/*
* Copyright (c) 2012-2019 NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "clk.h"
#include "clk-dfll.h"
#include "clk-id.h"
/*
* TEGRA210_CAR_BANK_COUNT: the number of peripheral clock register
* banks present in the Tegra210 CAR IP block. The banks are
* identified by single letters, e.g.: L, H, U, V, W, X, Y. See
* periph_regs[] in drivers/clk/tegra/clk.c
*/
#define TEGRA210_CAR_BANK_COUNT 7
#define CLK_SOURCE_CSITE 0x1d4
#define CLK_SOURCE_EMC 0x19c
#define CLK_SOURCE_SOR0 0x414
#define CLK_SOURCE_SOR1 0x410
#define CLK_SOURCE_APE 0x6c0
#define CLK_SOURCE_VI 0x148
#define CLK_SOURCE_SDMMC2 0x154
#define CLK_SOURCE_SDMMC4 0x164
#define CLK_OUT_ENB_Y 0x298
#define CLK_ENB_PLLP_OUT_CPU BIT(31)
#define RST_DFLL_DVCO 0x2f4
#define DVFS_DFLL_RESET_SHIFT 0
#define PLLE_SS_CTRL 0x68
#define PLLC_BASE 0x80
#define PLLC_OUT 0x84
#define PLLC_MISC0 0x88
#define PLLC_MISC1 0x8c
#define PLLC_MISC2 0x5d0
#define PLLC_MISC3 0x5d4
#define PLLC2_BASE 0x4e8
#define PLLC2_MISC0 0x4ec
#define PLLC2_MISC1 0x4f0
#define PLLC2_MISC2 0x4f4
#define PLLC2_MISC3 0x4f8
#define PLLC3_BASE 0x4fc
#define PLLC3_MISC0 0x500
#define PLLC3_MISC1 0x504
#define PLLC3_MISC2 0x508
#define PLLC3_MISC3 0x50c
#define PLLM_BASE 0x90
#define PLLM_MISC1 0x98
#define PLLM_MISC2 0x9c
#define PLLP_BASE 0xa0
#define PLLP_OUTA 0xa4
#define PLLP_OUTB 0xa8
#define PLLP_MISC0 0xac
#define PLLP_MISC1 0x680
#define PLLA_BASE 0xb0
#define PLLA_MISC0 0xbc
#define PLLA_MISC1 0xb8
#define PLLA_MISC2 0x5d8
#define PLLD_BASE 0xd0
#define PLLD_MISC0 0xdc
#define PLLD_MISC1 0xd8
#define PLLU_BASE 0xc0
#define PLLU_OUTA 0xc4
#define PLLU_MISC0 0xcc
#define PLLU_MISC1 0xc8
#define PLLX_BASE 0xe0
#define PLLX_MISC0 0xe4
#define PLLX_MISC1 0x510
#define PLLX_MISC2 0x514
#define PLLX_MISC3 0x518
#define PLLX_MISC4 0x5f0
#define PLLX_MISC5 0x5f4
#define PLLE_BASE 0xe8
#define PLLE_MISC0 0xec
#define PLLD2_BASE 0x4b8
#define PLLD2_MISC0 0x4bc
#define PLLD2_MISC1 0x570
#define PLLD2_MISC2 0x574
#define PLLD2_MISC3 0x578
#define PLLE_AUX 0x48c
#define PLLRE_BASE 0x4c4
#define PLLRE_MISC0 0x4c8
#define PLLRE_OUT1 0x4cc
#define PLLDP_BASE 0x590
#define PLLDP_MISC 0x594
#define PLLC4_BASE 0x5a4
#define PLLC4_MISC0 0x5a8
#define PLLC4_OUT 0x5e4
#define PLLMB_BASE 0x5e8
#define PLLMB_MISC1 0x5ec
#define PLLA1_BASE 0x6a4
#define PLLA1_MISC0 0x6a8
#define PLLA1_MISC1 0x6ac
#define PLLA1_MISC2 0x6b0
#define PLLA1_MISC3 0x6b4
#define PLLU_IDDQ_BIT 31
#define PLLCX_IDDQ_BIT 27
#define PLLRE_IDDQ_BIT 24
#define PLLA_IDDQ_BIT 25
#define PLLD_IDDQ_BIT 20
#define PLLSS_IDDQ_BIT 18
#define PLLM_IDDQ_BIT 5
#define PLLMB_IDDQ_BIT 17
#define PLLXP_IDDQ_BIT 3
#define PLLCX_RESET_BIT 30
#define PLL_BASE_LOCK BIT(27)
#define PLLCX_BASE_LOCK BIT(26)
#define PLLE_MISC_LOCK BIT(11)
#define PLLE_MISC_IDDQ_SW_CTRL BIT(14)
#define PLLRE_MISC_LOCK BIT(27)
#define PLLE_AUX_USE_LOCKDET BIT(3)
#define PLLE_AUX_SS_SEQ_INCLUDE BIT(31)
#define PLLE_AUX_ENABLE_SWCTL BIT(4)
#define PLLE_AUX_SS_SWCTL BIT(6)
#define PLLE_AUX_SEQ_ENABLE BIT(24)
#define PLL_MISC_LOCK_ENABLE 18
#define PLLC_MISC_LOCK_ENABLE 24
#define PLLDU_MISC_LOCK_ENABLE 22
#define PLLU_MISC_LOCK_ENABLE 29
#define PLLE_MISC_LOCK_ENABLE 9
#define PLLRE_MISC_LOCK_ENABLE 30
#define PLLSS_MISC_LOCK_ENABLE 30
#define PLLP_MISC_LOCK_ENABLE 18
#define PLLM_MISC_LOCK_ENABLE 4
#define PLLMB_MISC_LOCK_ENABLE 16
#define PLLA_MISC_LOCK_ENABLE 28
#define PLLU_MISC_LOCK_ENABLE 29
#define PLLD_MISC_LOCK_ENABLE 18
#define PLLA_SDM_DIN_MASK 0xffff
#define PLLA_SDM_EN_MASK BIT(26)
#define PLLD_SDM_EN_MASK BIT(16)
#define PLLD2_SDM_EN_MASK BIT(31)
#define PLLD2_SDM_RESET_MASK BIT(27)
#define PLLD2_SSC_EN_MASK 0
#define PLLDP_SS_CFG 0x598
#define PLLDP_SDM_EN_MASK BIT(31)
#define PLLDP_SDM_RESET_MASK BIT(27)
#define PLLDP_SSC_EN_MASK BIT(30)
#define PLLDP_SS_CTRL1 0x59c
#define PLLDP_SS_CTRL2 0x5a0
#define PMC_PLLM_WB0_OVERRIDE 0x1dc
#define PMC_PLLM_WB0_OVERRIDE_2 0x2b0
#define UTMIP_PLL_CFG2 0x488
#define UTMIP_PLL_CFG2_STABLE_COUNT(x) (((x) & 0xfff) << 6)
#define UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(x) (((x) & 0x3f) << 18)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN BIT(0)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERUP BIT(1)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN BIT(2)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERUP BIT(3)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERDOWN BIT(4)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERUP BIT(5)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERDOWN BIT(24)
#define UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERUP BIT(25)
#define UTMIP_PLL_CFG1 0x484
#define UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 27)
#define UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(x) (((x) & 0xfff) << 0)
#define UTMIP_PLL_CFG1_FORCE_PLLU_POWERUP BIT(17)
#define UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN BIT(16)
#define UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP BIT(15)
#define UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN BIT(14)
#define UTMIP_PLL_CFG1_FORCE_PLL_ACTIVE_POWERDOWN BIT(12)
#define SATA_PLL_CFG0 0x490
#define SATA_PLL_CFG0_PADPLL_RESET_SWCTL BIT(0)
#define SATA_PLL_CFG0_PADPLL_USE_LOCKDET BIT(2)
#define SATA_PLL_CFG0_SATA_SEQ_IN_SWCTL BIT(4)
#define SATA_PLL_CFG0_SATA_SEQ_RESET_INPUT_VALUE BIT(5)
#define SATA_PLL_CFG0_SATA_SEQ_LANE_PD_INPUT_VALUE BIT(6)
#define SATA_PLL_CFG0_SATA_SEQ_PADPLL_PD_INPUT_VALUE BIT(7)
#define SATA_PLL_CFG0_PADPLL_SLEEP_IDDQ BIT(13)
#define SATA_PLL_CFG0_SEQ_ENABLE BIT(24)
#define XUSBIO_PLL_CFG0 0x51c
#define XUSBIO_PLL_CFG0_PADPLL_RESET_SWCTL BIT(0)
#define XUSBIO_PLL_CFG0_CLK_ENABLE_SWCTL BIT(2)
#define XUSBIO_PLL_CFG0_PADPLL_USE_LOCKDET BIT(6)
#define XUSBIO_PLL_CFG0_PADPLL_SLEEP_IDDQ BIT(13)
#define XUSBIO_PLL_CFG0_SEQ_ENABLE BIT(24)
#define UTMIPLL_HW_PWRDN_CFG0 0x52c
#define UTMIPLL_HW_PWRDN_CFG0_UTMIPLL_LOCK BIT(31)
#define UTMIPLL_HW_PWRDN_CFG0_SEQ_START_STATE BIT(25)
#define UTMIPLL_HW_PWRDN_CFG0_SEQ_ENABLE BIT(24)
#define UTMIPLL_HW_PWRDN_CFG0_IDDQ_PD_INCLUDE BIT(7)
#define UTMIPLL_HW_PWRDN_CFG0_USE_LOCKDET BIT(6)
#define UTMIPLL_HW_PWRDN_CFG0_SEQ_RESET_INPUT_VALUE BIT(5)
#define UTMIPLL_HW_PWRDN_CFG0_SEQ_IN_SWCTL BIT(4)
#define UTMIPLL_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL BIT(2)
#define UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE BIT(1)
#define UTMIPLL_HW_PWRDN_CFG0_IDDQ_SWCTL BIT(0)
#define PLLU_HW_PWRDN_CFG0 0x530
#define PLLU_HW_PWRDN_CFG0_IDDQ_PD_INCLUDE BIT(28)
#define PLLU_HW_PWRDN_CFG0_SEQ_ENABLE BIT(24)
#define PLLU_HW_PWRDN_CFG0_USE_SWITCH_DETECT BIT(7)
#define PLLU_HW_PWRDN_CFG0_USE_LOCKDET BIT(6)
#define PLLU_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL BIT(2)
#define PLLU_HW_PWRDN_CFG0_CLK_SWITCH_SWCTL BIT(0)
#define XUSB_PLL_CFG0 0x534
#define XUSB_PLL_CFG0_UTMIPLL_LOCK_DLY 0x3ff
#define XUSB_PLL_CFG0_PLLU_LOCK_DLY_MASK (0x3ff << 14)
#define SCLK_BURST_POLICY 0x28
#define SYSTEM_CLK_RATE 0x30
#define CLK_MASK_ARM 0x44
#define MISC_CLK_ENB 0x48
#define CCLKG_BURST_POLICY 0x368
#define CCLKLP_BURST_POLICY 0x370
#define CPU_SOFTRST_CTRL 0x380
#define SYS_CLK_DIV 0x400
#define SPARE_REG0 0x55c
#define CLK_M_DIVISOR_SHIFT 2
#define CLK_M_DIVISOR_MASK 0x3
#define BURST_POLICY_REG_SIZE 2
#define RST_DFLL_DVCO 0x2f4
#define DVFS_DFLL_RESET_SHIFT 0
#define CLK_RST_CONTROLLER_RST_DEV_Y_SET 0x2a8
#define CLK_RST_CONTROLLER_RST_DEV_Y_CLR 0x2ac
#define MISC_CLK_ENB 0x48
#define LVL2_CLK_GATE_OVRA 0xf8
#define LVL2_CLK_GATE_OVRE 0x554
/*
* SDM fractional divisor is 16-bit 2's complement signed number within
* (-2^12 ... 2^12-1) range. Represented in PLL data structure as unsigned
* 16-bit value, with "0" divisor mapped to 0xFFFF. Data "0" is used to
* indicate that SDM is disabled.
*
* Effective ndiv value when SDM is enabled: ndiv + 1/2 + sdm_din/2^13
*/
#define PLL_SDM_COEFF BIT(13)
#define sdin_din_to_data(din) ((u16)((din) ? : 0xFFFFU))
#define sdin_data_to_din(dat) (((dat) == 0xFFFFU) ? 0 : (s16)dat)
/* This macro returns ndiv effective scaled to SDM range */
#define sdin_get_n_eff(cfg) ((cfg)->n * PLL_SDM_COEFF + ((cfg)->sdm_data ? \
(PLL_SDM_COEFF/2 + sdin_data_to_din((cfg)->sdm_data)) : 0))
/* Tegra CPU clock and reset control regs */
#define CLK_RST_CONTROLLER_CPU_CMPLX_STATUS 0x470
#ifdef CONFIG_PM_SLEEP
static struct cpu_clk_suspend_context {
u32 clk_csite_src;
} tegra210_cpu_clk_sctx;
#endif
static bool emc_is_native;
static void __iomem *clk_base;
static void __iomem *pmc_base;
static unsigned long osc_freq;
static unsigned long pll_ref_freq;
static bool t210b01;
static DEFINE_SPINLOCK(pll_d_lock);
static DEFINE_SPINLOCK(pll_d2_lock);
static DEFINE_SPINLOCK(pll_e_lock);
static DEFINE_SPINLOCK(pll_re_lock);
static DEFINE_SPINLOCK(pll_u_lock);
static DEFINE_SPINLOCK(emc_lock);
static DEFINE_SPINLOCK(sor1_lock);
static DEFINE_SPINLOCK(vi_lock);
/* possible OSC frequencies in Hz */
static unsigned long tegra210_input_freq[] = {
[5] = 38400000,
[8] = 12000000,
};
static const char *mux_pllmcp_clkm[] = {
"pll_m", "pll_c", "pll_p", "clk_m", "pll_m_ud", "pll_mb", "pll_mb_ud",
"pll_p_ud",
};
#define mux_pllmcp_clkm_idx NULL
static struct clk **clks;
static const char * const aclk_parents[] = {
"pll_a1", "pll_c", "pll_p_out_adsp", "pll_a_out0", "pll_c2", "pll_c3",
"clk_m"
};
#define PLL_ENABLE (1 << 30)
#define PLLCX_MISC1_IDDQ (1 << 27)
#define PLLCX_MISC0_RESET (1 << 30)
#define PLLCX_MISC0_DEFAULT_VALUE 0x40080000
#define PLLCX_MISC0_WRITE_MASK 0x400ffffb
#define PLLCX_MISC1_DEFAULT_VALUE 0x08000000
#define PLLCX_MISC1_WRITE_MASK 0x08003cff
#define PLLCX_MISC2_DEFAULT_VALUE 0x1f720f05
#define PLLCX_MISC2_WRITE_MASK 0xffffff17
#define PLLCX_MISC3_DEFAULT_VALUE 0x000000c4
#define PLLCX_MISC3_WRITE_MASK 0x00ffffff
/* PLLA */
#define PLLA_BASE_IDDQ (1 << 25)
#define PLLA_BASE_LOCK (1 << 27)
#define PLLA_MISC0_LOCK_ENABLE (1 << 28)
#define PLLA_MISC0_LOCK_OVERRIDE (1 << 27)
#define PLLA_MISC2_EN_SDM (1 << 26)
#define PLLA_MISC2_EN_DYNRAMP (1 << 25)
#define PLLA_MISC0_DEFAULT_VALUE 0x12000020
#define PLLA_MISC0_WRITE_MASK 0x7fffffff
#define PLLA_MISC2_DEFAULT_VALUE 0x0
#define PLLA_MISC2_WRITE_MASK 0x06ffffff
/* PLLD */
#define PLLD_BASE_CSI_CLKSOURCE (1 << 23)
#define PLLD_MISC0_EN_SDM (1 << 16)
#define PLLD_MISC0_LOCK_OVERRIDE (1 << 17)
#define PLLD_MISC0_LOCK_ENABLE (1 << 18)
#define PLLD_MISC0_IDDQ (1 << 20)
#define PLLD_MISC0_DSI_CLKENABLE (1 << 21)
#define PLLD_MISC0_DEFAULT_VALUE 0x00140000
#define PLLD_MISC0_WRITE_MASK 0x3ff7ffff
#define PLLD_MISC1_DEFAULT_VALUE 0x20
#define PLLD_MISC1_WRITE_MASK 0x00ffffff
/* PLLD2 and PLLDP and PLLC4 */
#define PLLDSS_BASE_LOCK (1 << 27)
#define PLLDSS_BASE_LOCK_OVERRIDE (1 << 24)
#define PLLDSS_BASE_IDDQ (1 << 18)
#define PLLDSS_BASE_REF_SEL_SHIFT 25
#define PLLDSS_BASE_REF_SEL_MASK (0x3 << PLLDSS_BASE_REF_SEL_SHIFT)
#define PLLDSS_MISC0_LOCK_ENABLE (1 << 30)
#define PLLDSS_MISC1_CFG_EN_SDM (1 << 31)
#define PLLDSS_MISC1_CFG_EN_SSC (1 << 30)
#define PLLD2_MISC0_DEFAULT_VALUE 0x40000020
#define PLLD2_MISC1_CFG_DEFAULT_VALUE 0x10000000
#define PLLD2_MISC2_CTRL1_DEFAULT_VALUE 0xF6E0F620
#define PLLD2_MISC3_CTRL2_DEFAULT_VALUE 0x00010000
#define PLLDP_MISC0_DEFAULT_VALUE 0x40000020
#define PLLDP_MISC1_CFG_DEFAULT_VALUE 0xc0000000
#define PLLDP_MISC2_CTRL1_DEFAULT_VALUE 0xf400f0da
#define PLLDP_MISC3_CTRL2_DEFAULT_VALUE 0x2004f400
#define PLLDSS_MISC0_WRITE_MASK 0x47ffffff
#define PLLDSS_MISC1_CFG_WRITE_MASK 0xf8000000
#define PLLDSS_MISC2_CTRL1_WRITE_MASK 0xffffffff
#define PLLDSS_MISC3_CTRL2_WRITE_MASK 0xffffffff
#define PLLC4_MISC0_DEFAULT_VALUE 0x40000000
/* PLLRE */
#define PLLRE_MISC0_LOCK_ENABLE (1 << 30)
#define PLLRE_MISC0_LOCK_OVERRIDE (1 << 29)
#define PLLRE_MISC0_LOCK (1 << 27)
#define PLLRE_MISC0_IDDQ (1 << 24)
#define PLLRE_BASE_DEFAULT_VALUE 0x0
#define PLLRE_MISC0_DEFAULT_VALUE 0x41000000
#define PLLRE_BASE_DEFAULT_MASK 0x1c000000
#define PLLRE_MISC0_WRITE_MASK 0x67ffffff
/* PLLX */
#define PLLX_USE_DYN_RAMP 1
#define PLLX_BASE_LOCK (1 << 27)
#define PLLX_MISC0_FO_G_DISABLE (0x1 << 28)
#define PLLX_MISC0_LOCK_ENABLE (0x1 << 18)
#define PLLX_MISC2_DYNRAMP_STEPB_SHIFT 24
#define PLLX_MISC2_DYNRAMP_STEPB_MASK (0xFF << PLLX_MISC2_DYNRAMP_STEPB_SHIFT)
#define PLLX_MISC2_DYNRAMP_STEPA_SHIFT 16
#define PLLX_MISC2_DYNRAMP_STEPA_MASK (0xFF << PLLX_MISC2_DYNRAMP_STEPA_SHIFT)
#define PLLX_MISC2_NDIV_NEW_SHIFT 8
#define PLLX_MISC2_NDIV_NEW_MASK (0xFF << PLLX_MISC2_NDIV_NEW_SHIFT)
#define PLLX_MISC2_LOCK_OVERRIDE (0x1 << 4)
#define PLLX_MISC2_DYNRAMP_DONE (0x1 << 2)
#define PLLX_MISC2_EN_DYNRAMP (0x1 << 0)
#define PLLX_MISC3_IDDQ (0x1 << 3)
#define PLLX_MISC0_DEFAULT_VALUE PLLX_MISC0_LOCK_ENABLE
#define PLLX_MISC0_WRITE_MASK 0x10c40000
#define PLLX_MISC1_DEFAULT_VALUE 0x20
#define PLLX_MISC1_WRITE_MASK 0x00ffffff
#define PLLX_MISC2_DEFAULT_VALUE 0x0
#define PLLX_MISC2_WRITE_MASK 0xffffff11
#define PLLX_MISC3_DEFAULT_VALUE PLLX_MISC3_IDDQ
#define PLLX_MISC3_WRITE_MASK 0x01ff0f0f
#define PLLX_MISC4_DEFAULT_VALUE 0x0
#define PLLX_MISC4_WRITE_MASK 0x8000ffff
#define PLLX_MISC5_DEFAULT_VALUE 0x0
#define PLLX_MISC5_WRITE_MASK 0x0000ffff
#define PLLX_HW_CTRL_CFG 0x548
#define PLLX_HW_CTRL_CFG_SWCTRL (0x1 << 0)
/* PLLMB */
#define PLLMB_BASE_LOCK (1 << 27)
#define PLLMB_MISC1_LOCK_OVERRIDE (1 << 18)
#define PLLMB_MISC1_IDDQ (1 << 17)
#define PLLMB_MISC1_LOCK_ENABLE (1 << 16)
#define PLLMB_MISC1_DEFAULT_VALUE 0x00030000
#define PLLMB_MISC1_WRITE_MASK 0x0007ffff
/* PLLP */
#define PLLP_BASE_OVERRIDE (1 << 28)
#define PLLP_BASE_LOCK (1 << 27)
#define PLLP_MISC0_LOCK_ENABLE (1 << 18)
#define PLLP_MISC0_LOCK_OVERRIDE (1 << 17)
#define PLLP_MISC0_IDDQ (1 << 3)
#define PLLP_MISC1_HSIO_EN_SHIFT 29
#define PLLP_MISC1_HSIO_EN (1 << PLLP_MISC1_HSIO_EN_SHIFT)
#define PLLP_MISC1_XUSB_EN_SHIFT 28
#define PLLP_MISC1_XUSB_EN (1 << PLLP_MISC1_XUSB_EN_SHIFT)
#define PLLP_MISC0_DEFAULT_VALUE 0x00040008
#define PLLP_MISC1_DEFAULT_VALUE 0x0
#define PLLP_MISC0_WRITE_MASK 0xdc6000f
#define PLLP_MISC1_WRITE_MASK 0x70ffffff
/* PLLU */
#define PLLU_BASE_LOCK (1 << 27)
#define PLLU_BASE_OVERRIDE (1 << 24)
#define PLLU_BASE_CLKENABLE_USB (1 << 21)
#define PLLU_BASE_CLKENABLE_HSIC (1 << 22)
#define PLLU_BASE_CLKENABLE_ICUSB (1 << 23)
#define PLLU_BASE_CLKENABLE_48M (1 << 25)
#define PLLU_BASE_CLKENABLE_ALL (PLLU_BASE_CLKENABLE_USB |\
PLLU_BASE_CLKENABLE_HSIC |\
PLLU_BASE_CLKENABLE_ICUSB |\
PLLU_BASE_CLKENABLE_48M)
#define PLLU_MISC0_IDDQ (1 << 31)
#define PLLU_MISC0_LOCK_ENABLE (1 << 29)
#define PLLU_MISC1_LOCK_OVERRIDE (1 << 0)
#define PLLU_MISC0_DEFAULT_VALUE 0xa0000000
#define PLLU_MISC1_DEFAULT_VALUE 0x0
#define PLLU_MISC0_WRITE_MASK 0xbfffffff
#define PLLU_MISC1_WRITE_MASK 0x00000007
/* PLLE */
#define PLLE_SS_MAX_VAL 0x21
#define PLLE_SS_INC_VAL (0x1 << 16)
#define PLLE_SS_INCINTRV_VAL (0x23 << 24)
#define PLLE_SS_COEFFICIENTS_VAL \
(PLLE_SS_MAX_VAL | PLLE_SS_INC_VAL | PLLE_SS_INCINTRV_VAL)
bool tegra210_xusb_pll_hw_sequence_is_enabled(void)
{
u32 val;
val = readl_relaxed(clk_base + XUSBIO_PLL_CFG0);
if (val & XUSBIO_PLL_CFG0_SEQ_ENABLE)
return true;
return false;
}
EXPORT_SYMBOL_GPL(tegra210_xusb_pll_hw_sequence_is_enabled);
bool tegra210_plle_hw_sequence_is_enabled(void)
{
u32 val;
val = readl_relaxed(clk_base + PLLE_AUX);
if (val & PLLE_AUX_SEQ_ENABLE)
return true;
return false;
}
EXPORT_SYMBOL_GPL(tegra210_plle_hw_sequence_is_enabled);
void tegra210_plle_hw_sequence_start(void)
{
u32 val;
unsigned long flags = 0;
struct clk *plle = clks[TEGRA210_CLK_PLL_E];
if (!IS_ERR_OR_NULL(plle))
spin_lock_irqsave(to_clk_pll(__clk_get_hw(plle))->lock, flags);
if (tegra210_plle_hw_sequence_is_enabled())
goto _out;
val = readl_relaxed(clk_base + PLLE_MISC0);
val &= ~PLLE_MISC_IDDQ_SW_CTRL;
writel_relaxed(val, clk_base + PLLE_MISC0);
val = readl_relaxed(clk_base + PLLE_AUX);
val |= (PLLE_AUX_USE_LOCKDET | PLLE_AUX_SS_SEQ_INCLUDE);
val &= ~(PLLE_AUX_ENABLE_SWCTL | PLLE_AUX_SS_SWCTL);
writel_relaxed(val, clk_base + PLLE_AUX);
fence_udelay(1, clk_base);
val |= PLLE_AUX_SEQ_ENABLE;
writel_relaxed(val, clk_base + PLLE_AUX);
fence_udelay(1, clk_base);
_out:
if (!IS_ERR_OR_NULL(plle))
spin_unlock_irqrestore(to_clk_pll(__clk_get_hw(plle))->lock,
flags);
}
EXPORT_SYMBOL_GPL(tegra210_plle_hw_sequence_start);
void tegra210_xusb_pll_hw_control_enable(void)
{
u32 val;
if (tegra210_xusb_pll_hw_sequence_is_enabled())
return;
val = readl_relaxed(clk_base + XUSBIO_PLL_CFG0);
val &= ~(XUSBIO_PLL_CFG0_CLK_ENABLE_SWCTL |
XUSBIO_PLL_CFG0_PADPLL_RESET_SWCTL);
val |= XUSBIO_PLL_CFG0_PADPLL_USE_LOCKDET |
XUSBIO_PLL_CFG0_PADPLL_SLEEP_IDDQ;
writel_relaxed(val, clk_base + XUSBIO_PLL_CFG0);
fence_udelay(1, clk_base);
}
EXPORT_SYMBOL_GPL(tegra210_xusb_pll_hw_control_enable);
void tegra210_xusb_pll_hw_sequence_start(void)
{
u32 val;
if (tegra210_xusb_pll_hw_sequence_is_enabled())
return;
val = readl_relaxed(clk_base + XUSBIO_PLL_CFG0);
val |= XUSBIO_PLL_CFG0_SEQ_ENABLE;
writel_relaxed(val, clk_base + XUSBIO_PLL_CFG0);
fence_udelay(1, clk_base);
}
EXPORT_SYMBOL_GPL(tegra210_xusb_pll_hw_sequence_start);
bool tegra210_sata_pll_hw_sequence_is_enabled(void)
{
u32 val;
val = readl_relaxed(clk_base + SATA_PLL_CFG0);
if (val & SATA_PLL_CFG0_SEQ_ENABLE)
return true;
return false;
}
EXPORT_SYMBOL_GPL(tegra210_sata_pll_hw_sequence_is_enabled);
void tegra210_sata_pll_hw_control_enable(void)
{
u32 val;
if (tegra210_sata_pll_hw_sequence_is_enabled())
return;
val = readl_relaxed(clk_base + SATA_PLL_CFG0);
val &= ~SATA_PLL_CFG0_PADPLL_RESET_SWCTL;
val |= SATA_PLL_CFG0_PADPLL_USE_LOCKDET |
SATA_PLL_CFG0_PADPLL_SLEEP_IDDQ;
writel_relaxed(val, clk_base + SATA_PLL_CFG0);
fence_udelay(1, clk_base);
}
EXPORT_SYMBOL_GPL(tegra210_sata_pll_hw_control_enable);
void tegra210_sata_pll_hw_sequence_start(void)
{
u32 val;
if (tegra210_sata_pll_hw_sequence_is_enabled())
return;
val = readl_relaxed(clk_base + SATA_PLL_CFG0);
val |= SATA_PLL_CFG0_SEQ_ENABLE;
writel_relaxed(val, clk_base + SATA_PLL_CFG0);
fence_udelay(1, clk_base);
}
EXPORT_SYMBOL_GPL(tegra210_sata_pll_hw_sequence_start);
void tegra210_set_sata_pll_seq_sw(bool state)
{
u32 val;
val = readl_relaxed(clk_base + SATA_PLL_CFG0);
if (state) {
val |= SATA_PLL_CFG0_SATA_SEQ_IN_SWCTL;
val |= SATA_PLL_CFG0_SATA_SEQ_RESET_INPUT_VALUE;
val |= SATA_PLL_CFG0_SATA_SEQ_LANE_PD_INPUT_VALUE;
val |= SATA_PLL_CFG0_SATA_SEQ_PADPLL_PD_INPUT_VALUE;
} else {
val &= ~SATA_PLL_CFG0_SATA_SEQ_IN_SWCTL;
val &= ~SATA_PLL_CFG0_SATA_SEQ_RESET_INPUT_VALUE;
val &= ~SATA_PLL_CFG0_SATA_SEQ_LANE_PD_INPUT_VALUE;
val &= ~SATA_PLL_CFG0_SATA_SEQ_PADPLL_PD_INPUT_VALUE;
}
writel_relaxed(val, clk_base + SATA_PLL_CFG0);
fence_udelay(1, clk_base);
}
EXPORT_SYMBOL_GPL(tegra210_set_sata_pll_seq_sw);
void tegra210_plld2_configure_ss(bool enable)
{
u32 val;
unsigned long flags = 0;
struct clk *plld2 = clks[TEGRA210_CLK_PLL_D2];
if (!IS_ERR_OR_NULL(plld2))
spin_lock_irqsave(to_clk_pll(__clk_get_hw(plld2))->lock, flags);
val = readl_relaxed(clk_base + PLLD2_MISC1);
if (enable)
val |= PLLDSS_MISC1_CFG_EN_SSC;
else
val &= ~PLLDSS_MISC1_CFG_EN_SSC;
writel_relaxed(val, clk_base + PLLD2_MISC1);
fence_udelay(1, clk_base);
if (!IS_ERR_OR_NULL(plld2))
spin_unlock_irqrestore(to_clk_pll(__clk_get_hw(plld2))->lock,
flags);
}
EXPORT_SYMBOL_GPL(tegra210_plld2_configure_ss);
void tegra210_csi_source_from_brick(void)
{
u32 val;
unsigned long flags = 0;
struct clk *plld = clks[TEGRA210_CLK_PLL_D];
if (!IS_ERR_OR_NULL(plld))
spin_lock_irqsave(to_clk_pll(__clk_get_hw(plld))->lock, flags);
val = readl_relaxed(clk_base + PLLD_BASE);
val &= ~PLLD_BASE_CSI_CLKSOURCE;
writel_relaxed(val, clk_base + PLLD_BASE);
fence_udelay(1, clk_base);
if (!IS_ERR_OR_NULL(plld))
spin_unlock_irqrestore(to_clk_pll(__clk_get_hw(plld))->lock,
flags);
}
EXPORT_SYMBOL_GPL(tegra210_csi_source_from_brick);
void tegra210_csi_source_from_plld(void)
{
u32 val;
unsigned long flags = 0;
struct clk *plld = clks[TEGRA210_CLK_PLL_D];
if (!IS_ERR_OR_NULL(plld))
spin_lock_irqsave(to_clk_pll(__clk_get_hw(plld))->lock, flags);
val = readl_relaxed(clk_base + PLLD_BASE);
val |= PLLD_BASE_CSI_CLKSOURCE;
writel_relaxed(val, clk_base + PLLD_BASE);
fence_udelay(1, clk_base);
if (!IS_ERR_OR_NULL(plld))
spin_unlock_irqrestore(to_clk_pll(__clk_get_hw(plld))->lock,
flags);
}
EXPORT_SYMBOL_GPL(tegra210_csi_source_from_plld);
void tegra210_venc_mbist_war(void)
{
u32 csi_src, ovra, ovre;
unsigned long flags = 0;
struct clk *plld = clks[TEGRA210_CLK_PLL_D];
/* this WAR is only needed for Tegra210 silicon */
if (t210b01)
return;
clk_prepare_enable(clks[TEGRA210_CLK_PLL_D_DSI_OUT]);
if (!IS_ERR_OR_NULL(plld))
spin_lock_irqsave(to_clk_pll(__clk_get_hw(plld))->lock, flags);
csi_src = readl_relaxed(clk_base + PLLD_BASE);
writel_relaxed(csi_src | PLLD_BASE_CSI_CLKSOURCE, clk_base + PLLD_BASE);
fence_udelay(1, clk_base);
ovra = readl_relaxed(clk_base + LVL2_CLK_GATE_OVRA);
writel_relaxed(ovra | BIT(15), clk_base + LVL2_CLK_GATE_OVRA);
ovre = readl_relaxed(clk_base + LVL2_CLK_GATE_OVRE);
writel_relaxed(ovre | BIT(3), clk_base + LVL2_CLK_GATE_OVRE);
fence_udelay(1, clk_base);
writel_relaxed(ovra, clk_base + LVL2_CLK_GATE_OVRA);
writel_relaxed(ovre, clk_base + LVL2_CLK_GATE_OVRE);
writel_relaxed(csi_src, clk_base + PLLD_BASE);
fence_udelay(1, clk_base);
if (!IS_ERR_OR_NULL(plld))
spin_unlock_irqrestore(to_clk_pll(__clk_get_hw(plld))->lock,
flags);
clk_disable_unprepare(clks[TEGRA210_CLK_PLL_D_DSI_OUT]);
}
static inline void _pll_misc_chk_default(void __iomem *base,
struct tegra_clk_pll_params *params,
u8 misc_num, u32 default_val, u32 mask)
{
u32 boot_val = readl_relaxed(base + params->ext_misc_reg[misc_num]);
boot_val &= mask;
default_val &= mask;
if (boot_val != default_val) {
pr_warn("boot misc%d 0x%x: expected 0x%x\n",
misc_num, boot_val, default_val);
pr_warn(" (comparison mask = 0x%x)\n", mask);
params->defaults_set = false;
}
}
/*
* PLLCX: PLLC, PLLC2, PLLC3, PLLA1
* Hybrid PLLs with dynamic ramp. Dynamic ramp is allowed for any transition
* that changes NDIV only, while PLL is already locked.
*/
static void pllcx_check_defaults(struct tegra_clk_pll_params *params)
{
u32 default_val;
default_val = PLLCX_MISC0_DEFAULT_VALUE & (~PLLCX_MISC0_RESET);
_pll_misc_chk_default(clk_base, params, 0, default_val,
PLLCX_MISC0_WRITE_MASK);
default_val = PLLCX_MISC1_DEFAULT_VALUE & (~PLLCX_MISC1_IDDQ);
_pll_misc_chk_default(clk_base, params, 1, default_val,
PLLCX_MISC1_WRITE_MASK);
default_val = PLLCX_MISC2_DEFAULT_VALUE;
_pll_misc_chk_default(clk_base, params, 2, default_val,
PLLCX_MISC2_WRITE_MASK);
default_val = PLLCX_MISC3_DEFAULT_VALUE;
_pll_misc_chk_default(clk_base, params, 3, default_val,
PLLCX_MISC3_WRITE_MASK);
}
static void tegra210_pllcx_set_defaults(const char *name,
struct tegra_clk_pll *pllcx)
{
pllcx->params->defaults_set = true;
if (readl_relaxed(clk_base + pllcx->params->base_reg) &
PLL_ENABLE && !pllcx->params->defaults_set) {
/* PLL is ON: only check if defaults already set */
pllcx_check_defaults(pllcx->params);
pr_warn("%s already enabled. Postponing set full defaults\n",
name);
return;
}
/* Defaults assert PLL reset, and set IDDQ */
writel_relaxed(PLLCX_MISC0_DEFAULT_VALUE,
clk_base + pllcx->params->ext_misc_reg[0]);
writel_relaxed(PLLCX_MISC1_DEFAULT_VALUE,
clk_base + pllcx->params->ext_misc_reg[1]);
writel_relaxed(PLLCX_MISC2_DEFAULT_VALUE,
clk_base + pllcx->params->ext_misc_reg[2]);
writel_relaxed(PLLCX_MISC3_DEFAULT_VALUE,
clk_base + pllcx->params->ext_misc_reg[3]);
fence_udelay(1, clk_base);
}
static void _pllc_set_defaults(struct tegra_clk_pll *pllcx)
{
tegra210_pllcx_set_defaults("PLL_C", pllcx);
}
static void _pllc2_set_defaults(struct tegra_clk_pll *pllcx)
{
tegra210_pllcx_set_defaults("PLL_C2", pllcx);
}
static void _pllc3_set_defaults(struct tegra_clk_pll *pllcx)
{
tegra210_pllcx_set_defaults("PLL_C3", pllcx);
}
static void _plla1_set_defaults(struct tegra_clk_pll *pllcx)
{
tegra210_pllcx_set_defaults("PLL_A1", pllcx);
}
/*
* PLLA
* PLL with dynamic ramp and fractional SDM. Dynamic ramp is not used.
* Fractional SDM is allowed to provide exact audio rates.
*/
static void tegra210_plla_set_defaults(struct tegra_clk_pll *plla)
{
u32 mask;
u32 val = readl_relaxed(clk_base + plla->params->base_reg);
plla->params->defaults_set = true;
if (val & PLL_ENABLE) {
/*
* PLL is ON: check if defaults already set, then set those
* that can be updated in flight.
*/
if (val & PLLA_BASE_IDDQ) {
pr_warn("PLL_A boot enabled with IDDQ set\n");
plla->params->defaults_set = false;
}
pr_warn("PLL_A already enabled. Postponing set full defaults\n");
val = PLLA_MISC0_DEFAULT_VALUE; /* ignore lock enable */
mask = PLLA_MISC0_LOCK_ENABLE | PLLA_MISC0_LOCK_OVERRIDE;
_pll_misc_chk_default(clk_base, plla->params, 0, val,
~mask & PLLA_MISC0_WRITE_MASK);
val = PLLA_MISC2_DEFAULT_VALUE; /* ignore all but control bit */
_pll_misc_chk_default(clk_base, plla->params, 2, val,
PLLA_MISC2_EN_DYNRAMP);
/* Enable lock detect */
val = readl_relaxed(clk_base + plla->params->ext_misc_reg[0]);
val &= ~mask;
val |= PLLA_MISC0_DEFAULT_VALUE & mask;
writel_relaxed(val, clk_base + plla->params->ext_misc_reg[0]);
fence_udelay(1, clk_base);
return;
}
/* set IDDQ, enable lock detect, disable dynamic ramp and SDM */
val |= PLLA_BASE_IDDQ;
writel_relaxed(val, clk_base + plla->params->base_reg);
writel_relaxed(PLLA_MISC0_DEFAULT_VALUE,
clk_base + plla->params->ext_misc_reg[0]);
writel_relaxed(PLLA_MISC2_DEFAULT_VALUE,
clk_base + plla->params->ext_misc_reg[2]);
fence_udelay(1, clk_base);
}
/*
* PLLD
* PLL with fractional SDM.
*/
static void tegra210_plld_set_defaults(struct tegra_clk_pll *plld)
{
u32 val;
u32 mask = 0xffff;
plld->params->defaults_set = true;
if (readl_relaxed(clk_base + plld->params->base_reg) &
PLL_ENABLE) {
/*
* PLL is ON: check if defaults already set, then set those
* that can be updated in flight.
*/
val = PLLD_MISC1_DEFAULT_VALUE;
_pll_misc_chk_default(clk_base, plld->params, 1,
val, PLLD_MISC1_WRITE_MASK);
/* ignore lock, DSI and SDM controls, make sure IDDQ not set */
val = PLLD_MISC0_DEFAULT_VALUE & (~PLLD_MISC0_IDDQ);
mask |= PLLD_MISC0_DSI_CLKENABLE | PLLD_MISC0_LOCK_ENABLE |
PLLD_MISC0_LOCK_OVERRIDE | PLLD_MISC0_EN_SDM;
_pll_misc_chk_default(clk_base, plld->params, 0, val,
~mask & PLLD_MISC0_WRITE_MASK);
if (!plld->params->defaults_set)
pr_warn("PLL_D already enabled. Postponing set full defaults\n");
/* Enable lock detect */
mask = PLLD_MISC0_LOCK_ENABLE | PLLD_MISC0_LOCK_OVERRIDE;
val = readl_relaxed(clk_base + plld->params->ext_misc_reg[0]);
val &= ~mask;
val |= PLLD_MISC0_DEFAULT_VALUE & mask;
writel_relaxed(val, clk_base + plld->params->ext_misc_reg[0]);
fence_udelay(1, clk_base);
return;
}
val = readl_relaxed(clk_base + plld->params->ext_misc_reg[0]);
val &= PLLD_MISC0_DSI_CLKENABLE;
val |= PLLD_MISC0_DEFAULT_VALUE;
/* set IDDQ, enable lock detect, disable SDM */
writel_relaxed(val, clk_base + plld->params->ext_misc_reg[0]);
writel_relaxed(PLLD_MISC1_DEFAULT_VALUE, clk_base +
plld->params->ext_misc_reg[1]);
fence_udelay(1, clk_base);
}
/*
* PLLD2, PLLDP
* PLL with fractional SDM and Spread Spectrum (SDM is a must if SSC is used).
*/
static void plldss_defaults(const char *pll_name, struct tegra_clk_pll *plldss,
u32 misc0_val, u32 misc1_val, u32 misc2_val, u32 misc3_val)
{
u32 default_val;
u32 val = readl_relaxed(clk_base + plldss->params->base_reg);
plldss->params->defaults_set = true;
if (val & PLL_ENABLE) {
/*
* PLL is ON: check if defaults already set, then set those
* that can be updated in flight.
*/
if (val & PLLDSS_BASE_IDDQ) {
pr_warn("plldss boot enabled with IDDQ set\n");
plldss->params->defaults_set = false;
}
/* ignore lock enable */
default_val = misc0_val;
_pll_misc_chk_default(clk_base, plldss->params, 0, default_val,
PLLDSS_MISC0_WRITE_MASK &
(~PLLDSS_MISC0_LOCK_ENABLE));
/*
* If SSC is used, check all settings, otherwise just confirm
* that SSC is not used on boot as well. Do nothing when using
* this function for PLLC4 that has only MISC0.
*/
if (plldss->params->ssc_ctrl_en_mask) {
default_val = misc1_val;
_pll_misc_chk_default(clk_base, plldss->params, 1,
default_val, PLLDSS_MISC1_CFG_WRITE_MASK);
default_val = misc2_val;
_pll_misc_chk_default(clk_base, plldss->params, 2,
default_val, PLLDSS_MISC2_CTRL1_WRITE_MASK);
default_val = misc3_val;
_pll_misc_chk_default(clk_base, plldss->params, 3,
default_val, PLLDSS_MISC3_CTRL2_WRITE_MASK);
} else if (plldss->params->ext_misc_reg[1]) {
default_val = misc1_val;
_pll_misc_chk_default(clk_base, plldss->params, 1,
default_val, PLLDSS_MISC1_CFG_WRITE_MASK &
(~PLLDSS_MISC1_CFG_EN_SDM));
}
if (!plldss->params->defaults_set)
pr_warn("%s already enabled. Postponing set full defaults\n",
pll_name);
/* Enable lock detect */
if (val & PLLDSS_BASE_LOCK_OVERRIDE) {
val &= ~PLLDSS_BASE_LOCK_OVERRIDE;
writel_relaxed(val, clk_base +
plldss->params->base_reg);
}
val = readl_relaxed(clk_base + plldss->params->ext_misc_reg[0]);
val &= ~PLLDSS_MISC0_LOCK_ENABLE;
val |= misc0_val & PLLDSS_MISC0_LOCK_ENABLE;
writel_relaxed(val, clk_base + plldss->params->ext_misc_reg[0]);
fence_udelay(1, clk_base);
return;
}
/* set IDDQ, enable lock detect, configure SDM/SSC */
val |= PLLDSS_BASE_IDDQ;
val &= ~PLLDSS_BASE_LOCK_OVERRIDE;
writel_relaxed(val, clk_base + plldss->params->base_reg);
/* When using this function for PLLC4 exit here */
if (!plldss->params->ext_misc_reg[1]) {
writel_relaxed(misc0_val, clk_base +
plldss->params->ext_misc_reg[0]);
fence_udelay(1, clk_base);
return;
}
writel_relaxed(misc0_val, clk_base +
plldss->params->ext_misc_reg[0]);
/* if SSC used set by 1st enable */
writel_relaxed(misc1_val & (~PLLDSS_MISC1_CFG_EN_SSC),
clk_base + plldss->params->ext_misc_reg[1]);
writel_relaxed(misc2_val, clk_base + plldss->params->ext_misc_reg[2]);
writel_relaxed(misc3_val, clk_base + plldss->params->ext_misc_reg[3]);
fence_udelay(1, clk_base);
}
static void tegra210_plld2_set_defaults(struct tegra_clk_pll *plld2)
{
plldss_defaults("PLL_D2", plld2, PLLD2_MISC0_DEFAULT_VALUE,
PLLD2_MISC1_CFG_DEFAULT_VALUE,
PLLD2_MISC2_CTRL1_DEFAULT_VALUE,
PLLD2_MISC3_CTRL2_DEFAULT_VALUE);
}
static void tegra210_plldp_set_defaults(struct tegra_clk_pll *plldp)
{
plldss_defaults("PLL_DP", plldp, PLLDP_MISC0_DEFAULT_VALUE,
PLLDP_MISC1_CFG_DEFAULT_VALUE,
PLLDP_MISC2_CTRL1_DEFAULT_VALUE,
PLLDP_MISC3_CTRL2_DEFAULT_VALUE);
}
/*
* PLLC4
* Base and misc0 layout is the same as PLLD2/PLLDP, but no SDM/SSC support.
* VCO is exposed to the clock tree via fixed 1/3 and 1/5 dividers.
*/
static void tegra210_pllc4_set_defaults(struct tegra_clk_pll *pllc4)
{
plldss_defaults("PLL_C4", pllc4, PLLC4_MISC0_DEFAULT_VALUE, 0, 0, 0);
}
/*
* PLLRE
* VCO is exposed to the clock tree directly along with post-divider output
*/
static void tegra210_pllre_set_defaults(struct tegra_clk_pll *pllre)
{
u32 mask;
u32 val = readl_relaxed(clk_base + pllre->params->base_reg);
pllre->params->defaults_set = true;
if (val & PLL_ENABLE) {
pr_warn("PLL_RE already enabled. Postponing set full defaults\n");
/*
* PLL is ON: check if defaults already set, then set those
* that can be updated in flight.
*/
val &= PLLRE_BASE_DEFAULT_MASK;
if (val != PLLRE_BASE_DEFAULT_VALUE) {
pr_warn("pllre boot base 0x%x : expected 0x%x\n",
val, PLLRE_BASE_DEFAULT_VALUE);
pr_warn("(comparison mask = 0x%x)\n",
PLLRE_BASE_DEFAULT_MASK);
pllre->params->defaults_set = false;
}
/* Ignore lock enable */
val = PLLRE_MISC0_DEFAULT_VALUE & (~PLLRE_MISC0_IDDQ);
mask = PLLRE_MISC0_LOCK_ENABLE | PLLRE_MISC0_LOCK_OVERRIDE;
_pll_misc_chk_default(clk_base, pllre->params, 0, val,
~mask & PLLRE_MISC0_WRITE_MASK);
/* Enable lock detect */
val = readl_relaxed(clk_base + pllre->params->ext_misc_reg[0]);
val &= ~mask;
val |= PLLRE_MISC0_DEFAULT_VALUE & mask;
writel_relaxed(val, clk_base + pllre->params->ext_misc_reg[0]);
fence_udelay(1, clk_base);
return;
}
/* set IDDQ, enable lock detect */
val &= ~PLLRE_BASE_DEFAULT_MASK;
val |= PLLRE_BASE_DEFAULT_VALUE & PLLRE_BASE_DEFAULT_MASK;
writel_relaxed(val, clk_base + pllre->params->base_reg);
writel_relaxed(PLLRE_MISC0_DEFAULT_VALUE,
clk_base + pllre->params->ext_misc_reg[0]);
fence_udelay(1, clk_base);
}
static void pllx_get_dyn_steps(struct clk_hw *hw, u32 *step_a, u32 *step_b)
{
unsigned long input_rate;
/* cf rate */
if (!IS_ERR_OR_NULL(hw->clk))
input_rate = clk_hw_get_rate(clk_hw_get_parent(hw));
else
input_rate = 38400000;
input_rate /= tegra_pll_get_fixed_mdiv(hw, input_rate);
switch (input_rate) {
case 12000000:
case 12800000:
case 13000000:
*step_a = 0x2B;
*step_b = 0x0B;
return;
case 19200000:
*step_a = 0x12;
*step_b = 0x08;
return;
case 38400000:
*step_a = 0x04;
*step_b = 0x05;
return;
default:
pr_err("%s: Unexpected reference rate %lu\n",
__func__, input_rate);
BUG();
}
}
static void pllx_check_defaults(struct tegra_clk_pll *pll)
{
u32 default_val;
default_val = PLLX_MISC0_DEFAULT_VALUE;
/* ignore lock enable */
_pll_misc_chk_default(clk_base, pll->params, 0, default_val,
PLLX_MISC0_WRITE_MASK & (~PLLX_MISC0_LOCK_ENABLE));
default_val = PLLX_MISC1_DEFAULT_VALUE;
_pll_misc_chk_default(clk_base, pll->params, 1, default_val,
PLLX_MISC1_WRITE_MASK);
/* ignore all but control bit */
default_val = PLLX_MISC2_DEFAULT_VALUE;
_pll_misc_chk_default(clk_base, pll->params, 2,
default_val, PLLX_MISC2_EN_DYNRAMP);
default_val = PLLX_MISC3_DEFAULT_VALUE & (~PLLX_MISC3_IDDQ);
_pll_misc_chk_default(clk_base, pll->params, 3, default_val,
PLLX_MISC3_WRITE_MASK);
default_val = PLLX_MISC4_DEFAULT_VALUE;
_pll_misc_chk_default(clk_base, pll->params, 4, default_val,
PLLX_MISC4_WRITE_MASK);
default_val = PLLX_MISC5_DEFAULT_VALUE;
_pll_misc_chk_default(clk_base, pll->params, 5, default_val,
PLLX_MISC5_WRITE_MASK);
}
static void tegra210_pllx_set_defaults(struct tegra_clk_pll *pllx)
{
u32 val;
u32 step_a, step_b;
pllx->params->defaults_set = true;
/* Get ready dyn ramp state machine settings */
pllx_get_dyn_steps(&pllx->hw, &step_a, &step_b);
val = PLLX_MISC2_DEFAULT_VALUE & (~PLLX_MISC2_DYNRAMP_STEPA_MASK) &
(~PLLX_MISC2_DYNRAMP_STEPB_MASK);
val |= step_a << PLLX_MISC2_DYNRAMP_STEPA_SHIFT;
val |= step_b << PLLX_MISC2_DYNRAMP_STEPB_SHIFT;
if (readl_relaxed(clk_base + pllx->params->base_reg) & PLL_ENABLE) {
/*
* PLL is ON: check if defaults already set, then set those
* that can be updated in flight.
*/
pllx_check_defaults(pllx);
if (!pllx->params->defaults_set)
pr_warn("PLL_X already enabled. Postponing set full defaults\n");
/* Configure dyn ramp, disable lock override */
writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[2]);
/* Enable lock detect */
val = readl_relaxed(clk_base + pllx->params->ext_misc_reg[0]);
val &= ~PLLX_MISC0_LOCK_ENABLE;
val |= PLLX_MISC0_DEFAULT_VALUE & PLLX_MISC0_LOCK_ENABLE;
writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[0]);
fence_udelay(1, clk_base);
return;
}
/* Enable lock detect and CPU output */
writel_relaxed(PLLX_MISC0_DEFAULT_VALUE, clk_base +
pllx->params->ext_misc_reg[0]);
/* Setup */
writel_relaxed(PLLX_MISC1_DEFAULT_VALUE, clk_base +
pllx->params->ext_misc_reg[1]);
/* Configure dyn ramp state machine, disable lock override */
writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[2]);
/* Set IDDQ */
writel_relaxed(PLLX_MISC3_DEFAULT_VALUE, clk_base +
pllx->params->ext_misc_reg[3]);
/* Disable SDM */
writel_relaxed(PLLX_MISC4_DEFAULT_VALUE, clk_base +
pllx->params->ext_misc_reg[4]);
writel_relaxed(PLLX_MISC5_DEFAULT_VALUE, clk_base +
pllx->params->ext_misc_reg[5]);
fence_udelay(1, clk_base);
}
/* PLLMB */
static void tegra210_pllmb_set_defaults(struct tegra_clk_pll *pllmb)
{
u32 mask, val = readl_relaxed(clk_base + pllmb->params->base_reg);
pllmb->params->defaults_set = true;
if (val & PLL_ENABLE) {
/*
* PLL is ON: check if defaults already set, then set those
* that can be updated in flight.
*/
val = PLLMB_MISC1_DEFAULT_VALUE & (~PLLMB_MISC1_IDDQ);
mask = PLLMB_MISC1_LOCK_ENABLE | PLLMB_MISC1_LOCK_OVERRIDE;
_pll_misc_chk_default(clk_base, pllmb->params, 0, val,
~mask & PLLMB_MISC1_WRITE_MASK);
if (!pllmb->params->defaults_set)
pr_warn("PLL_MB already enabled. Postponing set full defaults\n");
/* Enable lock detect */
val = readl_relaxed(clk_base + pllmb->params->ext_misc_reg[0]);
val &= ~mask;
val |= PLLMB_MISC1_DEFAULT_VALUE & mask;
writel_relaxed(val, clk_base + pllmb->params->ext_misc_reg[0]);
fence_udelay(1, clk_base);
return;
}
/* set IDDQ, enable lock detect */
writel_relaxed(PLLMB_MISC1_DEFAULT_VALUE,
clk_base + pllmb->params->ext_misc_reg[0]);
fence_udelay(1, clk_base);
}
/*
* PLLP
* VCO is exposed to the clock tree directly along with post-divider output.
* Both VCO and post-divider output rates are fixed at 408MHz and 204MHz,
* respectively.
*/
static void pllp_check_defaults(struct tegra_clk_pll *pll, bool enabled)
{
u32 val, mask;
/* Ignore lock enable (will be set), make sure not in IDDQ if enabled */
val = PLLP_MISC0_DEFAULT_VALUE & (~PLLP_MISC0_IDDQ);
mask = PLLP_MISC0_LOCK_ENABLE | PLLP_MISC0_LOCK_OVERRIDE;
if (!enabled)
mask |= PLLP_MISC0_IDDQ;
_pll_misc_chk_default(clk_base, pll->params, 0, val,
~mask & PLLP_MISC0_WRITE_MASK);
/* Ignore branch controls */
val = PLLP_MISC1_DEFAULT_VALUE;
mask = PLLP_MISC1_HSIO_EN | PLLP_MISC1_XUSB_EN;
_pll_misc_chk_default(clk_base, pll->params, 1, val,
~mask & PLLP_MISC1_WRITE_MASK);
}
static void tegra210_pllp_set_defaults(struct tegra_clk_pll *pllp)
{
u32 mask;
u32 val = readl_relaxed(clk_base + pllp->params->base_reg);
pllp->params->defaults_set = true;
if (val & PLL_ENABLE) {
/*
* PLL is ON: check if defaults already set, then set those
* that can be updated in flight.
*/
pllp_check_defaults(pllp, true);
if (!pllp->params->defaults_set)
pr_warn("PLL_P already enabled. Postponing set full defaults\n");
/* Enable lock detect */
val = readl_relaxed(clk_base + pllp->params->ext_misc_reg[0]);
mask = PLLP_MISC0_LOCK_ENABLE | PLLP_MISC0_LOCK_OVERRIDE;
val &= ~mask;
val |= PLLP_MISC0_DEFAULT_VALUE & mask;
writel_relaxed(val, clk_base + pllp->params->ext_misc_reg[0]);
fence_udelay(1, clk_base);
return;
}
/* set IDDQ, enable lock detect */
writel_relaxed(PLLP_MISC0_DEFAULT_VALUE,
clk_base + pllp->params->ext_misc_reg[0]);
/* Preserve branch control */
val = readl_relaxed(clk_base + pllp->params->ext_misc_reg[1]);
mask = PLLP_MISC1_HSIO_EN | PLLP_MISC1_XUSB_EN;
val &= mask;
val |= ~mask & PLLP_MISC1_DEFAULT_VALUE;
writel_relaxed(val, clk_base + pllp->params->ext_misc_reg[1]);
fence_udelay(1, clk_base);
}
/*
* PLLU
* VCO is exposed to the clock tree directly along with post-divider output.
* Both VCO and post-divider output rates are fixed at 480MHz and 240MHz,
* respectively.
*/
static void pllu_check_defaults(struct tegra_clk_pll_params *params,
bool hw_control)
{
u32 val, mask;
/* Ignore lock enable (will be set) and IDDQ if under h/w control */
val = PLLU_MISC0_DEFAULT_VALUE & (~PLLU_MISC0_IDDQ);
mask = PLLU_MISC0_LOCK_ENABLE | (hw_control ? PLLU_MISC0_IDDQ : 0);
_pll_misc_chk_default(clk_base, params, 0, val,
~mask & PLLU_MISC0_WRITE_MASK);
val = PLLU_MISC1_DEFAULT_VALUE;
mask = PLLU_MISC1_LOCK_OVERRIDE;
_pll_misc_chk_default(clk_base, params, 1, val,
~mask & PLLU_MISC1_WRITE_MASK);
}
static void tegra210_pllu_set_defaults(struct tegra_clk_pll_params *pllu)
{
u32 val = readl_relaxed(clk_base + pllu->base_reg);
pllu->defaults_set = true;
if (val & PLL_ENABLE) {
/*
* PLL is ON: check if defaults already set, then set those
* that can be updated in flight.
*/
pllu_check_defaults(pllu, false);
if (!pllu->defaults_set)
pr_warn("PLL_U already enabled. Postponing set full defaults\n");
/* Enable lock detect */
val = readl_relaxed(clk_base + pllu->ext_misc_reg[0]);
val &= ~PLLU_MISC0_LOCK_ENABLE;
val |= PLLU_MISC0_DEFAULT_VALUE & PLLU_MISC0_LOCK_ENABLE;
writel_relaxed(val, clk_base + pllu->ext_misc_reg[0]);
val = readl_relaxed(clk_base + pllu->ext_misc_reg[1]);
val &= ~PLLU_MISC1_LOCK_OVERRIDE;
val |= PLLU_MISC1_DEFAULT_VALUE & PLLU_MISC1_LOCK_OVERRIDE;
writel_relaxed(val, clk_base + pllu->ext_misc_reg[1]);
fence_udelay(1, clk_base);
return;
}
/* set IDDQ, enable lock detect */
writel_relaxed(PLLU_MISC0_DEFAULT_VALUE,
clk_base + pllu->ext_misc_reg[0]);
writel_relaxed(PLLU_MISC1_DEFAULT_VALUE,
clk_base + pllu->ext_misc_reg[1]);
fence_udelay(1, clk_base);
}
#define mask(w) ((1 << (w)) - 1)
#define divm_mask(p) mask(p->params->div_nmp->divm_width)
#define divn_mask(p) mask(p->params->div_nmp->divn_width)
#define divp_mask(p) (p->params->flags & TEGRA_PLLU ? PLLU_POST_DIVP_MASK :\
mask(p->params->div_nmp->divp_width))
#define divm_shift(p) ((p)->params->div_nmp->divm_shift)
#define divn_shift(p) ((p)->params->div_nmp->divn_shift)
#define divp_shift(p) ((p)->params->div_nmp->divp_shift)
#define divm_mask_shifted(p) (divm_mask(p) << divm_shift(p))
#define divn_mask_shifted(p) (divn_mask(p) << divn_shift(p))
#define divp_mask_shifted(p) (divp_mask(p) << divp_shift(p))
#define PLL_LOCKDET_DELAY 2 /* Lock detection safety delays */
static int tegra210_wait_for_pll_stable(struct tegra_clk_pll *pll,
u32 reg, u32 mask)
{
int i;
u32 val = 0;
for (i = 0; i < pll->params->lock_delay / PLL_LOCKDET_DELAY + 1; i++) {
udelay(PLL_LOCKDET_DELAY);
val = readl_relaxed(clk_base + reg);
if ((val & mask) == mask) {
udelay(PLL_LOCKDET_DELAY);
return 0;
}
}
return -ETIMEDOUT;
}
static int tegra210_pllx_dyn_ramp(struct tegra_clk_pll *pllx,
struct tegra_clk_pll_freq_table *cfg)
{
u32 val, base, ndiv_new_mask;
ndiv_new_mask = (divn_mask(pllx) >> pllx->params->div_nmp->divn_shift)
<< PLLX_MISC2_NDIV_NEW_SHIFT;
val = readl_relaxed(clk_base + pllx->params->ext_misc_reg[2]);
val &= (~ndiv_new_mask);
val |= cfg->n << PLLX_MISC2_NDIV_NEW_SHIFT;
writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[2]);
fence_udelay(1, clk_base);
val = readl_relaxed(clk_base + pllx->params->ext_misc_reg[2]);
val |= PLLX_MISC2_EN_DYNRAMP;
writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[2]);
fence_udelay(1, clk_base);
tegra210_wait_for_pll_stable(pllx, pllx->params->ext_misc_reg[2],
PLLX_MISC2_DYNRAMP_DONE);
base = readl_relaxed(clk_base + pllx->params->base_reg) &
(~divn_mask_shifted(pllx));
base |= cfg->n << pllx->params->div_nmp->divn_shift;
writel_relaxed(base, clk_base + pllx->params->base_reg);
fence_udelay(1, clk_base);
val &= ~PLLX_MISC2_EN_DYNRAMP;
writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[2]);
fence_udelay(1, clk_base);
pr_debug("%s: dynamic ramp to m = %u n = %u p = %u, Fout = %lu kHz\n",
__clk_get_name(pllx->hw.clk), cfg->m, cfg->n, cfg->p,
cfg->input_rate / cfg->m * cfg->n /
pllx->params->pdiv_tohw[cfg->p].pdiv / 1000);
return 0;
}
/*
* Common configuration for PLLs with fixed input divider policy:
* - always set fixed M-value based on the reference rate
* - always set P-value value 1:1 for output rates above VCO minimum, and
* choose minimum necessary P-value for output rates below VCO maximum
* - calculate N-value based on selected M and P
* - calculate SDM_DIN fractional part
*/
static int tegra210_pll_fixed_mdiv_cfg(struct clk_hw *hw,
struct tegra_clk_pll_freq_table *cfg,
unsigned long rate, unsigned long input_rate)
{
struct tegra_clk_pll *pll = to_clk_pll(hw);
struct tegra_clk_pll_params *params = pll->params;
int p;
unsigned long cf, p_rate;
u32 pdiv;
if (!rate)
return -EINVAL;
if (!(params->flags & TEGRA_PLL_VCO_OUT)) {
p = DIV_ROUND_UP(params->vco_min, rate);
p = params->round_p_to_pdiv(p, &pdiv);
} else {
p = rate >= params->vco_min ? 1 : -EINVAL;
}
if (p < 0)
return -EINVAL;
cfg->m = tegra_pll_get_fixed_mdiv(hw, input_rate);
cfg->p = p;
/* Store P as HW value, as that is what is expected */
cfg->p = tegra_pll_p_div_to_hw(pll, cfg->p);
p_rate = rate * p;
if (p_rate > params->vco_max)
p_rate = params->vco_max;
cf = input_rate / cfg->m;
cfg->n = p_rate / cf;
cfg->sdm_data = 0;
cfg->output_rate = input_rate;
if (params->sdm_ctrl_reg) {
unsigned long rem = p_rate - cf * cfg->n;
/* If ssc is enabled SDM enabled as well, even for integer n */
if (rem || params->ssc_ctrl_reg) {
u64 s = rem * PLL_SDM_COEFF;
do_div(s, cf);
s -= PLL_SDM_COEFF / 2;
cfg->sdm_data = sdin_din_to_data(s);
}
cfg->output_rate *= sdin_get_n_eff(cfg);
cfg->output_rate /= p * cfg->m * PLL_SDM_COEFF;
} else {
cfg->output_rate *= cfg->n;
cfg->output_rate /= p * cfg->m;
}
cfg->input_rate = input_rate;
return 0;
}
/*
* clk_pll_set_gain - set gain to m, n to calculate correct VCO rate
*
* @cfg: struct tegra_clk_pll_freq_table * cfg
*
* For Normal mode:
* Fvco = Fref * NDIV / MDIV
*
* For fractional mode:
* Fvco = Fref * (NDIV + 0.5 + SDM_DIN / PLL_SDM_COEFF) / MDIV
*/
static void tegra210_clk_pll_set_gain(struct tegra_clk_pll_freq_table *cfg)
{
cfg->n = sdin_get_n_eff(cfg);
cfg->m *= PLL_SDM_COEFF;
}
static unsigned long
tegra210_clk_adjust_vco_min(struct tegra_clk_pll_params *params,
unsigned long parent_rate)
{
return tegra_pll_adjust_vco_min_sdm(params, parent_rate, PLL_SDM_COEFF);
}
static struct div_nmp pllx_nmp = {
.divm_shift = 0,
.divm_width = 8,
.divn_shift = 8,
.divn_width = 8,
.divp_shift = 20,
.divp_width = 5,
};
/*
* PLL post divider maps - two types: quasi-linear and exponential
* post divider.
*/
#define PLL_QLIN_PDIV_MAX 16
static const struct pdiv_map pll_qlin_pdiv_to_hw[] = {
{ .pdiv = 1, .hw_val = 0 },
{ .pdiv = 2, .hw_val = 1 },
{ .pdiv = 3, .hw_val = 2 },
{ .pdiv = 4, .hw_val = 3 },
{ .pdiv = 5, .hw_val = 4 },
{ .pdiv = 6, .hw_val = 5 },
{ .pdiv = 8, .hw_val = 6 },
{ .pdiv = 9, .hw_val = 7 },
{ .pdiv = 10, .hw_val = 8 },
{ .pdiv = 12, .hw_val = 9 },
{ .pdiv = 15, .hw_val = 10 },
{ .pdiv = 16, .hw_val = 11 },
{ .pdiv = 18, .hw_val = 12 },
{ .pdiv = 20, .hw_val = 13 },
{ .pdiv = 24, .hw_val = 14 },
{ .pdiv = 30, .hw_val = 15 },
{ .pdiv = 32, .hw_val = 16 },
{ .pdiv = 0, },
};
static u32 pll_qlin_p_to_pdiv(u32 p, u32 *pdiv)
{
int i;
if (p) {
for (i = 0; i <= PLL_QLIN_PDIV_MAX; i++) {
if (p <= pll_qlin_pdiv_to_hw[i].pdiv) {
if (pdiv)
*pdiv = i;
return pll_qlin_pdiv_to_hw[i].pdiv;
}
}
}
return -EINVAL;
}
#define PLL_EXPO_PDIV_MAX 7
static const struct pdiv_map pll_expo_pdiv_to_hw[] = {
{ .pdiv = 1, .hw_val = 0 },
{ .pdiv = 2, .hw_val = 1 },
{ .pdiv = 4, .hw_val = 2 },
{ .pdiv = 8, .hw_val = 3 },
{ .pdiv = 16, .hw_val = 4 },
{ .pdiv = 32, .hw_val = 5 },
{ .pdiv = 64, .hw_val = 6 },
{ .pdiv = 128, .hw_val = 7 },
{ .pdiv = 0, },
};
static u32 pll_expo_p_to_pdiv(u32 p, u32 *pdiv)
{
if (p) {
u32 i = fls(p);
if (i == ffs(p))
i--;
if (i <= PLL_EXPO_PDIV_MAX) {
if (pdiv)
*pdiv = i;
return 1 << i;
}
}
return -EINVAL;
}
static struct tegra_clk_pll_freq_table pll_x_freq_table[] = {
/* 1 GHz */
{ 12000000, 1000000000, 166, 1, 2, 0 }, /* actual: 996.0 MHz */
{ 13000000, 1000000000, 153, 1, 2, 0 }, /* actual: 994.0 MHz */
{ 38400000, 1000000000, 156, 3, 2, 0 }, /* actual: 998.4 MHz */
{ 0, 0, 0, 0, 0, 0 },
};
static struct tegra_clk_pll_params pll_x_params = {
.input_min = 12000000,
.input_max = 800000000,
.cf_min = 12000000,
.cf_max = 38400000,
.vco_min = 1350000000,
.vco_max = 3000000000UL,
.base_reg = PLLX_BASE,
.misc_reg = PLLX_MISC0,
.lock_mask = PLL_BASE_LOCK,
.lock_enable_bit_idx = PLL_MISC_LOCK_ENABLE,
.lock_delay = 300,
.ext_misc_reg[0] = PLLX_MISC0,
.ext_misc_reg[1] = PLLX_MISC1,
.ext_misc_reg[2] = PLLX_MISC2,
.ext_misc_reg[3] = PLLX_MISC3,
.ext_misc_reg[4] = PLLX_MISC4,
.ext_misc_reg[5] = PLLX_MISC5,
.iddq_reg = PLLX_MISC3,
.iddq_bit_idx = PLLXP_IDDQ_BIT,
.max_p = PLL_QLIN_PDIV_MAX,
.mdiv_default = 2,
.dyn_ramp_reg = PLLX_MISC2,
.stepa_shift = 16,
.stepb_shift = 24,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.div_nmp = &pllx_nmp,
.freq_table = pll_x_freq_table,
.flags = TEGRA_PLL_USE_LOCK | TEGRA_PLL_HAS_LOCK_ENABLE,
.dyn_ramp = tegra210_pllx_dyn_ramp,
.set_defaults = tegra210_pllx_set_defaults,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct div_nmp pllc_nmp = {
.divm_shift = 0,
.divm_width = 8,
.divn_shift = 10,
.divn_width = 8,
.divp_shift = 20,
.divp_width = 5,
};
static struct tegra_clk_pll_freq_table pll_cx_freq_table[] = {
{ 12000000, 510000000, 85, 1, 2, 0 },
{ 13000000, 510000000, 78, 1, 2, 0 }, /* actual: 507.0 MHz */
{ 38400000, 510000000, 79, 3, 2, 0 }, /* actual: 505.6 MHz */
{ 0, 0, 0, 0, 0, 0 },
};
static struct tegra_clk_pll_params pll_c_params = {
.input_min = 12000000,
.input_max = 700000000,
.cf_min = 12000000,
.cf_max = 50000000,
.vco_min = 600000000,
.vco_max = 1200000000,
.base_reg = PLLC_BASE,
.misc_reg = PLLC_MISC0,
.lock_mask = PLL_BASE_LOCK,
.lock_delay = 300,
.iddq_reg = PLLC_MISC1,
.iddq_bit_idx = PLLCX_IDDQ_BIT,
.reset_reg = PLLC_MISC0,
.reset_bit_idx = PLLCX_RESET_BIT,
.max_p = PLL_QLIN_PDIV_MAX,
.ext_misc_reg[0] = PLLC_MISC0,
.ext_misc_reg[1] = PLLC_MISC1,
.ext_misc_reg[2] = PLLC_MISC2,
.ext_misc_reg[3] = PLLC_MISC3,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.mdiv_default = 3,
.div_nmp = &pllc_nmp,
.freq_table = pll_cx_freq_table,
.flags = TEGRA_PLL_USE_LOCK,
.set_defaults = _pllc_set_defaults,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct div_nmp pllcx_nmp = {
.divm_shift = 0,
.divm_width = 8,
.divn_shift = 10,
.divn_width = 8,
.divp_shift = 20,
.divp_width = 5,
};
static struct tegra_clk_pll_params pll_c2_params = {
.input_min = 12000000,
.input_max = 700000000,
.cf_min = 12000000,
.cf_max = 50000000,
.vco_min = 600000000,
.vco_max = 1200000000,
.base_reg = PLLC2_BASE,
.misc_reg = PLLC2_MISC0,
.iddq_reg = PLLC2_MISC1,
.iddq_bit_idx = PLLCX_IDDQ_BIT,
.reset_reg = PLLC2_MISC0,
.reset_bit_idx = PLLCX_RESET_BIT,
.lock_mask = PLLCX_BASE_LOCK,
.lock_delay = 300,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.mdiv_default = 3,
.div_nmp = &pllcx_nmp,
.max_p = PLL_QLIN_PDIV_MAX,
.ext_misc_reg[0] = PLLC2_MISC0,
.ext_misc_reg[1] = PLLC2_MISC1,
.ext_misc_reg[2] = PLLC2_MISC2,
.ext_misc_reg[3] = PLLC2_MISC3,
.freq_table = pll_cx_freq_table,
.flags = TEGRA_PLL_USE_LOCK,
.set_defaults = _pllc2_set_defaults,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct tegra_clk_pll_params pll_c3_params = {
.input_min = 12000000,
.input_max = 700000000,
.cf_min = 12000000,
.cf_max = 50000000,
.vco_min = 600000000,
.vco_max = 1200000000,
.base_reg = PLLC3_BASE,
.misc_reg = PLLC3_MISC0,
.lock_mask = PLLCX_BASE_LOCK,
.lock_delay = 300,
.iddq_reg = PLLC3_MISC1,
.iddq_bit_idx = PLLCX_IDDQ_BIT,
.reset_reg = PLLC3_MISC0,
.reset_bit_idx = PLLCX_RESET_BIT,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.mdiv_default = 3,
.div_nmp = &pllcx_nmp,
.max_p = PLL_QLIN_PDIV_MAX,
.ext_misc_reg[0] = PLLC3_MISC0,
.ext_misc_reg[1] = PLLC3_MISC1,
.ext_misc_reg[2] = PLLC3_MISC2,
.ext_misc_reg[3] = PLLC3_MISC3,
.freq_table = pll_cx_freq_table,
.flags = TEGRA_PLL_USE_LOCK,
.set_defaults = _pllc3_set_defaults,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct div_nmp pllss_nmp = {
.divm_shift = 0,
.divm_width = 8,
.divn_shift = 8,
.divn_width = 8,
.divp_shift = 19,
.divp_width = 5,
};
static struct tegra_clk_pll_freq_table pll_c4_vco_freq_table[] = {
{ 12000000, 600000000, 50, 1, 1, 0 },
{ 13000000, 600000000, 46, 1, 1, 0 }, /* actual: 598.0 MHz */
{ 38400000, 998400000, 78, 3, 1, 0 },
{ 38400000, 793600000, 62, 3, 1, 0 },
{ 0, 0, 0, 0, 0, 0 },
};
static const struct clk_div_table pll_vco_post_div_table[] = {
{ .val = 0, .div = 1 },
{ .val = 1, .div = 2 },
{ .val = 2, .div = 3 },
{ .val = 3, .div = 4 },
{ .val = 4, .div = 5 },
{ .val = 5, .div = 6 },
{ .val = 6, .div = 8 },
{ .val = 7, .div = 9 },
{ .val = 8, .div = 10 },
{ .val = 9, .div = 12 },
{ .val = 10, .div = 15 },
{ .val = 11, .div = 16 },
{ .val = 12, .div = 18 },
{ .val = 13, .div = 20 },
{ .val = 14, .div = 24 },
{ .val = 15, .div = 30 },
{ .val = 16, .div = 32 },
{ .val = 0, .div = 0 },
};
static struct tegra_clk_pll_params pll_c4_vco_params = {
.input_min = 9600000,
.input_max = 800000000,
.cf_min = 9600000,
.cf_max = 19200000,
.vco_min = 500000000,
.vco_max = 1080000000,
.base_reg = PLLC4_BASE,
.misc_reg = PLLC4_MISC0,
.lock_mask = PLL_BASE_LOCK,
.lock_delay = 300,
.max_p = PLL_QLIN_PDIV_MAX,
.ext_misc_reg[0] = PLLC4_MISC0,
.iddq_reg = PLLC4_BASE,
.iddq_bit_idx = PLLSS_IDDQ_BIT,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.mdiv_default = 3,
.div_nmp = &pllss_nmp,
.freq_table = pll_c4_vco_freq_table,
.set_defaults = tegra210_pllc4_set_defaults,
.flags = TEGRA_PLL_USE_LOCK | TEGRA_PLL_VCO_OUT,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct tegra_clk_pll_freq_table pll_m_freq_table[] = {
{ 12000000, 800000000, 66, 1, 1, 0 }, /* actual: 792.0 MHz */
{ 13000000, 800000000, 61, 1, 1, 0 }, /* actual: 793.0 MHz */
{ 38400000, 297600000, 93, 4, 3, 0 },
{ 38400000, 400000000, 125, 4, 3, 0 },
{ 38400000, 532800000, 111, 4, 2, 0 },
{ 38400000, 665600000, 104, 3, 2, 0 },
{ 38400000, 800000000, 125, 3, 2, 0 },
{ 38400000, 931200000, 97, 4, 1, 0 },
{ 38400000, 1065600000, 111, 4, 1, 0 },
{ 38400000, 1200000000, 125, 4, 1, 0 },
{ 38400000, 1331200000, 104, 3, 1, 0 },
{ 38400000, 1459200000, 76, 2, 1, 0 },
{ 38400000, 1600000000, 125, 3, 1, 0 },
{ 0, 0, 0, 0, 0, 0 },
};
static struct div_nmp pllm_nmp = {
.divm_shift = 0,
.divm_width = 8,
.override_divm_shift = 0,
.divn_shift = 8,
.divn_width = 8,
.override_divn_shift = 8,
.divp_shift = 20,
.divp_width = 5,
.override_divp_shift = 27,
};
static struct tegra_clk_pll_params pll_m_params = {
.input_min = 9600000,
.input_max = 500000000,
.cf_min = 9600000,
.cf_max = 19200000,
.vco_min = 800000000,
.vco_max = 1866000000,
.base_reg = PLLM_BASE,
.misc_reg = PLLM_MISC2,
.lock_mask = PLL_BASE_LOCK,
.lock_enable_bit_idx = PLLM_MISC_LOCK_ENABLE,
.lock_delay = 300,
.iddq_reg = PLLM_MISC2,
.iddq_bit_idx = PLLM_IDDQ_BIT,
.max_p = PLL_QLIN_PDIV_MAX,
.ext_misc_reg[0] = PLLM_MISC2,
.ext_misc_reg[1] = PLLM_MISC1,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.div_nmp = &pllm_nmp,
.pmc_divnm_reg = PMC_PLLM_WB0_OVERRIDE,
.pmc_divp_reg = PMC_PLLM_WB0_OVERRIDE_2,
.freq_table = pll_m_freq_table,
.flags = TEGRA_PLL_USE_LOCK | TEGRA_PLL_HAS_LOCK_ENABLE,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct tegra_clk_pll_params pll_mb_params = {
.input_min = 9600000,
.input_max = 500000000,
.cf_min = 9600000,
.cf_max = 19200000,
.vco_min = 800000000,
.vco_max = 1866000000,
.base_reg = PLLMB_BASE,
.misc_reg = PLLMB_MISC1,
.lock_mask = PLL_BASE_LOCK,
.lock_delay = 300,
.iddq_reg = PLLMB_MISC1,
.iddq_bit_idx = PLLMB_IDDQ_BIT,
.max_p = PLL_QLIN_PDIV_MAX,
.ext_misc_reg[0] = PLLMB_MISC1,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.div_nmp = &pllm_nmp,
.freq_table = pll_m_freq_table,
.flags = TEGRA_PLL_USE_LOCK,
.set_defaults = tegra210_pllmb_set_defaults,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct tegra_clk_pll_freq_table pll_e_freq_table[] = {
/* PLLE special case: use cpcon field to store cml divider value */
{ 672000000, 100000000, 125, 42, 1, 13 },
{ 624000000, 100000000, 125, 39, 1, 13 },
{ 336000000, 100000000, 125, 21, 1, 13 },
{ 312000000, 100000000, 200, 26, 1, 14 },
{ 38400000, 100000000, 125, 2, 1, 14 },
{ 12000000, 100000000, 200, 1, 1, 14 },
{ 0, 0, 0, 0, 0, 0 },
};
static struct div_nmp plle_nmp = {
.divm_shift = 0,
.divm_width = 8,
.divn_shift = 8,
.divn_width = 8,
.divp_shift = 24,
.divp_width = 5,
};
static struct tegra_clk_pll_params pll_e_params = {
.input_min = 12000000,
.input_max = 800000000,
.cf_min = 12000000,
.cf_max = 38400000,
.vco_min = 1600000000,
.vco_max = 2500000000U,
.base_reg = PLLE_BASE,
.misc_reg = PLLE_MISC0,
.aux_reg = PLLE_AUX,
.lock_mask = PLLE_MISC_LOCK,
.lock_enable_bit_idx = PLLE_MISC_LOCK_ENABLE,
.lock_delay = 300,
.div_nmp = &plle_nmp,
.ssc_ctrl_en_mask = PLLE_SS_COEFFICIENTS_VAL,
.ssc_ctrl_reg = PLLE_SS_CTRL,
.freq_table = pll_e_freq_table,
.flags = TEGRA_PLL_FIXED | TEGRA_PLL_LOCK_MISC | TEGRA_PLL_USE_LOCK |
TEGRA_PLL_HAS_LOCK_ENABLE,
.fixed_rate = 100000000,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct tegra_clk_pll_freq_table pll_re_vco_freq_table[] = {
{ 12000000, 672000000, 56, 1, 1, 0 },
{ 13000000, 672000000, 51, 1, 1, 0 }, /* actual: 663.0 MHz */
{ 38400000, 672000000, 70, 4, 1, 0 },
{ 0, 0, 0, 0, 0, 0 },
};
static struct div_nmp pllre_nmp = {
.divm_shift = 0,
.divm_width = 8,
.divn_shift = 8,
.divn_width = 8,
.divp_shift = 16,
.divp_width = 5,
};
static struct tegra_clk_pll_params pll_re_vco_params = {
.input_min = 9600000,
.input_max = 800000000,
.cf_min = 9600000,
.cf_max = 19200000,
.vco_min = 350000000,
.vco_max = 700000000,
.base_reg = PLLRE_BASE,
.misc_reg = PLLRE_MISC0,
.lock_mask = PLLRE_MISC_LOCK,
.lock_delay = 300,
.max_p = PLL_QLIN_PDIV_MAX,
.ext_misc_reg[0] = PLLRE_MISC0,
.iddq_reg = PLLRE_MISC0,
.iddq_bit_idx = PLLRE_IDDQ_BIT,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.div_nmp = &pllre_nmp,
.freq_table = pll_re_vco_freq_table,
.flags = TEGRA_PLL_USE_LOCK | TEGRA_PLL_LOCK_MISC | TEGRA_PLL_VCO_OUT,
.set_defaults = tegra210_pllre_set_defaults,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct div_nmp pllp_nmp = {
.divm_shift = 0,
.divm_width = 8,
.divn_shift = 10,
.divn_width = 8,
.divp_shift = 20,
.divp_width = 5,
};
static struct tegra_clk_pll_freq_table pll_p_freq_table[] = {
{ 12000000, 408000000, 34, 1, 1, 0 },
{ 38400000, 408000000, 85, 8, 1, 0 }, /* cf = 4.8MHz, allowed exception */
{ 0, 0, 0, 0, 0, 0 },
};
static struct tegra_clk_pll_params pll_p_params = {
.input_min = 9600000,
.input_max = 800000000,
.cf_min = 9600000,
.cf_max = 19200000,
.vco_min = 350000000,
.vco_max = 700000000,
.base_reg = PLLP_BASE,
.misc_reg = PLLP_MISC0,
.lock_mask = PLL_BASE_LOCK,
.lock_delay = 300,
.iddq_reg = PLLP_MISC0,
.iddq_bit_idx = PLLXP_IDDQ_BIT,
.ext_misc_reg[0] = PLLP_MISC0,
.ext_misc_reg[1] = PLLP_MISC1,
.div_nmp = &pllp_nmp,
.freq_table = pll_p_freq_table,
.fixed_rate = 408000000,
.flags = TEGRA_PLL_FIXED | TEGRA_PLL_USE_LOCK | TEGRA_PLL_VCO_OUT,
.set_defaults = tegra210_pllp_set_defaults,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct tegra_clk_pll_params pll_a1_params = {
.input_min = 12000000,
.input_max = 700000000,
.cf_min = 12000000,
.cf_max = 50000000,
.vco_min = 600000000,
.vco_max = 1200000000,
.base_reg = PLLA1_BASE,
.misc_reg = PLLA1_MISC0,
.lock_mask = PLLCX_BASE_LOCK,
.lock_delay = 300,
.iddq_reg = PLLA1_MISC1,
.iddq_bit_idx = PLLCX_IDDQ_BIT,
.reset_reg = PLLA1_MISC0,
.reset_bit_idx = PLLCX_RESET_BIT,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.div_nmp = &pllc_nmp,
.ext_misc_reg[0] = PLLA1_MISC0,
.ext_misc_reg[1] = PLLA1_MISC1,
.ext_misc_reg[2] = PLLA1_MISC2,
.ext_misc_reg[3] = PLLA1_MISC3,
.freq_table = pll_cx_freq_table,
.flags = TEGRA_PLL_USE_LOCK,
.mdiv_default = 3,
.set_defaults = _plla1_set_defaults,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
};
static struct div_nmp plla_nmp = {
.divm_shift = 0,
.divm_width = 8,
.divn_shift = 8,
.divn_width = 8,
.divp_shift = 20,
.divp_width = 5,
};
static struct tegra_clk_pll_freq_table pll_a_freq_table[] = {
{ 12000000, 282240000, 47, 1, 2, 1, 0xf148 }, /* actual: 282240234 */
{ 12000000, 368640000, 61, 1, 2, 1, 0xfe15 }, /* actual: 368640381 */
{ 12000000, 240000000, 60, 1, 3, 1, 0 },
{ 13000000, 282240000, 43, 1, 2, 1, 0xfd7d }, /* actual: 282239807 */
{ 13000000, 368640000, 56, 1, 2, 1, 0x06d8 }, /* actual: 368640137 */
{ 13000000, 240000000, 55, 1, 3, 1, 0 }, /* actual: 238.3 MHz */
{ 38400000, 282240000, 44, 3, 2, 1, 0xf333 }, /* actual: 282239844 */
{ 38400000, 368640000, 57, 3, 2, 1, 0x0333 }, /* actual: 368639844 */
{ 38400000, 240000000, 75, 3, 4, 1, 0 },
{ 0, 0, 0, 0, 0, 0, 0 },
};
static struct tegra_clk_pll_params pll_a_params = {
.input_min = 12000000,
.input_max = 800000000,
.cf_min = 12000000,
.cf_max = 19200000,
.vco_min = 500000000,
.vco_max = 1000000000,
.base_reg = PLLA_BASE,
.misc_reg = PLLA_MISC0,
.lock_mask = PLL_BASE_LOCK,
.lock_delay = 300,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.iddq_reg = PLLA_BASE,
.iddq_bit_idx = PLLA_IDDQ_BIT,
.div_nmp = &plla_nmp,
.sdm_din_reg = PLLA_MISC1,
.sdm_din_mask = PLLA_SDM_DIN_MASK,
.sdm_ctrl_reg = PLLA_MISC2,
.sdm_ctrl_en_mask = PLLA_SDM_EN_MASK,
.ext_misc_reg[0] = PLLA_MISC0,
.ext_misc_reg[1] = PLLA_MISC1,
.ext_misc_reg[2] = PLLA_MISC2,
.freq_table = pll_a_freq_table,
.flags = TEGRA_PLL_USE_LOCK | TEGRA_MDIV_NEW,
.set_defaults = tegra210_plla_set_defaults,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
.set_gain = tegra210_clk_pll_set_gain,
.adjust_vco = tegra210_clk_adjust_vco_min,
};
static struct div_nmp plld_nmp = {
.divm_shift = 0,
.divm_width = 8,
.divn_shift = 11,
.divn_width = 8,
.divp_shift = 20,
.divp_width = 3,
};
static struct tegra_clk_pll_freq_table pll_d_freq_table[] = {
{ 12000000, 594000000, 99, 1, 2, 0, 0 },
{ 13000000, 594000000, 91, 1, 2, 0, 0xfc4f }, /* actual: 594000183 */
{ 38400000, 594000000, 30, 1, 2, 0, 0x0e00 },
{ 0, 0, 0, 0, 0, 0, 0 },
};
static struct tegra_clk_pll_params pll_d_params = {
.input_min = 12000000,
.input_max = 800000000,
.cf_min = 12000000,
.cf_max = 38400000,
.vco_min = 750000000,
.vco_max = 1500000000,
.base_reg = PLLD_BASE,
.misc_reg = PLLD_MISC0,
.lock_mask = PLL_BASE_LOCK,
.lock_delay = 1000,
.iddq_reg = PLLD_MISC0,
.iddq_bit_idx = PLLD_IDDQ_BIT,
.round_p_to_pdiv = pll_expo_p_to_pdiv,
.pdiv_tohw = pll_expo_pdiv_to_hw,
.div_nmp = &plld_nmp,
.sdm_din_reg = PLLD_MISC0,
.sdm_din_mask = PLLA_SDM_DIN_MASK,
.sdm_ctrl_reg = PLLD_MISC0,
.sdm_ctrl_en_mask = PLLD_SDM_EN_MASK,
.ext_misc_reg[0] = PLLD_MISC0,
.ext_misc_reg[1] = PLLD_MISC1,
.freq_table = pll_d_freq_table,
.flags = TEGRA_PLL_USE_LOCK,
.mdiv_default = 1,
.set_defaults = tegra210_plld_set_defaults,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
.set_gain = tegra210_clk_pll_set_gain,
.adjust_vco = tegra210_clk_adjust_vco_min,
};
static struct tegra_clk_pll_freq_table tegra210_pll_d2_freq_table[] = {
{ 12000000, 594000000, 99, 1, 2, 0, 0xf000 },
{ 13000000, 594000000, 91, 1, 2, 0, 0xfc4f }, /* actual: 594000183 */
{ 38400000, 594000000, 30, 1, 2, 0, 0x0e00 },
{ 0, 0, 0, 0, 0, 0, 0 },
};
/* s/w policy, always tegra_pll_ref */
static struct tegra_clk_pll_params pll_d2_params = {
.input_min = 12000000,
.input_max = 800000000,
.cf_min = 12000000,
.cf_max = 38400000,
.vco_min = 750000000,
.vco_max = 1500000000,
.base_reg = PLLD2_BASE,
.misc_reg = PLLD2_MISC0,
.lock_mask = PLL_BASE_LOCK,
.lock_delay = 300,
.iddq_reg = PLLD2_BASE,
.iddq_bit_idx = PLLSS_IDDQ_BIT,
.sdm_din_reg = PLLD2_MISC3,
.sdm_din_mask = PLLA_SDM_DIN_MASK,
.sdm_ctrl_reg = PLLD2_MISC1,
.sdm_ctrl_en_mask = PLLD2_SDM_EN_MASK,
.sdm_ctrl_reset_mask = PLLD2_SDM_RESET_MASK,
/* disable spread-spectrum for pll_d2 */
.ssc_ctrl_reg = PLLD2_MISC1,
.ssc_ctrl_en_mask = PLLD2_SSC_EN_MASK,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.div_nmp = &pllss_nmp,
.ext_misc_reg[0] = PLLD2_MISC0,
.ext_misc_reg[1] = PLLD2_MISC1,
.ext_misc_reg[2] = PLLD2_MISC2,
.ext_misc_reg[3] = PLLD2_MISC3,
.max_p = PLL_QLIN_PDIV_MAX,
.mdiv_default = 1,
.freq_table = tegra210_pll_d2_freq_table,
.set_defaults = tegra210_plld2_set_defaults,
.flags = TEGRA_PLL_USE_LOCK,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
.set_gain = tegra210_clk_pll_set_gain,
.adjust_vco = tegra210_clk_adjust_vco_min,
};
static struct tegra_clk_pll_freq_table pll_dp_freq_table[] = {
{ 12000000, 270000000, 90, 1, 4, 0, 0xf000 },
{ 13000000, 270000000, 83, 1, 4, 0, 0xf000 }, /* actual: 269.8 MHz */
{ 38400000, 270000000, 28, 1, 4, 0, 0xf400 },
{ 0, 0, 0, 0, 0, 0, 0 },
};
static struct tegra_clk_pll_params pll_dp_params = {
.input_min = 12000000,
.input_max = 800000000,
.cf_min = 12000000,
.cf_max = 38400000,
.vco_min = 750000000,
.vco_max = 1500000000,
.base_reg = PLLDP_BASE,
.misc_reg = PLLDP_MISC,
.lock_mask = PLL_BASE_LOCK,
.lock_delay = 300,
.iddq_reg = PLLDP_BASE,
.iddq_bit_idx = PLLSS_IDDQ_BIT,
.sdm_din_reg = PLLDP_SS_CTRL2,
.sdm_din_mask = PLLA_SDM_DIN_MASK,
.sdm_ctrl_reg = PLLDP_SS_CFG,
.sdm_ctrl_en_mask = PLLDP_SDM_EN_MASK,
.sdm_ctrl_reset_mask = PLLD2_SDM_RESET_MASK,
.ssc_ctrl_reg = PLLDP_SS_CFG,
.ssc_ctrl_en_mask = PLLDP_SSC_EN_MASK,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.div_nmp = &pllss_nmp,
.ext_misc_reg[0] = PLLDP_MISC,
.ext_misc_reg[1] = PLLDP_SS_CFG,
.ext_misc_reg[2] = PLLDP_SS_CTRL1,
.ext_misc_reg[3] = PLLDP_SS_CTRL2,
.max_p = PLL_QLIN_PDIV_MAX,
.mdiv_default = 1,
.freq_table = pll_dp_freq_table,
.set_defaults = tegra210_plldp_set_defaults,
.flags = TEGRA_PLL_USE_LOCK,
.calc_rate = tegra210_pll_fixed_mdiv_cfg,
.set_gain = tegra210_clk_pll_set_gain,
.adjust_vco = tegra210_clk_adjust_vco_min,
};
static struct div_nmp pllu_nmp = {
.divm_shift = 0,
.divm_width = 8,
.divn_shift = 8,
.divn_width = 8,
.divp_shift = 16,
.divp_width = 5,
};
static struct tegra_clk_pll_freq_table pll_u_freq_table[] = {
{ 38400000, 240000000, 25, 2, 1, 0 },
{ 0, 0, 0, 0, 0, 0 },
};
static struct tegra_clk_pll_params pll_u_vco_params = {
.input_min = 9600000,
.input_max = 800000000,
.cf_min = 9600000,
.cf_max = 19200000,
.vco_min = 350000000,
.vco_max = 700000000,
.base_reg = PLLU_BASE,
.misc_reg = PLLU_MISC0,
.lock_mask = PLL_BASE_LOCK,
.lock_delay = 1000,
.iddq_reg = PLLU_MISC0,
.iddq_bit_idx = PLLU_IDDQ_BIT,
.ext_misc_reg[0] = PLLU_MISC0,
.ext_misc_reg[1] = PLLU_MISC1,
.round_p_to_pdiv = pll_qlin_p_to_pdiv,
.pdiv_tohw = pll_qlin_pdiv_to_hw,
.div_nmp = &pllu_nmp,
.freq_table = pll_u_freq_table,
.flags = TEGRA_PLLU | TEGRA_PLL_USE_LOCK | TEGRA_PLL_VCO_OUT,
};
struct utmi_clk_param {
/* Oscillator Frequency in KHz */
u32 osc_frequency;
/* UTMIP PLL Enable Delay Count */
u8 enable_delay_count;
/* UTMIP PLL Stable count */
u16 stable_count;
/* UTMIP PLL Active delay count */
u8 active_delay_count;
/* UTMIP PLL Xtal frequency count */
u16 xtal_freq_count;
};
static const struct utmi_clk_param utmi_parameters[] = {
{
.osc_frequency = 38400000, .enable_delay_count = 0x0,
.stable_count = 0x0, .active_delay_count = 0x6,
.xtal_freq_count = 0x80
}, {
.osc_frequency = 13000000, .enable_delay_count = 0x02,
.stable_count = 0x33, .active_delay_count = 0x05,
.xtal_freq_count = 0x7f
}, {
.osc_frequency = 19200000, .enable_delay_count = 0x03,
.stable_count = 0x4b, .active_delay_count = 0x06,
.xtal_freq_count = 0xbb
}, {
.osc_frequency = 12000000, .enable_delay_count = 0x02,
.stable_count = 0x2f, .active_delay_count = 0x08,
.xtal_freq_count = 0x76
}, {
.osc_frequency = 26000000, .enable_delay_count = 0x04,
.stable_count = 0x66, .active_delay_count = 0x09,
.xtal_freq_count = 0xfe
}, {
.osc_frequency = 16800000, .enable_delay_count = 0x03,
.stable_count = 0x41, .active_delay_count = 0x0a,
.xtal_freq_count = 0xa4
},
};
static struct tegra_clk tegra210_clks[tegra_clk_max] __initdata = {
[tegra_clk_ispb] = { .dt_id = TEGRA210_CLK_ISPB, .present = true },
[tegra_clk_rtc] = { .dt_id = TEGRA210_CLK_RTC, .present = true },
[tegra_clk_timer] = { .dt_id = TEGRA210_CLK_TIMER, .present = true },
[tegra_clk_uarta_8] = { .dt_id = TEGRA210_CLK_UARTA, .present = true },
[tegra_clk_i2s1] = { .dt_id = TEGRA210_CLK_I2S1, .present = true },
[tegra_clk_i2c1] = { .dt_id = TEGRA210_CLK_I2C1, .present = true },
[tegra_clk_sdmmc1_9] = { .dt_id = TEGRA210_CLK_SDMMC1, .present = true },
[tegra_clk_pwm] = { .dt_id = TEGRA210_CLK_PWM, .present = true },
[tegra_clk_i2s2] = { .dt_id = TEGRA210_CLK_I2S2, .present = true },
[tegra_clk_usbd] = { .dt_id = TEGRA210_CLK_USBD, .present = true },
[tegra_clk_isp_9] = { .dt_id = TEGRA210_CLK_ISP, .present = true },
[tegra_clk_disp2_8] = { .dt_id = TEGRA210_CLK_DISP2, .present = true },
[tegra_clk_disp1_8] = { .dt_id = TEGRA210_CLK_DISP1, .present = true },
[tegra_clk_host1x_9] = { .dt_id = TEGRA210_CLK_HOST1X, .present = true },
[tegra_clk_i2s0] = { .dt_id = TEGRA210_CLK_I2S0, .present = true },
[tegra_clk_apbdma] = { .dt_id = TEGRA210_CLK_APBDMA, .present = true },
[tegra_clk_kfuse] = { .dt_id = TEGRA210_CLK_KFUSE, .present = true },
[tegra_clk_sbc1_9] = { .dt_id = TEGRA210_CLK_SBC1, .present = true },
[tegra_clk_sbc2_9] = { .dt_id = TEGRA210_CLK_SBC2, .present = true },
[tegra_clk_sbc3_9] = { .dt_id = TEGRA210_CLK_SBC3, .present = true },
[tegra_clk_i2c5] = { .dt_id = TEGRA210_CLK_I2C5, .present = true },
[tegra_clk_csi] = { .dt_id = TEGRA210_CLK_CSI, .present = true },
[tegra_clk_i2c2] = { .dt_id = TEGRA210_CLK_I2C2, .present = true },
[tegra_clk_uartc_8] = { .dt_id = TEGRA210_CLK_UARTC, .present = true },
[tegra_clk_mipi_cal] = { .dt_id = TEGRA210_CLK_MIPI_CAL, .present = true },
[tegra_clk_usb2] = { .dt_id = TEGRA210_CLK_USB2, .present = true },
[tegra_clk_bsev] = { .dt_id = TEGRA210_CLK_BSEV, .present = true },
[tegra_clk_uartd_8] = { .dt_id = TEGRA210_CLK_UARTD, .present = true },
[tegra_clk_i2c3] = { .dt_id = TEGRA210_CLK_I2C3, .present = true },
[tegra_clk_sbc4_9] = { .dt_id = TEGRA210_CLK_SBC4, .present = true },
[tegra_clk_sdmmc3_9] = { .dt_id = TEGRA210_CLK_SDMMC3, .present = true },
[tegra_clk_pcie] = { .dt_id = TEGRA210_CLK_PCIE, .present = true },
[tegra_clk_owr_8] = { .dt_id = TEGRA210_CLK_OWR, .present = true },
[tegra_clk_afi] = { .dt_id = TEGRA210_CLK_AFI, .present = true },
[tegra_clk_csite_8] = { .dt_id = TEGRA210_CLK_CSITE, .present = true },
[tegra_clk_soc_therm_8] = { .dt_id = TEGRA210_CLK_SOC_THERM, .present = true },
[tegra_clk_dtv] = { .dt_id = TEGRA210_CLK_DTV, .present = true },
[tegra_clk_i2cslow] = { .dt_id = TEGRA210_CLK_I2CSLOW, .present = true },
[tegra_clk_tsec_8] = { .dt_id = TEGRA210_CLK_TSEC, .present = true },
[tegra_clk_xusb_host] = { .dt_id = TEGRA210_CLK_XUSB_HOST, .present = true },
[tegra_clk_csus] = { .dt_id = TEGRA210_CLK_CSUS, .present = true },
[tegra_clk_mselect_8] = { .dt_id = TEGRA210_CLK_MSELECT, .present = true },
[tegra_clk_tsensor] = { .dt_id = TEGRA210_CLK_TSENSOR, .present = true },
[tegra_clk_i2s3] = { .dt_id = TEGRA210_CLK_I2S3, .present = true },
[tegra_clk_i2s4] = { .dt_id = TEGRA210_CLK_I2S4, .present = true },
[tegra_clk_i2c4] = { .dt_id = TEGRA210_CLK_I2C4, .present = true },
[tegra_clk_d_audio] = { .dt_id = TEGRA210_CLK_D_AUDIO, .present = true },
[tegra_clk_hda2codec_2x_8] = { .dt_id = TEGRA210_CLK_HDA2CODEC_2X, .present = true },
[tegra_clk_spdif_2x] = { .dt_id = TEGRA210_CLK_SPDIF_2X, .present = true },
[tegra_clk_actmon] = { .dt_id = TEGRA210_CLK_ACTMON, .present = true },
[tegra_clk_extern1] = { .dt_id = TEGRA210_CLK_EXTERN1, .present = true },
[tegra_clk_extern2] = { .dt_id = TEGRA210_CLK_EXTERN2, .present = true },
[tegra_clk_extern3] = { .dt_id = TEGRA210_CLK_EXTERN3, .present = true },
[tegra_clk_sata_oob_8] = { .dt_id = TEGRA210_CLK_SATA_OOB, .present = true },
[tegra_clk_sata_8] = { .dt_id = TEGRA210_CLK_SATA, .present = true },
[tegra_clk_hda_8] = { .dt_id = TEGRA210_CLK_HDA, .present = true },
[tegra_clk_hda2hdmi] = { .dt_id = TEGRA210_CLK_HDA2HDMI, .present = true },
[tegra_clk_cilab] = { .dt_id = TEGRA210_CLK_CILAB, .present = true },
[tegra_clk_cilcd] = { .dt_id = TEGRA210_CLK_CILCD, .present = true },
[tegra_clk_cile] = { .dt_id = TEGRA210_CLK_CILE, .present = true },
[tegra_clk_dsialp] = { .dt_id = TEGRA210_CLK_DSIALP, .present = true },
[tegra_clk_dsiblp] = { .dt_id = TEGRA210_CLK_DSIBLP, .present = true },
[tegra_clk_entropy_8] = { .dt_id = TEGRA210_CLK_ENTROPY, .present = true },
[tegra_clk_xusb_ss] = { .dt_id = TEGRA210_CLK_XUSB_SS, .present = true },
[tegra_clk_i2c6] = { .dt_id = TEGRA210_CLK_I2C6, .present = true },
[tegra_clk_vim2_clk] = { .dt_id = TEGRA210_CLK_VIM2_CLK, .present = true },
[tegra_clk_clk72Mhz_8] = { .dt_id = TEGRA210_CLK_CLK72MHZ, .present = true },
[tegra_clk_vic03_8] = { .dt_id = TEGRA210_CLK_VIC03, .present = true },
[tegra_clk_dpaux] = { .dt_id = TEGRA210_CLK_DPAUX, .present = true },
[tegra_clk_dpaux1] = { .dt_id = TEGRA210_CLK_DPAUX1, .present = true },
[tegra_clk_gpu] = { .dt_id = TEGRA210_CLK_GPU, .present = true },
[tegra_clk_pll_g_ref] = { .dt_id = TEGRA210_CLK_PLL_G_REF, .present = true, },
[tegra_clk_uartb_8] = { .dt_id = TEGRA210_CLK_UARTB, .present = true },
[tegra_clk_spdif_in_8] = { .dt_id = TEGRA210_CLK_SPDIF_IN, .present = true },
[tegra_clk_spdif_out] = { .dt_id = TEGRA210_CLK_SPDIF_OUT, .present = true },
[tegra_clk_vi_10] = { .dt_id = TEGRA210_CLK_VI, .present = true },
[tegra_clk_vi_sensor_8] = { .dt_id = TEGRA210_CLK_VI_SENSOR, .present = true },
[tegra_clk_fuse] = { .dt_id = TEGRA210_CLK_FUSE, .present = true },
[tegra_clk_fuse_burn] = { .dt_id = TEGRA210_CLK_FUSE_BURN, .present = true },
[tegra_clk_clk_32k] = { .dt_id = TEGRA210_CLK_CLK_32K, .present = true },
[tegra_clk_clk_m] = { .dt_id = TEGRA210_CLK_CLK_M, .present = true },
[tegra_clk_clk_m_div2] = { .dt_id = TEGRA210_CLK_CLK_M_DIV2, .present = true },
[tegra_clk_clk_m_div4] = { .dt_id = TEGRA210_CLK_CLK_M_DIV4, .present = true },
[tegra_clk_pll_ref] = { .dt_id = TEGRA210_CLK_PLL_REF, .present = true },
[tegra_clk_pll_c] = { .dt_id = TEGRA210_CLK_PLL_C, .present = true },
[tegra_clk_pll_c_out1] = { .dt_id = TEGRA210_CLK_PLL_C_OUT1, .present = true },
[tegra_clk_pll_c2] = { .dt_id = TEGRA210_CLK_PLL_C2, .present = true },
[tegra_clk_pll_c3] = { .dt_id = TEGRA210_CLK_PLL_C3, .present = true },
[tegra_clk_pll_m] = { .dt_id = TEGRA210_CLK_PLL_M, .present = true },
[tegra_clk_pll_p] = { .dt_id = TEGRA210_CLK_PLL_P, .present = true },
[tegra_clk_pll_p_out1] = { .dt_id = TEGRA210_CLK_PLL_P_OUT1, .present = true },
[tegra_clk_pll_p_out3] = { .dt_id = TEGRA210_CLK_PLL_P_OUT3, .present = true },
[tegra_clk_pll_p_out4_cpu] = { .dt_id = TEGRA210_CLK_PLL_P_OUT4, .present = true },
[tegra_clk_pll_p_out_hsio] = { .dt_id = TEGRA210_CLK_PLL_P_OUT_HSIO, .present = true },
[tegra_clk_pll_p_out_xusb] = { .dt_id = TEGRA210_CLK_PLL_P_OUT_XUSB, .present = true },
[tegra_clk_pll_p_out_cpu] = { .dt_id = TEGRA210_CLK_PLL_P_OUT_CPU, .present = true },
[tegra_clk_pll_p_out_adsp] = { .dt_id = TEGRA210_CLK_PLL_P_OUT_ADSP, .present = true },
[tegra_clk_pll_a] = { .dt_id = TEGRA210_CLK_PLL_A, .present = true },
[tegra_clk_pll_a_out0] = { .dt_id = TEGRA210_CLK_PLL_A_OUT0, .present = true },
[tegra_clk_pll_d] = { .dt_id = TEGRA210_CLK_PLL_D, .present = true },
[tegra_clk_pll_d_out0] = { .dt_id = TEGRA210_CLK_PLL_D_OUT0, .present = true },
[tegra_clk_pll_d2] = { .dt_id = TEGRA210_CLK_PLL_D2, .present = true },
[tegra_clk_pll_d2_out0] = { .dt_id = TEGRA210_CLK_PLL_D2_OUT0, .present = true },
[tegra_clk_pll_u] = { .dt_id = TEGRA210_CLK_PLL_U, .present = true },
[tegra_clk_pll_u_out] = { .dt_id = TEGRA210_CLK_PLL_U_OUT, .present = true },
[tegra_clk_pll_u_out1] = { .dt_id = TEGRA210_CLK_PLL_U_OUT1, .present = true },
[tegra_clk_pll_u_out2] = { .dt_id = TEGRA210_CLK_PLL_U_OUT2, .present = true },
[tegra_clk_pll_u_480m] = { .dt_id = TEGRA210_CLK_PLL_U_480M, .present = true },
[tegra_clk_pll_u_60m] = { .dt_id = TEGRA210_CLK_PLL_U_60M, .present = true },
[tegra_clk_pll_u_48m] = { .dt_id = TEGRA210_CLK_PLL_U_48M, .present = true },
[tegra_clk_pll_x] = { .dt_id = TEGRA210_CLK_PLL_X, .present = true },
[tegra_clk_pll_x_out0] = { .dt_id = TEGRA210_CLK_PLL_X_OUT0, .present = true },
[tegra_clk_pll_re_vco] = { .dt_id = TEGRA210_CLK_PLL_RE_VCO, .present = true },
[tegra_clk_pll_re_out] = { .dt_id = TEGRA210_CLK_PLL_RE_OUT, .present = true },
[tegra_clk_spdif_in_sync] = { .dt_id = TEGRA210_CLK_SPDIF_IN_SYNC, .present = true },
[tegra_clk_i2s0_sync] = { .dt_id = TEGRA210_CLK_I2S0_SYNC, .present = true },
[tegra_clk_i2s1_sync] = { .dt_id = TEGRA210_CLK_I2S1_SYNC, .present = true },
[tegra_clk_i2s2_sync] = { .dt_id = TEGRA210_CLK_I2S2_SYNC, .present = true },
[tegra_clk_i2s3_sync] = { .dt_id = TEGRA210_CLK_I2S3_SYNC, .present = true },
[tegra_clk_i2s4_sync] = { .dt_id = TEGRA210_CLK_I2S4_SYNC, .present = true },
[tegra_clk_vimclk_sync] = { .dt_id = TEGRA210_CLK_VIMCLK_SYNC, .present = true },
[tegra_clk_audio0] = { .dt_id = TEGRA210_CLK_AUDIO0, .present = true },
[tegra_clk_audio1] = { .dt_id = TEGRA210_CLK_AUDIO1, .present = true },
[tegra_clk_audio2] = { .dt_id = TEGRA210_CLK_AUDIO2, .present = true },
[tegra_clk_audio3] = { .dt_id = TEGRA210_CLK_AUDIO3, .present = true },
[tegra_clk_audio4] = { .dt_id = TEGRA210_CLK_AUDIO4, .present = true },
[tegra_clk_spdif] = { .dt_id = TEGRA210_CLK_SPDIF, .present = true },
[tegra_clk_clk_out_1] = { .dt_id = TEGRA210_CLK_CLK_OUT_1, .present = true },
[tegra_clk_clk_out_2] = { .dt_id = TEGRA210_CLK_CLK_OUT_2, .present = true },
[tegra_clk_clk_out_3] = { .dt_id = TEGRA210_CLK_CLK_OUT_3, .present = true },
[tegra_clk_blink] = { .dt_id = TEGRA210_CLK_BLINK, .present = true },
[tegra_clk_xusb_gate] = { .dt_id = TEGRA210_CLK_XUSB_GATE, .present = true },
[tegra_clk_xusb_host_src_8] = { .dt_id = TEGRA210_CLK_XUSB_HOST_SRC, .present = true },
[tegra_clk_xusb_falcon_src_8] = { .dt_id = TEGRA210_CLK_XUSB_FALCON_SRC, .present = true },
[tegra_clk_xusb_fs_src] = { .dt_id = TEGRA210_CLK_XUSB_FS_SRC, .present = true },
[tegra_clk_xusb_ss_src_8] = { .dt_id = TEGRA210_CLK_XUSB_SS_SRC, .present = true },
[tegra_clk_xusb_ss_div2] = { .dt_id = TEGRA210_CLK_XUSB_SS_DIV2, .present = true },
[tegra_clk_xusb_dev_src_8] = { .dt_id = TEGRA210_CLK_XUSB_DEV_SRC, .present = true },
[tegra_clk_xusb_dev] = { .dt_id = TEGRA210_CLK_XUSB_DEV, .present = true },
[tegra_clk_xusb_hs_src_4] = { .dt_id = TEGRA210_CLK_XUSB_HS_SRC, .present = true },
[tegra_clk_xusb_ssp_src] = { .dt_id = TEGRA210_CLK_XUSB_SSP_SRC, .present = true },
[tegra_clk_usb2_hsic_trk] = { .dt_id = TEGRA210_CLK_USB2_HSIC_TRK, .present = true },
[tegra_clk_hsic_trk] = { .dt_id = TEGRA210_CLK_HSIC_TRK, .present = true },
[tegra_clk_usb2_trk] = { .dt_id = TEGRA210_CLK_USB2_TRK, .present = true },
[tegra_clk_sclk] = { .dt_id = TEGRA210_CLK_SCLK, .present = true },
[tegra_clk_sclk_mux] = { .dt_id = TEGRA210_CLK_SCLK_MUX, .present = true },
[tegra_clk_hclk] = { .dt_id = TEGRA210_CLK_HCLK, .present = true },
[tegra_clk_pclk] = { .dt_id = TEGRA210_CLK_PCLK, .present = true },
[tegra_clk_cclk_g] = { .dt_id = TEGRA210_CLK_CCLK_G, .present = true },
[tegra_clk_cclk_lp] = { .dt_id = TEGRA210_CLK_CCLK_LP, .present = true },
[tegra_clk_dfll_ref] = { .dt_id = TEGRA210_CLK_DFLL_REF, .present = true },
[tegra_clk_dfll_soc] = { .dt_id = TEGRA210_CLK_DFLL_SOC, .present = true },
[tegra_clk_vi_sensor2_8] = { .dt_id = TEGRA210_CLK_VI_SENSOR2, .present = true },
[tegra_clk_pll_p_out5] = { .dt_id = TEGRA210_CLK_PLL_P_OUT5, .present = true },
[tegra_clk_pll_c4] = { .dt_id = TEGRA210_CLK_PLL_C4, .present = true },
[tegra_clk_pll_dp] = { .dt_id = TEGRA210_CLK_PLL_DP, .present = true },
[tegra_clk_audio0_mux] = { .dt_id = TEGRA210_CLK_AUDIO0_MUX, .present = true },
[tegra_clk_audio1_mux] = { .dt_id = TEGRA210_CLK_AUDIO1_MUX, .present = true },
[tegra_clk_audio2_mux] = { .dt_id = TEGRA210_CLK_AUDIO2_MUX, .present = true },
[tegra_clk_audio3_mux] = { .dt_id = TEGRA210_CLK_AUDIO3_MUX, .present = true },
[tegra_clk_audio4_mux] = { .dt_id = TEGRA210_CLK_AUDIO4_MUX, .present = true },
[tegra_clk_spdif_mux] = { .dt_id = TEGRA210_CLK_SPDIF_MUX, .present = true },
[tegra_clk_clk_out_1_mux] = { .dt_id = TEGRA210_CLK_CLK_OUT_1_MUX, .present = true },
[tegra_clk_clk_out_2_mux] = { .dt_id = TEGRA210_CLK_CLK_OUT_2_MUX, .present = true },
[tegra_clk_clk_out_3_mux] = { .dt_id = TEGRA210_CLK_CLK_OUT_3_MUX, .present = true },
[tegra_clk_maud] = { .dt_id = TEGRA210_CLK_MAUD, .present = true },
[tegra_clk_mipibif] = { .dt_id = TEGRA210_CLK_MIPIBIF, .present = true },
[tegra_clk_qspi] = { .dt_id = TEGRA210_CLK_QSPI, .present = true },
[tegra_clk_sdmmc_legacy] = { .dt_id = TEGRA210_CLK_SDMMC_LEGACY, .present = true },
[tegra_clk_tsecb] = { .dt_id = TEGRA210_CLK_TSECB, .present = true },
[tegra_clk_uartape] = { .dt_id = TEGRA210_CLK_UARTAPE, .present = true },
[tegra_clk_vi_i2c] = { .dt_id = TEGRA210_CLK_VI_I2C, .present = true },
[tegra_clk_dbgapb] = { .dt_id = TEGRA210_CLK_DBGAPB, .present = true },
[tegra_clk_nvdec] = { .dt_id = TEGRA210_CLK_NVDEC, .present = true },
[tegra_clk_nvenc] = { .dt_id = TEGRA210_CLK_NVENC, .present = true },
[tegra_clk_nvjpg] = { .dt_id = TEGRA210_CLK_NVJPG, .present = true },
[tegra_clk_pll_c4_out1] = { .dt_id = TEGRA210_CLK_PLL_C4_OUT1, .present = true },
[tegra_clk_pll_c4_out2] = { .dt_id = TEGRA210_CLK_PLL_C4_OUT2, .present = true },
[tegra_clk_pll_c4_out3] = { .dt_id = TEGRA210_CLK_PLL_C4_OUT3, .present = true },
[tegra_clk_apb2ape] = { .dt_id = TEGRA210_CLK_APB2APE, .present = true },
[tegra_clk_pll_a1] = { .dt_id = TEGRA210_CLK_PLL_A1, .present = true },
[tegra_clk_ispa] = { .dt_id = TEGRA210_CLK_ISPA, .present = true },
[tegra_clk_cec] = { .dt_id = TEGRA210_CLK_CEC, .present = true },
[tegra_clk_dmic1] = { .dt_id = TEGRA210_CLK_DMIC1, .present = true },
[tegra_clk_dmic2] = { .dt_id = TEGRA210_CLK_DMIC2, .present = true },
[tegra_clk_dmic3] = { .dt_id = TEGRA210_CLK_DMIC3, .present = true },
[tegra_clk_dmic1_sync_clk] = { .dt_id = TEGRA210_CLK_DMIC1_SYNC_CLK, .present = true },
[tegra_clk_dmic2_sync_clk] = { .dt_id = TEGRA210_CLK_DMIC2_SYNC_CLK, .present = true },
[tegra_clk_dmic3_sync_clk] = { .dt_id = TEGRA210_CLK_DMIC3_SYNC_CLK, .present = true },
[tegra_clk_dmic1_sync_clk_mux] = { .dt_id = TEGRA210_CLK_DMIC1_SYNC_CLK_MUX, .present = true },
[tegra_clk_dmic2_sync_clk_mux] = { .dt_id = TEGRA210_CLK_DMIC2_SYNC_CLK_MUX, .present = true },
[tegra_clk_dmic3_sync_clk_mux] = { .dt_id = TEGRA210_CLK_DMIC3_SYNC_CLK_MUX, .present = true },
[tegra_clk_dp2] = { .dt_id = TEGRA210_CLK_DP2, .present = true },
[tegra_clk_iqc1] = { .dt_id = TEGRA210_CLK_IQC1, .present = true },
[tegra_clk_iqc2] = { .dt_id = TEGRA210_CLK_IQC2, .present = true },
[tegra_clk_pll_a_out_adsp] = { .dt_id = TEGRA210_CLK_PLL_A_OUT_ADSP, .present = true },
[tegra_clk_pll_a_out0_out_adsp] = { .dt_id = TEGRA210_CLK_PLL_A_OUT0_OUT_ADSP, .present = true },
[tegra_clk_adsp] = { .dt_id = TEGRA210_CLK_ADSP, .present = true },
[tegra_clk_adsp_neon] = { .dt_id = TEGRA210_CLK_ADSP_NEON, .present = true },
[tegra_clk_se_8] = { .dt_id = TEGRA210_CLK_SE, .present = true },
[tegra_clk_la] = { .dt_id = TEGRA210_CLK_LA, .present = true },
[tegra_clk_mc_capa] = { .dt_id = TEGRA210_CLK_MC_CAPA, .present = true },
[tegra_clk_mc_cbpa] = { .dt_id = TEGRA210_CLK_MC_CBPA, .present = true },
[tegra_clk_mc_ccpa] = { .dt_id = TEGRA210_CLK_MC_CCPA, .present = true },
[tegra_clk_mc_cdpa] = { .dt_id = TEGRA210_CLK_MC_CDPA, .present = true },
[tegra_clk_cap_c2bus] = { .dt_id = TEGRA210_CLK_CAP_C2BUS, .present = true },
[tegra_clk_cap_vcore_c2bus] = { .dt_id = TEGRA210_CLK_CAP_VCORE_C2BUS, .present = true },
[tegra_clk_cap_throttle_c2bus] = { .dt_id = TEGRA210_CLK_CAP_THROTTLE_C2BUS, .present = true },
[tegra_clk_floor_c2bus] = { .dt_id = TEGRA210_CLK_FLOOR_C2BUS, .present = true },
[tegra_clk_override_c2bus] = { .dt_id = TEGRA210_CLK_OVERRIDE_C2BUS, .present = true },
[tegra_clk_edp_c2bus] = { .dt_id = TEGRA210_CLK_EDP_C2BUS, .present = true },
[tegra_clk_cap_c3bus] = { .dt_id = TEGRA210_CLK_CAP_C3BUS, .present = true },
[tegra_clk_cap_vcore_c3bus] = { .dt_id = TEGRA210_CLK_CAP_VCORE_C3BUS, .present = true },
[tegra_clk_cap_throttle_c3bus] = { .dt_id = TEGRA210_CLK_CAP_THROTTLE_C3BUS, .present = true },
[tegra_clk_floor_c3bus] = { .dt_id = TEGRA210_CLK_FLOOR_C3BUS, .present = true },
[tegra_clk_override_c3bus] = { .dt_id = TEGRA210_CLK_OVERRIDE_C3BUS, .present = true },
[tegra_clk_avp_sclk] = { .dt_id = TEGRA210_CLK_AVP_SCLK, .present = true },
[tegra_clk_bsea_sclk] = { .dt_id = TEGRA210_CLK_BSEA_SCLK, .present = true },
[tegra_clk_usbd_sclk] = { .dt_id = TEGRA210_CLK_USBD_SCLK, .present = true },
[tegra_clk_usb1_sclk] = { .dt_id = TEGRA210_CLK_USB1_SCLK, .present = true },
[tegra_clk_usb2_sclk] = { .dt_id = TEGRA210_CLK_USB2_SCLK, .present = true },
[tegra_clk_wake_sclk] = { .dt_id = TEGRA210_CLK_WAKE_SCLK, .present = true },
[tegra_clk_camera_sclk] = { .dt_id = TEGRA210_CLK_CAMERA_SCLK, .present = true },
[tegra_clk_mon_avp] = { .dt_id = TEGRA210_CLK_MON_AVP, .present = true },
[tegra_clk_cap_sclk] = { .dt_id = TEGRA210_CLK_CAP_SCLK, .present = true },
[tegra_clk_cap_vcore_sclk] = { .dt_id = TEGRA210_CLK_CAP_VCORE_SCLK, .present = true },
[tegra_clk_cap_throttle_sclk] = { .dt_id = TEGRA210_CLK_CAP_THROTTLE_SCLK, .present = true },
[tegra_clk_floor_sclk] = { .dt_id = TEGRA210_CLK_FLOOR_SCLK, .present = true },
[tegra_clk_override_sclk] = { .dt_id = TEGRA210_CLK_OVERRIDE_SCLK, .present = true },
[tegra_clk_sbc1_sclk] = { .dt_id = TEGRA210_CLK_SBC1_SCLK, .present = true },
[tegra_clk_sbc2_sclk] = { .dt_id = TEGRA210_CLK_SBC2_SCLK, .present = true },
[tegra_clk_sbc3_sclk] = { .dt_id = TEGRA210_CLK_SBC3_SCLK, .present = true },
[tegra_clk_sbc4_sclk] = { .dt_id = TEGRA210_CLK_SBC4_SCLK, .present = true },
[tegra_clk_qspi_sclk] = { .dt_id = TEGRA210_CLK_QSPI_SCLK, .present = true },
[tegra_clk_boot_apb_sclk] = { .dt_id = TEGRA210_CLK_BOOT_APB_SCLK, .present = true },
[tegra_clk_gm20b_gbus] = { .dt_id = TEGRA210_CLK_GM20B_GBUS, .present = true },
[tegra_clk_cap_gbus] = { .dt_id = TEGRA210_CLK_CAP_GBUS, .present = true },
[tegra_clk_edp_gbus] = { .dt_id = TEGRA210_CLK_EDP_GBUS, .present = true },
[tegra_clk_cap_vgpu_gbus] = { .dt_id = TEGRA210_CLK_CAP_VGPU_GBUS, .present = true },
[tegra_clk_cap_throttle_gbus] = { .dt_id = TEGRA210_CLK_CAP_THROTTLE_GBUS, .present = true },
[tegra_clk_cap_profile_gbus] = { .dt_id = TEGRA210_CLK_CAP_PROFILE_GBUS, .present = true },
[tegra_clk_override_gbus] = { .dt_id = TEGRA210_CLK_OVERRIDE_GBUS, .present = true },
[tegra_clk_floor_gbus] = { .dt_id = TEGRA210_CLK_FLOOR_GBUS, .present = true },
[tegra_clk_floor_profile_gbus] = { .dt_id = TEGRA210_CLK_FLOOR_PROFILE_GBUS, .present = true },
[tegra_clk_nv_host1x] = { .dt_id = TEGRA210_CLK_NV_HOST1X, .present = true },
[tegra_clk_vi_host1x] = { .dt_id = TEGRA210_CLK_VI_HOST1X, .present = true },
[tegra_clk_vii2c_host1x] = { .dt_id = TEGRA210_CLK_VII2C_HOST1X, .present = true },
[tegra_clk_cap_host1x] = { .dt_id = TEGRA210_CLK_CAP_HOST1X, .present = true },
[tegra_clk_cap_vcore_host1x] = { .dt_id = TEGRA210_CLK_CAP_VCORE_HOST1X, .present = true },
[tegra_clk_floor_host1x] = { .dt_id = TEGRA210_CLK_FLOOR_HOST1X, .present = true },
[tegra_clk_override_host1x] = { .dt_id = TEGRA210_CLK_OVERRIDE_HOST1X, .present = true },
[tegra_clk_cpu_mselect] = { .dt_id = TEGRA210_CLK_CPU_MSELECT, .present = true },
[tegra_clk_pcie_mselect] = { .dt_id = TEGRA210_CLK_PCIE_MSELECT, .present = true },
[tegra_clk_cap_vcore_mselect] = { .dt_id = TEGRA210_CLK_CAP_VCORE_MSELECT, .present = false },
[tegra_clk_override_mselect] = { .dt_id = TEGRA210_CLK_OVERRIDE_MSELECT, .present = true },
[tegra_clk_adma_ape] = { .dt_id = TEGRA210_CLK_ADMA_APE, .present = true },
[tegra_clk_adsp_ape] = { .dt_id = TEGRA210_CLK_ADSP_APE, .present = true },
[tegra_clk_xbar_ape] = { .dt_id = TEGRA210_CLK_XBAR_APE, .present = true },
[tegra_clk_cap_vcore_ape] = { .dt_id = TEGRA210_CLK_CAP_VCORE_APE, .present = false },
[tegra_clk_override_ape] = { .dt_id = TEGRA210_CLK_OVERRIDE_APE, .present = true },
[tegra_clk_adsp_cpu_abus] = { .dt_id = TEGRA210_CLK_ADSP_CPU_ABUS, .present = true },
[tegra_clk_cap_vcore_abus] = { .dt_id = TEGRA210_CLK_CAP_VCORE_ABUS, .present = true },
[tegra_clk_override_abus] = { .dt_id = TEGRA210_CLK_OVERRIDE_ABUS, .present = true },
[tegra_clk_sclk_skipper] = { .dt_id = TEGRA210_CLK_SCLK_SKIPPER, .present = true },
[tegra_clk_sdmmc4_ahb_sclk] = { .dt_id = TEGRA210_CLK_SDMMC4_AHB_SCLK, .present = true },
[tegra_clk_vcm_sclk] = { .dt_id = TEGRA210_CLK_VCM_SCLK, .present = true },
[tegra_clk_vcm_ahb_sclk] = { .dt_id = TEGRA210_CLK_VCM_AHB_SCLK, .present = true },
[tegra_clk_vcm_apb_sclk] = { .dt_id = TEGRA210_CLK_VCM_APB_SCLK, .present = true },
[tegra_clk_pll_a1] = { .dt_id = TEGRA210_CLK_PLL_A1, .present = true },
[tegra_clk_vic_floor_cbus] = { .dt_id = TEGRA210_CLK_VIC_FLOOR_CBUS, .present = true },
[tegra_clk_override_emc] = { .dt_id = TEGRA210_CLK_OVERRIDE_EMC, .present = true },
[tegra_clk_bwmgr_emc] = { .dt_id = TEGRA210_CLK_BWMGR_EMC, .present = true },
[tegra_clk_wifi_sclk] = { .dt_id = TEGRA210_CLK_WIFI_SCLK, .present = true },
[tegra_clk_override_cbus] = { .dt_id = TEGRA210_CLK_OVERRIDE_CBUS, .present = true },
};
static struct tegra_devclk devclks[] __initdata = {
{ .con_id = "clk_m", .dt_id = TEGRA210_CLK_CLK_M },
{ .con_id = "pll_ref", .dt_id = TEGRA210_CLK_PLL_REF },
{ .con_id = "clk_32k", .dt_id = TEGRA210_CLK_CLK_32K },
{ .con_id = "clk_m_div2", .dt_id = TEGRA210_CLK_CLK_M_DIV2 },
{ .con_id = "clk_m_div4", .dt_id = TEGRA210_CLK_CLK_M_DIV4 },
{ .con_id = "pll_c", .dt_id = TEGRA210_CLK_PLL_C },
{ .con_id = "pll_c_out1", .dt_id = TEGRA210_CLK_PLL_C_OUT1 },
{ .con_id = "pll_c2", .dt_id = TEGRA210_CLK_PLL_C2 },
{ .con_id = "pll_c3", .dt_id = TEGRA210_CLK_PLL_C3 },
{ .con_id = "pll_p", .dt_id = TEGRA210_CLK_PLL_P },
{ .con_id = "pll_p_out1", .dt_id = TEGRA210_CLK_PLL_P_OUT1 },
{ .con_id = "pll_p_out2", .dt_id = TEGRA210_CLK_PLL_P_OUT2 },
{ .con_id = "pll_p_out3", .dt_id = TEGRA210_CLK_PLL_P_OUT3 },
{ .con_id = "pll_p_out4", .dt_id = TEGRA210_CLK_PLL_P_OUT4 },
{ .con_id = "pll_m", .dt_id = TEGRA210_CLK_PLL_M },
{ .con_id = "pll_x", .dt_id = TEGRA210_CLK_PLL_X },
{ .con_id = "pll_x_out0", .dt_id = TEGRA210_CLK_PLL_X_OUT0 },
{ .con_id = "pll_u", .dt_id = TEGRA210_CLK_PLL_U },
{ .con_id = "pll_u_out", .dt_id = TEGRA210_CLK_PLL_U_OUT },
{ .con_id = "pll_u_out1", .dt_id = TEGRA210_CLK_PLL_U_OUT1 },
{ .con_id = "pll_u_out2", .dt_id = TEGRA210_CLK_PLL_U_OUT2 },
{ .con_id = "pll_u_480M", .dt_id = TEGRA210_CLK_PLL_U_480M },
{ .con_id = "pll_u_60M", .dt_id = TEGRA210_CLK_PLL_U_60M },
{ .con_id = "pll_u_48M", .dt_id = TEGRA210_CLK_PLL_U_48M },
{ .con_id = "pll_d", .dt_id = TEGRA210_CLK_PLL_D },
{ .con_id = "pll_d_out0", .dt_id = TEGRA210_CLK_PLL_D_OUT0 },
{ .con_id = "pll_d2", .dt_id = TEGRA210_CLK_PLL_D2 },
{ .con_id = "pll_d2_out0", .dt_id = TEGRA210_CLK_PLL_D2_OUT0 },
{ .con_id = "pll_a", .dt_id = TEGRA210_CLK_PLL_A },
{ .con_id = "pll_a_out0", .dt_id = TEGRA210_CLK_PLL_A_OUT0 },
{ .con_id = "pll_re_vco", .dt_id = TEGRA210_CLK_PLL_RE_VCO },
{ .con_id = "pll_re_out", .dt_id = TEGRA210_CLK_PLL_RE_OUT },
{ .con_id = "spdif_in_sync", .dt_id = TEGRA210_CLK_SPDIF_IN_SYNC },
{ .con_id = "i2s0_sync", .dt_id = TEGRA210_CLK_I2S0_SYNC },
{ .con_id = "i2s1_sync", .dt_id = TEGRA210_CLK_I2S1_SYNC },
{ .con_id = "i2s2_sync", .dt_id = TEGRA210_CLK_I2S2_SYNC },
{ .con_id = "i2s3_sync", .dt_id = TEGRA210_CLK_I2S3_SYNC },
{ .con_id = "i2s4_sync", .dt_id = TEGRA210_CLK_I2S4_SYNC },
{ .con_id = "vimclk_sync", .dt_id = TEGRA210_CLK_VIMCLK_SYNC },
{ .con_id = "audio0", .dt_id = TEGRA210_CLK_AUDIO0 },
{ .con_id = "audio1", .dt_id = TEGRA210_CLK_AUDIO1 },
{ .con_id = "audio2", .dt_id = TEGRA210_CLK_AUDIO2 },
{ .con_id = "audio3", .dt_id = TEGRA210_CLK_AUDIO3 },
{ .con_id = "audio4", .dt_id = TEGRA210_CLK_AUDIO4 },
{ .con_id = "spdif", .dt_id = TEGRA210_CLK_SPDIF },
{ .con_id = "spdif_2x", .dt_id = TEGRA210_CLK_SPDIF_2X },
{ .con_id = "extern1", .dev_id = "clk_out_1", .dt_id = TEGRA210_CLK_EXTERN1 },
{ .con_id = "extern2", .dev_id = "clk_out_2", .dt_id = TEGRA210_CLK_EXTERN2 },
{ .con_id = "extern3", .dev_id = "clk_out_3", .dt_id = TEGRA210_CLK_EXTERN3 },
{ .con_id = "blink", .dt_id = TEGRA210_CLK_BLINK },
{ .con_id = "cclk_g", .dt_id = TEGRA210_CLK_CCLK_G },
{ .con_id = "cclk_lp", .dt_id = TEGRA210_CLK_CCLK_LP },
{ .con_id = "sclk", .dt_id = TEGRA210_CLK_SCLK },
{ .con_id = "hclk", .dt_id = TEGRA210_CLK_HCLK },
{ .con_id = "pclk", .dt_id = TEGRA210_CLK_PCLK },
{ .con_id = "fuse", .dt_id = TEGRA210_CLK_FUSE },
{ .dev_id = "rtc-tegra", .dt_id = TEGRA210_CLK_RTC },
{ .dev_id = "timer", .dt_id = TEGRA210_CLK_TIMER },
{ .con_id = "pll_c4_out0", .dt_id = TEGRA210_CLK_PLL_C4_OUT0 },
{ .con_id = "pll_c4_out1", .dt_id = TEGRA210_CLK_PLL_C4_OUT1 },
{ .con_id = "pll_c4_out2", .dt_id = TEGRA210_CLK_PLL_C4_OUT2 },
{ .con_id = "pll_c4_out3", .dt_id = TEGRA210_CLK_PLL_C4_OUT3 },
{ .con_id = "mipi-cal", .dt_id = TEGRA210_CLK_MIPI_CAL },
{ .con_id = "dpaux", .dt_id = TEGRA210_CLK_DPAUX },
{ .con_id = "dpaux1", .dt_id = TEGRA210_CLK_DPAUX1 },
{ .con_id = "sor0", .dt_id = TEGRA210_CLK_SOR0 },
{ .con_id = "clk72mhz", .dt_id = TEGRA210_CLK_CLK72MHZ },
{ .con_id = "maud", .dt_id = TEGRA210_CLK_MAUD },
{ .con_id = "sdmmc_legacy", .dt_id = TEGRA210_CLK_SDMMC_LEGACY },
{ .con_id = "i2cslow", .dt_id = TEGRA210_CLK_I2CSLOW },
{ .con_id = "ispa", .dt_id = TEGRA210_CLK_ISPA},
{ .con_id = "ispb", .dt_id = TEGRA210_CLK_ISPB},
{ .con_id = "csi", .dt_id = TEGRA210_CLK_CSI },
{ .con_id = "cilab", .dt_id = TEGRA210_CLK_CILAB },
{ .con_id = "cilcd", .dt_id = TEGRA210_CLK_CILCD },
{ .con_id = "cile", .dt_id = TEGRA210_CLK_CILE },
{ .con_id = "mc_capa", .dt_id = TEGRA210_CLK_MC_CAPA },
{ .con_id = "mc_cbpa", .dt_id = TEGRA210_CLK_MC_CBPA },
{ .con_id = "mc_ccpa", .dt_id = TEGRA210_CLK_MC_CCPA },
{ .con_id = "mc_cdpa", .dt_id = TEGRA210_CLK_MC_CDPA },
{ .con_id = "host1x", .dt_id = TEGRA210_CLK_HOST1X },
{ .con_id = "pcie", .dt_id = TEGRA210_CLK_PCIE },
{ .con_id = "sata", .dt_id = TEGRA210_CLK_SATA },
{ .con_id = "sata_oob", .dt_id = TEGRA210_CLK_SATA_OOB },
{ .con_id = "nvenc", .dt_id = TEGRA210_CLK_NVENC },
{ .con_id = "dsia", .dt_id = TEGRA210_CLK_DSIA },
{ .con_id = "dsib", .dt_id = TEGRA210_CLK_DSIB },
{ .con_id = "sor1", .dt_id = TEGRA210_CLK_SOR1 },
{ .con_id = "mipi-cal", .dt_id = TEGRA210_CLK_MIPI_CAL },
{ .con_id = "hda2codec_2x", .dt_id = TEGRA210_CLK_HDA2CODEC_2X },
{ .con_id = "hda2hdmi", .dt_id = TEGRA210_CLK_HDA2HDMI },
{ .con_id = "disp1", .dt_id = TEGRA210_CLK_DISP1 },
{ .con_id = "disp2", .dt_id = TEGRA210_CLK_DISP2 },
{ .con_id = "la", .dt_id = TEGRA210_CLK_LA },
{ .con_id = "xusb_ss", .dt_id = TEGRA210_CLK_XUSB_SS, },
{ .con_id = "xusb_dev", .dt_id = TEGRA210_CLK_XUSB_DEV, },
{ .con_id = "xusb_host", .dt_id = TEGRA210_CLK_XUSB_HOST, },
{ .con_id = "xusb_ssp_src", .dt_id = TEGRA210_CLK_XUSB_SSP_SRC },
{ .con_id = "xusb_hs_src", .dt_id = TEGRA210_CLK_XUSB_HS_SRC },
{ .con_id = "xusb_fs_src", .dt_id = TEGRA210_CLK_XUSB_FS_SRC },
{ .con_id = "xusb_dev_src", .dt_id = TEGRA210_CLK_XUSB_FS_SRC },
{ .con_id = "vic03", .dt_id = TEGRA210_CLK_VIC03 },
{ .con_id = "nvdec", .dt_id = TEGRA210_CLK_NVDEC },
{ .con_id = "nvjpg", .dt_id = TEGRA210_CLK_NVJPG },
{ .con_id = "ape", .dt_id = TEGRA210_CLK_APE },
{ .con_id = "aclk", .dt_id = TEGRA210_CLK_ACLK },
{ .con_id = "i2s0", .dt_id = TEGRA210_CLK_I2S0 },
{ .con_id = "i2s1", .dt_id = TEGRA210_CLK_I2S1 },
{ .con_id = "i2s2", .dt_id = TEGRA210_CLK_I2S2 },
{ .con_id = "i2s3", .dt_id = TEGRA210_CLK_I2S3 },
{ .con_id = "i2s4", .dt_id = TEGRA210_CLK_I2S4 },
{ .con_id = "d_audio", .dt_id = TEGRA210_CLK_D_AUDIO },
{ .con_id = "spdif_out", .dt_id = TEGRA210_CLK_SPDIF_OUT },
{ .con_id = "vi", .dt_id = TEGRA210_CLK_VI },
{ .con_id = "vii2c", .dt_id = TEGRA210_CLK_VI_I2C },
{ .con_id = "emc", .dt_id = TEGRA210_CLK_EMC },
{ .con_id = "se", .dt_id = TEGRA210_CLK_SE },
{ .con_id = "tsec", .dt_id = TEGRA210_CLK_TSEC },
{ .con_id = "tsecb", .dt_id = TEGRA210_CLK_TSECB },
{ .con_id = "isp", .dt_id = TEGRA210_CLK_ISP },
{ .con_id = "mselect", .dt_id = TEGRA210_CLK_MSELECT },
{ .con_id = "dsialp", .dt_id = TEGRA210_CLK_DSIALP },
{ .con_id = "dsiblp", .dt_id = TEGRA210_CLK_DSIBLP },
{ .con_id = "dmic1", .dt_id = TEGRA210_CLK_DMIC1 },
{ .con_id = "dmic2", .dt_id = TEGRA210_CLK_DMIC2 },
{ .con_id = "dmic3", .dt_id = TEGRA210_CLK_DMIC3 },
{ .con_id = "hda", .dt_id = TEGRA210_CLK_HDA },
{ .con_id = "sdmmc1", .dt_id = TEGRA210_CLK_SDMMC1 },
{ .con_id = "sdmmc2", .dt_id = TEGRA210_CLK_SDMMC2 },
{ .con_id = "sdmmc3", .dt_id = TEGRA210_CLK_SDMMC3 },
{ .con_id = "sdmmc4", .dt_id = TEGRA210_CLK_SDMMC4 },
{ .con_id = "xusb_falcon_src", .dt_id = TEGRA210_CLK_XUSB_FALCON_SRC },
{ .con_id = "xusb_host_src", .dt_id = TEGRA210_CLK_XUSB_HOST_SRC },
{ .con_id = "usbd", .dt_id = TEGRA210_CLK_USBD },
{ .con_id = "usb2", .dt_id = TEGRA210_CLK_USB2 },
{ .con_id = "i2c1", .dt_id = TEGRA210_CLK_I2C1 },
{ .con_id = "i2c2", .dt_id = TEGRA210_CLK_I2C2 },
{ .con_id = "i2c3", .dt_id = TEGRA210_CLK_I2C3 },
{ .con_id = "i2c4", .dt_id = TEGRA210_CLK_I2C4 },
{ .con_id = "i2c5", .dt_id = TEGRA210_CLK_I2C5 },
{ .con_id = "i2c6", .dt_id = TEGRA210_CLK_I2C6 },
{ .con_id = "pwm", .dt_id = TEGRA210_CLK_PWM },
{ .con_id = "soc_therm", .dt_id = TEGRA210_CLK_SOC_THERM },
{ .con_id = "tsensor", .dt_id = TEGRA210_CLK_TSENSOR },
{ .con_id = "qspi", .dt_id = TEGRA210_CLK_QSPI },
{ .con_id = "sbc1", .dt_id = TEGRA210_CLK_SBC1 },
{ .con_id = "sbc2", .dt_id = TEGRA210_CLK_SBC2 },
{ .con_id = "sbc3", .dt_id = TEGRA210_CLK_SBC3 },
{ .con_id = "sbc4", .dt_id = TEGRA210_CLK_SBC4 },
{ .con_id = "abus", .dt_id = TEGRA210_CLK_ABUS },
{ .con_id = "gbus", .dt_id = TEGRA210_CLK_GBUS },
{ .con_id = "spdif_in", .dt_id = TEGRA210_CLK_SPDIF_IN },
{ .con_id = "gpu_ref", .dt_id = TEGRA210_CLK_PLL_G_REF },
{ .con_id = "pll_p_out5", .dt_id = TEGRA210_CLK_PLL_P_OUT5 },
{ .con_id = "gpu", .dt_id = TEGRA210_CLK_GM20B_GBUS },
{ .con_id = "gpu_gate", .dt_id = TEGRA210_CLK_GPU },
{ .con_id = "vi_v4l2", .dt_id = TEGRA210_CLK_VI_V4L2_CBUS },
{ .con_id = "ispa", .dt_id = TEGRA210_CLK_ISPA_ISP_CBUS },
{ .con_id = "ispb", .dt_id = TEGRA210_CLK_ISPB_ISP_CBUS },
};
static struct tegra_audio_clk_info tegra210_audio_plls[] = {
{ "pll_a", &pll_a_params, tegra_clk_pll_a, "pll_ref" },
{ "pll_a1", &pll_a1_params, tegra_clk_pll_a1, "pll_ref",
tegra_clk_register_pllc_tegra210 },
};
static struct tegra_pto_table ptodefs[] = {
{ .clk_id = TEGRA210_CLK_PLL_C, .divider = 2, .pto_id = 1, .presel_reg = PLLC_MISC0, .presel_value = BIT(3), .presel_mask = BIT(3) },
{ .clk_id = TEGRA210_CLK_PLL_A1, .divider = 2, .pto_id = 85, .presel_reg = PLLA1_MISC0, .presel_value = BIT(3), .presel_mask = BIT(3) },
{ .clk_id = TEGRA210_CLK_PLL_C2, .divider = 2, .pto_id = 88, .presel_reg = PLLC2_MISC0, .presel_value = BIT(3), .presel_mask = BIT(3) },
{ .clk_id = TEGRA210_CLK_PLL_C3, .divider = 2, .pto_id = 90, .presel_reg = PLLC3_MISC0, .presel_value = BIT(3), .presel_mask = BIT(3) },
{ .clk_id = TEGRA210_CLK_PLL_A, .divider = 2, .pto_id = 4, .presel_reg = PLLA_MISC0, .presel_value = BIT(29), .presel_mask = BIT(29) },
{ .clk_id = TEGRA210_CLK_PLL_X, .divider = 2, .pto_id = 5, .presel_reg = PLLX_MISC0, .presel_value = BIT(22), .presel_mask = BIT(22) },
{ .clk_id = TEGRA210_CLK_PLL_D, .divider = 2, .pto_id = 203, .presel_reg = PLLD_MISC0, .presel_value = BIT(25), .presel_mask = BIT(25) },
{ .clk_id = TEGRA210_CLK_PLL_D2, .divider = 2, .pto_id = 205, .presel_reg = PLLD2_BASE, .presel_value = BIT(16), .presel_mask = BIT(16) },
{ .clk_id = TEGRA210_CLK_PLL_DP, .divider = 2, .pto_id = 207, .presel_reg = PLLDP_BASE, .presel_value = BIT(16), .presel_mask = BIT(16) },
{ .clk_id = TEGRA210_CLK_PLL_C4, .divider = 2, .pto_id = 81, .presel_reg = PLLC4_BASE, .presel_value = BIT(16), .presel_mask = BIT(16) },
{ .clk_id = TEGRA210_CLK_PLL_M, .divider = 2, .pto_id = 2, .presel_reg = PLLM_MISC2, .presel_value = BIT(8), .presel_mask = BIT(8) },
{ .clk_id = TEGRA210_CLK_PLL_MB, .divider = 2, .pto_id = 37, .presel_reg = PLLM_MISC2, .presel_value = BIT(9), .presel_mask = BIT(9) },
{ .clk_id = TEGRA210_CLK_PLL_U, .divider = 2, .pto_id = 269, .presel_reg = PLLU_MISC0, .presel_value = BIT(27), .presel_mask = BIT(27) },
{ .clk_id = TEGRA210_CLK_PLL_RE_VCO, .divider = 2, .pto_id = 271, .presel_reg = PLLRE_MISC0, .presel_value = BIT(26), .presel_mask = BIT(26) },
{ .clk_id = TEGRA210_CLK_CCLK_G, .divider = 1, .pto_id = 18, },
{ .clk_id = TEGRA210_CLK_EMC, .divider = 1, .pto_id = 36, },
};
static struct clk **clks;
void tegra210_put_utmipll_in_iddq(void)
{
u32 reg;
reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0);
if (reg & UTMIPLL_HW_PWRDN_CFG0_UTMIPLL_LOCK) {
pr_err("trying to assert IDDQ while UTMIPLL is locked\n");
return;
}
reg |= UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE;
writel_relaxed(reg, clk_base + UTMIPLL_HW_PWRDN_CFG0);
}
EXPORT_SYMBOL_GPL(tegra210_put_utmipll_in_iddq);
void tegra210_put_utmipll_out_iddq(void)
{
u32 reg;
reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0);
reg &= ~UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE;
writel_relaxed(reg, clk_base + UTMIPLL_HW_PWRDN_CFG0);
}
EXPORT_SYMBOL_GPL(tegra210_put_utmipll_out_iddq);
static void tegra210_utmi_param_configure(void)
{
u32 reg;
int i;
for (i = 0; i < ARRAY_SIZE(utmi_parameters); i++) {
if (osc_freq == utmi_parameters[i].osc_frequency)
break;
}
if (i >= ARRAY_SIZE(utmi_parameters)) {
pr_err("%s: Unexpected oscillator freq %lu\n", __func__,
osc_freq);
return;
}
reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0);
reg &= ~UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE;
writel_relaxed(reg, clk_base + UTMIPLL_HW_PWRDN_CFG0);
fence_udelay(10, clk_base);
reg = readl_relaxed(clk_base + UTMIP_PLL_CFG2);
/* Program UTMIP PLL stable and active counts */
/* [FIXME] arclk_rst.h says WRONG! This should be 1ms -> 0x50 Check! */
reg &= ~UTMIP_PLL_CFG2_STABLE_COUNT(~0);
reg |= UTMIP_PLL_CFG2_STABLE_COUNT(utmi_parameters[i].stable_count);
reg &= ~UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(~0);
reg |=
UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(utmi_parameters[i].active_delay_count);
writel_relaxed(reg, clk_base + UTMIP_PLL_CFG2);
/* Program UTMIP PLL delay and oscillator frequency counts */
reg = readl_relaxed(clk_base + UTMIP_PLL_CFG1);
reg &= ~UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(~0);
reg |=
UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(utmi_parameters[i].enable_delay_count);
reg &= ~UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(~0);
reg |=
UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(utmi_parameters[i].xtal_freq_count);
reg |= UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN;
writel_relaxed(reg, clk_base + UTMIP_PLL_CFG1);
/* Remove power downs from UTMIP PLL control bits */
reg = readl_relaxed(clk_base + UTMIP_PLL_CFG1);
reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN;
reg |= UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP;
writel_relaxed(reg, clk_base + UTMIP_PLL_CFG1);
fence_udelay(20, clk_base);
/* Enable samplers for SNPS, XUSB_HOST, XUSB_DEV */
reg = readl_relaxed(clk_base + UTMIP_PLL_CFG2);
reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERUP;
reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERUP;
reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERUP;
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN;
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN;
reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERDOWN;
writel_relaxed(reg, clk_base + UTMIP_PLL_CFG2);
/* Setup HW control of UTMIPLL */
reg = readl_relaxed(clk_base + UTMIP_PLL_CFG1);
reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN;
reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP;
writel_relaxed(reg, clk_base + UTMIP_PLL_CFG1);
reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0);
reg |= UTMIPLL_HW_PWRDN_CFG0_USE_LOCKDET;
reg &= ~UTMIPLL_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL;
writel_relaxed(reg, clk_base + UTMIPLL_HW_PWRDN_CFG0);
fence_udelay(1, clk_base);
reg = readl_relaxed(clk_base + XUSB_PLL_CFG0);
reg &= ~XUSB_PLL_CFG0_UTMIPLL_LOCK_DLY;
writel_relaxed(reg, clk_base + XUSB_PLL_CFG0);
fence_udelay(1, clk_base);
/* Enable HW control UTMIPLL */
reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0);
reg |= UTMIPLL_HW_PWRDN_CFG0_SEQ_ENABLE;
writel_relaxed(reg, clk_base + UTMIPLL_HW_PWRDN_CFG0);
fence_udelay(1, clk_base);
}
static int tegra210_enable_pllu(void)
{
struct tegra_clk_pll_freq_table *fentry;
struct tegra_clk_pll pllu;
u32 reg;
int ret;
for (fentry = pll_u_freq_table; fentry->input_rate; fentry++) {
if (fentry->input_rate == pll_ref_freq)
break;
}
if (!fentry->input_rate) {
pr_err("Unknown PLL_U reference frequency %lu\n", pll_ref_freq);
return -EINVAL;
}
/* clear IDDQ bit */
pllu.params = &pll_u_vco_params;
reg = readl_relaxed(clk_base + pllu.params->ext_misc_reg[0]);
reg &= ~BIT(pllu.params->iddq_bit_idx);
writel_relaxed(reg, clk_base + pllu.params->ext_misc_reg[0]);
fence_udelay(5, clk_base);
reg = readl_relaxed(clk_base + PLLU_BASE);
reg &= ~GENMASK(20, 0);
reg |= fentry->m;
reg |= fentry->n << 8;
reg |= fentry->p << 16;
writel(reg, clk_base + PLLU_BASE);
fence_udelay(1, clk_base);
reg |= PLL_ENABLE;
writel(reg, clk_base + PLLU_BASE);
fence_udelay(1, clk_base);
ret = tegra210_wait_for_pll_stable(&pllu, PLLU_BASE, PLL_BASE_LOCK);
if (ret) {
pr_err("Timed out waiting for PLL_U to lock\n");
return -ETIMEDOUT;
}
return 0;
}
static int tegra210_init_pllu(void)
{
u32 reg;
int err;
tegra210_pllu_set_defaults(&pll_u_vco_params);
/* skip initialization when pllu is in hw controlled mode */
reg = readl_relaxed(clk_base + PLLU_BASE);
if (reg & PLLU_BASE_OVERRIDE) {
if (!(reg & PLL_ENABLE)) {
err = tegra210_enable_pllu();
if (err < 0) {
WARN_ON(1);
return err;
}
}
/* enable hw controlled mode */
reg = readl_relaxed(clk_base + PLLU_BASE);
reg &= ~PLLU_BASE_OVERRIDE;
writel(reg, clk_base + PLLU_BASE);
reg = readl_relaxed(clk_base + PLLU_HW_PWRDN_CFG0);
reg |= PLLU_HW_PWRDN_CFG0_IDDQ_PD_INCLUDE |
PLLU_HW_PWRDN_CFG0_USE_SWITCH_DETECT |
PLLU_HW_PWRDN_CFG0_USE_LOCKDET;
reg &= ~(PLLU_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL |
PLLU_HW_PWRDN_CFG0_CLK_SWITCH_SWCTL);
writel_relaxed(reg, clk_base + PLLU_HW_PWRDN_CFG0);
reg = readl_relaxed(clk_base + XUSB_PLL_CFG0);
reg &= ~XUSB_PLL_CFG0_PLLU_LOCK_DLY_MASK;
writel_relaxed(reg, clk_base + XUSB_PLL_CFG0);
fence_udelay(1, clk_base);
reg = readl_relaxed(clk_base + PLLU_HW_PWRDN_CFG0);
reg |= PLLU_HW_PWRDN_CFG0_SEQ_ENABLE;
writel_relaxed(reg, clk_base + PLLU_HW_PWRDN_CFG0);
fence_udelay(1, clk_base);
reg = readl_relaxed(clk_base + PLLU_BASE);
reg &= ~PLLU_BASE_CLKENABLE_USB;
writel_relaxed(reg, clk_base + PLLU_BASE);
}
/* enable UTMIPLL hw control if not yet done by the bootloader */
reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0);
if (!(reg & UTMIPLL_HW_PWRDN_CFG0_SEQ_ENABLE))
tegra210_utmi_param_configure();
return 0;
}
static struct tegra_clk_periph tegra_emc_periph =
TEGRA_CLK_PERIPH(29, 7, 0, 0, 8, 1, 0, TEGRA210_CLK_EMC, 0, NULL, NULL);
static __init void tegra210_emc_clk_init(void __iomem *clk_base)
{
struct clk *clk;
if (!t210b01) {
const struct emc_clk_ops *emc_ops;
emc_ops = tegra210_emc_get_ops();
clk = tegra_clk_register_emc_t210("emc", mux_pllmcp_clkm,
ARRAY_SIZE(mux_pllmcp_clkm), &tegra_emc_periph,
clk_base, CLK_SOURCE_EMC,
CLK_IGNORE_UNUSED | CLK_GET_RATE_NOCACHE,
emc_ops);
clks[TEGRA210_CLK_EMC] = clk;
}
clk = tegra_clk_register_mc_t210("mc", "emc", clk_base + CLK_SOURCE_EMC,
&emc_lock);
clks[TEGRA210_CLK_MC] = clk;
}
static const char *mux_sorsafe_plldp[] = { "sor_safe", "pll_dp" };
static const char *mux_sorsafe_sor1brick_sor1mux[] = { "sor_safe", "sor1_brick", "sor1_mux"};
static const char *mux_vi_visensor_pd2vi[] = { "vi", "pd2vi", "vi_sensor" };
static u32 mux_vi_visensor_pd2vi_idx[] = { [0] = 0, [1] = 1, [2] = 3 };
static const char *mux_sor1[] = { "pll_p", "pll_d_out0", "pll_d2_out0", "clk_m" };
static u32 mux_sor1_idx[] = { [0] = 0, [1] = 2, [2] = 5, [3] = 6 };
static struct tegra_clk_periph tegra_sor0 =
TEGRA_CLK_PERIPH(14, 1, 0, 0, 0, 0, 0, 182, 0, NULL, NULL);
static struct tegra_clk_periph tegra_sor1 =
TEGRA_CLK_PERIPH(14, 3, 0, 0, 0, 0, 0, 183, 0, NULL, &sor1_lock);
static struct tegra_clk_periph tegra_sor1_mux =
TEGRA_CLK_PERIPH(29, 7, 0, 0, 7, 1, TEGRA_DIVIDER_ROUND_UP |
TEGRA_DIVIDER_INT, 0, TEGRA_PERIPH_NO_GATE,
mux_sor1_idx, &sor1_lock);
static const char *mux_ape[] = {
"pll_a_out0", "pll_c4_out0", "pll_c", "pll_c4_out1", "pll_p",
"pll_c4_out2", "clk_m"
};
#define mux_ape_pll_c4_idx 1
#define mux_ape_pll_p_idx 4
static struct tegra_clk_periph tegra_ape =
TEGRA_CLK_PERIPH(29, 7, 0, 0, 8, 1, 0, 198, TEGRA_PERIPH_ON_APB,
NULL, NULL);
static __init void tegra210_periph_clk_init(
void __iomem *clk_base, void __iomem *pmc_base,
struct tegra_clk_pll_params *pllp_params)
{
struct clk *clk;
struct clk_hw *hw;
struct tegra_clk_periph *periph_clk;
/* xusb_ss_div2 */
clk = clk_register_fixed_factor(NULL, "xusb_ss_div2", "xusb_ss_src", 0,
1, 2);
clks[TEGRA210_CLK_XUSB_SS_DIV2] = clk;
clk = tegra_clk_register_periph_fixed("sor_safe", "pll_p", 0, clk_base,
1, 17, 222);
clks[TEGRA210_CLK_SOR_SAFE] = clk;
clk = tegra_clk_register_periph_nodiv("sor0", mux_sorsafe_plldp,
ARRAY_SIZE(mux_sorsafe_plldp), &tegra_sor0,
clk_base, CLK_SOURCE_SOR0);
clks[TEGRA210_CLK_SOR0] = clk;
clk = tegra_clk_register_periph_nodiv("sor1", mux_sorsafe_sor1brick_sor1mux,
ARRAY_SIZE(mux_sorsafe_sor1brick_sor1mux), &tegra_sor1,
clk_base, CLK_SOURCE_SOR1);
clks[TEGRA210_CLK_SOR1] = clk;
clk = tegra_clk_register_periph("sor1_mux", mux_sor1,
ARRAY_SIZE(mux_sor1), &tegra_sor1_mux,
clk_base, CLK_SOURCE_SOR1, 0);
clks[TEGRA210_CLK_SOR1_MUX] = clk;
clk = tegra_clk_register_sync_source("sor1_brick", ULONG_MAX);
clks[TEGRA210_CLK_SOR1_BRICK] = clk;
clk = tegra_clk_register_sync_source("pd2vi", ULONG_MAX);
clks[TEGRA210_CLK_PD2VI] = clk;
clk = clk_register_mux_table(NULL, "vi_output", mux_vi_visensor_pd2vi,
ARRAY_SIZE(mux_vi_visensor_pd2vi), 0,
clk_base + CLK_SOURCE_VI, 24, 2, 0,
mux_vi_visensor_pd2vi_idx, &vi_lock);
clks[TEGRA210_CLK_VI_OUTPUT] = clk;
/* dsia */
clk = tegra_clk_register_periph_gate("dsia", "pll_d_dsi_out", 0,
clk_base, 0, 48,
periph_clk_enb_refcnt);
clks[TEGRA210_CLK_DSIA] = clk;
/* dsib */
clk = tegra_clk_register_periph_gate("dsib", "pll_d_dsi_out", 0,
clk_base, 0, 82,
periph_clk_enb_refcnt);
clks[TEGRA210_CLK_DSIB] = clk;
tegra210_emc_clk_init(clk_base);
clk = tegra_clk_register_super_clk("aclk", aclk_parents,
ARRAY_SIZE(aclk_parents), 0, clk_base + 0x6e0,
0, NULL);
clks[TEGRA210_CLK_ACLK] = clk;
tegra_periph_clk_init(clk_base, pmc_base, tegra210_clks, pllp_params);
clk = clk_register_divider(NULL, "qspi_out", "qspi", 0,
clk_base + 0x6c4, 8, 1, 0, NULL);
clks[TEGRA210_CLK_QSPI_OUT] = clk;
clk = tegra_clk_register_sdmmc_mux_div("sdmmc2", clk_base,
CLK_SOURCE_SDMMC2, 9,
TEGRA_DIVIDER_ROUND_UP, 0, NULL);
clks[TEGRA210_CLK_SDMMC2] = clk;
clk = tegra_clk_register_sdmmc_mux_div("sdmmc4", clk_base,
CLK_SOURCE_SDMMC4, 15,
TEGRA_DIVIDER_ROUND_UP, 0, NULL);
clks[TEGRA210_CLK_SDMMC4] = clk;
if (t210b01) {
tegra_ape.rpolicy.low_rate_parent_idx = mux_ape_pll_p_idx;
tegra_ape.rpolicy.high_rate_parent_idx = mux_ape_pll_c4_idx;
tegra_ape.rpolicy.threshold = 204000000;
}
clk = tegra_clk_register_periph("ape", mux_ape, ARRAY_SIZE(mux_ape),
&tegra_ape, clk_base, CLK_SOURCE_APE, 0);
clks[TEGRA210_CLK_APE] = clk;
hw = __clk_get_hw(clks[TEGRA210_CLK_VI]);
periph_clk = to_clk_periph(hw);
periph_clk->mux.lock = &vi_lock;
}
static void __init tegra210_pll_init(void __iomem *clk_base,
void __iomem *pmc)
{
struct clk *clk;
/* PLLC */
clk = tegra_clk_register_pllc_tegra210("pll_c", "pll_ref", clk_base,
pmc, 0, &pll_c_params, NULL);
if (!WARN_ON(IS_ERR(clk)))
clk_register_clkdev(clk, "pll_c", NULL);
clks[TEGRA210_CLK_PLL_C] = clk;
/* PLLC_OUT1 */
clk = tegra_clk_register_divider("pll_c_out1_div", "pll_c",
clk_base + PLLC_OUT, 0, TEGRA_DIVIDER_ROUND_UP,
8, 8, 1, NULL);
clk = tegra_clk_register_pll_out("pll_c_out1", "pll_c_out1_div",
clk_base + PLLC_OUT, 1, 0,
CLK_SET_RATE_PARENT, 0, NULL);
clk_register_clkdev(clk, "pll_c_out1", NULL);
clks[TEGRA210_CLK_PLL_C_OUT1] = clk;
/* PLLC_UD */
clk = clk_register_fixed_factor(NULL, "pll_c_ud", "pll_c",
CLK_SET_RATE_PARENT, 1, 1);
clk_register_clkdev(clk, "pll_c_ud", NULL);
clks[TEGRA210_CLK_PLL_C_UD] = clk;
/* PLLC2 */
clk = tegra_clk_register_pllc_tegra210("pll_c2", "pll_ref", clk_base,
pmc, 0, &pll_c2_params, NULL);
clk_register_clkdev(clk, "pll_c2", NULL);
clks[TEGRA210_CLK_PLL_C2] = clk;
/* PLLC3 */
clk = tegra_clk_register_pllc_tegra210("pll_c3", "pll_ref", clk_base,
pmc, 0, &pll_c3_params, NULL);
clk_register_clkdev(clk, "pll_c3", NULL);
clks[TEGRA210_CLK_PLL_C3] = clk;
if (!emc_is_native)
goto skip_pllms;
/* PLLM */
clk = tegra_clk_register_pllm("pll_m", "osc", clk_base, pmc,
CLK_SET_RATE_GATE, &pll_m_params, NULL);
clk_register_clkdev(clk, "pll_m", NULL);
clks[TEGRA210_CLK_PLL_M] = clk;
/* PLLMB */
clk = tegra_clk_register_pllmb("pll_mb", "osc", clk_base, pmc,
CLK_SET_RATE_GATE, &pll_mb_params, NULL);
clk_register_clkdev(clk, "pll_mb", NULL);
clks[TEGRA210_CLK_PLL_MB] = clk;
/* PLLM_UD */
clk = clk_register_fixed_factor(NULL, "pll_m_ud", "pll_m",
CLK_SET_RATE_PARENT, 1, 1);
clk_register_clkdev(clk, "pll_m_ud", NULL);
clks[TEGRA210_CLK_PLL_M_UD] = clk;
/* PLLMB_UD */
clk = clk_register_fixed_factor(NULL, "pll_mb_ud", "pll_mb",
CLK_SET_RATE_PARENT, 1, 1);
clk_register_clkdev(clk, "pll_mb_ud", NULL);
clks[TEGRA210_CLK_PLL_MB_UD] = clk;
skip_pllms:
/* PLLU_VCO */
if (!tegra210_init_pllu()) {
clk = clk_register_fixed_rate(NULL, "pll_u_vco", "pll_ref", 0,
480*1000*1000);
clk_register_clkdev(clk, "pll_u_vco", NULL);
clks[TEGRA210_CLK_PLL_U] = clk;
}
/* PLLU_OUT */
clk = clk_register_divider_table(NULL, "pll_u_out", "pll_u_vco", 0,
clk_base + PLLU_BASE, 16, 4, 0,
pll_vco_post_div_table, NULL);
clk_register_clkdev(clk, "pll_u_out", NULL);
clks[TEGRA210_CLK_PLL_U_OUT] = clk;
/* PLLU_OUT1 */
clk = tegra_clk_register_divider("pll_u_out1_div", "pll_u_out",
clk_base + PLLU_OUTA, 0,
TEGRA_DIVIDER_ROUND_UP,
8, 8, 1, &pll_u_lock);
clk = tegra_clk_register_pll_out("pll_u_out1", "pll_u_out1_div",
clk_base + PLLU_OUTA, 1, 0,
CLK_SET_RATE_PARENT, 0, &pll_u_lock);
clk_register_clkdev(clk, "pll_u_out1", NULL);
clks[TEGRA210_CLK_PLL_U_OUT1] = clk;
/* PLLU_OUT2 */
clk = tegra_clk_register_divider("pll_u_out2_div", "pll_u_out",
clk_base + PLLU_OUTA, 0,
TEGRA_DIVIDER_ROUND_UP,
24, 8, 1, &pll_u_lock);
clk = tegra_clk_register_pll_out("pll_u_out2", "pll_u_out2_div",
clk_base + PLLU_OUTA, 17, 16,
CLK_SET_RATE_PARENT, 0, &pll_u_lock);
clk_register_clkdev(clk, "pll_u_out2", NULL);
clks[TEGRA210_CLK_PLL_U_OUT2] = clk;
/* PLLU_480M */
clk = clk_register_gate(NULL, "pll_u_480M", "pll_u_vco",
CLK_SET_RATE_PARENT, clk_base + PLLU_BASE,
22, 0, &pll_u_lock);
clk_register_clkdev(clk, "pll_u_480M", NULL);
clks[TEGRA210_CLK_PLL_U_480M] = clk;
/* PLLU_60M */
clk = clk_register_gate(NULL, "pll_u_60M", "pll_u_out2",
CLK_SET_RATE_PARENT, clk_base + PLLU_BASE,
23, 0, &pll_u_lock);
clk_register_clkdev(clk, "pll_u_60M", NULL);
clks[TEGRA210_CLK_PLL_U_60M] = clk;
/* PLLU_48M */
clk = clk_register_gate(NULL, "pll_u_48M", "pll_u_out1",
CLK_SET_RATE_PARENT, clk_base + PLLU_BASE,
25, 0, &pll_u_lock);
clk_register_clkdev(clk, "pll_u_48M", NULL);
clks[TEGRA210_CLK_PLL_U_48M] = clk;
/* PLLD */
clk = tegra_clk_register_pll("pll_d", "pll_ref", clk_base, pmc, 0,
&pll_d_params, &pll_d_lock);
clk_register_clkdev(clk, "pll_d", NULL);
clks[TEGRA210_CLK_PLL_D] = clk;
/* PLLD_OUT0 */
clk = clk_register_fixed_factor(NULL, "pll_d_out0", "pll_d",
CLK_SET_RATE_PARENT, 1, 2);
clk_register_clkdev(clk, "pll_d_out0", NULL);
clks[TEGRA210_CLK_PLL_D_OUT0] = clk;
/* PLL_D_DSI_OUT */
clk = clk_register_gate(NULL, "pll_d_dsi_out", "pll_d_out0", 0,
clk_base + PLLD_MISC0, 21, 0, &pll_d_lock);
clks[TEGRA210_CLK_PLL_D_DSI_OUT] = clk;
/* PLLRE */
clk = tegra_clk_register_pllre_tegra210("pll_re_vco", "pll_ref",
clk_base, pmc, 0,
&pll_re_vco_params,
&pll_re_lock, pll_ref_freq);
clk_register_clkdev(clk, "pll_re_vco", NULL);
clks[TEGRA210_CLK_PLL_RE_VCO] = clk;
clk = clk_register_divider_table(NULL, "pll_re_out", "pll_re_vco", 0,
clk_base + PLLRE_BASE, 16, 5, 0,
pll_vco_post_div_table, &pll_re_lock);
clk_register_clkdev(clk, "pll_re_out", NULL);
clks[TEGRA210_CLK_PLL_RE_OUT] = clk;
clk = tegra_clk_register_divider("pll_re_out1_div", "pll_re_vco",
clk_base + PLLRE_OUT1, 0,
TEGRA_DIVIDER_ROUND_UP,
8, 8, 1, NULL);
clk = tegra_clk_register_pll_out("pll_re_out1", "pll_re_out1_div",
clk_base + PLLRE_OUT1, 1, 0,
CLK_SET_RATE_PARENT, 0, NULL);
clks[TEGRA210_CLK_PLL_RE_OUT1] = clk;
/* PLLE */
clk = tegra_clk_register_plle_tegra210("pll_e", "pll_ref",
clk_base, 0, &pll_e_params, &pll_e_lock);
clk_register_clkdev(clk, "pll_e", NULL);
clks[TEGRA210_CLK_PLL_E] = clk;
/* CML0 */
clk = clk_register_gate(NULL, "cml0", "pll_e", 0, clk_base + PLLE_AUX,
0, 0, &pll_e_lock);
clk_register_clkdev(clk, "cml0", NULL);
clks[TEGRA210_CLK_CML0] = clk;
/* CML1 */
clk = clk_register_gate(NULL, "cml1", "pll_e", 0, clk_base + PLLE_AUX,
1, 0, &pll_e_lock);
clk_register_clkdev(clk, "cml1", NULL);
clks[TEGRA210_CLK_CML1] = clk;
/* PLLC4 */
clk = tegra_clk_register_pllre_tegra210("pll_c4_vco", "pll_ref",
clk_base, pmc, 0, &pll_c4_vco_params, NULL, pll_ref_freq);
clk_register_clkdev(clk, "pll_c4_vco", NULL);
clks[TEGRA210_CLK_PLL_C4] = clk;
/* PLLC4_OUT1 */
clk = clk_register_fixed_factor(NULL, "pll_c4_out1", "pll_c4_vco",
CLK_SET_RATE_PARENT, 1, 3);
clk_register_clkdev(clk, "pll_c4_out1", NULL);
clks[TEGRA210_CLK_PLL_C4_OUT1] = clk;
/* PLLC4_OUT2 */
clk = clk_register_fixed_factor(NULL, "pll_c4_out2", "pll_c4_vco",
CLK_SET_RATE_PARENT, 1, 5);
clk_register_clkdev(clk, "pll_c4_out2", NULL);
clks[TEGRA210_CLK_PLL_C4_OUT2] = clk;
/* PLLC4_OUT3 */
clk = tegra_clk_register_divider("pll_c4_out3_div", "pll_c4_out0",
clk_base + PLLC4_OUT, 0, TEGRA_DIVIDER_ROUND_UP,
8, 8, 1, NULL);
clk = tegra_clk_register_pll_out("pll_c4_out3", "pll_c4_out3_div",
clk_base + PLLC4_OUT, 1, 0,
CLK_SET_RATE_PARENT, 0, NULL);
clk_register_clkdev(clk, "pll_c4_out3", NULL);
clks[TEGRA210_CLK_PLL_C4_OUT3] = clk;
/* PLLDP */
clk = tegra_clk_register_pllss_tegra210("pll_dp", "pll_ref", clk_base,
0, &pll_dp_params, NULL);
clk_register_clkdev(clk, "pll_dp", NULL);
clks[TEGRA210_CLK_PLL_DP] = clk;
/* PLLD2 */
clk = tegra_clk_register_pllss_tegra210("pll_d2", "pll_ref", clk_base,
0, &pll_d2_params, &pll_d2_lock);
clk_register_clkdev(clk, "pll_d2", NULL);
clks[TEGRA210_CLK_PLL_D2] = clk;
/* PLLD2_OUT0 */
clk = clk_register_fixed_factor(NULL, "pll_d2_out0", "pll_d2",
CLK_SET_RATE_PARENT, 1, 1);
clk_register_clkdev(clk, "pll_d2_out0", NULL);
clks[TEGRA210_CLK_PLL_D2_OUT0] = clk;
/* PLLP_OUT2 */
clk = clk_register_fixed_factor(NULL, "pll_p_out2", "pll_p",
CLK_SET_RATE_PARENT, 1, 2);
clk_register_clkdev(clk, "pll_p_out2", NULL);
clks[TEGRA210_CLK_PLL_P_OUT2] = clk;
/* PLLP_UD */
clk = clk_register_fixed_factor(NULL, "pll_p_ud", "pll_p",
CLK_SET_RATE_PARENT, 1, 1);
clk_register_clkdev(clk, "pll_pud", NULL);
clks[TEGRA210_CLK_PLL_P_UD] = clk;
}
static const char *cbus_parents[] = { "c2bus", "c3bus", "isp.cbus", "vi.cbus", "cbus" };
static __init void tegra210_shared_clk_init(char *sclk_high_clk)
{
struct clk *clk;
struct tegra_clk_cbus_shared *sbus_cbus;
struct tegra_clk_pll_params *pllc4_params =
to_clk_pll(__clk_get_hw(clks[TEGRA210_CLK_PLL_C4]))->params;
clk_set_rate(clks[TEGRA210_CLK_PLL_C4], pllc4_params->fixed_rate);
clk_set_rate(clks[TEGRA210_CLK_PLL_C4_OUT3], pllc4_params->fixed_rate);
pllc4_params->flags |= TEGRA_PLL_FIXED;
clk = tegra_clk_register_cbus("c2bus", "pll_c2", 0, "pll_p", 0,
1200000000);
clk_register_clkdev(clk, "c2bus", NULL);
clks[TEGRA210_CLK_C2BUS] = clk;
clk = tegra_clk_register_cbus("c3bus", "pll_c3", 0, "pll_p", 0,
1200000000);
clk_register_clkdev(clk, "c3bus", NULL);
clks[TEGRA210_CLK_C3BUS] = clk;
clk = tegra_clk_register_shared("vic03.cbus", &cbus_parents[0], 1, 0,
0, "vic03");
clks[TEGRA210_CLK_VIC03_CBUS] = clk;
clk = tegra_clk_register_shared("nvjpg.cbus", &cbus_parents[0], 1, 0,
0, "nvjpg");
clks[TEGRA210_CLK_NVJPG_CBUS] = clk;
clk = tegra_clk_register_shared("se.cbus", &cbus_parents[0], 1, 0,
0, "se");
clks[TEGRA210_CLK_SE_CBUS] = clk;
clk = tegra_clk_register_shared("tsecb.cbus", &cbus_parents[0], 1, 0,
0, "tsecb");
clks[TEGRA210_CLK_TSECB_CBUS] = clk;
clk = tegra_clk_register_shared("nvenc.cbus", &cbus_parents[1], 1, 0,
0, "nvenc");
clks[TEGRA210_CLK_NVENC_CBUS] = clk;
clk = tegra_clk_register_shared("nvdec.cbus", &cbus_parents[1], 1, 0,
0, "nvdec");
clks[TEGRA210_CLK_NVDEC_CBUS] = clk;
clk = tegra_clk_register_cbus("abus", "pll_a1",
TEGRA_SHARED_BUS_RETENTION | TEGRA_SHARED_BUS_ROUND_PASS_THRU,
"pll_p_out_adsp", 38400000, t210b01 ? 1200000000 : 844800000);
clks[TEGRA210_CLK_ABUS] = clk;
if (clks[TEGRA210_CLK_SCLK_SKIPPER]) {
clk = clks[TEGRA210_CLK_SCLK_SKIPPER];
clk = tegra_clk_register_sbus_cmplx("sbus", __clk_get_name(clk),
"sclk_mux", "sclk", 0, "pclk", "hclk", "pll_p",
sclk_high_clk, 204000000, 12000000, 408000000);
} else {
clk = tegra_clk_register_sbus_cmplx("sbus", "sclk", "sclk_mux",
NULL, 0, "pclk", "hclk", sclk_high_clk,
"pll_c_out1", 204000000, 12000000,
408000000);
}
clk_register_clkdev(clk, "sbus", NULL);
clks[TEGRA210_CLK_SBUS] = clk;
sbus_cbus = to_clk_cbus_shared(__clk_get_hw(clk));
clk = tegra_clk_register_shared_master("emc_master", "emc",
emc_is_native ? TEGRA_SHARED_BUS_EMC_NATIVE : 0,
12750000, t210b01 ? 1866000000 : 1600000000);
if (clk) {
to_clk_cbus_shared(__clk_get_hw(clk))->users_default_rate =
204000000;
}
clks[TEGRA210_CLK_EMC_MASTER] = clk;
clk = tegra_clk_register_gbus("gbus", "gpcclk",
TEGRA_SHARED_BUS_RETENTION,
12000000, 1300000000);
clks[TEGRA210_CLK_GBUS] = clk;
clk = tegra_clk_register_shared_master("host1x_master", "host1x", 0,
12000000, 408000000);
clks[TEGRA210_CLK_HOST1X_MASTER] = clk;
clk = tegra_clk_register_shared_master("mselect_master", "mselect", 0,
12000000, 408000000);
clks[TEGRA210_CLK_MSELECT_MASTER] = clk;
clk = tegra_clk_register_shared_master("ape_master", "ape",
TEGRA_SHARED_BUS_RETENTION,
12000000, t210b01 ? 998400000 : 408000000);
clks[TEGRA210_CLK_APE_MASTER] = clk;
clk = tegra_clk_register_cbus("cbus", "pll_c", 0, "pll_p", 0,
1200000000);
clk_register_clkdev(clk, "cbus", NULL);
clks[TEGRA210_CLK_CBUS] = clk;
clk = tegra_clk_register_shared_connect("vi.cbus", &cbus_parents[4],
1, 0, 0, "vi");
clks[TEGRA210_CLK_VI_CBUS] = clk;
clk = tegra_clk_register_shared_connect("isp.cbus", &cbus_parents[4],
1, 0, 0, "isp");
clks[TEGRA210_CLK_ISP_CBUS] = clk;
clk = tegra_clk_register_shared("ispa.isp.cbus", &cbus_parents[2], 1, 0,
0, "ispa");
clks[TEGRA210_CLK_ISPA_ISP_CBUS] = clk;
clk = tegra_clk_register_shared("ispb.isp.cbus", &cbus_parents[2], 1, 0,
0, "ispb");
clks[TEGRA210_CLK_ISPB_ISP_CBUS] = clk;
clk = tegra_clk_register_shared("vi_v4l2.cbus", &cbus_parents[3], 1, 0,
0, "vi");
clks[TEGRA210_CLK_VI_V4L2_CBUS] = clk;
clk = tegra_clk_register_shared("vi_bypass.cbus", &cbus_parents[3], 1, 0,
0, "vi");
clks[TEGRA210_CLK_VI_BYPASS_CBUS] = clk;
clk = tegra_clk_register_cascade_master("ahb.sclk", "sbus", NULL, 0);
clks[TEGRA210_CLK_AHB_SCLK] = clk;
sbus_cbus->u.system.ahb_bus = __clk_get_hw(clk);
clk = tegra_clk_register_cascade_master("apb.sclk", "ahb.sclk",
"sbus", 0);
clks[TEGRA210_CLK_APB_SCLK] = clk;
sbus_cbus->u.system.apb_bus = __clk_get_hw(clk);
tegra_shared_clk_init(tegra210_clks);
}
static char *tegra210_determine_pllc4_rate(
struct tegra_clk_pll_params *pllc4_params,
const struct clk_div_table *pllc4_post_div_table)
{
struct device_node *node;
u32 val;
int out0_ratio, i;
unsigned long sdmmc_max_rate = 0;
struct clk *clk;
char *sclk_high_clk;
for_each_compatible_node(node, NULL, "nvidia,tegra210-sdhci") {
if (!of_device_is_available(node))
continue;
if (!of_property_read_u32(node, "max-clk-limit", &val)
&& val > sdmmc_max_rate)
sdmmc_max_rate = val;
}
switch (sdmmc_max_rate) {
case 266000000:
sclk_high_clk = "pll_c4_out1";
pllc4_params->fixed_rate = 798000000;
out0_ratio = 4;
break;
default:
sclk_high_clk = "pll_c4_out3";
pllc4_params->fixed_rate = 1000000000;
out0_ratio = 1;
break;
}
pllc4_params->fixed_rate /= pll_ref_freq/pllc4_params->mdiv_default;
pllc4_params->fixed_rate *= pll_ref_freq/pllc4_params->mdiv_default;
val = readl(clk_base + PLLC4_BASE);
for (i = 0; pllc4_post_div_table[i].div; i++)
if (pllc4_post_div_table[i].div >= out0_ratio)
break;
val &= ~GENMASK(23, 19);
val |= pllc4_post_div_table[i].val << pllc4_params->div_nmp->divp_shift;
writel(val, clk_base + PLLC4_BASE);
clk = clk_register_fixed_factor(NULL, "pll_c4_out0", "pll_c4_vco", 0,
1, pllc4_post_div_table[i].div);
clks[TEGRA210_CLK_PLL_C4_OUT0] = clk;
return sclk_high_clk;
}
/* Tegra210 CPU clock and reset control functions */
static void tegra210_wait_cpu_in_reset(u32 cpu)
{
unsigned int reg;
do {
reg = readl(clk_base + CLK_RST_CONTROLLER_CPU_CMPLX_STATUS);
cpu_relax();
} while (!(reg & (1 << cpu))); /* check CPU been reset or not */
}
static void tegra210_disable_cpu_clock(u32 cpu)
{
/* flow controller would take care in the power sequence. */
}
#ifdef CONFIG_PM_SLEEP
static void tegra210_cpu_clock_suspend(void)
{
/* switch coresite to clk_m, save off original source */
tegra210_cpu_clk_sctx.clk_csite_src =
readl(clk_base + CLK_SOURCE_CSITE);
writel(3 << 30, clk_base + CLK_SOURCE_CSITE);
}
static void tegra210_cpu_clock_resume(void)
{
writel(tegra210_cpu_clk_sctx.clk_csite_src,
clk_base + CLK_SOURCE_CSITE);
}
#endif
static struct tegra_cpu_car_ops tegra210_cpu_car_ops = {
.wait_for_reset = tegra210_wait_cpu_in_reset,
.disable_clock = tegra210_disable_cpu_clock,
#ifdef CONFIG_PM_SLEEP
.suspend = tegra210_cpu_clock_suspend,
.resume = tegra210_cpu_clock_resume,
#endif
};
static const struct of_device_id pmc_match[] __initconst = {
{ .compatible = "nvidia,tegra210-pmc" },
{ },
};
static struct tegra_clk_init_table t210_init_table[] __initdata = {
{ TEGRA210_CLK_PLL_A, TEGRA210_CLK_CLK_MAX, 564480000, 1 },
{ TEGRA210_CLK_PLL_RE_VCO, TEGRA210_CLK_CLK_MAX, 672000000, 1 },
{ TEGRA210_CLK_PLL_DP, TEGRA210_CLK_CLK_MAX, 270000000, 0 },
/* This MUST be the last entry. */
{ TEGRA210_CLK_CLK_MAX, TEGRA210_CLK_CLK_MAX, 0, 0 },
};
static struct tegra_clk_init_table init_table[] __initdata = {
{ TEGRA210_CLK_HDA2CODEC_2X, TEGRA210_CLK_PLL_P, 48000000, 0},
{ TEGRA210_CLK_HDA, TEGRA210_CLK_PLL_P, 51000000, 0},
{ TEGRA210_CLK_UARTA, TEGRA210_CLK_PLL_P, 408000000, 0 },
{ TEGRA210_CLK_UARTB, TEGRA210_CLK_PLL_P, 408000000, 0 },
{ TEGRA210_CLK_UARTC, TEGRA210_CLK_PLL_P, 408000000, 0 },
{ TEGRA210_CLK_UARTD, TEGRA210_CLK_PLL_P, 408000000, 0 },
{ TEGRA210_CLK_PLL_A_OUT0, TEGRA210_CLK_CLK_MAX, 11289600, 1 },
{ TEGRA210_CLK_EXTERN1, TEGRA210_CLK_PLL_A_OUT0, 0, 1 },
{ TEGRA210_CLK_CLK_OUT_1_MUX, TEGRA210_CLK_EXTERN1, 0, 1 },
{ TEGRA210_CLK_CLK_OUT_1, TEGRA210_CLK_CLK_MAX, 0, 1 },
{ TEGRA210_CLK_I2S0, TEGRA210_CLK_PLL_A_OUT0, 11289600, 0 },
{ TEGRA210_CLK_I2S1, TEGRA210_CLK_PLL_A_OUT0, 11289600, 0 },
{ TEGRA210_CLK_I2S2, TEGRA210_CLK_PLL_A_OUT0, 11289600, 0 },
{ TEGRA210_CLK_I2S3, TEGRA210_CLK_PLL_A_OUT0, 11289600, 0 },
{ TEGRA210_CLK_I2S4, TEGRA210_CLK_PLL_A_OUT0, 11289600, 0 },
{ TEGRA210_CLK_HOST1X, TEGRA210_CLK_PLL_P, 136000000, 1 },
{ TEGRA210_CLK_SCLK_MUX, TEGRA210_CLK_PLL_P, 0, 1 },
{ TEGRA210_CLK_SCLK, TEGRA210_CLK_CLK_MAX, 102000000, 1 },
{ TEGRA210_CLK_BOOT_APB_SCLK, TEGRA210_CLK_CLK_MAX, 51000000, 1 },
{ TEGRA210_CLK_DFLL_SOC, TEGRA210_CLK_PLL_P, 51000000, 1 },
{ TEGRA210_CLK_DFLL_REF, TEGRA210_CLK_PLL_P, 51000000, 1 },
{ TEGRA210_CLK_SBC4, TEGRA210_CLK_PLL_P, 12000000, 1 },
{ TEGRA210_CLK_PLL_U_OUT1, TEGRA210_CLK_CLK_MAX, 48000000, 1 },
{ TEGRA210_CLK_PLL_U_OUT2, TEGRA210_CLK_CLK_MAX, 60000000, 1 },
{ TEGRA210_CLK_PLL_RE_VCO, TEGRA210_CLK_CLK_MAX, 672000000, 1},
{ TEGRA210_CLK_XUSB_GATE, TEGRA210_CLK_CLK_MAX, 0, 1 },
{ TEGRA210_CLK_XUSB_SS_SRC, TEGRA210_CLK_PLL_U_480M, 120000000, 0 },
{ TEGRA210_CLK_XUSB_FS_SRC, TEGRA210_CLK_PLL_U_48M, 48000000, 0 },
{ TEGRA210_CLK_XUSB_HS_SRC, TEGRA210_CLK_XUSB_SS_SRC, 120000000, 0 },
{ TEGRA210_CLK_XUSB_SSP_SRC, TEGRA210_CLK_XUSB_SS_SRC, 120000000, 0 },
{ TEGRA210_CLK_XUSB_FALCON_SRC, TEGRA210_CLK_PLL_RE_OUT, 336000000, 0 },
{ TEGRA210_CLK_XUSB_HOST_SRC, TEGRA210_CLK_PLL_P_OUT_XUSB, 102000000, 0 },
{ TEGRA210_CLK_XUSB_DEV_SRC, TEGRA210_CLK_PLL_P_OUT_XUSB, 102000000, 0 },
{ TEGRA210_CLK_SATA, TEGRA210_CLK_PLL_P, 104000000, 0 },
{ TEGRA210_CLK_SATA_OOB, TEGRA210_CLK_PLL_P, 204000000, 0 },
{ TEGRA210_CLK_BWMGR_EMC, TEGRA210_CLK_CLK_MAX, 0, 1 },
{ TEGRA210_CLK_FUSE, TEGRA210_CLK_CLK_M, 0, 1},
{ TEGRA210_CLK_KFUSE, TEGRA210_CLK_CLK_MAX, 0, 1 },
{ TEGRA210_CLK_MSELECT, TEGRA210_CLK_PLL_P, 102000000, 1 },
{ TEGRA210_CLK_APE, TEGRA210_CLK_PLL_P, 25500000, 1 },
{ TEGRA210_CLK_CSITE, TEGRA210_CLK_CLK_MAX, 0, 1 },
{ TEGRA210_CLK_ACLK, TEGRA210_CLK_PLL_A1, 0, 0 },
/* TODO find a way to enable this on-demand */
{ TEGRA210_CLK_DBGAPB, TEGRA210_CLK_CLK_MAX, 0, 1 },
{ TEGRA210_CLK_TSENSOR, TEGRA210_CLK_CLK_M, 400000, 0 },
{ TEGRA210_CLK_I2C1, TEGRA210_CLK_PLL_P, 0, 0 },
{ TEGRA210_CLK_I2C2, TEGRA210_CLK_PLL_P, 0, 0 },
{ TEGRA210_CLK_I2C3, TEGRA210_CLK_PLL_P, 0, 0 },
{ TEGRA210_CLK_I2C4, TEGRA210_CLK_PLL_P, 0, 0 },
{ TEGRA210_CLK_I2C5, TEGRA210_CLK_PLL_P, 0, 0 },
{ TEGRA210_CLK_I2C6, TEGRA210_CLK_PLL_P, 0, 0 },
{ TEGRA210_CLK_SOC_THERM, TEGRA210_CLK_PLL_P, 51000000, 0 },
{ TEGRA210_CLK_CCLK_G, TEGRA210_CLK_CLK_MAX, 0, 1 },
{ TEGRA210_CLK_PCLK, TEGRA210_CLK_CLK_MAX, 0, 1 },
{ TEGRA210_CLK_TIMER, TEGRA210_CLK_CLK_MAX, 0, 1 },
{ TEGRA210_CLK_PLL_P_OUT3, TEGRA210_CLK_CLK_MAX, 102000000, 0 },
{ TEGRA210_CLK_PLL_P_OUT4, TEGRA210_CLK_CLK_MAX, 102000000, 0 },
{ TEGRA210_CLK_PLL_P_OUT5, TEGRA210_CLK_CLK_MAX, 204000000, 0 },
{ TEGRA210_CLK_MC_CAPA, TEGRA210_CLK_CLK_MAX, 0, 1},
{ TEGRA210_CLK_MC_CBPA, TEGRA210_CLK_CLK_MAX, 0, 1},
{ TEGRA210_CLK_MC_CCPA, TEGRA210_CLK_CLK_MAX, 0, 1},
{ TEGRA210_CLK_MC_CDPA, TEGRA210_CLK_CLK_MAX, 0, 1},
{ TEGRA210_CLK_SDMMC1, TEGRA210_CLK_PLL_P, 204000000, 0},
{ TEGRA210_CLK_SDMMC2, TEGRA210_CLK_PLL_P, 204000000, 0},
{ TEGRA210_CLK_SPDIF_IN_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 },
{ TEGRA210_CLK_I2S0_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 },
{ TEGRA210_CLK_I2S1_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 },
{ TEGRA210_CLK_I2S2_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 },
{ TEGRA210_CLK_I2S3_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 },
{ TEGRA210_CLK_I2S4_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 },
{ TEGRA210_CLK_VIMCLK_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 },
{ TEGRA210_CLK_ENTROPY, TEGRA210_CLK_CLK_M, 0, 1},
/* This MUST be the last entry. */
{ TEGRA210_CLK_CLK_MAX, TEGRA210_CLK_CLK_MAX, 0, 0 },
};
#ifdef CONFIG_PM_SLEEP
static unsigned long pll_c_rate, pll_c2_rate, pll_c3_rate, pll_x_rate;
static unsigned long pll_c4_rate, pll_d2_rate, pll_dp_rate;
static unsigned long pll_re_vco_rate, pll_d_rate, pll_a_rate, pll_a1_rate;
static unsigned long pll_c_out1_rate;
static unsigned long pll_a_out0_rate, pll_c4_out3_rate;
static unsigned long pll_p_out_rate[5];
static unsigned long pll_u_out1_rate, pll_u_out2_rate;
static unsigned long pll_mb_rate;
static u32 pll_m_v;
static u32 pll_p_outa, pll_p_outb;
static u32 pll_re_out_div, pll_re_out_1;
static u32 cpu_softrst_ctx[3];
static u32 cclkg_burst_policy_ctx[2];
static u32 cclklp_burst_policy_ctx[2];
static u32 sclk_burst_policy_ctx[3];
static u32 sclk_ctx, spare_ctx, misc_clk_enb_ctx, clk_arm_ctx;
static struct platform_device *dfll_pdev;
#define car_readl(_base, _off) readl_relaxed(clk_base + (_base) + (_off * 4))
#define car_writel(_val, _base, _off) \
writel_relaxed(_val, clk_base + (_base) + (_off * 4))
static u32 *periph_clk_src_ctx;
struct periph_source_bank {
u32 start;
u32 end;
};
static struct periph_source_bank periph_srcs[] = {
[0] = {
.start = 0x100,
.end = 0x198,
},
[1] = {
.start = 0x1a0,
.end = 0x1f8,
},
[2] = {
.start = 0x3b4,
.end = 0x42c,
},
[3] = {
.start = 0x49c,
.end = 0x4b4,
},
[4] = {
.start = 0x560,
.end = 0x564,
},
[5] = {
.start = 0x600,
.end = 0x678,
},
[6] = {
.start = 0x694,
.end = 0x6a0,
},
[7] = {
.start = 0x6b8,
.end = 0x718,
},
};
/* This array lists the valid clocks for each periph clk bank */
static u32 periph_clks_on[] = {
0xdcd7dff9,
0x87d1f3e7,
0xf3fed3fa,
0xffc18cfb,
0x793fb7ff,
0x3fe66fff,
0xfc1fc7ff,
};
static inline unsigned long clk_get_rate_nolock(struct clk *clk)
{
if (IS_ERR_OR_NULL(clk)) {
WARN_ON(1);
return 0;
}
return clk_hw_get_rate(__clk_get_hw(clk));
}
static inline struct clk *pll_p_clk(unsigned int x)
{
if (x < 4)
return clks[TEGRA210_CLK_PLL_P_OUT1 + x];
else if (x != 4) {
WARN_ON(1);
return NULL;
} else
return clks[TEGRA210_CLK_PLL_P_OUT5];
}
static u32 * __init tegra210_init_suspend_ctx(void)
{
int i, size = 0;
for (i = 0; i < ARRAY_SIZE(periph_srcs); i++)
size += periph_srcs[i].end - periph_srcs[i].start + 4;
periph_clk_src_ctx = kmalloc(size, GFP_KERNEL);
return periph_clk_src_ctx;
}
static int tegra210_clk_suspend(void)
{
int i;
unsigned long off;
struct device_node *node;
u32 *clk_rst_ctx = periph_clk_src_ctx;
u32 val;
pll_a_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_A]);
pll_a_out0_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_A_OUT0]);
pll_a1_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_A1]);
pll_c2_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_C2]);
pll_c3_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_C3]);
pll_c_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_C]);
pll_c_out1_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_C_OUT1]);
pll_x_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_X]);
pll_c4_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_C4]);
pll_c4_out3_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_C4_OUT3]);
pll_dp_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_DP]);
pll_d_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_D]);
pll_d2_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_D2]);
pll_re_vco_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_RE_VCO]);
pll_re_out_div = car_readl(PLLRE_BASE, 0) & (0xf << 16);
pll_re_out_1 = car_readl(PLLRE_OUT1, 0);
pll_u_out1_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_U_OUT1]);
pll_u_out2_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_U_OUT2]);
if (!t210b01) {
pll_mb_rate = clk_get_rate_nolock(clks[TEGRA210_CLK_PLL_MB]);
pll_m_v = car_readl(PLLM_BASE, 0);
}
pll_p_outa = car_readl(PLLP_OUTA, 0);
pll_p_outb = car_readl(PLLP_OUTB, 0);
for (i = 0; i < ARRAY_SIZE(cpu_softrst_ctx); i++)
cpu_softrst_ctx[i] = car_readl(CPU_SOFTRST_CTRL, i);
for (i = 0; i < ARRAY_SIZE(pll_p_out_rate); i++)
pll_p_out_rate[i] = clk_get_rate_nolock(pll_p_clk(i));
for (i = 0; i < BURST_POLICY_REG_SIZE; i++) {
cclkg_burst_policy_ctx[i] = car_readl(CCLKG_BURST_POLICY, i);
cclklp_burst_policy_ctx[i] = car_readl(CCLKLP_BURST_POLICY, i);
sclk_burst_policy_ctx[i] = car_readl(SCLK_BURST_POLICY, i);
}
sclk_burst_policy_ctx[i] = car_readl(SYS_CLK_DIV, 0);
sclk_ctx = car_readl(SYSTEM_CLK_RATE, 0);
spare_ctx = car_readl(SPARE_REG0, 0);
misc_clk_enb_ctx = car_readl(MISC_CLK_ENB, 0);
clk_arm_ctx = car_readl(CLK_MASK_ARM, 0);
for (i = 0; i < ARRAY_SIZE(periph_srcs); i++)
for (off = periph_srcs[i].start; off <= periph_srcs[i].end;
off += 4)
*clk_rst_ctx++ = car_readl(off, 0);
if (!dfll_pdev) {
node = of_find_compatible_node(NULL, NULL,
"nvidia,tegra210-dfll");
if (node)
dfll_pdev = of_find_device_by_node(node);
of_node_put(node);
if (!dfll_pdev)
pr_err("dfll node not found. no suspend for dfll\n");
}
if (dfll_pdev)
tegra_dfll_suspend(dfll_pdev);
/* Enable PLLP_OUT_CPU after dfll suspend */
val = car_readl(CLK_OUT_ENB_Y,0);
val |= CLK_ENB_PLLP_OUT_CPU;
car_writel(val, CLK_OUT_ENB_Y, 0);
tegra_clk_periph_suspend(clk_base);
return 0;
}
static void tegra210_clk_resume(void)
{
int i;
unsigned long off;
u32 val;
u32 *clk_rst_ctx = periph_clk_src_ctx;
struct clk_hw *parent;
tegra_clk_osc_resume(clk_base);
for (i = 0; i < ARRAY_SIZE(cpu_softrst_ctx); i++)
car_writel(cpu_softrst_ctx[i], CPU_SOFTRST_CTRL, i);
/*
* Since we are going to reset devices and switch clock sources in this
* function, plls and secondary dividers is required to be enabled. The
* actual value will be restored back later. Note that boot plls: pllm,
* pllp, are already configured and enabled (pllm is enabled only if it
* is used as EMC clock source, pllp is enabled always).
*/
tegra_clk_pll_out_resume(clks[TEGRA210_CLK_PLL_P_OUT1], pll_p_out_rate[0]);
tegra_clk_pll_out_resume(clks[TEGRA210_CLK_PLL_P_OUT3], pll_p_out_rate[2]);
tegra_clk_pll_out_resume(clks[TEGRA210_CLK_PLL_P_OUT4], pll_p_out_rate[3]);
tegra_clk_pll_out_resume(clks[TEGRA210_CLK_PLL_P_OUT5], pll_p_out_rate[4]);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_A1], pll_a1_rate);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_C2], pll_c2_rate);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_C3], pll_c3_rate);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_C], pll_c_rate);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_X], pll_x_rate);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_A], pll_a_rate);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_D], pll_d_rate);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_D2], pll_d2_rate);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_DP], pll_dp_rate);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_C4], pll_c4_rate);
/* enable the PLLD */
val = car_readl(PLLD_MISC0, 0);
val |= PLLD_MISC0_DSI_CLKENABLE;
car_writel(val, PLLD_MISC0, 0);
/* reprogram PLLRE post divider, VCO, 2ndary divider (in this order) */
if (!__clk_is_enabled(clks[TEGRA210_CLK_PLL_RE_VCO])) {
val = car_readl(PLLRE_BASE, 0);
val &= ~(0xf << 16);
car_writel(val | pll_re_out_div, PLLRE_BASE, 0);
}
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_RE_VCO], pll_re_vco_rate);
car_writel(pll_re_out_1, PLLRE_OUT1, 0);
/* resume PLLU */
if (t210b01)
tegra210b01_init_pllu();
else
tegra210_init_pllu();
tegra_clk_pll_out_resume(clks[TEGRA210_CLK_PLL_U_OUT1],
pll_u_out1_rate);
tegra_clk_pll_out_resume(clks[TEGRA210_CLK_PLL_U_OUT2],
pll_u_out2_rate);
tegra_clk_pll_out_resume(clks[TEGRA210_CLK_PLL_C_OUT1],
pll_c_out1_rate);
tegra_clk_pll_out_resume(clks[TEGRA210_CLK_PLL_A_OUT0],
pll_a_out0_rate);
tegra_clk_pll_out_resume(clks[TEGRA210_CLK_PLL_C4_OUT3],
pll_c4_out3_rate);
/*
* resume SCLK and CPULP clocks
* for SCLk 1st set safe dividers values, then restore source,
* then restore dividers
*/
car_writel(0x1, SYSTEM_CLK_RATE, 0);
val = car_readl(SYS_CLK_DIV, 0);
i = BURST_POLICY_REG_SIZE;
if (val < sclk_burst_policy_ctx[i])
car_writel(sclk_burst_policy_ctx[i], SYS_CLK_DIV, 0);
fence_udelay(2, clk_base);
for (i = 0; i < BURST_POLICY_REG_SIZE; i++) {
car_writel(cclklp_burst_policy_ctx[i], CCLKLP_BURST_POLICY, i);
car_writel(sclk_burst_policy_ctx[i], SCLK_BURST_POLICY, i);
}
car_writel(sclk_burst_policy_ctx[i], SYS_CLK_DIV, 0);
car_writel(sclk_ctx, SYSTEM_CLK_RATE, 0);
car_writel(spare_ctx, SPARE_REG0, 0);
car_writel(misc_clk_enb_ctx, MISC_CLK_ENB, 0);
car_writel(clk_arm_ctx, CLK_MASK_ARM, 0);
/* enable all clocks before configuring clock sources */
tegra_clk_periph_force_on(periph_clks_on, ARRAY_SIZE(periph_clks_on),
clk_base);
wmb();
fence_udelay(2, clk_base);
for (i = 0; i < ARRAY_SIZE(periph_srcs); i++)
for (off = periph_srcs[i].start; off <= periph_srcs[i].end;
off += 4)
car_writel(*clk_rst_ctx++, off, 0);
/* propagate and restore resets, restore clock state */
fence_udelay(5, clk_base);
tegra_clk_periph_resume(clk_base);
/* restore (sync) the actual PLL and secondary divider values */
car_writel(pll_p_outa, PLLP_OUTA, 0);
car_writel(pll_p_outb, PLLP_OUTB, 0);
tegra_clk_sync_state_pll_out(clks[TEGRA210_CLK_PLL_U_OUT1]);
tegra_clk_sync_state_pll_out(clks[TEGRA210_CLK_PLL_U_OUT2]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_A1]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_C2]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_C3]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_C]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_RE_VCO]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_C4]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_D2]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_DP]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_A]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_D]);
tegra_clk_sync_state_pll_out(clks[TEGRA210_CLK_PLL_C_OUT1]);
tegra_clk_sync_state_pll_out(clks[TEGRA210_CLK_PLL_A_OUT0]);
/*
* restore CPUG clocks:
* - enable DFLL in open loop mode
* - switch CPUG to DFLL clock source
* - close DFLL loop
* - sync PLLX state
*/
if (dfll_pdev)
tegra_dfll_resume(dfll_pdev, false);
for (i = 0; i < BURST_POLICY_REG_SIZE; i++)
car_writel(cclkg_burst_policy_ctx[i], CCLKG_BURST_POLICY, i);
fence_udelay(2, clk_base);
if (dfll_pdev)
tegra_dfll_resume(dfll_pdev, true);
parent = clk_hw_get_parent(__clk_get_hw(clks[TEGRA210_CLK_CCLK_G]));
if (parent != __clk_get_hw(clks[TEGRA210_CLK_PLL_X]))
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_X]);
/* Disable PLL_OUT_CPU after DFLL resume */
val = car_readl(CLK_OUT_ENB_Y,0);
val &= ~CLK_ENB_PLLP_OUT_CPU;
car_writel(val, CLK_OUT_ENB_Y, 0);
if (!t210b01) {
car_writel(pll_m_v, PLLM_BASE, 0);
tegra_clk_pll_resume(clks[TEGRA210_CLK_PLL_MB], pll_mb_rate);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_M]);
tegra_clk_sync_state_pll(clks[TEGRA210_CLK_PLL_MB]);
}
tegra210_emc_timing_invalidate();
tegra_clk_plle_tegra210_resume(clks[TEGRA210_CLK_PLL_E]);
}
#else
#define tegra210_clk_suspend NULL
#define tegra210_clk_resume NULL
static inline u32* tegra210_init_suspend_ctx(void)
{
return NULL;
}
#endif
static struct syscore_ops tegra_clk_syscore_ops = {
.suspend = tegra210_clk_suspend,
.resume = tegra210_clk_resume,
.save = tegra210_clk_suspend,
.restore = tegra210_clk_resume,
};
/**
* tegra210_clock_apply_init_table - initialize clocks on Tegra210 SoCs
*
* Program an initial clock rate and enable or disable clocks needed
* by the rest of the kernel, for Tegra210 SoCs. It is intended to be
* called by assigning a pointer to it to tegra_clk_apply_init_table -
* this will be called as an arch_initcall. No return value.
*/
static void __init tegra210_clock_apply_init_table(void)
{
struct clk *emc = __clk_lookup("emc");
/* Enable EMC out-of-table to allow either CAR or BPMP provider in DT */
if (!emc) {
WARN(1, "Failed to find emc clock\n");
} else {
if (clk_prepare_enable(emc))
WARN(1, "Failed to enable emc clock\n");
}
if (t210b01)
tegra210b01_clock_table_init(clks);
else
tegra_init_from_table(t210_init_table, clks,
TEGRA210_CLK_CLK_MAX);
tegra_init_from_table(init_table, clks, TEGRA210_CLK_CLK_MAX);
}
/**
* tegra210_car_barrier - wait for pending writes to the CAR to complete
*
* Wait for any outstanding writes to the CAR MMIO space from this CPU
* to complete before continuing execution. No return value.
*/
static void tegra210_car_barrier(void)
{
readl_relaxed(clk_base + RST_DFLL_DVCO);
udelay(2);
}
/**
* tegra210_clock_assert_dfll_dvco_reset - assert the DFLL's DVCO reset
*
* Assert the reset line of the DFLL's DVCO. No return value.
*/
static void tegra210_clock_assert_dfll_dvco_reset(void)
{
u32 v;
v = readl_relaxed(clk_base + RST_DFLL_DVCO);
v |= (1 << DVFS_DFLL_RESET_SHIFT);
writel_relaxed(v, clk_base + RST_DFLL_DVCO);
tegra210_car_barrier();
}
/**
* tegra210_clock_deassert_dfll_dvco_reset - deassert the DFLL's DVCO reset
*
* Deassert the reset line of the DFLL's DVCO, allowing the DVCO to
* operate. No return value.
*/
static void tegra210_clock_deassert_dfll_dvco_reset(void)
{
u32 v;
v = readl_relaxed(clk_base + RST_DFLL_DVCO);
v &= ~(1 << DVFS_DFLL_RESET_SHIFT);
writel_relaxed(v, clk_base + RST_DFLL_DVCO);
tegra210_car_barrier();
}
static int tegra210_reset_assert(unsigned long id)
{
if (id == TEGRA210_RST_DFLL_DVCO)
tegra210_clock_assert_dfll_dvco_reset();
else if (id == TEGRA210_RST_ADSP) {
writel(GENMASK(26, 21) | BIT(7),
clk_base + CLK_RST_CONTROLLER_RST_DEV_Y_SET);
fence_udelay(2, clk_base);
} else
return -EINVAL;
return 0;
}
static int tegra210_reset_deassert(unsigned long id)
{
if (id == TEGRA210_RST_DFLL_DVCO)
tegra210_clock_deassert_dfll_dvco_reset();
else if (id == TEGRA210_RST_ADSP) {
writel(BIT(21), clk_base + CLK_RST_CONTROLLER_RST_DEV_Y_CLR);
/*
* Considering adsp cpu clock (min: 12.5MHZ, max: 1GHz)
* a delay of 5us ensures that it's at least
* 6 * adsp_cpu_cycle_period long.
*/
fence_udelay(5, clk_base);
writel(GENMASK(26, 22) | BIT(7),
clk_base + CLK_RST_CONTROLLER_RST_DEV_Y_CLR);
fence_udelay(2, clk_base);
} else
return -EINVAL;
return 0;
}
/**
* tegra210_clock_init - Tegra210-specific clock initialization
* @np: struct device_node * of the DT node for the SoC CAR IP block
*
* Register most SoC clocks for the Tegra210 system-on-chip. Intended
* to be called by the OF init code when a DT node with the
* "nvidia,tegra210-car" string is encountered, and declared with
* CLK_OF_DECLARE. No return value.
*/
static void __init tegra210_clock_init(struct device_node *np)
{
struct device_node *node;
char *sclk_high_clk;
u32 value, clk_m_div;
t210b01 = of_device_is_compatible(np, "nvidia,tegra210b01-car");
pr_info("t210%s clock and reset probe\n", t210b01 ? "b01" : "");
clk_base = of_iomap(np, 0);
if (!clk_base) {
pr_err("ioremap tegra210 CAR failed\n");
return;
}
node = of_find_matching_node(NULL, pmc_match);
if (!node) {
pr_err("Failed to find pmc node\n");
WARN_ON(1);
return;
}
pmc_base = of_iomap(node, 0);
if (!pmc_base) {
pr_err("Can't map pmc registers\n");
WARN_ON(1);
return;
}
emc_is_native = (of_find_compatible_node(NULL, NULL,
"nvidia,tegra-bpmp-emc-clk")
== NULL);
has_ccplex_therm_control = 1;
clks = tegra_clk_init(clk_base, TEGRA210_CLK_CLK_MAX,
TEGRA210_CAR_BANK_COUNT);
if (!clks)
return;
if (t210b01)
tegra210b01_adjust_clks(tegra210_clks);
value = clk_readl(clk_base + SPARE_REG0) >> CLK_M_DIVISOR_SHIFT;
clk_m_div = (value & CLK_M_DIVISOR_MASK) + 1;
if (tegra_osc_clk_init(clk_base, tegra210_clks, tegra210_input_freq,
ARRAY_SIZE(tegra210_input_freq), clk_m_div,
&osc_freq, &pll_ref_freq) < 0)
return;
tegra_fixed_clk_init(tegra210_clks);
if (t210b01) {
sclk_high_clk = tegra210_determine_pllc4_rate(
tegra210b01_get_pllc4_params(),
tegra210b01_get_pll_vco_post_div_table());
tegra210b01_pll_init(clk_base, pmc_base,
osc_freq, pll_ref_freq, clks);
tegra210_periph_clk_init(clk_base, pmc_base,
tegra210b01_get_pllp_params());
tegra210b01_audio_clk_init(clk_base, pmc_base, tegra210_clks);
} else {
sclk_high_clk = tegra210_determine_pllc4_rate(
&pll_c4_vco_params, pll_vco_post_div_table);
tegra210_pll_init(clk_base, pmc_base);
tegra210_periph_clk_init(clk_base, pmc_base, &pll_p_params);
tegra_audio_clk_init(clk_base, pmc_base, tegra210_clks,
tegra210_audio_plls,
ARRAY_SIZE(tegra210_audio_plls), 24576000);
}
tegra_pmc_clk_init(pmc_base, tegra210_clks);
/* For Tegra210, PLLD is the only source for DSIA & DSIB */
value = clk_readl(clk_base + PLLD_BASE);
value &= ~BIT(25);
clk_writel(value, clk_base + PLLD_BASE);
value = clk_readl(clk_base + MISC_CLK_ENB);
value |= BIT(28);
clk_writel(value, clk_base + MISC_CLK_ENB);
tegra_clk_apply_init_table = tegra210_clock_apply_init_table;
if (t210b01)
tegra210b01_super_clk_init(clk_base, pmc_base, tegra210_clks);
else
tegra_super_clk_gen5_init(clk_base, pmc_base, tegra210_clks,
&pll_x_params);
tegra_init_special_resets(2, tegra210_reset_assert,
tegra210_reset_deassert);
tegra210_shared_clk_init(sclk_high_clk);
tegra_add_of_provider(np);
tegra_register_devclks(devclks, ARRAY_SIZE(devclks));
tegra_register_ptos(ptodefs, ARRAY_SIZE(ptodefs));
tegra_cpu_car_ops = &tegra210_cpu_car_ops;
if (tegra210_init_suspend_ctx())
register_syscore_ops(&tegra_clk_syscore_ops);
}
CLK_OF_DECLARE(tegra210, "nvidia,tegra210-car", tegra210_clock_init);
CLK_OF_DECLARE(tegra210b01, "nvidia,tegra210b01-car", tegra210_clock_init);