/* * Copyright © 1999-2010 David Woodhouse * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mtdcore.h" static DEFINE_MUTEX(mtd_mutex); /* * Data structure to hold the pointer to the mtd device as well * as mode information of various use cases. */ struct mtd_file_info { struct mtd_info *mtd; enum mtd_file_modes mode; }; static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig) { struct mtd_file_info *mfi = file->private_data; return fixed_size_llseek(file, offset, orig, mfi->mtd->size); } static int mtdchar_open(struct inode *inode, struct file *file) { int minor = iminor(inode); int devnum = minor >> 1; int ret = 0; struct mtd_info *mtd; struct mtd_file_info *mfi; pr_debug("MTD_open\n"); /* You can't open the RO devices RW */ if ((file->f_mode & FMODE_WRITE) && (minor & 1)) return -EACCES; mutex_lock(&mtd_mutex); mtd = get_mtd_device(NULL, devnum); if (IS_ERR(mtd)) { ret = PTR_ERR(mtd); goto out; } if (mtd->type == MTD_ABSENT) { ret = -ENODEV; goto out1; } /* You can't open it RW if it's not a writeable device */ if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) { ret = -EACCES; goto out1; } mfi = kzalloc(sizeof(*mfi), GFP_KERNEL); if (!mfi) { ret = -ENOMEM; goto out1; } mfi->mtd = mtd; file->private_data = mfi; mutex_unlock(&mtd_mutex); return 0; out1: put_mtd_device(mtd); out: mutex_unlock(&mtd_mutex); return ret; } /* mtdchar_open */ /*====================================================================*/ static int mtdchar_close(struct inode *inode, struct file *file) { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; pr_debug("MTD_close\n"); /* Only sync if opened RW */ if ((file->f_mode & FMODE_WRITE)) mtd_sync(mtd); put_mtd_device(mtd); file->private_data = NULL; kfree(mfi); return 0; } /* mtdchar_close */ /* Back in June 2001, dwmw2 wrote: * * FIXME: This _really_ needs to die. In 2.5, we should lock the * userspace buffer down and use it directly with readv/writev. * * The implementation below, using mtd_kmalloc_up_to, mitigates * allocation failures when the system is under low-memory situations * or if memory is highly fragmented at the cost of reducing the * performance of the requested transfer due to a smaller buffer size. * * A more complex but more memory-efficient implementation based on * get_user_pages and iovecs to cover extents of those pages is a * longer-term goal, as intimated by dwmw2 above. However, for the * write case, this requires yet more complex head and tail transfer * handling when those head and tail offsets and sizes are such that * alignment requirements are not met in the NAND subdriver. */ static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; size_t retlen; size_t total_retlen=0; int ret=0; int len; size_t size = count; char *kbuf; pr_debug("MTD_read\n"); if (*ppos + count > mtd->size) { if (*ppos < mtd->size) count = mtd->size - *ppos; else count = 0; } if (!count) return 0; kbuf = mtd_kmalloc_up_to(mtd, &size); if (!kbuf) return -ENOMEM; while (count) { len = min_t(size_t, count, size); switch (mfi->mode) { case MTD_FILE_MODE_OTP_FACTORY: ret = mtd_read_fact_prot_reg(mtd, *ppos, len, &retlen, kbuf); break; case MTD_FILE_MODE_OTP_USER: ret = mtd_read_user_prot_reg(mtd, *ppos, len, &retlen, kbuf); break; case MTD_FILE_MODE_RAW: { struct mtd_oob_ops ops; ops.mode = MTD_OPS_RAW; ops.datbuf = kbuf; ops.oobbuf = NULL; ops.len = len; ret = mtd_read_oob(mtd, *ppos, &ops); retlen = ops.retlen; break; } default: ret = mtd_read(mtd, *ppos, len, &retlen, kbuf); } /* Nand returns -EBADMSG on ECC errors, but it returns * the data. For our userspace tools it is important * to dump areas with ECC errors! * For kernel internal usage it also might return -EUCLEAN * to signal the caller that a bitflip has occurred and has * been corrected by the ECC algorithm. * Userspace software which accesses NAND this way * must be aware of the fact that it deals with NAND */ if (!ret || mtd_is_bitflip_or_eccerr(ret)) { *ppos += retlen; if (copy_to_user(buf, kbuf, retlen)) { kfree(kbuf); return -EFAULT; } else total_retlen += retlen; count -= retlen; buf += retlen; if (retlen == 0) count = 0; } else { kfree(kbuf); return ret; } } kfree(kbuf); return total_retlen; } /* mtdchar_read */ static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; size_t size = count; char *kbuf; size_t retlen; size_t total_retlen=0; int ret=0; int len; pr_debug("MTD_write\n"); if (*ppos >= mtd->size) return -ENOSPC; if (*ppos + count > mtd->size) count = mtd->size - *ppos; if (!count) return 0; kbuf = mtd_kmalloc_up_to(mtd, &size); if (!kbuf) return -ENOMEM; while (count) { len = min_t(size_t, count, size); if (copy_from_user(kbuf, buf, len)) { kfree(kbuf); return -EFAULT; } switch (mfi->mode) { case MTD_FILE_MODE_OTP_FACTORY: ret = -EROFS; break; case MTD_FILE_MODE_OTP_USER: ret = mtd_write_user_prot_reg(mtd, *ppos, len, &retlen, kbuf); break; case MTD_FILE_MODE_RAW: { struct mtd_oob_ops ops; ops.mode = MTD_OPS_RAW; ops.datbuf = kbuf; ops.oobbuf = NULL; ops.ooboffs = 0; ops.len = len; ret = mtd_write_oob(mtd, *ppos, &ops); retlen = ops.retlen; break; } default: ret = mtd_write(mtd, *ppos, len, &retlen, kbuf); } /* * Return -ENOSPC only if no data could be written at all. * Otherwise just return the number of bytes that actually * have been written. */ if ((ret == -ENOSPC) && (total_retlen)) break; if (!ret) { *ppos += retlen; total_retlen += retlen; count -= retlen; buf += retlen; } else { kfree(kbuf); return ret; } } kfree(kbuf); return total_retlen; } /* mtdchar_write */ /*====================================================================== IOCTL calls for getting device parameters. ======================================================================*/ static void mtdchar_erase_callback (struct erase_info *instr) { wake_up((wait_queue_head_t *)instr->priv); } static int otp_select_filemode(struct mtd_file_info *mfi, int mode) { struct mtd_info *mtd = mfi->mtd; size_t retlen; switch (mode) { case MTD_OTP_FACTORY: if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) == -EOPNOTSUPP) return -EOPNOTSUPP; mfi->mode = MTD_FILE_MODE_OTP_FACTORY; break; case MTD_OTP_USER: if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) == -EOPNOTSUPP) return -EOPNOTSUPP; mfi->mode = MTD_FILE_MODE_OTP_USER; break; case MTD_OTP_OFF: mfi->mode = MTD_FILE_MODE_NORMAL; break; default: return -EINVAL; } return 0; } static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd, uint64_t start, uint32_t length, void __user *ptr, uint32_t __user *retp) { struct mtd_file_info *mfi = file->private_data; struct mtd_oob_ops ops; uint32_t retlen; int ret = 0; if (length > 4096) return -EINVAL; if (!mtd->_write_oob) ret = -EOPNOTSUPP; else ret = access_ok(VERIFY_READ, ptr, length) ? 0 : -EFAULT; if (ret) return ret; ops.ooblen = length; ops.ooboffs = start & (mtd->writesize - 1); ops.datbuf = NULL; ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW : MTD_OPS_PLACE_OOB; if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs)) return -EINVAL; ops.oobbuf = memdup_user(ptr, length); if (IS_ERR(ops.oobbuf)) return PTR_ERR(ops.oobbuf); start &= ~((uint64_t)mtd->writesize - 1); ret = mtd_write_oob(mtd, start, &ops); if (ops.oobretlen > 0xFFFFFFFFU) ret = -EOVERFLOW; retlen = ops.oobretlen; if (copy_to_user(retp, &retlen, sizeof(length))) ret = -EFAULT; kfree(ops.oobbuf); return ret; } static int mtdchar_readoob(struct file *file, struct mtd_info *mtd, uint64_t start, uint32_t length, void __user *ptr, uint32_t __user *retp) { struct mtd_file_info *mfi = file->private_data; struct mtd_oob_ops ops; int ret = 0; if (length > 4096) return -EINVAL; if (!access_ok(VERIFY_WRITE, ptr, length)) return -EFAULT; ops.ooblen = length; ops.ooboffs = start & (mtd->writesize - 1); ops.datbuf = NULL; ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW : MTD_OPS_PLACE_OOB; if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs)) return -EINVAL; ops.oobbuf = kmalloc(length, GFP_KERNEL); if (!ops.oobbuf) return -ENOMEM; start &= ~((uint64_t)mtd->writesize - 1); ret = mtd_read_oob(mtd, start, &ops); if (put_user(ops.oobretlen, retp)) ret = -EFAULT; else if (ops.oobretlen && copy_to_user(ptr, ops.oobbuf, ops.oobretlen)) ret = -EFAULT; kfree(ops.oobbuf); /* * NAND returns -EBADMSG on ECC errors, but it returns the OOB * data. For our userspace tools it is important to dump areas * with ECC errors! * For kernel internal usage it also might return -EUCLEAN * to signal the caller that a bitflip has occured and has * been corrected by the ECC algorithm. * * Note: currently the standard NAND function, nand_read_oob_std, * does not calculate ECC for the OOB area, so do not rely on * this behavior unless you have replaced it with your own. */ if (mtd_is_bitflip_or_eccerr(ret)) return 0; return ret; } /* * Copies (and truncates, if necessary) OOB layout information to the * deprecated layout struct, nand_ecclayout_user. This is necessary only to * support the deprecated API ioctl ECCGETLAYOUT while allowing all new * functionality to use mtd_ooblayout_ops flexibly (i.e. mtd_ooblayout_ops * can describe any kind of OOB layout with almost zero overhead from a * memory usage point of view). */ static int shrink_ecclayout(struct mtd_info *mtd, struct nand_ecclayout_user *to) { struct mtd_oob_region oobregion; int i, section = 0, ret; if (!mtd || !to) return -EINVAL; memset(to, 0, sizeof(*to)); to->eccbytes = 0; for (i = 0; i < MTD_MAX_ECCPOS_ENTRIES;) { u32 eccpos; ret = mtd_ooblayout_ecc(mtd, section++, &oobregion); if (ret < 0) { if (ret != -ERANGE) return ret; break; } eccpos = oobregion.offset; for (; i < MTD_MAX_ECCPOS_ENTRIES && eccpos < oobregion.offset + oobregion.length; i++) { to->eccpos[i] = eccpos++; to->eccbytes++; } } for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) { ret = mtd_ooblayout_free(mtd, i, &oobregion); if (ret < 0) { if (ret != -ERANGE) return ret; break; } to->oobfree[i].offset = oobregion.offset; to->oobfree[i].length = oobregion.length; to->oobavail += to->oobfree[i].length; } return 0; } static int get_oobinfo(struct mtd_info *mtd, struct nand_oobinfo *to) { struct mtd_oob_region oobregion; int i, section = 0, ret; if (!mtd || !to) return -EINVAL; memset(to, 0, sizeof(*to)); to->eccbytes = 0; for (i = 0; i < ARRAY_SIZE(to->eccpos);) { u32 eccpos; ret = mtd_ooblayout_ecc(mtd, section++, &oobregion); if (ret < 0) { if (ret != -ERANGE) return ret; break; } if (oobregion.length + i > ARRAY_SIZE(to->eccpos)) return -EINVAL; eccpos = oobregion.offset; for (; eccpos < oobregion.offset + oobregion.length; i++) { to->eccpos[i] = eccpos++; to->eccbytes++; } } for (i = 0; i < 8; i++) { ret = mtd_ooblayout_free(mtd, i, &oobregion); if (ret < 0) { if (ret != -ERANGE) return ret; break; } to->oobfree[i][0] = oobregion.offset; to->oobfree[i][1] = oobregion.length; } to->useecc = MTD_NANDECC_AUTOPLACE; return 0; } static int mtdchar_blkpg_ioctl(struct mtd_info *mtd, struct blkpg_ioctl_arg *arg) { struct blkpg_partition p; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&p, arg->data, sizeof(p))) return -EFAULT; switch (arg->op) { case BLKPG_ADD_PARTITION: /* Only master mtd device must be used to add partitions */ if (mtd_is_partition(mtd)) return -EINVAL; /* Sanitize user input */ p.devname[BLKPG_DEVNAMELTH - 1] = '\0'; return mtd_add_partition(mtd, p.devname, p.start, p.length); case BLKPG_DEL_PARTITION: if (p.pno < 0) return -EINVAL; return mtd_del_partition(mtd, p.pno); default: return -EINVAL; } } static int mtdchar_write_ioctl(struct mtd_info *mtd, struct mtd_write_req __user *argp) { struct mtd_write_req req; struct mtd_oob_ops ops; const void __user *usr_data, *usr_oob; int ret; if (copy_from_user(&req, argp, sizeof(req))) return -EFAULT; usr_data = (const void __user *)(uintptr_t)req.usr_data; usr_oob = (const void __user *)(uintptr_t)req.usr_oob; if (!access_ok(VERIFY_READ, usr_data, req.len) || !access_ok(VERIFY_READ, usr_oob, req.ooblen)) return -EFAULT; if (!mtd->_write_oob) return -EOPNOTSUPP; ops.mode = req.mode; ops.len = (size_t)req.len; ops.ooblen = (size_t)req.ooblen; ops.ooboffs = 0; if (usr_data) { ops.datbuf = memdup_user(usr_data, ops.len); if (IS_ERR(ops.datbuf)) return PTR_ERR(ops.datbuf); } else { ops.datbuf = NULL; } if (usr_oob) { ops.oobbuf = memdup_user(usr_oob, ops.ooblen); if (IS_ERR(ops.oobbuf)) { kfree(ops.datbuf); return PTR_ERR(ops.oobbuf); } } else { ops.oobbuf = NULL; } ret = mtd_write_oob(mtd, (loff_t)req.start, &ops); kfree(ops.datbuf); kfree(ops.oobbuf); return ret; } static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg) { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; void __user *argp = (void __user *)arg; int ret = 0; u_long size; struct mtd_info_user info; pr_debug("MTD_ioctl\n"); size = (cmd & IOCSIZE_MASK) >> IOCSIZE_SHIFT; if (cmd & IOC_IN) { if (!access_ok(VERIFY_READ, argp, size)) return -EFAULT; } if (cmd & IOC_OUT) { if (!access_ok(VERIFY_WRITE, argp, size)) return -EFAULT; } /* * Check the file mode to require "dangerous" commands to have write * permissions. */ switch (cmd) { /* "safe" commands */ case MEMGETREGIONCOUNT: case MEMGETREGIONINFO: case MEMGETINFO: case MEMREADOOB: case MEMREADOOB64: case MEMLOCK: case MEMUNLOCK: case MEMISLOCKED: case MEMGETOOBSEL: case MEMGETBADBLOCK: case MEMSETBADBLOCK: case OTPSELECT: case OTPGETREGIONCOUNT: case OTPGETREGIONINFO: case OTPLOCK: case ECCGETLAYOUT: case ECCGETSTATS: case MTDFILEMODE: case BLKPG: case BLKRRPART: break; /* "dangerous" commands */ case MEMERASE: case MEMERASE64: case MEMWRITEOOB: case MEMWRITEOOB64: case MEMWRITE: if (!(file->f_mode & FMODE_WRITE)) return -EPERM; break; default: return -ENOTTY; } switch (cmd) { case MEMGETREGIONCOUNT: if (copy_to_user(argp, &(mtd->numeraseregions), sizeof(int))) return -EFAULT; break; case MEMGETREGIONINFO: { uint32_t ur_idx; struct mtd_erase_region_info *kr; struct region_info_user __user *ur = argp; if (get_user(ur_idx, &(ur->regionindex))) return -EFAULT; if (ur_idx >= mtd->numeraseregions) return -EINVAL; kr = &(mtd->eraseregions[ur_idx]); if (put_user(kr->offset, &(ur->offset)) || put_user(kr->erasesize, &(ur->erasesize)) || put_user(kr->numblocks, &(ur->numblocks))) return -EFAULT; break; } case MEMGETINFO: memset(&info, 0, sizeof(info)); info.type = mtd->type; info.flags = mtd->flags; info.size = mtd->size; info.erasesize = mtd->erasesize; info.writesize = mtd->writesize; info.oobsize = mtd->oobsize; /* The below field is obsolete */ info.padding = 0; if (copy_to_user(argp, &info, sizeof(struct mtd_info_user))) return -EFAULT; break; case MEMERASE: case MEMERASE64: { struct erase_info *erase; erase=kzalloc(sizeof(struct erase_info),GFP_KERNEL); if (!erase) ret = -ENOMEM; else { wait_queue_head_t waitq; DECLARE_WAITQUEUE(wait, current); init_waitqueue_head(&waitq); if (cmd == MEMERASE64) { struct erase_info_user64 einfo64; if (copy_from_user(&einfo64, argp, sizeof(struct erase_info_user64))) { kfree(erase); return -EFAULT; } erase->addr = einfo64.start; erase->len = einfo64.length; } else { struct erase_info_user einfo32; if (copy_from_user(&einfo32, argp, sizeof(struct erase_info_user))) { kfree(erase); return -EFAULT; } erase->addr = einfo32.start; erase->len = einfo32.length; } erase->mtd = mtd; erase->callback = mtdchar_erase_callback; erase->priv = (unsigned long)&waitq; /* FIXME: Allow INTERRUPTIBLE. Which means not having the wait_queue head on the stack. If the wq_head is on the stack, and we leave because we got interrupted, then the wq_head is no longer there when the callback routine tries to wake us up. */ ret = mtd_erase(mtd, erase); if (!ret) { set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&waitq, &wait); if (erase->state != MTD_ERASE_DONE && erase->state != MTD_ERASE_FAILED) schedule(); remove_wait_queue(&waitq, &wait); set_current_state(TASK_RUNNING); ret = (erase->state == MTD_ERASE_FAILED)?-EIO:0; } kfree(erase); } break; } case MEMWRITEOOB: { struct mtd_oob_buf buf; struct mtd_oob_buf __user *buf_user = argp; /* NOTE: writes return length to buf_user->length */ if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else ret = mtdchar_writeoob(file, mtd, buf.start, buf.length, buf.ptr, &buf_user->length); break; } case MEMREADOOB: { struct mtd_oob_buf buf; struct mtd_oob_buf __user *buf_user = argp; /* NOTE: writes return length to buf_user->start */ if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else ret = mtdchar_readoob(file, mtd, buf.start, buf.length, buf.ptr, &buf_user->start); break; } case MEMWRITEOOB64: { struct mtd_oob_buf64 buf; struct mtd_oob_buf64 __user *buf_user = argp; if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else ret = mtdchar_writeoob(file, mtd, buf.start, buf.length, (void __user *)(uintptr_t)buf.usr_ptr, &buf_user->length); break; } case MEMREADOOB64: { struct mtd_oob_buf64 buf; struct mtd_oob_buf64 __user *buf_user = argp; if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else ret = mtdchar_readoob(file, mtd, buf.start, buf.length, (void __user *)(uintptr_t)buf.usr_ptr, &buf_user->length); break; } case MEMWRITE: { ret = mtdchar_write_ioctl(mtd, (struct mtd_write_req __user *)arg); break; } case MEMLOCK: { struct erase_info_user einfo; if (copy_from_user(&einfo, argp, sizeof(einfo))) return -EFAULT; ret = mtd_lock(mtd, einfo.start, einfo.length); break; } case MEMUNLOCK: { struct erase_info_user einfo; if (copy_from_user(&einfo, argp, sizeof(einfo))) return -EFAULT; ret = mtd_unlock(mtd, einfo.start, einfo.length); break; } case MEMISLOCKED: { struct erase_info_user einfo; if (copy_from_user(&einfo, argp, sizeof(einfo))) return -EFAULT; ret = mtd_is_locked(mtd, einfo.start, einfo.length); break; } /* Legacy interface */ case MEMGETOOBSEL: { struct nand_oobinfo oi; if (!mtd->ooblayout) return -EOPNOTSUPP; ret = get_oobinfo(mtd, &oi); if (ret) return ret; if (copy_to_user(argp, &oi, sizeof(struct nand_oobinfo))) return -EFAULT; break; } case MEMGETBADBLOCK: { loff_t offs; if (copy_from_user(&offs, argp, sizeof(loff_t))) return -EFAULT; return mtd_block_isbad(mtd, offs); break; } case MEMSETBADBLOCK: { loff_t offs; if (copy_from_user(&offs, argp, sizeof(loff_t))) return -EFAULT; return mtd_block_markbad(mtd, offs); break; } case OTPSELECT: { int mode; if (copy_from_user(&mode, argp, sizeof(int))) return -EFAULT; mfi->mode = MTD_FILE_MODE_NORMAL; ret = otp_select_filemode(mfi, mode); file->f_pos = 0; break; } case OTPGETREGIONCOUNT: case OTPGETREGIONINFO: { struct otp_info *buf = kmalloc(4096, GFP_KERNEL); size_t retlen; if (!buf) return -ENOMEM; switch (mfi->mode) { case MTD_FILE_MODE_OTP_FACTORY: ret = mtd_get_fact_prot_info(mtd, 4096, &retlen, buf); break; case MTD_FILE_MODE_OTP_USER: ret = mtd_get_user_prot_info(mtd, 4096, &retlen, buf); break; default: ret = -EINVAL; break; } if (!ret) { if (cmd == OTPGETREGIONCOUNT) { int nbr = retlen / sizeof(struct otp_info); ret = copy_to_user(argp, &nbr, sizeof(int)); } else ret = copy_to_user(argp, buf, retlen); if (ret) ret = -EFAULT; } kfree(buf); break; } case OTPLOCK: { struct otp_info oinfo; if (mfi->mode != MTD_FILE_MODE_OTP_USER) return -EINVAL; if (copy_from_user(&oinfo, argp, sizeof(oinfo))) return -EFAULT; ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length); break; } /* This ioctl is being deprecated - it truncates the ECC layout */ case ECCGETLAYOUT: { struct nand_ecclayout_user *usrlay; if (!mtd->ooblayout) return -EOPNOTSUPP; usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL); if (!usrlay) return -ENOMEM; shrink_ecclayout(mtd, usrlay); if (copy_to_user(argp, usrlay, sizeof(*usrlay))) ret = -EFAULT; kfree(usrlay); break; } case ECCGETSTATS: { if (copy_to_user(argp, &mtd->ecc_stats, sizeof(struct mtd_ecc_stats))) return -EFAULT; break; } case MTDFILEMODE: { mfi->mode = 0; switch(arg) { case MTD_FILE_MODE_OTP_FACTORY: case MTD_FILE_MODE_OTP_USER: ret = otp_select_filemode(mfi, arg); break; case MTD_FILE_MODE_RAW: if (!mtd_has_oob(mtd)) return -EOPNOTSUPP; mfi->mode = arg; case MTD_FILE_MODE_NORMAL: break; default: ret = -EINVAL; } file->f_pos = 0; break; } case BLKPG: { struct blkpg_ioctl_arg __user *blk_arg = argp; struct blkpg_ioctl_arg a; if (copy_from_user(&a, blk_arg, sizeof(a))) ret = -EFAULT; else ret = mtdchar_blkpg_ioctl(mtd, &a); break; } case BLKRRPART: { /* No reread partition feature. Just return ok */ ret = 0; break; } } return ret; } /* memory_ioctl */ static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg) { int ret; mutex_lock(&mtd_mutex); ret = mtdchar_ioctl(file, cmd, arg); mutex_unlock(&mtd_mutex); return ret; } #ifdef CONFIG_COMPAT struct mtd_oob_buf32 { u_int32_t start; u_int32_t length; compat_caddr_t ptr; /* unsigned char* */ }; #define MEMWRITEOOB32 _IOWR('M', 3, struct mtd_oob_buf32) #define MEMREADOOB32 _IOWR('M', 4, struct mtd_oob_buf32) static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; void __user *argp = compat_ptr(arg); int ret = 0; mutex_lock(&mtd_mutex); switch (cmd) { case MEMWRITEOOB32: { struct mtd_oob_buf32 buf; struct mtd_oob_buf32 __user *buf_user = argp; if (!(file->f_mode & FMODE_WRITE)) { ret = -EPERM; break; } if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else ret = mtdchar_writeoob(file, mtd, buf.start, buf.length, compat_ptr(buf.ptr), &buf_user->length); break; } case MEMREADOOB32: { struct mtd_oob_buf32 buf; struct mtd_oob_buf32 __user *buf_user = argp; /* NOTE: writes return length to buf->start */ if (copy_from_user(&buf, argp, sizeof(buf))) ret = -EFAULT; else ret = mtdchar_readoob(file, mtd, buf.start, buf.length, compat_ptr(buf.ptr), &buf_user->start); break; } case BLKPG: { /* Convert from blkpg_compat_ioctl_arg to blkpg_ioctl_arg */ struct blkpg_compat_ioctl_arg __user *uarg = argp; struct blkpg_compat_ioctl_arg compat_arg; struct blkpg_ioctl_arg a; if (copy_from_user(&compat_arg, uarg, sizeof(compat_arg))) { ret = -EFAULT; break; } memset(&a, 0, sizeof(a)); a.op = compat_arg.op; a.flags = compat_arg.flags; a.datalen = compat_arg.datalen; a.data = compat_ptr(compat_arg.data); ret = mtdchar_blkpg_ioctl(mtd, &a); break; } default: ret = mtdchar_ioctl(file, cmd, (unsigned long)argp); } mutex_unlock(&mtd_mutex); return ret; } #endif /* CONFIG_COMPAT */ /* * try to determine where a shared mapping can be made * - only supported for NOMMU at the moment (MMU can't doesn't copy private * mappings) */ #ifndef CONFIG_MMU static unsigned long mtdchar_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags) { struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; unsigned long offset; int ret; if (addr != 0) return (unsigned long) -EINVAL; if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT)) return (unsigned long) -EINVAL; offset = pgoff << PAGE_SHIFT; if (offset > mtd->size - len) return (unsigned long) -EINVAL; ret = mtd_get_unmapped_area(mtd, len, offset, flags); return ret == -EOPNOTSUPP ? -ENODEV : ret; } static unsigned mtdchar_mmap_capabilities(struct file *file) { struct mtd_file_info *mfi = file->private_data; return mtd_mmap_capabilities(mfi->mtd); } #endif /* * set up a mapping for shared memory segments */ static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma) { #ifdef CONFIG_MMU struct mtd_file_info *mfi = file->private_data; struct mtd_info *mtd = mfi->mtd; struct map_info *map = mtd->priv; /* This is broken because it assumes the MTD device is map-based and that mtd->priv is a valid struct map_info. It should be replaced with something that uses the mtd_get_unmapped_area() operation properly. */ if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) { #ifdef pgprot_noncached if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory)) vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); #endif return vm_iomap_memory(vma, map->phys, map->size); } return -ENODEV; #else return vma->vm_flags & VM_SHARED ? 0 : -EACCES; #endif } static const struct file_operations mtd_fops = { .owner = THIS_MODULE, .llseek = mtdchar_lseek, .read = mtdchar_read, .write = mtdchar_write, .unlocked_ioctl = mtdchar_unlocked_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = mtdchar_compat_ioctl, #endif .open = mtdchar_open, .release = mtdchar_close, .mmap = mtdchar_mmap, #ifndef CONFIG_MMU .get_unmapped_area = mtdchar_get_unmapped_area, .mmap_capabilities = mtdchar_mmap_capabilities, #endif }; int __init init_mtdchar(void) { int ret; ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd", &mtd_fops); if (ret < 0) { pr_err("Can't allocate major number %d for MTD\n", MTD_CHAR_MAJOR); return ret; } return ret; } void __exit cleanup_mtdchar(void) { __unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd"); } MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR);