/* * regmap based irq_chip * * Copyright 2011 Wolfson Microelectronics plc * * Author: Mark Brown * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include "internal.h" struct regmap_irq_chip_data { struct mutex lock; struct mutex shutdown_lock; struct irq_chip irq_chip; struct regmap *map; const struct regmap_irq_chip *chip; int irq_base; struct irq_domain *domain; int shutdown; int irq; int wake_count; bool wakeup_print_enable; void *status_reg_buf; unsigned int *status_buf; unsigned int *mask_buf; unsigned int *mask_buf_def; unsigned int *wake_buf; unsigned int *type_buf; unsigned int *type_buf_def; unsigned int irq_reg_stride; unsigned int type_reg_stride; }; static inline const struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, int irq) { return &data->chip->irqs[irq]; } static void regmap_irq_lock(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); mutex_lock(&d->lock); } static void regmap_irq_sync_unlock(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); struct regmap *map = d->map; int i, ret; u32 reg; u32 unmask_offset; if (d->chip->runtime_pm) { ret = pm_runtime_get_sync(map->dev); if (ret < 0) dev_err(map->dev, "IRQ sync failed to resume: %d\n", ret); } /* * If there's been a change in the mask write it back to the * hardware. We rely on the use of the regmap core cache to * suppress pointless writes. */ for (i = 0; i < d->chip->num_regs; i++) { if (!d->chip->mask_base) continue; reg = d->chip->mask_base + (i * map->reg_stride * d->irq_reg_stride); if (d->chip->mask_invert) { ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], ~d->mask_buf[i]); } else if (d->chip->unmask_base) { /* set mask with mask_base register */ ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], ~d->mask_buf[i]); if (ret < 0) dev_err(d->map->dev, "Failed to sync unmasks in %x\n", reg); unmask_offset = d->chip->unmask_base - d->chip->mask_base; /* clear mask with unmask_base register */ ret = regmap_update_bits(d->map, reg + unmask_offset, d->mask_buf_def[i], d->mask_buf[i]); } else { ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], d->mask_buf[i]); } if (ret != 0) dev_err(d->map->dev, "Failed to sync masks in %x\n", reg); reg = d->chip->wake_base + (i * map->reg_stride * d->irq_reg_stride); if (d->wake_buf) { if (d->chip->wake_invert) ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], ~d->wake_buf[i]); else ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], d->wake_buf[i]); if (ret != 0) dev_err(d->map->dev, "Failed to sync wakes in %x: %d\n", reg, ret); } if (!d->chip->init_ack_masked) continue; /* * Ack all the masked interrupts unconditionally, * OR if there is masked interrupt which hasn't been Acked, * it'll be ignored in irq handler, then may introduce irq storm */ if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) { reg = d->chip->ack_base + (i * map->reg_stride * d->irq_reg_stride); /* some chips ack by write 0 */ if (d->chip->ack_invert) ret = regmap_write(map, reg, ~d->mask_buf[i]); else ret = regmap_write(map, reg, d->mask_buf[i]); if (ret != 0) dev_err(d->map->dev, "Failed to ack 0x%x: %d\n", reg, ret); } } for (i = 0; i < d->chip->num_type_reg; i++) { if (!d->type_buf_def[i]) continue; reg = d->chip->type_base + (i * map->reg_stride * d->type_reg_stride); if (d->chip->type_invert) ret = regmap_update_bits(d->map, reg, d->type_buf_def[i], ~d->type_buf[i]); else ret = regmap_update_bits(d->map, reg, d->type_buf_def[i], d->type_buf[i]); if (ret != 0) dev_err(d->map->dev, "Failed to sync type in %x\n", reg); } if (d->chip->runtime_pm) pm_runtime_put(map->dev); /* If we've changed our wakeup count propagate it to the parent */ if (d->wake_count < 0) for (i = d->wake_count; i < 0; i++) irq_set_irq_wake(d->irq, 0); else if (d->wake_count > 0) for (i = 0; i < d->wake_count; i++) irq_set_irq_wake(d->irq, 1); d->wake_count = 0; mutex_unlock(&d->lock); } static void regmap_irq_enable(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); struct regmap *map = d->map; const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask; } static void regmap_irq_disable(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); struct regmap *map = d->map; const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; } static int regmap_irq_set_type(struct irq_data *data, unsigned int type) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); struct regmap *map = d->map; const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); int reg = irq_data->type_reg_offset / map->reg_stride; if (!(irq_data->type_rising_mask | irq_data->type_falling_mask)) return 0; d->type_buf[reg] &= ~(irq_data->type_falling_mask | irq_data->type_rising_mask); switch (type) { case IRQ_TYPE_EDGE_FALLING: d->type_buf[reg] |= irq_data->type_falling_mask; break; case IRQ_TYPE_EDGE_RISING: d->type_buf[reg] |= irq_data->type_rising_mask; break; case IRQ_TYPE_EDGE_BOTH: d->type_buf[reg] |= (irq_data->type_falling_mask | irq_data->type_rising_mask); break; default: return -EINVAL; } return 0; } static int regmap_irq_set_wake(struct irq_data *data, unsigned int on) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); struct regmap *map = d->map; const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq); if (on) { if (d->wake_buf) d->wake_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask; d->wake_count++; } else { if (d->wake_buf) d->wake_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask; d->wake_count--; } return 0; } static const struct irq_chip regmap_irq_chip = { .irq_bus_lock = regmap_irq_lock, .irq_bus_sync_unlock = regmap_irq_sync_unlock, .irq_disable = regmap_irq_disable, .irq_enable = regmap_irq_enable, .irq_set_type = regmap_irq_set_type, .irq_set_wake = regmap_irq_set_wake, }; static void print_wakeup_irq(struct device *dev, int irq) { struct irq_desc *desc; desc = irq_to_desc(irq); if (!desc || !desc->action || !desc->action->name) dev_info(dev, "Device WAKEUP sub-irq %d\n", irq); else dev_info(dev, "Device WAKEUP sub-irq %s\n", desc->action->name); } static irqreturn_t regmap_irq_thread(int irq, void *d) { struct regmap_irq_chip_data *data = d; const struct regmap_irq_chip *chip = data->chip; struct regmap *map = data->map; int ret, i; bool handled = false; bool print_wakeup = false; int sub_irq; u32 reg; if (data->wakeup_print_enable && (irq == get_wakeup_reason_irq())) print_wakeup = true; mutex_lock(&data->shutdown_lock); if (data->shutdown) { dev_err(map->dev, "IRQ %d thread calls after shutdown\n", irq); goto exit; } if (chip->handle_pre_irq) chip->handle_pre_irq(chip->irq_drv_data); if (chip->runtime_pm) { ret = pm_runtime_get_sync(map->dev); if (ret < 0) { dev_err(map->dev, "IRQ thread failed to resume: %d\n", ret); pm_runtime_put(map->dev); goto exit; } } /* * Read in the statuses, using a single bulk read if possible * in order to reduce the I/O overheads. */ if (!map->use_single_read && map->reg_stride == 1 && data->irq_reg_stride == 1) { u8 *buf8 = data->status_reg_buf; u16 *buf16 = data->status_reg_buf; u32 *buf32 = data->status_reg_buf; BUG_ON(!data->status_reg_buf); ret = regmap_bulk_read(map, chip->status_base, data->status_reg_buf, chip->num_regs); if (ret != 0) { dev_err(map->dev, "Failed to read IRQ status: %d\n", ret); goto exit; } for (i = 0; i < data->chip->num_regs; i++) { switch (map->format.val_bytes) { case 1: data->status_buf[i] = buf8[i]; break; case 2: data->status_buf[i] = buf16[i]; break; case 4: data->status_buf[i] = buf32[i]; break; default: BUG(); goto exit; } } } else { for (i = 0; i < data->chip->num_regs; i++) { ret = regmap_read(map, chip->status_base + (i * map->reg_stride * data->irq_reg_stride), &data->status_buf[i]); if (ret != 0) { dev_err(map->dev, "Failed to read IRQ status: %d\n", ret); if (chip->runtime_pm) pm_runtime_put(map->dev); goto exit; } } } /* * Ignore masked IRQs and ack if we need to; we ack early so * there is no race between handling and acknowleding the * interrupt. We assume that typically few of the interrupts * will fire simultaneously so don't worry about overhead from * doing a write per register. */ for (i = 0; i < data->chip->num_regs; i++) { data->status_buf[i] &= ~data->mask_buf[i]; if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) { reg = chip->ack_base + (i * map->reg_stride * data->irq_reg_stride); ret = regmap_write(map, reg, data->status_buf[i]); if (ret != 0) dev_err(map->dev, "Failed to ack 0x%x: %d\n", reg, ret); } } for (i = 0; i < chip->num_irqs; i++) { if (data->status_buf[chip->irqs[i].reg_offset / map->reg_stride] & chip->irqs[i].mask) { sub_irq = irq_find_mapping(data->domain, i); if (print_wakeup) print_wakeup_irq(map->dev, sub_irq); handle_nested_irq(sub_irq); handled = true; } } data->wakeup_print_enable = false; if (chip->runtime_pm) pm_runtime_put(map->dev); exit: if (chip->handle_post_irq) chip->handle_post_irq(chip->irq_drv_data); mutex_unlock(&data->shutdown_lock); if (handled) return IRQ_HANDLED; else return IRQ_NONE; } static int regmap_irq_map(struct irq_domain *h, unsigned int virq, irq_hw_number_t hw) { struct regmap_irq_chip_data *data = h->host_data; irq_set_chip_data(virq, data); irq_set_chip(virq, &data->irq_chip); irq_set_nested_thread(virq, 1); irq_set_parent(virq, data->irq); irq_set_noprobe(virq); return 0; } static const struct irq_domain_ops regmap_domain_ops = { .map = regmap_irq_map, .xlate = irq_domain_xlate_twocell, }; /** * regmap_add_irq_chip(): Use standard regmap IRQ controller handling * * map: The regmap for the device. * irq: The IRQ the device uses to signal interrupts * irq_flags: The IRQF_ flags to use for the primary interrupt. * chip: Configuration for the interrupt controller. * data: Runtime data structure for the controller, allocated on success * * Returns 0 on success or an errno on failure. * * In order for this to be efficient the chip really should use a * register cache. The chip driver is responsible for restoring the * register values used by the IRQ controller over suspend and resume. */ int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, int irq_base, const struct regmap_irq_chip *chip, struct regmap_irq_chip_data **data) { struct regmap_irq_chip_data *d; struct irq_desc *desc; int i; int ret = -ENOMEM; u32 reg; u32 unmask_offset; if (chip->num_regs <= 0) return -EINVAL; for (i = 0; i < chip->num_irqs; i++) { if (chip->irqs[i].reg_offset % map->reg_stride) return -EINVAL; if (chip->irqs[i].reg_offset / map->reg_stride >= chip->num_regs) return -EINVAL; } if (irq_base) { irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); if (irq_base < 0) { dev_warn(map->dev, "Failed to allocate IRQs: %d\n", irq_base); return irq_base; } } d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int), GFP_KERNEL); if (!d->status_buf) goto err_alloc; d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int), GFP_KERNEL); if (!d->mask_buf) goto err_alloc; d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int), GFP_KERNEL); if (!d->mask_buf_def) goto err_alloc; if (chip->wake_base) { d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int), GFP_KERNEL); if (!d->wake_buf) goto err_alloc; } if (chip->num_type_reg) { d->type_buf_def = kcalloc(chip->num_type_reg, sizeof(unsigned int), GFP_KERNEL); if (!d->type_buf_def) goto err_alloc; d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int), GFP_KERNEL); if (!d->type_buf) goto err_alloc; } d->irq_chip = regmap_irq_chip; d->irq_chip.name = chip->name; d->irq = irq; d->map = map; d->chip = chip; d->irq_base = irq_base; if (chip->irq_reg_stride) d->irq_reg_stride = chip->irq_reg_stride; else d->irq_reg_stride = 1; if (chip->type_reg_stride) d->type_reg_stride = chip->type_reg_stride; else d->type_reg_stride = 1; if (!map->use_single_read && map->reg_stride == 1 && d->irq_reg_stride == 1) { d->status_reg_buf = kmalloc_array(chip->num_regs, map->format.val_bytes, GFP_KERNEL); if (!d->status_reg_buf) goto err_alloc; } mutex_init(&d->lock); /* Determine interrupt controller nesting depth for lockdep */ desc = irq_to_desc(d->irq); for (i = 0; desc; ++i) desc = irq_to_desc(desc->parent_irq); lockdep_set_subclass(&d->lock, i); mutex_init(&d->shutdown_lock); for (i = 0; i < chip->num_irqs; i++) d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride] |= chip->irqs[i].mask; /* Mask all the interrupts by default */ for (i = 0; i < chip->num_regs; i++) { d->mask_buf[i] = d->mask_buf_def[i]; if (!chip->mask_base) continue; reg = chip->mask_base + (i * map->reg_stride * d->irq_reg_stride); if (chip->mask_invert) ret = regmap_update_bits(map, reg, d->mask_buf[i], ~d->mask_buf[i]); else if (d->chip->unmask_base) { unmask_offset = d->chip->unmask_base - d->chip->mask_base; ret = regmap_update_bits(d->map, reg + unmask_offset, d->mask_buf[i], d->mask_buf[i]); } else ret = regmap_update_bits(map, reg, d->mask_buf[i], d->mask_buf[i]); if (ret != 0) { dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", reg, ret); goto err_alloc; } if (!chip->init_ack_masked) continue; /* Ack masked but set interrupts */ reg = chip->status_base + (i * map->reg_stride * d->irq_reg_stride); ret = regmap_read(map, reg, &d->status_buf[i]); if (ret != 0) { dev_err(map->dev, "Failed to read IRQ status: %d\n", ret); goto err_alloc; } if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) { reg = chip->ack_base + (i * map->reg_stride * d->irq_reg_stride); if (chip->ack_invert) ret = regmap_write(map, reg, ~(d->status_buf[i] & d->mask_buf[i])); else ret = regmap_write(map, reg, d->status_buf[i] & d->mask_buf[i]); if (ret != 0) { dev_err(map->dev, "Failed to ack 0x%x: %d\n", reg, ret); goto err_alloc; } } } /* Wake is disabled by default */ if (d->wake_buf) { for (i = 0; i < chip->num_regs; i++) { d->wake_buf[i] = d->mask_buf_def[i]; reg = chip->wake_base + (i * map->reg_stride * d->irq_reg_stride); if (chip->wake_invert) ret = regmap_update_bits(map, reg, d->mask_buf_def[i], 0); else ret = regmap_update_bits(map, reg, d->mask_buf_def[i], d->wake_buf[i]); if (ret != 0) { dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", reg, ret); goto err_alloc; } } } if (chip->num_type_reg) { for (i = 0; i < chip->num_irqs; i++) { reg = chip->irqs[i].type_reg_offset / map->reg_stride; d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask | chip->irqs[i].type_falling_mask; } for (i = 0; i < chip->num_type_reg; ++i) { if (!d->type_buf_def[i]) continue; reg = chip->type_base + (i * map->reg_stride * d->type_reg_stride); if (chip->type_invert) ret = regmap_update_bits(map, reg, d->type_buf_def[i], 0xFF); else ret = regmap_update_bits(map, reg, d->type_buf_def[i], 0x0); if (ret != 0) { dev_err(map->dev, "Failed to set type in 0x%x: %x\n", reg, ret); goto err_alloc; } } } if (irq_base) d->domain = irq_domain_add_legacy(map->dev->of_node, chip->num_irqs, irq_base, 0, ®map_domain_ops, d); else d->domain = irq_domain_add_linear(map->dev->of_node, chip->num_irqs, ®map_domain_ops, d); if (!d->domain) { dev_err(map->dev, "Failed to create IRQ domain\n"); ret = -ENOMEM; goto err_alloc; } ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags | IRQF_ONESHOT, chip->name, d); if (ret != 0) { dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n", irq, chip->name, ret); goto err_domain; } *data = d; return 0; err_domain: /* Should really dispose of the domain but... */ err_alloc: kfree(d->type_buf); kfree(d->type_buf_def); kfree(d->wake_buf); kfree(d->mask_buf_def); kfree(d->mask_buf); kfree(d->status_buf); kfree(d->status_reg_buf); kfree(d); return ret; } EXPORT_SYMBOL_GPL(regmap_add_irq_chip); /** * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip * * @irq: Primary IRQ for the device * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip() * * This function also dispose all mapped irq on chip. */ void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) { unsigned int virq; int hwirq; if (!d) return; free_irq(irq, d); /* Dispose all virtual irq from irq domain before removing it */ for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) { /* Ignore hwirq if holes in the IRQ list */ if (!d->chip->irqs[hwirq].mask) continue; /* * Find the virtual irq of hwirq on chip and if it is * there then dispose it */ virq = irq_find_mapping(d->domain, hwirq); if (virq) irq_dispose_mapping(virq); } irq_domain_remove(d->domain); kfree(d->type_buf); kfree(d->type_buf_def); kfree(d->wake_buf); kfree(d->mask_buf_def); kfree(d->mask_buf); kfree(d->status_reg_buf); kfree(d->status_buf); kfree(d); } EXPORT_SYMBOL_GPL(regmap_del_irq_chip); static void devm_regmap_irq_chip_release(struct device *dev, void *res) { struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res; regmap_del_irq_chip(d->irq, d); } static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data) { struct regmap_irq_chip_data **r = res; if (!r || !*r) { WARN_ON(!r || !*r); return 0; } return *r == data; } /** * devm_regmap_add_irq_chip(): Resource manager regmap_add_irq_chip() * * @dev: The device pointer on which irq_chip belongs to. * @map: The regmap for the device. * @irq: The IRQ the device uses to signal interrupts * @irq_flags: The IRQF_ flags to use for the primary interrupt. * @chip: Configuration for the interrupt controller. * @data: Runtime data structure for the controller, allocated on success * * Returns 0 on success or an errno on failure. * * The regmap_irq_chip data automatically be released when the device is * unbound. */ int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq, int irq_flags, int irq_base, const struct regmap_irq_chip *chip, struct regmap_irq_chip_data **data) { struct regmap_irq_chip_data **ptr, *d; int ret; ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return -ENOMEM; ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base, chip, &d); if (ret < 0) { devres_free(ptr); return ret; } *ptr = d; devres_add(dev, ptr); *data = d; return 0; } EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip); /** * devm_regmap_del_irq_chip(): Resource managed regmap_del_irq_chip() * * @dev: Device for which which resource was allocated. * @irq: Primary IRQ for the device * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip() */ void devm_regmap_del_irq_chip(struct device *dev, int irq, struct regmap_irq_chip_data *data) { int rc; WARN_ON(irq != data->irq); rc = devres_release(dev, devm_regmap_irq_chip_release, devm_regmap_irq_chip_match, data); if (rc != 0) WARN_ON(rc); } EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip); /** * regmap_shutdown_irq_chip(): Shutdown all interrupts * * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip() */ void regmap_shutdown_irq_chip(struct regmap_irq_chip_data *d) { u32 reg; int i, ret; if (!d) return; mutex_lock(&d->shutdown_lock); disable_irq(d->irq); /* Mask all the interrupts by default */ for (i = 0; i < d->chip->num_regs; i++) { if (!d->chip->mask_base) continue; reg = d->chip->mask_base + (i * d->map->reg_stride * d->irq_reg_stride); if (d->chip->mask_invert) ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], ~d->mask_buf_def[i]); else ret = regmap_update_bits(d->map, reg, d->mask_buf_def[i], d->mask_buf_def[i]); if (ret != 0) dev_err(d->map->dev, "Failed to set masks in 0x%x: %d\n", reg, ret); } d->shutdown = true; mutex_unlock(&d->shutdown_lock); } EXPORT_SYMBOL_GPL(regmap_shutdown_irq_chip); int regmap_irq_suspend_noirq(struct regmap_irq_chip_data *d) { d->wakeup_print_enable = true; return 0; } EXPORT_SYMBOL_GPL(regmap_irq_suspend_noirq); int regmap_irq_resume(struct regmap_irq_chip_data *d) { d->wakeup_print_enable = false; return 0; } EXPORT_SYMBOL_GPL(regmap_irq_resume); /** * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip * * Useful for drivers to request their own IRQs. * * @data: regmap_irq controller to operate on. */ int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) { WARN_ON(!data->irq_base); return data->irq_base; } EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base); /** * regmap_irq_get_virq(): Map an interrupt on a chip to a virtual IRQ * * Useful for drivers to request their own IRQs. * * @data: regmap_irq controller to operate on. * @irq: index of the interrupt requested in the chip IRQs */ int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq) { /* Handle holes in the IRQ list */ if (!data->chip->irqs[irq].mask) return -EINVAL; return irq_create_mapping(data->domain, irq); } EXPORT_SYMBOL_GPL(regmap_irq_get_virq); /** * regmap_irq_get_domain(): Retrieve the irq_domain for the chip * * Useful for drivers to request their own IRQs and for integration * with subsystems. For ease of integration NULL is accepted as a * domain, allowing devices to just call this even if no domain is * allocated. * * @data: regmap_irq controller to operate on. */ struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data) { if (data) return data->domain; else return NULL; } EXPORT_SYMBOL_GPL(regmap_irq_get_domain);