/* drivers/net/pppolac.c * * Driver for PPP on L2TP Access Concentrator / PPPoLAC Socket (RFC 2661) * * Copyright (C) 2009 Google, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* This driver handles L2TP data packets between a UDP socket and a PPP channel. * The socket must keep connected, and only one session per socket is permitted. * Sequencing of outgoing packets is controlled by LNS. Incoming packets with * sequences are reordered within a sliding window of one second. Currently * reordering only happens when a packet is received. It is done for simplicity * since no additional locks or threads are required. This driver only works on * IPv4 due to the lack of UDP encapsulation support in IPv6. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define L2TP_CONTROL_BIT 0x80 #define L2TP_LENGTH_BIT 0x40 #define L2TP_SEQUENCE_BIT 0x08 #define L2TP_OFFSET_BIT 0x02 #define L2TP_VERSION 0x02 #define L2TP_VERSION_MASK 0x0F #define PPP_ADDR 0xFF #define PPP_CTRL 0x03 union unaligned { __u32 u32; } __attribute__((packed)); static inline union unaligned *unaligned(void *ptr) { return (union unaligned *)ptr; } struct meta { __u32 sequence; __u32 timestamp; }; static inline struct meta *skb_meta(struct sk_buff *skb) { return (struct meta *)skb->cb; } /******************************************************************************/ static int pppolac_recv_core(struct sock *sk_udp, struct sk_buff *skb) { struct sock *sk = (struct sock *)sk_udp->sk_user_data; struct pppolac_opt *opt = &pppox_sk(sk)->proto.lac; struct meta *meta = skb_meta(skb); __u32 now = jiffies; __u8 bits; __u8 *ptr; /* Drop the packet if L2TP header is missing. */ if (skb->len < sizeof(struct udphdr) + 6) goto drop; /* Put it back if it is a control packet. */ if (skb->data[sizeof(struct udphdr)] & L2TP_CONTROL_BIT) return opt->backlog_rcv(sk_udp, skb); /* Skip UDP header. */ skb_pull(skb, sizeof(struct udphdr)); /* Check the version. */ if ((skb->data[1] & L2TP_VERSION_MASK) != L2TP_VERSION) goto drop; bits = skb->data[0]; ptr = &skb->data[2]; /* Check the length if it is present. */ if (bits & L2TP_LENGTH_BIT) { if ((ptr[0] << 8 | ptr[1]) != skb->len) goto drop; ptr += 2; } /* Skip all fields including optional ones. */ if (!skb_pull(skb, 6 + (bits & L2TP_SEQUENCE_BIT ? 4 : 0) + (bits & L2TP_LENGTH_BIT ? 2 : 0) + (bits & L2TP_OFFSET_BIT ? 2 : 0))) goto drop; /* Skip the offset padding if it is present. */ if (bits & L2TP_OFFSET_BIT && !skb_pull(skb, skb->data[-2] << 8 | skb->data[-1])) goto drop; /* Check the tunnel and the session. */ if (unaligned(ptr)->u32 != opt->local) goto drop; /* Check the sequence if it is present. */ if (bits & L2TP_SEQUENCE_BIT) { meta->sequence = ptr[4] << 8 | ptr[5]; if ((__s16)(meta->sequence - opt->recv_sequence) < 0) goto drop; } /* Skip PPP address and control if they are present. */ if (skb->len >= 2 && skb->data[0] == PPP_ADDR && skb->data[1] == PPP_CTRL) skb_pull(skb, 2); /* Fix PPP protocol if it is compressed. */ if (skb->len >= 1 && skb->data[0] & 1) skb_push(skb, 1)[0] = 0; /* Drop the packet if PPP protocol is missing. */ if (skb->len < 2) goto drop; /* Perform reordering if sequencing is enabled. */ atomic_set(&opt->sequencing, bits & L2TP_SEQUENCE_BIT); if (bits & L2TP_SEQUENCE_BIT) { struct sk_buff *skb1; /* Insert the packet into receive queue in order. */ skb_set_owner_r(skb, sk); skb_queue_walk(&sk->sk_receive_queue, skb1) { struct meta *meta1 = skb_meta(skb1); __s16 order = meta->sequence - meta1->sequence; if (order == 0) goto drop; if (order < 0) { meta->timestamp = meta1->timestamp; skb_insert(skb1, skb, &sk->sk_receive_queue); skb = NULL; break; } } if (skb) { meta->timestamp = now; skb_queue_tail(&sk->sk_receive_queue, skb); } /* Remove packets from receive queue as long as * 1. the receive buffer is full, * 2. they are queued longer than one second, or * 3. there are no missing packets before them. */ skb_queue_walk_safe(&sk->sk_receive_queue, skb, skb1) { meta = skb_meta(skb); if (atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && now - meta->timestamp < HZ && meta->sequence != opt->recv_sequence) break; skb_unlink(skb, &sk->sk_receive_queue); opt->recv_sequence = (__u16)(meta->sequence + 1); skb_orphan(skb); ppp_input(&pppox_sk(sk)->chan, skb); } return NET_RX_SUCCESS; } /* Flush receive queue if sequencing is disabled. */ skb_queue_purge(&sk->sk_receive_queue); skb_orphan(skb); ppp_input(&pppox_sk(sk)->chan, skb); return NET_RX_SUCCESS; drop: kfree_skb(skb); return NET_RX_DROP; } static int pppolac_recv(struct sock *sk_udp, struct sk_buff *skb) { sock_hold(sk_udp); sk_receive_skb(sk_udp, skb, 0); return 0; } static struct sk_buff_head delivery_queue; static void pppolac_xmit_core(struct work_struct *delivery_work) { mm_segment_t old_fs = get_fs(); struct sk_buff *skb; set_fs(KERNEL_DS); while ((skb = skb_dequeue(&delivery_queue))) { struct sock *sk_udp = skb->sk; struct kvec iov = {.iov_base = skb->data, .iov_len = skb->len}; struct msghdr msg = { .msg_flags = MSG_NOSIGNAL | MSG_DONTWAIT, }; iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, skb->len); sk_udp->sk_prot->sendmsg(sk_udp, &msg, skb->len); kfree_skb(skb); } set_fs(old_fs); } static DECLARE_WORK(delivery_work, pppolac_xmit_core); static int pppolac_xmit(struct ppp_channel *chan, struct sk_buff *skb) { struct sock *sk_udp = (struct sock *)chan->private; struct pppolac_opt *opt = &pppox_sk(sk_udp->sk_user_data)->proto.lac; /* Install PPP address and control. */ skb_push(skb, 2); skb->data[0] = PPP_ADDR; skb->data[1] = PPP_CTRL; /* Install L2TP header. */ if (atomic_read(&opt->sequencing)) { skb_push(skb, 10); skb->data[0] = L2TP_SEQUENCE_BIT; skb->data[6] = opt->xmit_sequence >> 8; skb->data[7] = opt->xmit_sequence; skb->data[8] = 0; skb->data[9] = 0; opt->xmit_sequence++; } else { skb_push(skb, 6); skb->data[0] = 0; } skb->data[1] = L2TP_VERSION; unaligned(&skb->data[2])->u32 = opt->remote; /* Now send the packet via the delivery queue. */ skb_set_owner_w(skb, sk_udp); skb_queue_tail(&delivery_queue, skb); schedule_work(&delivery_work); return 1; } /******************************************************************************/ static struct ppp_channel_ops pppolac_channel_ops = { .start_xmit = pppolac_xmit, }; static int pppolac_connect(struct socket *sock, struct sockaddr *useraddr, int addrlen, int flags) { struct sock *sk = sock->sk; struct pppox_sock *po = pppox_sk(sk); struct sockaddr_pppolac *addr = (struct sockaddr_pppolac *)useraddr; struct socket *sock_udp = NULL; struct sock *sk_udp; int error; if (addrlen != sizeof(struct sockaddr_pppolac) || !addr->local.tunnel || !addr->local.session || !addr->remote.tunnel || !addr->remote.session) { return -EINVAL; } lock_sock(sk); error = -EALREADY; if (sk->sk_state != PPPOX_NONE) goto out; sock_udp = sockfd_lookup(addr->udp_socket, &error); if (!sock_udp) goto out; sk_udp = sock_udp->sk; lock_sock(sk_udp); /* Remove this check when IPv6 supports UDP encapsulation. */ error = -EAFNOSUPPORT; if (sk_udp->sk_family != AF_INET) goto out; error = -EPROTONOSUPPORT; if (sk_udp->sk_protocol != IPPROTO_UDP) goto out; error = -EDESTADDRREQ; if (sk_udp->sk_state != TCP_ESTABLISHED) goto out; error = -EBUSY; if (udp_sk(sk_udp)->encap_type || sk_udp->sk_user_data) goto out; if (!sk_udp->sk_bound_dev_if) { struct dst_entry *dst = sk_dst_get(sk_udp); error = -ENODEV; if (!dst) goto out; sk_udp->sk_bound_dev_if = dst->dev->ifindex; dst_release(dst); } po->chan.hdrlen = 12; po->chan.private = sk_udp; po->chan.ops = &pppolac_channel_ops; po->chan.mtu = PPP_MRU - 80; po->proto.lac.local = unaligned(&addr->local)->u32; po->proto.lac.remote = unaligned(&addr->remote)->u32; atomic_set(&po->proto.lac.sequencing, 1); po->proto.lac.backlog_rcv = sk_udp->sk_backlog_rcv; error = ppp_register_channel(&po->chan); if (error) goto out; sk->sk_state = PPPOX_CONNECTED; udp_sk(sk_udp)->encap_type = UDP_ENCAP_L2TPINUDP; udp_sk(sk_udp)->encap_rcv = pppolac_recv; sk_udp->sk_backlog_rcv = pppolac_recv_core; sk_udp->sk_user_data = sk; out: if (sock_udp) { release_sock(sk_udp); if (error) sockfd_put(sock_udp); } release_sock(sk); return error; } static int pppolac_release(struct socket *sock) { struct sock *sk = sock->sk; if (!sk) return 0; lock_sock(sk); if (sock_flag(sk, SOCK_DEAD)) { release_sock(sk); return -EBADF; } if (sk->sk_state != PPPOX_NONE) { struct sock *sk_udp = (struct sock *)pppox_sk(sk)->chan.private; lock_sock(sk_udp); skb_queue_purge(&sk->sk_receive_queue); pppox_unbind_sock(sk); udp_sk(sk_udp)->encap_type = 0; udp_sk(sk_udp)->encap_rcv = NULL; sk_udp->sk_backlog_rcv = pppox_sk(sk)->proto.lac.backlog_rcv; sk_udp->sk_user_data = NULL; release_sock(sk_udp); sockfd_put(sk_udp->sk_socket); } sock_orphan(sk); sock->sk = NULL; release_sock(sk); sock_put(sk); return 0; } /******************************************************************************/ static struct proto pppolac_proto = { .name = "PPPOLAC", .owner = THIS_MODULE, .obj_size = sizeof(struct pppox_sock), }; static struct proto_ops pppolac_proto_ops = { .family = PF_PPPOX, .owner = THIS_MODULE, .release = pppolac_release, .bind = sock_no_bind, .connect = pppolac_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = sock_no_getname, .poll = sock_no_poll, .ioctl = pppox_ioctl, .listen = sock_no_listen, .shutdown = sock_no_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = sock_no_sendmsg, .recvmsg = sock_no_recvmsg, .mmap = sock_no_mmap, }; static int pppolac_create(struct net *net, struct socket *sock, int kern) { struct sock *sk; sk = sk_alloc(net, PF_PPPOX, GFP_KERNEL, &pppolac_proto, kern); if (!sk) return -ENOMEM; sock_init_data(sock, sk); sock->state = SS_UNCONNECTED; sock->ops = &pppolac_proto_ops; sk->sk_protocol = PX_PROTO_OLAC; sk->sk_state = PPPOX_NONE; return 0; } /******************************************************************************/ static struct pppox_proto pppolac_pppox_proto = { .create = pppolac_create, .owner = THIS_MODULE, }; static int __init pppolac_init(void) { int error; error = proto_register(&pppolac_proto, 0); if (error) return error; error = register_pppox_proto(PX_PROTO_OLAC, &pppolac_pppox_proto); if (error) proto_unregister(&pppolac_proto); else skb_queue_head_init(&delivery_queue); return error; } static void __exit pppolac_exit(void) { unregister_pppox_proto(PX_PROTO_OLAC); proto_unregister(&pppolac_proto); } module_init(pppolac_init); module_exit(pppolac_exit); MODULE_DESCRIPTION("PPP on L2TP Access Concentrator (PPPoLAC)"); MODULE_AUTHOR("Chia-chi Yeh "); MODULE_LICENSE("GPL");