/* rc-ir-raw.c - handle IR pulse/space events * * Copyright (C) 2010 by Mauro Carvalho Chehab * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include "rc-core-priv.h" /* Used to keep track of IR raw clients, protected by ir_raw_handler_lock */ static LIST_HEAD(ir_raw_client_list); /* Used to handle IR raw handler extensions */ static DEFINE_MUTEX(ir_raw_handler_lock); static LIST_HEAD(ir_raw_handler_list); static DEFINE_MUTEX(available_protocols_lock); static u64 available_protocols; static int ir_raw_event_thread(void *data) { struct ir_raw_event ev; struct ir_raw_handler *handler; struct ir_raw_event_ctrl *raw = (struct ir_raw_event_ctrl *)data; while (!kthread_should_stop()) { spin_lock_irq(&raw->lock); if (!kfifo_len(&raw->kfifo)) { set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) set_current_state(TASK_RUNNING); spin_unlock_irq(&raw->lock); schedule(); continue; } if(!kfifo_out(&raw->kfifo, &ev, 1)) dev_err(&raw->dev->dev, "IR event FIFO is empty!\n"); spin_unlock_irq(&raw->lock); mutex_lock(&ir_raw_handler_lock); list_for_each_entry(handler, &ir_raw_handler_list, list) if (raw->dev->enabled_protocols & handler->protocols || !handler->protocols) handler->decode(raw->dev, ev); raw->prev_ev = ev; mutex_unlock(&ir_raw_handler_lock); } return 0; } /** * ir_raw_event_store() - pass a pulse/space duration to the raw ir decoders * @dev: the struct rc_dev device descriptor * @ev: the struct ir_raw_event descriptor of the pulse/space * * This routine (which may be called from an interrupt context) stores a * pulse/space duration for the raw ir decoding state machines. Pulses are * signalled as positive values and spaces as negative values. A zero value * will reset the decoding state machines. */ int ir_raw_event_store(struct rc_dev *dev, struct ir_raw_event *ev) { if (!dev->raw) return -EINVAL; IR_dprintk(2, "sample: (%05dus %s)\n", TO_US(ev->duration), TO_STR(ev->pulse)); if (!kfifo_put(&dev->raw->kfifo, *ev)) { dev_err(&dev->dev, "IR event FIFO is full!\n"); return -ENOSPC; } return 0; } EXPORT_SYMBOL_GPL(ir_raw_event_store); /** * ir_raw_event_store_edge() - notify raw ir decoders of the start of a pulse/space * @dev: the struct rc_dev device descriptor * @type: the type of the event that has occurred * * This routine (which may be called from an interrupt context) is used to * store the beginning of an ir pulse or space (or the start/end of ir * reception) for the raw ir decoding state machines. This is used by * hardware which does not provide durations directly but only interrupts * (or similar events) on state change. */ int ir_raw_event_store_edge(struct rc_dev *dev, enum raw_event_type type) { ktime_t now; s64 delta; /* ns */ DEFINE_IR_RAW_EVENT(ev); DEFINE_IR_RAW_EVENT(drop_ev); int rc = 0; int delay; bool flag = false; if (!dev->raw) return -EINVAL; now = ktime_get(); delta = ktime_to_ns(ktime_sub(now, dev->raw->last_event)); delay = MS_TO_NS(max((u32) dev->input_dev->rep[REP_DELAY], dev->min_delay)); /* Check for a long duration since last event or if we're * being called for the first time, note that delta can't * possibly be negative. */ if (delta > delay || !dev->raw->last_type) type |= IR_START_EVENT; else { ev.duration = delta; if (dev->allowed_protocols & RC_BIT_NEC) { if (type == dev->raw->last_type) { drop_ev.duration = 0; if (type == IR_PULSE) { flag = true; drop_ev.pulse = false; drop_ev.duration = 562500; } else if (type == IR_SPACE) { flag = true; drop_ev.pulse = true; drop_ev.duration = 562500; } ev.duration = ev.duration - drop_ev.duration; } } } if (type & IR_START_EVENT) ir_raw_event_reset(dev); else if (dev->raw->last_type & IR_SPACE) { ev.pulse = false; rc = ir_raw_event_store(dev, &ev); } else if (dev->raw->last_type & IR_PULSE) { ev.pulse = true; rc = ir_raw_event_store(dev, &ev); } else return 0; if (flag) rc = ir_raw_event_store(dev, &drop_ev); dev->raw->last_event = now; dev->raw->last_type = type; return rc; } EXPORT_SYMBOL_GPL(ir_raw_event_store_edge); /** * ir_raw_event_store_with_filter() - pass next pulse/space to decoders with some processing * @dev: the struct rc_dev device descriptor * @type: the type of the event that has occurred * * This routine (which may be called from an interrupt context) works * in similar manner to ir_raw_event_store_edge. * This routine is intended for devices with limited internal buffer * It automerges samples of same type, and handles timeouts. Returns non-zero * if the event was added, and zero if the event was ignored due to idle * processing. */ int ir_raw_event_store_with_filter(struct rc_dev *dev, struct ir_raw_event *ev) { if (!dev->raw) return -EINVAL; /* Ignore spaces in idle mode */ if (dev->idle && !ev->pulse) return 0; else if (dev->idle) ir_raw_event_set_idle(dev, false); if (!dev->raw->this_ev.duration) dev->raw->this_ev = *ev; else if (ev->pulse == dev->raw->this_ev.pulse) dev->raw->this_ev.duration += ev->duration; else { ir_raw_event_store(dev, &dev->raw->this_ev); dev->raw->this_ev = *ev; } /* Enter idle mode if nessesary */ if (!ev->pulse && dev->timeout && dev->raw->this_ev.duration >= dev->timeout) ir_raw_event_set_idle(dev, true); return 1; } EXPORT_SYMBOL_GPL(ir_raw_event_store_with_filter); /** * ir_raw_event_set_idle() - provide hint to rc-core when the device is idle or not * @dev: the struct rc_dev device descriptor * @idle: whether the device is idle or not */ void ir_raw_event_set_idle(struct rc_dev *dev, bool idle) { if (!dev->raw) return; IR_dprintk(2, "%s idle mode\n", idle ? "enter" : "leave"); if (idle) { dev->raw->this_ev.timeout = true; ir_raw_event_store(dev, &dev->raw->this_ev); init_ir_raw_event(&dev->raw->this_ev); } if (dev->s_idle) dev->s_idle(dev, idle); dev->idle = idle; } EXPORT_SYMBOL_GPL(ir_raw_event_set_idle); /** * ir_raw_event_handle() - schedules the decoding of stored ir data * @dev: the struct rc_dev device descriptor * * This routine will tell rc-core to start decoding stored ir data. */ void ir_raw_event_handle(struct rc_dev *dev) { unsigned long flags; if (!dev->raw) return; spin_lock_irqsave(&dev->raw->lock, flags); wake_up_process(dev->raw->thread); spin_unlock_irqrestore(&dev->raw->lock, flags); } EXPORT_SYMBOL_GPL(ir_raw_event_handle); /* used internally by the sysfs interface */ u64 ir_raw_get_allowed_protocols(void) { u64 protocols; mutex_lock(&available_protocols_lock); protocols = available_protocols; mutex_unlock(&available_protocols_lock); return protocols; } static int change_protocol(struct rc_dev *dev, u64 *rc_type) { /* the caller will update dev->enabled_protocols */ return 0; } static void ir_raw_disable_protocols(struct rc_dev *dev, u64 protocols) { mutex_lock(&dev->lock); dev->enabled_protocols &= ~protocols; dev->enabled_wakeup_protocols &= ~protocols; mutex_unlock(&dev->lock); } /* * Used to (un)register raw event clients */ int ir_raw_event_register(struct rc_dev *dev) { int rc; struct ir_raw_handler *handler; if (!dev) return -EINVAL; dev->raw = kzalloc(sizeof(*dev->raw), GFP_KERNEL); if (!dev->raw) return -ENOMEM; dev->raw->dev = dev; dev->change_protocol = change_protocol; INIT_KFIFO(dev->raw->kfifo); spin_lock_init(&dev->raw->lock); dev->raw->thread = kthread_run(ir_raw_event_thread, dev->raw, "rc%u", dev->minor); if (IS_ERR(dev->raw->thread)) { rc = PTR_ERR(dev->raw->thread); goto out; } mutex_lock(&ir_raw_handler_lock); list_add_tail(&dev->raw->list, &ir_raw_client_list); list_for_each_entry(handler, &ir_raw_handler_list, list) if (handler->raw_register) handler->raw_register(dev); mutex_unlock(&ir_raw_handler_lock); return 0; out: kfree(dev->raw); dev->raw = NULL; return rc; } void ir_raw_event_unregister(struct rc_dev *dev) { struct ir_raw_handler *handler; if (!dev || !dev->raw) return; kthread_stop(dev->raw->thread); mutex_lock(&ir_raw_handler_lock); list_del(&dev->raw->list); list_for_each_entry(handler, &ir_raw_handler_list, list) if (handler->raw_unregister) handler->raw_unregister(dev); mutex_unlock(&ir_raw_handler_lock); kfree(dev->raw); dev->raw = NULL; } /* * Extension interface - used to register the IR decoders */ int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler) { struct ir_raw_event_ctrl *raw; mutex_lock(&ir_raw_handler_lock); list_add_tail(&ir_raw_handler->list, &ir_raw_handler_list); if (ir_raw_handler->raw_register) list_for_each_entry(raw, &ir_raw_client_list, list) ir_raw_handler->raw_register(raw->dev); mutex_lock(&available_protocols_lock); available_protocols |= ir_raw_handler->protocols; mutex_unlock(&available_protocols_lock); mutex_unlock(&ir_raw_handler_lock); return 0; } EXPORT_SYMBOL(ir_raw_handler_register); void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler) { struct ir_raw_event_ctrl *raw; u64 protocols = ir_raw_handler->protocols; mutex_lock(&ir_raw_handler_lock); list_del(&ir_raw_handler->list); list_for_each_entry(raw, &ir_raw_client_list, list) { ir_raw_disable_protocols(raw->dev, protocols); if (ir_raw_handler->raw_unregister) ir_raw_handler->raw_unregister(raw->dev); } mutex_lock(&available_protocols_lock); available_protocols &= ~protocols; mutex_unlock(&available_protocols_lock); mutex_unlock(&ir_raw_handler_lock); } EXPORT_SYMBOL(ir_raw_handler_unregister);