/* * Utility functions for parsing Tegra CVB voltage tables * * Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * */ #include #include #include #include /* cvb_mv = ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) */ int tegra_get_cvb_voltage(int speedo, int s_scale, const struct cvb_coefficients *cvb) { int mv; /* apply only speedo scale: output mv = cvb_mv * v_scale */ mv = DIV_ROUND_CLOSEST(cvb->c2 * speedo, s_scale); mv = DIV_ROUND_CLOSEST((mv + cvb->c1) * speedo, s_scale) + cvb->c0; return mv; } /* cvb_t_mv = ((c3 * speedo / s_scale + c4 + c5 * T / t_scale) * T / t_scale) / v_scale */ int tegra_get_cvb_t_voltage(int speedo, int s_scale, int t, int t_scale, struct cvb_coefficients *cvb) { /* apply speedo & temperature scales: output mv = cvb_t_mv * v_scale */ int mv; mv = DIV_ROUND_CLOSEST(cvb->c3 * speedo, s_scale) + cvb->c4 + DIV_ROUND_CLOSEST(cvb->c5 * t, t_scale); mv = DIV_ROUND_CLOSEST(mv * t, t_scale); return mv; } int tegra_round_cvb_voltage(int mv, int v_scale, const struct rail_alignment *align) { /* combined: apply voltage scale and round to cvb alignment step */ int uv; int step = (align->step_uv ? : 1000) * v_scale; int offset = align->offset_uv * v_scale; uv = max(mv * 1000, offset) - offset; uv = DIV_ROUND_UP(uv, step) * align->step_uv + align->offset_uv; return uv / 1000; } enum { DOWN, UP }; int tegra_round_voltage(int mv, const struct rail_alignment *align, int up) { if (align->step_uv) { int uv; uv = max(mv * 1000, align->offset_uv) - align->offset_uv; uv = (uv + (up ? align->step_uv - 1 : 0)) / align->step_uv; return (uv * align->step_uv + align->offset_uv) / 1000; } return mv; } /** * cvb_t_mv = * ((c2 * speedo / s_scale + c1) * speedo / s_scale + c0) + * ((c3 * speedo / s_scale + c4 + c5 * T / t_scale) * T / t_scale) */ static inline int get_cvb_thermal_floor(int speedo, int temp, int s_scale, int t_scale, const struct thermal_coefficients *coef) { int cvb_mv, mv; cvb_mv = tegra_get_cvb_voltage(speedo, s_scale, &coef->cvb_coef); mv = DIV_ROUND_CLOSEST(coef->c3 * speedo, s_scale) + coef->c4 + DIV_ROUND_CLOSEST(coef->c5 * temp, t_scale); mv = DIV_ROUND_CLOSEST(mv * temp, t_scale) + cvb_mv; return mv; } static int build_opp_table(struct device *dev, const struct cvb_table *table, struct rail_alignment *align, int speedo_value, unsigned long max_freq, int *vmin) { int i, ret, dfll_mv, min_mv, max_mv; if (!align->step_uv) align->step_uv = table->alignment.step_uv; if (!align->step_uv) return -EINVAL; if (!align->offset_uv) align->offset_uv = table->alignment.offset_uv; min_mv = tegra_round_voltage(table->min_millivolts, align, UP); max_mv = tegra_round_voltage(table->max_millivolts, align, DOWN); dfll_mv = tegra_get_cvb_voltage( speedo_value, table->speedo_scale, &table->vmin_coefficients); dfll_mv = tegra_round_cvb_voltage(dfll_mv, table->voltage_scale, align); min_mv = max(min_mv, dfll_mv); for (i = 0; i < MAX_DVFS_FREQS; i++) { const struct cvb_table_freq_entry *entry = &table->entries[i]; if (!entry->freq || (entry->freq > max_freq)) break; dfll_mv = tegra_get_cvb_voltage( speedo_value, table->speedo_scale, &entry->coefficients); dfll_mv = tegra_round_cvb_voltage(dfll_mv, table->voltage_scale, align); dfll_mv = clamp(dfll_mv, min_mv, max_mv); ret = dev_pm_opp_add(dev, entry->freq, dfll_mv * 1000); if (ret) return ret; } if (vmin) *vmin = min_mv; return 0; } /** * tegra_cvb_add_opp_table - build OPP table from Tegra CVB tables * @cvb_tables: array of CVB tables * @sz: size of the previously mentioned array * @process_id: process id of the HW module * @speedo_id: speedo id of the HW module * @speedo_value: speedo value of the HW module * @max_rate: highest safe clock rate * @opp_dev: the struct device * for which the OPP table is built * @vmin: final minimum voltage returned to the caller * * On Tegra, a CVB table encodes the relationship between operating voltage * and safe maximal frequency for a given module (e.g. GPU or CPU). This * function calculates the optimal voltage-frequency operating points * for the given arguments and exports them via the OPP library for the * given @opp_dev. Returns a pointer to the struct cvb_table that matched * or an ERR_PTR on failure. */ const struct cvb_table * tegra_cvb_add_opp_table(struct device *dev, const struct cvb_table *tables, size_t count, struct rail_alignment *align, int process_id, int speedo_id, int speedo_value, unsigned long max_freq, int *vmin) { size_t i; int ret; for (i = 0; i < count; i++) { const struct cvb_table *table = &tables[i]; if (table->speedo_id != -1 && table->speedo_id != speedo_id) continue; if (table->process_id != -1 && table->process_id != process_id) continue; ret = build_opp_table(dev, table, align, speedo_value, max_freq, vmin); return ret ? ERR_PTR(ret) : table; } return ERR_PTR(-EINVAL); } void tegra_cvb_remove_opp_table(struct device *dev, const struct cvb_table *table, unsigned long max_freq) { unsigned int i; for (i = 0; i < MAX_DVFS_FREQS; i++) { const struct cvb_table_freq_entry *entry = &table->entries[i]; if (!entry->freq || (entry->freq > max_freq)) break; dev_pm_opp_remove(dev, entry->freq); } } /** * tegra_cvb_build_thermal_table - build thermal table from Tegra CVB tables * @table: the hardware characterization thermal table * @speedo_value: speedo value of the HW module * @soc_min_mv: minimum voltage applied across all temperature ranges * * The minimum voltage for the IP blocks inside Tegra SoCs might depend on * the current temperature. This function calculates the voltage-thermal * relations according to the given coefficients. Note that if the * coefficients are not defined, the fixed thermal floors in the @table will * be used. Returns 0 on success or a negative error code on failure. */ int tegra_cvb_build_thermal_table(const struct thermal_table *table, int speedo_value, unsigned int soc_min_mv) { int i; if (!table) return -EINVAL; /* The vmin for the lowest trip point is fixed */ for (i = 1; i < table->thermal_floor_table_size; i++) { unsigned int mv; mv = get_cvb_thermal_floor(speedo_value, table->thermal_floor_table[i-1].temp, table->speedo_scale, table->temp_scale, &table->coefficients); mv = DIV_ROUND_UP(mv, table->voltage_scale); mv = max(mv, soc_min_mv); table->thermal_floor_table[i].millivolts = max(mv, table->thermal_floor_table[i].millivolts); } return 0; }