corecontrol, val);
}
pktq_init(&bus->txq, (PRIOMASK + 1), QLEN);
/* Locate an appropriately-aligned portion of hdrbuf */
bus->rxhdr = (uint8 *)ROUNDUP((uintptr)&bus->hdrbuf[0], DHD_SDALIGN);
/* Set the poll and/or interrupt flags */
bus->intr = (bool)dhd_intr;
if ((bus->poll = (bool)dhd_poll))
bus->pollrate = 1;
/* Setting default Glom size */
bus->txglomsize = SDPCM_DEFGLOM_SIZE;
return TRUE;
fail:
if (bus->sih != NULL) {
si_detach(bus->sih);
bus->sih = NULL;
}
return FALSE;
}
static bool
dhdsdio_probe_malloc(dhd_bus_t *bus, osl_t *osh, void *sdh)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus->dhd->maxctl) {
bus->rxblen = ROUNDUP((bus->dhd->maxctl+SDPCM_HDRLEN), ALIGNMENT) + DHD_SDALIGN;
if (!(bus->rxbuf = DHD_OS_PREALLOC(bus->dhd, DHD_PREALLOC_RXBUF, bus->rxblen))) {
DHD_ERROR(("%s: MALLOC of %d-byte rxbuf failed\n",
__FUNCTION__, bus->rxblen));
goto fail;
}
}
/* Allocate buffer to receive glomed packet */
if (!(bus->databuf = DHD_OS_PREALLOC(bus->dhd, DHD_PREALLOC_DATABUF, MAX_DATA_BUF))) {
DHD_ERROR(("%s: MALLOC of %d-byte databuf failed\n",
__FUNCTION__, MAX_DATA_BUF));
/* release rxbuf which was already located as above */
if (!bus->rxblen)
DHD_OS_PREFREE(bus->dhd, bus->rxbuf, bus->rxblen);
goto fail;
}
/* Align the buffer */
if ((uintptr)bus->databuf % DHD_SDALIGN)
bus->dataptr = bus->databuf + (DHD_SDALIGN - ((uintptr)bus->databuf % DHD_SDALIGN));
else
bus->dataptr = bus->databuf;
return TRUE;
fail:
return FALSE;
}
static bool
dhdsdio_probe_init(dhd_bus_t *bus, osl_t *osh, void *sdh)
{
int32 fnum;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
bus->_srenab = FALSE;
#ifdef SDTEST
dhdsdio_pktgen_init(bus);
#endif /* SDTEST */
/* Disable F2 to clear any intermediate frame state on the dongle */
bcmsdh_cfg_write(sdh, SDIO_FUNC_0, SDIOD_CCCR_IOEN, SDIO_FUNC_ENABLE_1, NULL);
bus->dhd->busstate = DHD_BUS_DOWN;
bus->sleeping = FALSE;
bus->rxflow = FALSE;
bus->prev_rxlim_hit = 0;
/* Done with backplane-dependent accesses, can drop clock... */
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_CHIPCLKCSR, 0, NULL);
/* ...and initialize clock/power states */
bus->clkstate = CLK_SDONLY;
bus->idletime = (int32)dhd_idletime;
bus->idleclock = DHD_IDLE_ACTIVE;
/* Query the SD clock speed */
if (bcmsdh_iovar_op(sdh, "sd_divisor", NULL, 0,
&bus->sd_divisor, sizeof(int32), FALSE) != BCME_OK) {
DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_divisor"));
bus->sd_divisor = -1;
} else {
DHD_INFO(("%s: Initial value for %s is %d\n",
__FUNCTION__, "sd_divisor", bus->sd_divisor));
}
/* Query the SD bus mode */
if (bcmsdh_iovar_op(sdh, "sd_mode", NULL, 0,
&bus->sd_mode, sizeof(int32), FALSE) != BCME_OK) {
DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_mode"));
bus->sd_mode = -1;
} else {
DHD_INFO(("%s: Initial value for %s is %d\n",
__FUNCTION__, "sd_mode", bus->sd_mode));
}
/* Query the F2 block size, set roundup accordingly */
fnum = 2;
if (bcmsdh_iovar_op(sdh, "sd_blocksize", &fnum, sizeof(int32),
&bus->blocksize, sizeof(int32), FALSE) != BCME_OK) {
bus->blocksize = 0;
DHD_ERROR(("%s: fail on %s get\n", __FUNCTION__, "sd_blocksize"));
} else {
DHD_INFO(("%s: Initial value for %s is %d\n",
__FUNCTION__, "sd_blocksize", bus->blocksize));
dhdsdio_tune_fifoparam(bus);
}
bus->roundup = MIN(max_roundup, bus->blocksize);
#ifdef DHDENABLE_TAILPAD
if (bus->pad_pkt)
PKTFREE(osh, bus->pad_pkt, FALSE);
bus->pad_pkt = PKTGET(osh, SDIO_MAX_BLOCK_SIZE, FALSE);
if (bus->pad_pkt == NULL)
DHD_ERROR(("failed to allocate padding packet\n"));
else {
int alignment_offset = 0;
uintptr pktprt = (uintptr)PKTDATA(osh, bus->pad_pkt);
if (!(pktprt&1) && (pktprt = (pktprt % DHD_SDALIGN)))
PKTPUSH(osh, bus->pad_pkt, alignment_offset);
PKTSETNEXT(osh, bus->pad_pkt, NULL);
}
#endif /* DHDENABLE_TAILPAD */
/* Query if bus module supports packet chaining, default to use if supported */
if (bcmsdh_iovar_op(sdh, "sd_rxchain", NULL, 0,
&bus->sd_rxchain, sizeof(int32), FALSE) != BCME_OK) {
bus->sd_rxchain = FALSE;
} else {
DHD_INFO(("%s: bus module (through bcmsdh API) %s chaining\n",
__FUNCTION__, (bus->sd_rxchain ? "supports" : "does not support")));
}
bus->use_rxchain = (bool)bus->sd_rxchain;
bus->txinrx_thres = CUSTOM_TXINRX_THRES;
/* TX first in dhdsdio_readframes() */
bus->dotxinrx = TRUE;
return TRUE;
}
int
dhd_bus_download_firmware(struct dhd_bus *bus, osl_t *osh,
char *pfw_path, char *pnv_path)
{
int ret;
bus->fw_path = pfw_path;
bus->nv_path = pnv_path;
ret = dhdsdio_download_firmware(bus, osh, bus->sdh);
return ret;
}
static int
dhdsdio_download_firmware(struct dhd_bus *bus, osl_t *osh, void *sdh)
{
int ret;
DHD_TRACE_HW4(("%s: firmware path=%s, nvram path=%s\n",
__FUNCTION__, bus->fw_path, bus->nv_path));
DHD_OS_WAKE_LOCK(bus->dhd);
/* Download the firmware */
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
ret = _dhdsdio_download_firmware(bus);
dhdsdio_clkctl(bus, CLK_SDONLY, FALSE);
DHD_OS_WAKE_UNLOCK(bus->dhd);
return ret;
}
/* Detach and free everything */
static void
dhdsdio_release(dhd_bus_t *bus, osl_t *osh)
{
bool dongle_isolation = FALSE;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus) {
ASSERT(osh);
if (bus->dhd) {
dongle_isolation = bus->dhd->dongle_isolation;
dhd_detach(bus->dhd);
}
/* De-register interrupt handler */
bcmsdh_intr_disable(bus->sdh);
bcmsdh_intr_dereg(bus->sdh);
if (bus->dhd) {
dhdsdio_release_dongle(bus, osh, dongle_isolation, TRUE);
dhd_free(bus->dhd);
bus->dhd = NULL;
}
dhdsdio_release_malloc(bus, osh);
#ifdef DHD_DEBUG
if (bus->console.buf != NULL)
MFREE(osh, bus->console.buf, bus->console.bufsize);
#endif
#ifdef DHDENABLE_TAILPAD
if (bus->pad_pkt)
PKTFREE(osh, bus->pad_pkt, FALSE);
#endif /* DHDENABLE_TAILPAD */
MFREE(osh, bus, sizeof(dhd_bus_t));
}
DHD_TRACE(("%s: Disconnected\n", __FUNCTION__));
}
static void
dhdsdio_release_malloc(dhd_bus_t *bus, osl_t *osh)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus->dhd && bus->dhd->dongle_reset)
return;
if (bus->rxbuf) {
#ifndef CONFIG_DHD_USE_STATIC_BUF
MFREE(osh, bus->rxbuf, bus->rxblen);
#endif
bus->rxctl = bus->rxbuf = NULL;
bus->rxlen = 0;
}
if (bus->databuf) {
#ifndef CONFIG_DHD_USE_STATIC_BUF
MFREE(osh, bus->databuf, MAX_DATA_BUF);
#endif
bus->databuf = NULL;
}
if (bus->vars && bus->varsz) {
MFREE(osh, bus->vars, bus->varsz);
bus->vars = NULL;
}
}
static void
dhdsdio_release_dongle(dhd_bus_t *bus, osl_t *osh, bool dongle_isolation, bool reset_flag)
{
DHD_TRACE(("%s: Enter bus->dhd %p bus->dhd->dongle_reset %d \n", __FUNCTION__,
bus->dhd, bus->dhd->dongle_reset));
if ((bus->dhd && bus->dhd->dongle_reset) && reset_flag)
return;
if (bus->sih) {
#if !defined(BCMLXSDMMC)
if (bus->dhd) {
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
}
if (KSO_ENAB(bus) && (dongle_isolation == FALSE))
si_watchdog(bus->sih, 4);
#endif /* !defined(BCMLXSDMMC) */
if (bus->dhd) {
dhdsdio_clkctl(bus, CLK_NONE, FALSE);
}
si_detach(bus->sih);
bus->sih = NULL;
if (bus->vars && bus->varsz)
MFREE(osh, bus->vars, bus->varsz);
bus->vars = NULL;
}
DHD_TRACE(("%s: Disconnected\n", __FUNCTION__));
}
static void
dhdsdio_disconnect(void *ptr)
{
dhd_bus_t *bus = (dhd_bus_t *)ptr;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (bus) {
ASSERT(bus->dhd);
dhdsdio_release(bus, bus->dhd->osh);
}
DHD_TRACE(("%s: Disconnected\n", __FUNCTION__));
}
static int
dhdsdio_suspend(void *context)
{
int ret = 0;
dhd_bus_t *bus = (dhd_bus_t*)context;
#ifdef SUPPORT_P2P_GO_PS
int wait_time = 0;
if (bus->idletime > 0) {
wait_time = msecs_to_jiffies(bus->idletime * dhd_watchdog_ms);
}
#endif /* SUPPORT_P2P_GO_PS */
ret = dhd_os_check_wakelock(bus->dhd);
#ifdef SUPPORT_P2P_GO_PS
if ((!ret) && (bus->dhd->up) && (bus->dhd->op_mode != DHD_FLAG_HOSTAP_MODE)) {
if (wait_event_timeout(bus->bus_sleep, bus->sleeping, wait_time) == 0) {
if (!bus->sleeping) {
return 1;
}
}
}
#endif /* SUPPORT_P2P_GO_PS */
return ret;
}
static int
dhdsdio_resume(void *context)
{
dhd_bus_t *bus = (dhd_bus_t*)context;
#if defined(OOB_INTR_ONLY)
OOB_PARAM_IF(!(bus->dhd->oob_disable)) {
if (dhd_os_check_if_up(bus->dhd))
bcmsdh_oob_intr_set(bus->sdh, TRUE);
}
#endif
/* Clear KSO bit to fix suspend/resume current draw issue */
dhdsdio_clk_kso_enab(bus, FALSE);
return 0;
}
/* Register/Unregister functions are called by the main DHD entry
* point (e.g. module insertion) to link with the bus driver, in
* order to look for or await the device.
*/
static bcmsdh_driver_t dhd_sdio = {
dhdsdio_probe,
dhdsdio_disconnect,
dhdsdio_suspend,
dhdsdio_resume
};
int
dhd_bus_register(void)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
return bcmsdh_register(&dhd_sdio);
}
void
dhd_bus_unregister(void)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
bcmsdh_unregister();
}
#if defined(BCMLXSDMMC)
/* Register a dummy SDIO client driver in order to be notified of new SDIO device */
int dhd_bus_reg_sdio_notify(void* semaphore)
{
return bcmsdh_reg_sdio_notify(semaphore);
}
void dhd_bus_unreg_sdio_notify(void)
{
bcmsdh_unreg_sdio_notify();
}
#endif /* defined(BCMLXSDMMC) */
#ifdef BCMEMBEDIMAGE
static int
dhdsdio_download_code_array(struct dhd_bus *bus)
{
int bcmerror = -1;
int offset = 0;
unsigned char *ularray = NULL;
DHD_INFO(("%s: download embedded firmware...\n", __FUNCTION__));
/* Download image */
while ((offset + MEMBLOCK) < sizeof(dlarray)) {
/* check if CR4 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
/* if address is 0, store the reset instruction to be written in 0 */
if (offset == 0) {
bus->resetinstr = *(((uint32*)dlarray));
/* Add start of RAM address to the address given by user */
offset += bus->dongle_ram_base;
}
}
bcmerror = dhdsdio_membytes(bus, TRUE, offset,
(uint8 *) (dlarray + offset), MEMBLOCK);
if (bcmerror) {
DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
}
offset += MEMBLOCK;
}
if (offset < sizeof(dlarray)) {
bcmerror = dhdsdio_membytes(bus, TRUE, offset,
(uint8 *) (dlarray + offset), sizeof(dlarray) - offset);
if (bcmerror) {
DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, sizeof(dlarray) - offset, offset));
goto err;
}
}
#ifdef DHD_DEBUG
/* Upload and compare the downloaded code */
{
ularray = MALLOC(bus->dhd->osh, bus->ramsize);
/* Upload image to verify downloaded contents. */
offset = 0;
memset(ularray, 0xaa, bus->ramsize);
while ((offset + MEMBLOCK) < sizeof(dlarray)) {
bcmerror = dhdsdio_membytes(bus, FALSE, offset, ularray + offset, MEMBLOCK);
if (bcmerror) {
DHD_ERROR(("%s: error %d on reading %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
}
offset += MEMBLOCK;
}
if (offset < sizeof(dlarray)) {
bcmerror = dhdsdio_membytes(bus, FALSE, offset,
ularray + offset, sizeof(dlarray) - offset);
if (bcmerror) {
DHD_ERROR(("%s: error %d on reading %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, sizeof(dlarray) - offset, offset));
goto err;
}
}
if (memcmp(dlarray, ularray, sizeof(dlarray))) {
DHD_ERROR(("%s: Downloaded image is corrupted (%s, %s, %s).\n",
__FUNCTION__, dlimagename, dlimagever, dlimagedate));
goto err;
} else
DHD_ERROR(("%s: Download, Upload and compare succeeded (%s, %s, %s).\n",
__FUNCTION__, dlimagename, dlimagever, dlimagedate));
}
#endif /* DHD_DEBUG */
err:
if (ularray)
MFREE(bus->dhd->osh, ularray, bus->ramsize);
return bcmerror;
}
#endif /* BCMEMBEDIMAGE */
static int
dhdsdio_download_code_file(struct dhd_bus *bus, char *pfw_path)
{
int bcmerror = -1;
int offset = 0;
int len;
void *image = NULL;
uint8 *memblock = NULL, *memptr;
DHD_INFO(("%s: download firmware %s\n", __FUNCTION__, pfw_path));
image = dhd_os_open_image(pfw_path);
if (image == NULL)
goto err;
memptr = memblock = MALLOC(bus->dhd->osh, MEMBLOCK + DHD_SDALIGN);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n", __FUNCTION__, MEMBLOCK));
goto err;
}
if ((uint32)(uintptr)memblock % DHD_SDALIGN)
memptr += (DHD_SDALIGN - ((uint32)(uintptr)memblock % DHD_SDALIGN));
/* Download image */
while ((len = dhd_os_get_image_block((char*)memptr, MEMBLOCK, image))) {
if (len < 0) {
DHD_ERROR(("%s: dhd_os_get_image_block failed (%d)\n", __FUNCTION__, len));
bcmerror = BCME_ERROR;
goto err;
}
/* check if CR4 */
if (si_setcore(bus->sih, ARMCR4_CORE_ID, 0)) {
/* if address is 0, store the reset instruction to be written in 0 */
if (offset == 0) {
bus->resetinstr = *(((uint32*)memptr));
/* Add start of RAM address to the address given by user */
offset += bus->dongle_ram_base;
}
}
bcmerror = dhdsdio_membytes(bus, TRUE, offset, memptr, len);
if (bcmerror) {
DHD_ERROR(("%s: error %d on writing %d membytes at 0x%08x\n",
__FUNCTION__, bcmerror, MEMBLOCK, offset));
goto err;
}
offset += MEMBLOCK;
}
err:
if (memblock)
MFREE(bus->dhd->osh, memblock, MEMBLOCK + DHD_SDALIGN);
if (image)
dhd_os_close_image(image);
return bcmerror;
}
static int
dhdsdio_download_nvram(struct dhd_bus *bus)
{
int bcmerror = -1;
uint len;
void * image = NULL;
char * memblock = NULL;
char *bufp;
char *pnv_path;
bool nvram_file_exists;
pnv_path = bus->nv_path;
nvram_file_exists = ((pnv_path != NULL) && (pnv_path[0] != '\0'));
/* For Get nvram from UEFI */
if (nvram_file_exists)
image = dhd_os_open_image(pnv_path);
memblock = MALLOC(bus->dhd->osh, MAX_NVRAMBUF_SIZE);
if (memblock == NULL) {
DHD_ERROR(("%s: Failed to allocate memory %d bytes\n",
__FUNCTION__, MAX_NVRAMBUF_SIZE));
goto err;
}
/* For Get nvram from image or UEFI (when image == NULL ) */
len = dhd_os_get_image_block(memblock, MAX_NVRAMBUF_SIZE, image);
if (len > 0 && len < MAX_NVRAMBUF_SIZE) {
bufp = (char *)memblock;
bufp[len] = 0;
len = process_nvram_vars(bufp, len);
if (len % 4) {
len += 4 - (len % 4);
}
bufp += len;
*bufp++ = 0;
if (len)
bcmerror = dhdsdio_downloadvars(bus, memblock, len + 1);
if (bcmerror) {
DHD_ERROR(("%s: error downloading vars: %d\n",
__FUNCTION__, bcmerror));
}
}
else {
DHD_ERROR(("%s: error reading nvram file: %d\n",
__FUNCTION__, len));
bcmerror = BCME_SDIO_ERROR;
}
err:
if (memblock)
MFREE(bus->dhd->osh, memblock, MAX_NVRAMBUF_SIZE);
if (image)
dhd_os_close_image(image);
return bcmerror;
}
static int
_dhdsdio_download_firmware(struct dhd_bus *bus)
{
int bcmerror = -1;
bool embed = FALSE; /* download embedded firmware */
bool dlok = FALSE; /* download firmware succeeded */
/* Out immediately if no image to download */
if ((bus->fw_path == NULL) || (bus->fw_path[0] == '\0')) {
#ifdef BCMEMBEDIMAGE
embed = TRUE;
#else
return 0;
#endif
}
/* Keep arm in reset */
if (dhdsdio_download_state(bus, TRUE)) {
DHD_ERROR(("%s: error placing ARM core in reset\n", __FUNCTION__));
goto err;
}
/* External image takes precedence if specified */
if ((bus->fw_path != NULL) && (bus->fw_path[0] != '\0')) {
if (dhdsdio_download_code_file(bus, bus->fw_path)) {
DHD_ERROR(("%s: dongle image file download failed\n", __FUNCTION__));
#ifdef BCMEMBEDIMAGE
embed = TRUE;
#else
goto err;
#endif
}
else {
embed = FALSE;
dlok = TRUE;
}
}
#ifdef BCMEMBEDIMAGE
if (embed) {
if (dhdsdio_download_code_array(bus)) {
DHD_ERROR(("%s: dongle image array download failed\n", __FUNCTION__));
goto err;
}
else {
dlok = TRUE;
}
}
#else
BCM_REFERENCE(embed);
#endif
if (!dlok) {
DHD_ERROR(("%s: dongle image download failed\n", __FUNCTION__));
goto err;
}
/* External nvram takes precedence if specified */
if (dhdsdio_download_nvram(bus)) {
DHD_ERROR(("%s: dongle nvram file download failed\n", __FUNCTION__));
goto err;
}
/* Take arm out of reset */
if (dhdsdio_download_state(bus, FALSE)) {
DHD_ERROR(("%s: error getting out of ARM core reset\n", __FUNCTION__));
goto err;
}
bcmerror = 0;
err:
return bcmerror;
}
static int
dhd_bcmsdh_recv_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags, uint8 *buf, uint nbytes,
void *pkt, bcmsdh_cmplt_fn_t complete, void *handle)
{
int status;
if (!KSO_ENAB(bus)) {
DHD_ERROR(("%s: Device asleep\n", __FUNCTION__));
return BCME_NODEVICE;
}
status = bcmsdh_recv_buf(bus->sdh, addr, fn, flags, buf, nbytes, pkt, complete, handle);
return status;
}
static int
dhd_bcmsdh_send_buf(dhd_bus_t *bus, uint32 addr, uint fn, uint flags, uint8 *buf, uint nbytes,
void *pkt, bcmsdh_cmplt_fn_t complete, void *handle, int max_retry)
{
int ret;
int i = 0;
int retries = 0;
bcmsdh_info_t *sdh;
if (!KSO_ENAB(bus)) {
DHD_ERROR(("%s: Device asleep\n", __FUNCTION__));
return BCME_NODEVICE;
}
sdh = bus->sdh;
do {
ret = bcmsdh_send_buf(bus->sdh, addr, fn, flags, buf, nbytes,
pkt, complete, handle);
bus->f2txdata++;
ASSERT(ret != BCME_PENDING);
if (ret == BCME_NODEVICE) {
DHD_ERROR(("%s: Device asleep already\n", __FUNCTION__));
} else if (ret < 0) {
/* On failure, abort the command and terminate the frame */
DHD_ERROR(("%s: sdio error %d, abort command and terminate frame.\n",
__FUNCTION__, ret));
bus->tx_sderrs++;
bus->f1regdata++;
bus->dhd->tx_errors++;
bcmsdh_abort(sdh, SDIO_FUNC_2);
bcmsdh_cfg_write(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_FRAMECTRL,
SFC_WF_TERM, NULL);
for (i = 0; i < READ_FRM_CNT_RETRIES; i++) {
uint8 hi, lo;
hi = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCHI,
NULL);
lo = bcmsdh_cfg_read(sdh, SDIO_FUNC_1, SBSDIO_FUNC1_WFRAMEBCLO,
NULL);
bus->f1regdata += 2;
if ((hi == 0) && (lo == 0))
break;
}
}
} while ((ret < 0) && retrydata && ++retries < max_retry);
return ret;
}
uint8
dhd_bus_is_ioready(struct dhd_bus *bus)
{
uint8 enable;
bcmsdh_info_t *sdh;
ASSERT(bus);
ASSERT(bus->sih != NULL);
enable = (SDIO_FUNC_ENABLE_1 | SDIO_FUNC_ENABLE_2);
sdh = bus->sdh;
return (enable == bcmsdh_cfg_read(sdh, SDIO_FUNC_0, SDIOD_CCCR_IORDY, NULL));
}
uint
dhd_bus_chip(struct dhd_bus *bus)
{
ASSERT(bus->sih != NULL);
return bus->sih->chip;
}
uint
dhd_bus_chiprev(struct dhd_bus *bus)
{
ASSERT(bus);
ASSERT(bus->sih != NULL);
return bus->sih->chiprev;
}
void *
dhd_bus_pub(struct dhd_bus *bus)
{
return bus->dhd;
}
void *
dhd_bus_sih(struct dhd_bus *bus)
{
return (void *)bus->sih;
}
void *
dhd_bus_txq(struct dhd_bus *bus)
{
return &bus->txq;
}
uint
dhd_bus_hdrlen(struct dhd_bus *bus)
{
return (bus->txglom_enable) ? SDPCM_HDRLEN_TXGLOM : SDPCM_HDRLEN;
}
void
dhd_bus_set_dotxinrx(struct dhd_bus *bus, bool val)
{
bus->dotxinrx = val;
}
int
dhd_bus_devreset(dhd_pub_t *dhdp, uint8 flag)
{
int bcmerror = 0;
dhd_bus_t *bus;
bus = dhdp->bus;
if (flag == TRUE) {
if (!bus->dhd->dongle_reset) {
dhd_os_sdlock(dhdp);
dhd_os_wd_timer(dhdp, 0);
#if !defined(IGNORE_ETH0_DOWN)
/* Force flow control as protection when stop come before ifconfig_down */
dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, ON);
#endif /* !defined(IGNORE_ETH0_DOWN) */
/* Expect app to have torn down any connection before calling */
/* Stop the bus, disable F2 */
dhd_bus_stop(bus, FALSE);
#if defined(OOB_INTR_ONLY)
OOB_PARAM_IF(!(dhdp->oob_disable)) {
/* Clean up any pending IRQ */
dhd_enable_oob_intr(bus, FALSE);
bcmsdh_oob_intr_set(bus->sdh, FALSE);
bcmsdh_oob_intr_unregister(bus->sdh);
}
#endif
/* Clean tx/rx buffer pointers, detach from the dongle */
dhdsdio_release_dongle(bus, bus->dhd->osh, TRUE, TRUE);
bus->dhd->dongle_reset = TRUE;
bus->dhd->up = FALSE;
dhd_txglom_enable(dhdp, FALSE);
dhd_os_sdunlock(dhdp);
DHD_TRACE(("%s: WLAN OFF DONE\n", __FUNCTION__));
/* App can now remove power from device */
} else
bcmerror = BCME_SDIO_ERROR;
} else {
/* App must have restored power to device before calling */
DHD_TRACE(("\n\n%s: == WLAN ON ==\n", __FUNCTION__));
if (bus->dhd->dongle_reset) {
/* Turn on WLAN */
dhd_os_sdlock(dhdp);
/* Reset SD client */
bcmsdh_reset(bus->sdh);
/* Attempt to re-attach & download */
if (dhdsdio_probe_attach(bus, bus->dhd->osh, bus->sdh,
(uint32 *)SI_ENUM_BASE,
bus->cl_devid)) {
/* Attempt to download binary to the dongle */
if (dhdsdio_probe_init(bus, bus->dhd->osh, bus->sdh) &&
dhdsdio_download_firmware(bus, bus->dhd->osh, bus->sdh) >= 0) {
/* Re-init bus, enable F2 transfer */
bcmerror = dhd_bus_init((dhd_pub_t *) bus->dhd, FALSE);
if (bcmerror == BCME_OK) {
#if defined(OOB_INTR_ONLY)
OOB_PARAM_IF(!(dhdp->oob_disable)) {
dhd_enable_oob_intr(bus, TRUE);
bcmsdh_oob_intr_register(bus->sdh,
dhdsdio_isr, bus);
bcmsdh_oob_intr_set(bus->sdh, TRUE);
}
#endif
bus->dhd->dongle_reset = FALSE;
bus->dhd->up = TRUE;
#if !defined(IGNORE_ETH0_DOWN)
/* Restore flow control */
dhd_txflowcontrol(bus->dhd, ALL_INTERFACES, OFF);
#endif
dhd_os_wd_timer(dhdp, dhd_watchdog_ms);
DHD_TRACE(("%s: WLAN ON DONE\n", __FUNCTION__));
} else {
dhd_bus_stop(bus, FALSE);
dhdsdio_release_dongle(bus, bus->dhd->osh,
TRUE, FALSE);
}
} else {
DHD_ERROR(("%s Failed to download binary to the dongle\n",
__FUNCTION__));
if (bus->sih != NULL) {
si_detach(bus->sih);
bus->sih = NULL;
}
bcmerror = BCME_SDIO_ERROR;
}
} else
bcmerror = BCME_SDIO_ERROR;
dhd_os_sdunlock(dhdp);
} else {
bcmerror = BCME_SDIO_ERROR;
DHD_INFO(("%s called when dongle is not in reset\n",
__FUNCTION__));
DHD_INFO(("Will call dhd_bus_start instead\n"));
dhd_bus_resume(dhdp, 1);
if ((bcmerror = dhd_bus_start(dhdp)) != 0)
DHD_ERROR(("%s: dhd_bus_start fail with %d\n",
__FUNCTION__, bcmerror));
}
}
return bcmerror;
}
int dhd_bus_suspend(dhd_pub_t *dhdpub)
{
return bcmsdh_stop(dhdpub->bus->sdh);
}
int dhd_bus_resume(dhd_pub_t *dhdpub, int stage)
{
return bcmsdh_start(dhdpub->bus->sdh, stage);
}
/* Get Chip ID version */
uint dhd_bus_chip_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chip;
}
/* Get Chip Rev ID version */
uint dhd_bus_chiprev_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chiprev;
}
/* Get Chip Pkg ID version */
uint dhd_bus_chippkg_id(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
return bus->sih->chippkg;
}
int dhd_bus_get_ids(struct dhd_bus *bus, uint32 *bus_type, uint32 *bus_num, uint32 *slot_num)
{
*bus_type = bus->bus;
*bus_num = bus->bus_num;
*slot_num = bus->slot_num;
return 0;
}
int
dhd_bus_membytes(dhd_pub_t *dhdp, bool set, uint32 address, uint8 *data, uint size)
{
dhd_bus_t *bus;
bus = dhdp->bus;
return dhdsdio_membytes(bus, set, address, data, size);
}
void
dhd_bus_update_fw_nv_path(struct dhd_bus *bus, char *pfw_path, char *pnv_path)
{
bus->fw_path = pfw_path;
bus->nv_path = pnv_path;
}
int
dhd_enableOOB(dhd_pub_t *dhd, bool sleep)
{
dhd_bus_t *bus = dhd->bus;
sdpcmd_regs_t *regs = bus->regs;
uint retries = 0;
if (sleep) {
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
/* Tell device to start using OOB wakeup */
W_SDREG(SMB_USE_OOB, &regs->tosbmailbox, retries);
if (retries > retry_limit) {
DHD_ERROR(("CANNOT SIGNAL CHIP, WILL NOT WAKE UP!!\n"));
return BCME_BUSY;
}
/* Turn off our contribution to the HT clock request */
dhdsdio_clkctl(bus, CLK_SDONLY, FALSE);
} else {
/* Make sure the controller has the bus up */
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
/* Send misc interrupt to indicate OOB not needed */
W_SDREG(0, &regs->tosbmailboxdata, retries);
if (retries <= retry_limit)
W_SDREG(SMB_DEV_INT, &regs->tosbmailbox, retries);
if (retries > retry_limit)
DHD_ERROR(("CANNOT SIGNAL CHIP TO CLEAR OOB!!\n"));
/* Make sure we have SD bus access */
dhdsdio_clkctl(bus, CLK_SDONLY, FALSE);
}
return BCME_OK;
}
void
dhd_bus_pktq_flush(dhd_pub_t *dhdp)
{
dhd_bus_t *bus = dhdp->bus;
bool wlfc_enabled = FALSE;
#ifdef PROP_TXSTATUS
wlfc_enabled = (dhd_wlfc_cleanup_txq(dhdp, NULL, 0) != WLFC_UNSUPPORTED);
#endif
if (!wlfc_enabled) {
#ifdef DHDTCPACK_SUPPRESS
/* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt,
* when there is a newly coming packet from network stack.
*/
dhd_tcpack_info_tbl_clean(bus->dhd);
#endif /* DHDTCPACK_SUPPRESS */
/* Clear the data packet queues */
pktq_flush(dhdp->osh, &bus->txq, TRUE, NULL, 0);
}
}
#ifdef BCMSDIO
int
dhd_sr_config(dhd_pub_t *dhd, bool on)
{
dhd_bus_t *bus = dhd->bus;
if (!bus->_srenab)
return -1;
return dhdsdio_clk_devsleep_iovar(bus, on);
}
uint16
dhd_get_chipid(dhd_pub_t *dhd)
{
dhd_bus_t *bus = dhd->bus;
if (bus && bus->sih)
return (uint16)bus->sih->chip;
else
return 0;
}
#endif /* BCMSDIO */
#ifdef DEBUGGER
uint32 dhd_sdio_reg_read(void *h, uint32 addr)
{
uint32 rval;
struct dhd_bus *bus = (struct dhd_bus *) h;
dhd_os_sdlock(bus->dhd);
BUS_WAKE(bus);
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
rval = bcmsdh_reg_read(bus->sdh, addr, 4);
dhd_os_sdunlock(bus->dhd);
return rval;
}
void dhd_sdio_reg_write(void *h, uint32 addr, uint32 val)
{
struct dhd_bus *bus = (struct dhd_bus *) h;
dhd_os_sdlock(bus->dhd);
BUS_WAKE(bus);
dhdsdio_clkctl(bus, CLK_AVAIL, FALSE);
bcmsdh_reg_write(bus->sdh, addr, 4, val);
dhd_os_sdunlock(bus->dhd);
}
#endif /* DEBUGGER */
#ifdef OOB_PARAM
uint
dhd_get_oob_disable(struct dhd_bus *bus)
{
return bus->dhd->oob_disable;
}
#endif /* OOB_PARAM */