/* * SPI driver for NVIDIA's Tegra124 SPI Controller. * * Copyright (c) 2013-2018, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SPI_COMMAND1 0x000 #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0) #define SPI_PACKED (1 << 5) #define SPI_TX_EN (1 << 11) #define SPI_RX_EN (1 << 12) #define SPI_BOTH_EN_BYTE (1 << 13) #define SPI_BOTH_EN_BIT (1 << 14) #define SPI_LSBYTE_FE (1 << 15) #define SPI_LSBIT_FE (1 << 16) #define SPI_BIDIROE (1 << 17) #define SPI_IDLE_SDA_DRIVE_LOW (0 << 18) #define SPI_IDLE_SDA_DRIVE_HIGH (1 << 18) #define SPI_IDLE_SDA_PULL_LOW (2 << 18) #define SPI_IDLE_SDA_PULL_HIGH (3 << 18) #define SPI_IDLE_SDA_MASK (3 << 18) #define SPI_CS_SS_VAL (1 << 20) #define SPI_CS_SW_HW (1 << 21) /* SPI_CS_POL_INACTIVE bits are default high */ #define SPI_CS_POL_INACTIVE 22 #define SPI_CS_POL_INACTIVE_0 (1 << 22) #define SPI_CS_POL_INACTIVE_1 (1 << 23) #define SPI_CS_POL_INACTIVE_2 (1 << 24) #define SPI_CS_POL_INACTIVE_3 (1 << 25) #define SPI_CS_POL_INACTIVE_MASK (0xF << 22) #define SPI_CS_SEL_0 (0 << 26) #define SPI_CS_SEL_1 (1 << 26) #define SPI_CS_SEL_2 (2 << 26) #define SPI_CS_SEL_3 (3 << 26) #define SPI_CS_SEL_MASK (3 << 26) #define SPI_CS_SEL(x) (((x) & 0x3) << 26) #define SPI_CS(x) (((x) >> 26) & 0x3) #define SPI_CONTROL_MODE_0 (0 << 28) #define SPI_CONTROL_MODE_1 (1 << 28) #define SPI_CONTROL_MODE_2 (2 << 28) #define SPI_CONTROL_MODE_3 (3 << 28) #define SPI_CONTROL_MODE_MASK (3 << 28) #define SPI_MODE_SEL(x) (((x) & 0x3) << 28) #define SPI_MODE(x) (((x) >> 28) & 0x3) #define SPI_M_S (1 << 30) #define SPI_PIO (1 << 31) #define SPI_CS_TIMING2 0x00C #define SPI_TRANS_STATUS 0x010 #define SPI_BLK_CNT(val) (((val) >> 0) & 0xFFFF) #define SPI_SLV_IDLE_COUNT(val) (((val) >> 16) & 0xFF) #define SPI_RDY (1 << 30) #define SPI_FIFO_STATUS 0x014 #define SPI_RX_FIFO_EMPTY (1 << 0) #define SPI_RX_FIFO_FULL (1 << 1) #define SPI_TX_FIFO_EMPTY (1 << 2) #define SPI_TX_FIFO_FULL (1 << 3) #define SPI_RX_FIFO_UNF (1 << 4) #define SPI_RX_FIFO_OVF (1 << 5) #define SPI_TX_FIFO_UNF (1 << 6) #define SPI_TX_FIFO_OVF (1 << 7) #define SPI_ERR (1 << 8) #define SPI_TX_FIFO_FLUSH (1 << 14) #define SPI_RX_FIFO_FLUSH (1 << 15) #define SPI_TX_FIFO_EMPTY_COUNT(val) (((val) >> 16) & 0x7F) #define SPI_RX_FIFO_FULL_COUNT(val) (((val) >> 23) & 0x7F) #define SPI_FRAME_END (1 << 30) #define SPI_CS_INACTIVE (1 << 31) #define IS_SPI_CS_INACTIVE(val) (val >> 31) #define SPI_FIFO_ERROR (SPI_RX_FIFO_UNF | \ SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF) #define SPI_FIFO_EMPTY (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY) #define SPI_TX_DATA 0x018 #define SPI_RX_DATA 0x01C #define SPI_DMA_CTL 0x020 #define SPI_TX_TRIG_1 (0 << 15) #define SPI_TX_TRIG_4 (1 << 15) #define SPI_TX_TRIG_8 (2 << 15) #define SPI_TX_TRIG_16 (3 << 15) #define SPI_TX_TRIG_MASK (3 << 15) #define SPI_TX_TRIG(val) (((val) >> 15) & 0x3) #define SPI_RX_TRIG_1 (0 << 19) #define SPI_RX_TRIG_4 (1 << 19) #define SPI_RX_TRIG_8 (2 << 19) #define SPI_RX_TRIG_16 (3 << 19) #define SPI_RX_TRIG_MASK (3 << 19) #define SPI_RX_TRIG(val) (((val) >> 19) & 0x3) #define SPI_IE_TX (1 << 28) #define SPI_IE_RX (1 << 29) #define SPI_CONT (1 << 30) #define SPI_DMA (1 << 31) #define SPI_DMA_EN SPI_DMA #define SPI_DMA_BLK 0x024 #define SPI_DMA_BLK_SET(x) (((x) & 0xFFFF) << 0) #define SPI_TX_FIFO 0x108 #define SPI_RX_FIFO 0x188 #define SPI_INTR_MASK 0x18c #define SPI_INTR_RX_FIFO_UNF_MASK (1 << 25) #define SPI_INTR_RX_FIFO_OVF_MASK (1 << 26) #define SPI_INTR_TX_FIFO_UNF_MASK (1 << 27) #define SPI_INTR_TX_FIFO_OVF_MASK (1 << 28) #define SPI_INTR_RDY_MASK (1 << 29) #define SPI_INTR_FRAME_END_MASK (1 << 30) #define SPI_INTR_CS_MASK (1 << 31) #define SPI_MISC_REG 0x194 #define SPI_MISC_EXT_CLK_EN (1 << 30) #define SPI_MISC_CLKEN_OVERRIDE (1 << 31) #define MAX_CHIP_SELECT 4 #define SPI_FIFO_DEPTH 64 #define DATA_DIR_TX (1 << 0) #define DATA_DIR_RX (1 << 1) #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000)) #define DEFAULT_SPI_DMA_BUF_LEN (256*1024) #define TX_FIFO_EMPTY_COUNT_MAX SPI_TX_FIFO_EMPTY_COUNT(0x40) #define RX_FIFO_FULL_COUNT_ZERO SPI_RX_FIFO_FULL_COUNT(0) #define MAX_HOLD_CYCLES 16 #define SPI_DEFAULT_SPEED 25000000 #define SPI_FIFO_DEPTH 64 #define SPI_FIFO_FLUSH_MAX_DELAY 2000 #define MAX_PACKETS (1 << 16) /* multiplication facotr for slave timeout, See code below */ #define DELAY_MUL_FACTOR 1000 #define PROFILE_SPI_SLAVE /* profile spi sw overhead */ #define VERBOSE_DUMP_REGS /* register dumps */ #define TEGRA_SPI_SLAVE_DEBUG /* to enable debug interfaces, sysfs ... */ #define dump_xfer(_t, _x) \ dev_dbg(((_t))->dev, "%s%s len:%d bpw:%d %dus %dHz", \ (_x)->rx_buf ? "Rx" : "", (_x)->tx_buf ? "Tx" : "", \ (_x)->len, (_x)->bits_per_word & 0xff, \ (_x)->delay_usecs & 0xffff, (_x)->speed_hz); #define dump_sw_state(_t, _f, ...) \ do { \ dev_dbg((_t)->dev, _f, __VA_ARGS__); \ dev_dbg((_t)->dev, "[SW] cntrlr: %dHz bypw:%d dma?:%d dir?:%d " \ "dmasz:%d rx-trig:%d vlen?:%d pack?:%d force_unp?:%d\n",\ (_t)->cur_speed, (_t)->bytes_per_word, \ (_t)->is_curr_dma_xfer, (_t)->cur_direction, \ (_t)->curr_dma_words, (_t)->rx_trig_words, \ (_t)->variable_length_transfer, (_t)->is_packed, \ (_t)->force_unpacked_mode); \ } while (0) #ifdef VERBOSE_DUMP_REGS #define dump_regs(_log, _t, _f, ...) \ do { \ uint32_t fifo, cmd, dma_ctl, dma_blk, trans; \ fifo = tegra_spi_readl((_t), SPI_FIFO_STATUS); \ cmd = tegra_spi_readl((_t), SPI_COMMAND1); \ dma_ctl = tegra_spi_readl((_t), SPI_DMA_CTL); \ dma_blk = tegra_spi_readl((_t), SPI_DMA_BLK); \ trans = tegra_spi_readl((_t), SPI_TRANS_STATUS); \ dev_##_log(&((_t)->master->dev), _f, ##__VA_ARGS__); \ dev_##_log(&((_t)->master->dev), \ " CMD[%08x]: %s %s M%d CS%d [%c%c%c%c] %s " \ "%s %s %s %s %db " \ "TRANS[%08x]:%s I:%d B:%d\n" \ " FIFO[%08x]:RxF:%d TxE:%d Err[%s%s%s] " \ "RxSTA[%s%s%s%s] TxSTA[%s%s%s%s]" \ "DMA[%08x]:%s %s %s %s " \ "RxTr:%d TxTr:%d B:%d\n", \ /* command */ \ cmd, \ cmd & SPI_PIO ? "Go" : "", \ cmd & SPI_M_S ? "Ma" : "Sl", \ SPI_MODE(cmd), SPI_CS(cmd), \ (cmd & SPI_CS_POL_INACTIVE_0) ? 'H' : 'L', \ (cmd & SPI_CS_POL_INACTIVE_1) ? 'H' : 'L', \ (cmd & SPI_CS_POL_INACTIVE_2) ? 'H' : 'L', \ (cmd & SPI_CS_POL_INACTIVE_3) ? 'H' : 'L', \ (cmd & SPI_LSBYTE_FE) ? "LSB" : "MSB", \ (cmd & SPI_LSBIT_FE) ? "LSb" : "MSb", \ (cmd & SPI_RX_EN) ? "Rx" : "", \ (cmd & SPI_TX_EN) ? "Tx" : "", \ (cmd & SPI_PACKED) ? "Pa" : "Un", \ (SPI_BIT_LENGTH(cmd) + 1), \ /* transfer status */ \ trans, \ (trans & SPI_RDY) ? "RDY" : "BSY", \ SPI_SLV_IDLE_COUNT(trans), \ SPI_BLK_CNT(trans), \ /* fifo */ \ fifo, \ SPI_RX_FIFO_FULL_COUNT(fifo), \ SPI_TX_FIFO_EMPTY_COUNT(fifo), \ (fifo & SPI_CS_INACTIVE) ? "Cs" : "", \ (fifo & SPI_FRAME_END) ? "Fe" : "" , \ (fifo & SPI_FIFO_ERROR) ? "Er" : "" , \ (fifo & SPI_RX_FIFO_OVF) ? "O" : "" , \ (fifo & SPI_RX_FIFO_UNF) ? "U" : "" , \ (fifo & SPI_RX_FIFO_FULL) ? "F" : "" , \ (fifo & SPI_RX_FIFO_EMPTY) ? "E" : "" , \ (fifo & SPI_TX_FIFO_OVF) ? "O" : "" , \ (fifo & SPI_TX_FIFO_UNF) ? "U" : "" , \ (fifo & SPI_TX_FIFO_FULL) ? "F" : "" , \ (fifo & SPI_TX_FIFO_EMPTY) ? "E" : "" , \ /* dma ctl */ \ dma_ctl, \ (dma_ctl & SPI_DMA_EN) ? "De" : "", \ (dma_ctl & SPI_CONT) ? "Co" : "", \ (dma_ctl & SPI_IE_RX) ? "RxIE" : "", \ (dma_ctl & SPI_IE_TX) ? "TxIE" : "", \ SPI_RX_TRIG(dma_ctl), \ SPI_TX_TRIG(dma_ctl), \ /* dma blk */ \ SPI_DMA_BLK_SET(dma_blk)); \ } while (0) #else #define dump_regs(_log, _t, _f, ...) \ dev_##_log(&((_t)->master->dev), _f, ##__VA_ARGS__); #endif #define print_fifo_word(_m, _t, _c, _x) \ dev_dbg((_t)->dev, \ "%s[%d] %02lx %02lx %02lx %02lx\n", \ (_m), (_c), \ (_x) & 0xff, ((_x) >> 8) & 0xff, \ ((_x) >> 16) & 0xff, ((_x) >> 24) & 0xff); /* convert size in fifo bytes to number of packets */ /* for unpacked, each packet occupies 4 bytes, i.e., a fifo word * for packed the each fifo word can be occupied by multiple packets * as number of bytes in each packet. */ #define fifo_bytes_to_packets(_t, _sz) \ ((_t)->is_packed ? (_sz)/(_t)->bytes_per_word : (_sz)/4); struct tegra_spi_chip_data { bool intr_mask_reg; bool mask_cs_inactive_intr; bool new_features; }; struct tegra_spi_data { struct device *dev; struct spi_master *master; spinlock_t lock; struct clk *clk; struct reset_control *rstc; void __iomem *base; phys_addr_t phys; unsigned irq; bool clock_always_on; u32 spi_max_frequency; u32 cur_speed; unsigned min_div; struct spi_device *cur_spi; unsigned words_per_32bit; /* bypw, rounding to nearest byte, irrespective of packed/unpacked */ unsigned bytes_per_word; unsigned curr_dma_words; unsigned cur_direction; unsigned dma_buf_size; unsigned max_buf_size; bool is_curr_dma_xfer; bool variable_length_transfer; /* Slave Ready Polarity (true: Active High, false: Active Low) */ int gpio_slave_ready; bool slave_ready_active_high; struct completion rx_dma_complete; struct completion tx_dma_complete; u32 tx_status; u32 rx_status; bool reset_ctrl_status; u32 status_reg; bool is_packed; u32 command1_reg; u32 dma_control_reg; u32 def_command1_reg; struct completion xfer_completion; struct spi_transfer *curr_xfer; struct dma_chan *rx_dma_chan; u32 *rx_dma_buf; dma_addr_t rx_dma_phys; struct dma_async_tx_descriptor *rx_dma_desc; struct dma_chan *tx_dma_chan; u32 *tx_dma_buf; dma_addr_t tx_dma_phys; struct dma_async_tx_descriptor *tx_dma_desc; const struct tegra_spi_chip_data *chip_data; struct tegra_spi_device_controller_data cdata[MAX_CHIP_SELECT]; spi_callback spi_slave_ready_callback; spi_callback spi_slave_isr_callback; void *client_data; atomic_t isr_expected; u32 words_to_transfer; int curr_rx_pos; /* common variable for tx and rx to update the actual length */ int curr_pos; int rx_dma_len; int rem_len; int rx_trig_words; int force_unpacked_mode; bool lsbyte_first; #ifdef PROFILE_SPI_SLAVE ktime_t start_time; ktime_t end_time; int profile_size; #endif }; static int tegra_spi_runtime_suspend(struct device *dev); static int tegra_spi_runtime_resume(struct device *dev); static int tegra_spi_validate_request(struct spi_device *spi, struct tegra_spi_data *tspi, struct spi_transfer *t); static int tegra_spi_ext_clk_enable(bool enable, struct tegra_spi_data *tspi); #ifdef TEGRA_SPI_SLAVE_DEBUG static ssize_t force_unpacked_mode_set(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct tegra_spi_data *tspi; struct spi_master *master = dev_get_drvdata(dev); if (master) { tspi = spi_master_get_devdata(master); if (tspi && count) { tspi->force_unpacked_mode = ((buf[0] - '0') > 0); return count; } } return -ENODEV; } static ssize_t force_unpacked_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tegra_spi_data *tspi; struct spi_master *master = dev_get_drvdata(dev); if (master) { tspi = spi_master_get_devdata(master); return sprintf(buf, "%d", tspi->force_unpacked_mode); } return -ENODEV; } static DEVICE_ATTR(force_unpacked_mode, 0644, force_unpacked_mode_show, force_unpacked_mode_set); #endif static inline unsigned long tegra_spi_readl(struct tegra_spi_data *tspi, unsigned long reg) { return readl(tspi->base + reg); } static inline void tegra_spi_writel(struct tegra_spi_data *tspi, unsigned long val, unsigned long reg) { writel(val, tspi->base + reg); /* TODO: remove the forced fence read below */ /* Read back register to make sure that register writes completed */ if (reg != SPI_TX_FIFO) readl(tspi->base + SPI_COMMAND1); } static inline void tegra_spi_fence(struct tegra_spi_data *tspi) { /* Read back register to make sure that register writes completed */ readl(tspi->base + SPI_COMMAND1); } /* FIXME: the name of the function */ int tegra124_spi_slave_register_callback(struct spi_device *spi, spi_callback func_ready, spi_callback func_isr, void *client_data) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); /* Expect atleast one callback function. */ if ((!tspi) || (!func_ready && !func_isr)) return -EINVAL; tspi->spi_slave_ready_callback = func_ready; tspi->spi_slave_isr_callback = func_isr; tspi->client_data = client_data; return 0; } EXPORT_SYMBOL_GPL(tegra124_spi_slave_register_callback); static void tegra_spi_clear_status(struct tegra_spi_data *tspi) { unsigned long val; /* Write 1 to clear status register */ val = tegra_spi_readl(tspi, SPI_TRANS_STATUS); tegra_spi_writel(tspi, val, SPI_TRANS_STATUS); if (tspi->chip_data->intr_mask_reg) { val = tegra_spi_readl(tspi, SPI_INTR_MASK); if (!(val & SPI_INTR_RDY_MASK)) { val |= (SPI_INTR_CS_MASK | SPI_INTR_FRAME_END_MASK | SPI_INTR_RDY_MASK | SPI_INTR_RX_FIFO_UNF_MASK | SPI_INTR_TX_FIFO_UNF_MASK | SPI_INTR_RX_FIFO_OVF_MASK | SPI_INTR_TX_FIFO_OVF_MASK); tegra_spi_writel(tspi, val, SPI_INTR_MASK); } } /* Clear fifo status error if any */ val = tegra_spi_readl(tspi, SPI_FIFO_STATUS); tegra_spi_writel(tspi, val & (SPI_FRAME_END | SPI_CS_INACTIVE | SPI_ERR | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF | SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF), SPI_FIFO_STATUS); } static void reset_controller(struct tegra_spi_data *tspi) { if (!tspi->reset_ctrl_status) return; /* TODO: Debug the reset sequence */ if (tspi->is_curr_dma_xfer && (tspi->cur_direction & DATA_DIR_TX)) dmaengine_terminate_all(tspi->tx_dma_chan); if (tspi->is_curr_dma_xfer && (tspi->cur_direction & DATA_DIR_RX)) dmaengine_terminate_all(tspi->rx_dma_chan); wmb(); /* barrier for dma terminate to happen */ reset_control_reset(tspi->rstc); /* restore default value */ tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); /* set CS inactive b/w packets to mask CS_INACTIVE interrupts */ if (tspi->chip_data->mask_cs_inactive_intr) tegra_spi_writel(tspi, 0, SPI_CS_TIMING2); tegra_spi_clear_status(tspi); tegra_spi_writel(tspi, tspi->dma_control_reg, SPI_DMA_CTL); dump_regs(dbg, tspi, "after controller reset"); tspi->reset_ctrl_status = false; } static unsigned tegra_spi_calculate_curr_xfer_param( struct spi_device *spi, struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned remain_len = t->len; unsigned max_word; unsigned bits_per_word; unsigned max_len; unsigned total_fifo_words; bits_per_word = t->bits_per_word ? t->bits_per_word : spi->bits_per_word; tspi->bytes_per_word = (bits_per_word - 1) / 8 + 1; if (!tspi->force_unpacked_mode && (bits_per_word == 8 || bits_per_word == 16)) { tspi->is_packed = 1; tspi->words_per_32bit = 32/bits_per_word; } else { tspi->is_packed = 0; tspi->words_per_32bit = 1; } if (tspi->is_packed) { max_len = min(remain_len, tspi->max_buf_size); tspi->curr_dma_words = max_len/tspi->bytes_per_word; total_fifo_words = (max_len + 3)/4; } else { max_word = (remain_len - 1) / tspi->bytes_per_word + 1; max_word = min(max_word, tspi->max_buf_size/4); tspi->curr_dma_words = max_word; total_fifo_words = max_word; } return total_fifo_words; } static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned nbytes; unsigned tx_empty_count; unsigned max_n_32bit; unsigned i, count; unsigned long x; unsigned int written_words; unsigned fifo_words_left; u8 *tx_buf = (u8 *)t->tx_buf; tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT( tegra_spi_readl(tspi, SPI_FIFO_STATUS)); if (tspi->is_packed) { fifo_words_left = tx_empty_count * tspi->words_per_32bit; written_words = min(fifo_words_left, tspi->curr_dma_words); nbytes = written_words * tspi->bytes_per_word; max_n_32bit = DIV_ROUND_UP(nbytes, 4); for (count = 0; count < max_n_32bit; count++) { x = 0; for (i = 0; (i < 4) && nbytes; i++, nbytes--) x |= (*tx_buf++) << (i*8); print_fifo_word("TxFIFO", tspi, count, x); tegra_spi_writel(tspi, x, SPI_TX_FIFO); } } else { max_n_32bit = min(tspi->curr_dma_words, tx_empty_count); written_words = max_n_32bit; nbytes = written_words * tspi->bytes_per_word; for (count = 0; count < max_n_32bit; count++) { x = 0; for (i = 0; nbytes && (i < tspi->bytes_per_word); i++, nbytes--) x |= ((*tx_buf++) << i*8); print_fifo_word("TxFIFO", tspi, count, x); tegra_spi_writel(tspi, x, SPI_TX_FIFO); } } return written_words; } /* FIFO mode rx data copy from SPI-FIFO to client buffer */ static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned rx_full_count; unsigned i, count; unsigned long x; unsigned recv_len, npackets; u8 *rx_buf = (u8 *)t->rx_buf + tspi->curr_rx_pos; rx_full_count = SPI_RX_FIFO_FULL_COUNT( tegra_spi_readl(tspi, SPI_FIFO_STATUS)); /* actual bytes to be copied */ npackets = fifo_bytes_to_packets(tspi, rx_full_count*4); npackets = min(npackets, tspi->words_to_transfer); recv_len = npackets * tspi->bytes_per_word; if (tspi->is_packed) { int j = recv_len; if (rx_full_count != DIV_ROUND_UP(tspi->words_to_transfer * tspi->bytes_per_word, 4)) dump_regs(dbg, tspi, "fifo-cnt[%d] != trans-cnt[%d]", rx_full_count, tspi->words_to_transfer); for (count = 0; j && count < rx_full_count; count++) { x = tegra_spi_readl(tspi, SPI_RX_FIFO); print_fifo_word("RxFIFO", tspi, count, x); for (i = 0; j && (i < 4); i++, j--) *rx_buf++ = (x >> i*8) & 0xFF; } } else { unsigned int bits_per_word; bits_per_word = t->bits_per_word ? t->bits_per_word : tspi->cur_spi->bits_per_word; if (rx_full_count != tspi->words_to_transfer) dump_regs(dbg, tspi, "fifo-cnt[%d] != trans-cnt[%d]", rx_full_count, tspi->words_to_transfer); rx_full_count = min(rx_full_count, tspi->words_to_transfer); for (count = 0; count < rx_full_count; count++) { x = tegra_spi_readl(tspi, SPI_RX_FIFO); print_fifo_word("RxFIFO", tspi, count, x); for (i = 0; (i < tspi->bytes_per_word); i++) *rx_buf++ = (x >> (i*8)) & 0xFF; } } tspi->words_to_transfer -= npackets; tspi->rem_len -= recv_len; tspi->curr_rx_pos += recv_len; return recv_len; } static void tegra_spi_copy_client_txbuf_to_spi_txbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned len; /* Make the dma buffer to read by cpu */ dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys, tspi->dma_buf_size, DMA_TO_DEVICE); if (tspi->is_packed) { len = tspi->curr_dma_words * tspi->bytes_per_word; memcpy(tspi->tx_dma_buf, t->tx_buf, len); } else { unsigned int i; unsigned int count; u8 *tx_buf = (u8 *)t->tx_buf; unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word; unsigned int x; for (count = 0; count < tspi->curr_dma_words; count++) { x = 0; for (i = 0; consume && (i < tspi->bytes_per_word); i++, consume--) x |= ((*tx_buf++) << i * 8); tspi->tx_dma_buf[count] = x; } } /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys, tspi->dma_buf_size, DMA_TO_DEVICE); } static unsigned int tegra_spi_copy_spi_rxbuf_to_client_rxbuf( struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned dma_bytes, npackets; /* Make the dma buffer to read by cpu */ dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); dma_bytes = tspi->words_to_transfer * tspi->bytes_per_word; npackets = tspi->words_to_transfer; if (tspi->is_packed) { memcpy(t->rx_buf, tspi->rx_dma_buf, dma_bytes); } else { unsigned int i; unsigned int count; unsigned char *rx_buf = t->rx_buf; unsigned int x; unsigned int bits_per_word; bits_per_word = t->bits_per_word ? t->bits_per_word : tspi->cur_spi->bits_per_word; /* copy received dma words to rx client buffer */ for (count = 0; count < tspi->words_to_transfer; count++) { x = tspi->rx_dma_buf[count]; for (i = 0; (i < tspi->bytes_per_word); i++) *rx_buf++ = (x >> (i*8)) & 0xFF; } } tspi->words_to_transfer -= npackets; tspi->rem_len -= npackets*tspi->bytes_per_word; tspi->curr_rx_pos += npackets*tspi->bytes_per_word; if (tspi->words_to_transfer) dma_bytes += tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t); /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); return dma_bytes; } static void tegra_spi_rx_dma_complete(void *args) { struct tegra_spi_data *tspi = args; dev_dbg(tspi->dev, "rx-dma-complete\n"); complete(&tspi->rx_dma_complete); /* TODO: how to get transfer size from dma */ } static void tegra_spi_tx_dma_complete(void *args) { struct tegra_spi_data *tspi = args; dev_dbg(tspi->dev, "tx-dma-complete\n"); complete(&tspi->tx_dma_complete); } static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len) { reinit_completion(&tspi->tx_dma_complete); dev_dbg(tspi->dev, "Starting tx dma for len:%d\n", len); tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan, tspi->tx_dma_phys, len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tspi->tx_dma_desc) { dev_err(tspi->dev, "Not able to get desc for Tx\n"); return -EIO; } tspi->tx_dma_desc->callback = tegra_spi_tx_dma_complete; tspi->tx_dma_desc->callback_param = tspi; dmaengine_submit(tspi->tx_dma_desc); dma_async_issue_pending(tspi->tx_dma_chan); return 0; } static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len) { reinit_completion(&tspi->rx_dma_complete); tspi->rx_dma_len = len; dev_dbg(tspi->dev, "Starting rx dma for len:%d\n", len); tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan, tspi->rx_dma_phys, len, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tspi->rx_dma_desc) { dev_err(tspi->dev, "Not able to get desc for Rx\n"); return -EIO; } tspi->rx_dma_desc->callback = tegra_spi_rx_dma_complete; tspi->rx_dma_desc->callback_param = tspi; dmaengine_submit(tspi->rx_dma_desc); dma_async_issue_pending(tspi->rx_dma_chan); return 0; } static int check_and_clear_fifo(struct tegra_spi_data *tspi) { unsigned long status; int cnt = SPI_FIFO_FLUSH_MAX_DELAY; /* Make sure that Rx and Tx fifo are empty */ status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) { /* flush the fifo */ status |= (SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH); tegra_spi_writel(tspi, status, SPI_FIFO_STATUS); do { status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); if ((status & SPI_FIFO_EMPTY) == SPI_FIFO_EMPTY) return 0; udelay(1); } while (cnt--); dev_err(tspi->dev, "Rx/Tx fifo are not empty status 0x%08lx\n", status); return -EIO; } return 0; } static inline void tegra_spi_slave_busy(struct tegra_spi_data *tspi) { int deassert_val; if (tspi->slave_ready_active_high) deassert_val = 0; else deassert_val = 1; /* Deassert ready line to indicate Busy */ if (gpio_is_valid(tspi->gpio_slave_ready)) gpio_set_value(tspi->gpio_slave_ready, deassert_val); } static inline void tegra_spi_slave_ready(struct tegra_spi_data *tspi) { int assert_val; if (tspi->slave_ready_active_high) assert_val = 1; else assert_val = 0; /* Assert ready line to indicate Ready */ if (gpio_is_valid(tspi->gpio_slave_ready)) gpio_set_value(tspi->gpio_slave_ready, assert_val); } static inline int tegra_spi_ext_clk_enable(bool enable, struct tegra_spi_data *tspi) { unsigned long misc_reg = 0; int ret = 0; if (tspi->chip_data->new_features) { /* Enable external clock bit in SPI_MISC_REG */ if (enable) misc_reg |= SPI_MISC_EXT_CLK_EN; else misc_reg &= (~SPI_MISC_EXT_CLK_EN); tegra_spi_writel(tspi, misc_reg, SPI_MISC_REG); } return ret; } static int tegra_spi_start_dma_based_transfer( struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned long val, flags; unsigned long intr_mask; unsigned int len; int ret = 0; int maxburst = 0; struct dma_slave_config dma_sconfig; /* Make sure that Rx and Tx fifo are empty */ ret = check_and_clear_fifo(tspi); if (ret != 0) return ret; val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1); tegra_spi_writel(tspi, val, SPI_DMA_BLK); val = 0; /* Reset the variable for reuse */ if (tspi->is_packed) len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word, 4) * 4; else len = tspi->curr_dma_words * 4; if (!tspi->rx_trig_words) { /* Set attention level based on length of transfer */ if (len & 0xF) { val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1; maxburst = 1; } else if (((len) >> 4) & 0x1) { val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4; maxburst = 4; } else { val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8; maxburst = 8; } } else { /* dt can override the trigger */ if (tspi->rx_trig_words == 4) { val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4; maxburst = 4; } else if (tspi->rx_trig_words == 8) { val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8; maxburst = 8; } } if (tspi->variable_length_transfer && tspi->chip_data->new_features && (tspi->cur_direction & DATA_DIR_RX)) { val &= ~SPI_RX_TRIG_MASK; val |= SPI_RX_TRIG_1; } if (tspi->chip_data->intr_mask_reg) { if ((tspi->cur_direction & DATA_DIR_TX) || (tspi->cur_direction & DATA_DIR_RX)) { intr_mask = tegra_spi_readl(tspi, SPI_INTR_MASK); intr_mask &= ~(SPI_INTR_CS_MASK | SPI_INTR_RDY_MASK | SPI_INTR_RX_FIFO_UNF_MASK | SPI_INTR_TX_FIFO_UNF_MASK | SPI_INTR_RX_FIFO_OVF_MASK | SPI_INTR_TX_FIFO_OVF_MASK); tegra_spi_writel(tspi, intr_mask, SPI_INTR_MASK); } } else if (!tspi->chip_data->new_features) { if (tspi->cur_direction & DATA_DIR_TX) val |= SPI_IE_TX; if (tspi->cur_direction & DATA_DIR_RX) val |= SPI_IE_RX; } tegra_spi_writel(tspi, val, SPI_DMA_CTL); tspi->dma_control_reg = val; if (tspi->cur_direction & DATA_DIR_TX) { dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO; dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.dst_maxburst = maxburst; dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig); tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t); ret = tegra_spi_start_tx_dma(tspi, len); if (ret < 0) { dev_err(tspi->dev, "Starting tx dma failed, err %d\n", ret); return ret; } } if (tspi->cur_direction & DATA_DIR_RX) { /* Make the dma buffer to read by dma */ dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys, tspi->dma_buf_size, DMA_FROM_DEVICE); dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO; dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; if (tspi->variable_length_transfer && tspi->chip_data->new_features) dma_sconfig.src_maxburst = 1; else dma_sconfig.src_maxburst = maxburst; dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig); /* align Rx Dma to receive size */ ret = tegra_spi_start_rx_dma(tspi, (len >> tspi->rx_trig_words) << tspi->rx_trig_words); if (ret < 0) { dev_err(tspi->dev, "Starting rx dma failed, err %d\n", ret); if (tspi->cur_direction & DATA_DIR_TX) dmaengine_terminate_all(tspi->tx_dma_chan); return ret; } } tspi->is_curr_dma_xfer = true; tspi->dma_control_reg = val; val |= SPI_DMA_EN; dump_regs(dbg, tspi, "Before DMA EN"); /* atomically set both sw/hw isr enable */ spin_lock_irqsave(&tspi->lock, flags); atomic_set(&tspi->isr_expected, 1); wmb(); /* to complete the register writes and the atomic var update */ tegra_spi_writel(tspi, val, SPI_DMA_CTL); tegra_spi_fence(tspi); spin_unlock_irqrestore(&tspi->lock, flags); ret = tegra_spi_ext_clk_enable(true, tspi); return ret; } static int tegra_spi_start_cpu_based_transfer( struct tegra_spi_data *tspi, struct spi_transfer *t) { unsigned long val, flags; unsigned long intr_mask; unsigned cur_words; int ret; ret = check_and_clear_fifo(tspi); if (ret != 0) return ret; if (tspi->cur_direction & DATA_DIR_TX) cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t); else cur_words = tspi->curr_dma_words; val = SPI_DMA_BLK_SET(cur_words - 1); tegra_spi_writel(tspi, val, SPI_DMA_BLK); val = 0; if (tspi->chip_data->intr_mask_reg) { if ((tspi->cur_direction & DATA_DIR_TX) || (tspi->cur_direction & DATA_DIR_RX)) { intr_mask = tegra_spi_readl(tspi, SPI_INTR_MASK); intr_mask &= ~(SPI_INTR_CS_MASK | SPI_INTR_RDY_MASK | SPI_INTR_RX_FIFO_UNF_MASK | SPI_INTR_TX_FIFO_UNF_MASK | SPI_INTR_RX_FIFO_OVF_MASK | SPI_INTR_TX_FIFO_OVF_MASK); tegra_spi_writel(tspi, intr_mask, SPI_INTR_MASK); } } else { if (tspi->cur_direction & DATA_DIR_TX) val |= SPI_IE_TX; if (tspi->cur_direction & DATA_DIR_RX) val |= SPI_IE_RX; } tegra_spi_writel(tspi, val, SPI_DMA_CTL); tspi->dma_control_reg = val; tspi->is_curr_dma_xfer = false; val = tspi->command1_reg; val |= SPI_PIO; dump_regs(dbg, tspi, "Before PIO EN"); /* atomically set both sw/hw isr enable */ spin_lock_irqsave(&tspi->lock, flags); atomic_set(&tspi->isr_expected, 1); wmb(); /* to complete the register writes and the atomic var update */ tegra_spi_writel(tspi, val, SPI_COMMAND1); tegra_spi_fence(tspi); spin_unlock_irqrestore(&tspi->lock, flags); ret = tegra_spi_ext_clk_enable(true, tspi); return ret; } static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi, bool dma_to_memory) { struct dma_chan *dma_chan; u32 *dma_buf; dma_addr_t dma_phys; int ret; struct dma_slave_config dma_sconfig; dma_chan = dma_request_slave_channel_reason(tspi->dev, dma_to_memory ? "rx" : "tx"); if (IS_ERR(dma_chan)) { ret = PTR_ERR(dma_chan); if (ret != -EPROBE_DEFER) dev_err(tspi->dev, "Dma channel is not available: %d\n", ret); return ret; } dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size, &dma_phys, GFP_KERNEL); if (!dma_buf) { dev_err(tspi->dev, "Not able to allocate the dma buffer\n"); dma_release_channel(dma_chan); return -ENOMEM; } if (dma_to_memory) { dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO; dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.src_maxburst = tspi->rx_trig_words; } else { dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO; dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_sconfig.dst_maxburst = tspi->rx_trig_words; } ret = dmaengine_slave_config(dma_chan, &dma_sconfig); if (ret) goto scrub; if (dma_to_memory) { tspi->rx_dma_chan = dma_chan; tspi->rx_dma_buf = dma_buf; tspi->rx_dma_phys = dma_phys; } else { tspi->tx_dma_chan = dma_chan; tspi->tx_dma_buf = dma_buf; tspi->tx_dma_phys = dma_phys; } return 0; scrub: dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); dma_release_channel(dma_chan); return ret; } static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi, bool dma_to_memory) { u32 *dma_buf; dma_addr_t dma_phys; struct dma_chan *dma_chan; if (dma_to_memory) { dma_buf = tspi->rx_dma_buf; dma_chan = tspi->rx_dma_chan; dma_phys = tspi->rx_dma_phys; tspi->rx_dma_chan = NULL; tspi->rx_dma_buf = NULL; } else { dma_buf = tspi->tx_dma_buf; dma_chan = tspi->tx_dma_chan; dma_phys = tspi->tx_dma_phys; tspi->tx_dma_buf = NULL; tspi->tx_dma_chan = NULL; } if (!dma_chan) return; dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys); dma_release_channel(dma_chan); } static int tegra_spi_validate_request(struct spi_device *spi, struct tegra_spi_data *tspi, struct spi_transfer *t) { int req_mode; req_mode = spi->mode & 0x3; if ((req_mode == SPI_MODE_0) || (req_mode == SPI_MODE_2)) { if (t->tx_buf) { /* Tx is not supported in mode 0 and mode 2 */ dev_err(tspi->dev, "Tx is not supported in mode %d\n", req_mode); return -EINVAL; } } /* Check that the all words are available */ if (t->len % tspi->bytes_per_word != 0) { dev_dbg(tspi->dev, "length is not a multiple of bypw\n"); return -EINVAL; } /* the transfer needs to be completed in one go */ if (t->len > tspi->dma_buf_size) { dev_dbg(tspi->dev, "message size is greater than dma size\n"); return -EMSGSIZE; } /* In unpacked mode, a fifo-word (4 bytes) is used to store a word * irrespective of bytes-per-word setting. This means that the * DMA transfers a FIFO word to dma buffer occuping 4 bytes and * hence the total number of packets possible is 1/4th of dma buff size */ if (!tspi->is_packed && ((t->len / tspi->bytes_per_word) > tspi->dma_buf_size / 4)) { dev_dbg(tspi->dev, "Num words is greater than dma size\n"); return -EMSGSIZE; } /* the total number of packets should be less than max dma packets */ if ((t->len / tspi->bytes_per_word) > MAX_PACKETS) { dev_dbg(tspi->dev, "Num packets is greater than 64K\n"); return -EMSGSIZE; } return 0; } static void set_best_clk_source(struct spi_device *spi, unsigned long rate) { long new_rate; unsigned long err_rate, crate, prate; unsigned int cdiv, fin_err = rate; int ret; struct clk *pclk, *fpclk = NULL; const char *pclk_name, *fpclk_name = NULL; struct device_node *node; struct property *prop; struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); node = spi->master->dev.of_node; if (!of_property_count_strings(node, "nvidia,clk-parents")) return; /* when parent of a clk changes divider is not changed * set a min div with which clk will not cross max rate */ if (!tspi->min_div) { of_property_for_each_string(node, "nvidia,clk-parents", prop, pclk_name) { pclk = clk_get(tspi->dev, pclk_name); if (IS_ERR(pclk)) continue; prate = clk_get_rate(pclk); crate = tspi->spi_max_frequency; cdiv = DIV_ROUND_UP(prate, crate); if (cdiv > tspi->min_div) tspi->min_div = cdiv; } } pclk = clk_get_parent(tspi->clk); crate = clk_get_rate(tspi->clk); prate = clk_get_rate(pclk); if (!crate) return; cdiv = DIV_ROUND_UP(prate, crate); if (cdiv < tspi->min_div) { crate = DIV_ROUND_UP(prate, tspi->min_div); clk_set_rate(tspi->clk, crate); } of_property_for_each_string(node, "nvidia,clk-parents", prop, pclk_name) { pclk = clk_get(tspi->dev, pclk_name); if (IS_ERR(pclk)) continue; ret = clk_set_parent(tspi->clk, pclk); if (ret < 0) { dev_warn(tspi->dev, "Error in setting parent clk src %s: %d\n", pclk_name, ret); continue; } new_rate = clk_round_rate(tspi->clk, rate); if (new_rate < 0) continue; err_rate = abs(new_rate - rate); if (err_rate < fin_err) { fpclk = pclk; fin_err = err_rate; fpclk_name = pclk_name; } } if (fpclk) { dev_dbg(tspi->dev, "Setting clk_src %s\n", fpclk_name); clk_set_parent(tspi->clk, fpclk); } } static int tegra_spi_start_transfer_one(struct spi_device *spi, struct spi_transfer *t, bool is_first_of_msg, bool is_single_xfer) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); struct tegra_spi_device_controller_data *cdata = spi->controller_data; u32 speed; u32 core_speed; u8 bits_per_word; unsigned total_fifo_words; int ret; unsigned long command1; int req_mode; bits_per_word = t->bits_per_word; speed = t->speed_hz ? t->speed_hz : spi->max_speed_hz; /* Set slave controller clk 1.5 times the bus frequency */ if (!speed) speed = tspi->spi_max_frequency; if (tspi->chip_data->new_features) { /* In case of new feature, all DMA interfaces are async. * so only 1.5x freq ration required Set speed to 2x to avoid border cases where actual clock is not same requested rate*/ core_speed = (speed * 2); } else { /* To maintain min 1.5x and max 4x ratio between * slave core clk and interface clk */ core_speed = speed * 3; } if (core_speed > tspi->spi_max_frequency) core_speed = tspi->spi_max_frequency; if (core_speed < ((speed * 3) >> 1)) { dev_err(tspi->dev, "Cannot set requested clk freq %d\n", speed); return -EINVAL; } if (core_speed != tspi->cur_speed) { set_best_clk_source(spi, core_speed); ret = clk_set_rate(tspi->clk, core_speed); if (ret) { dev_err(tspi->dev, "Failed to set clk freq %d\n", ret); return -EINVAL; } tspi->cur_speed = core_speed; } tspi->cur_spi = spi; tspi->curr_xfer = t; tspi->curr_rx_pos = 0; tspi->curr_pos = 0; tspi->tx_status = 0; tspi->rx_status = 0; total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t); ret = tegra_spi_validate_request(spi, tspi, t); if (ret < 0) return ret; if (is_first_of_msg) { tegra_spi_clear_status(tspi); command1 = tspi->def_command1_reg; command1 |= SPI_BIT_LENGTH(bits_per_word - 1); command1 &= ~SPI_CONTROL_MODE_MASK; req_mode = spi->mode & 0x3; if (req_mode == SPI_MODE_0) command1 |= SPI_CONTROL_MODE_0; else if (req_mode == SPI_MODE_1) command1 |= SPI_CONTROL_MODE_1; else if (req_mode == SPI_MODE_2) command1 |= SPI_CONTROL_MODE_2; else if (req_mode == SPI_MODE_3) command1 |= SPI_CONTROL_MODE_3; tegra_spi_writel(tspi, command1, SPI_COMMAND1); tspi->variable_length_transfer = false; if (cdata && cdata->variable_length_transfer) tspi->variable_length_transfer = true; } else { command1 = tspi->command1_reg; command1 &= ~SPI_BIT_LENGTH(~0); command1 |= SPI_BIT_LENGTH(bits_per_word - 1); } if (spi->mode & SPI_LSB_FIRST) command1 |= SPI_LSBIT_FE; else command1 &= ~SPI_LSBIT_FE; if (tspi->is_packed) command1 |= SPI_PACKED; command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN); tspi->cur_direction = 0; if (t->rx_buf) { command1 |= SPI_RX_EN; tspi->cur_direction |= DATA_DIR_RX; } if (t->tx_buf) { command1 |= SPI_TX_EN; tspi->cur_direction |= DATA_DIR_TX; } command1 |= SPI_CS_SEL(spi->chip_select); tegra_spi_writel(tspi, command1, SPI_COMMAND1); tspi->command1_reg = command1; dev_dbg(tspi->dev, "The def 0x%x and written 0x%lx\n", tspi->def_command1_reg, command1); if (total_fifo_words > SPI_FIFO_DEPTH) ret = tegra_spi_start_dma_based_transfer(tspi, t); else ret = tegra_spi_start_cpu_based_transfer(tspi, t); tegra_spi_slave_ready(tspi); /* Inform client that we are ready now. */ if (tspi->spi_slave_ready_callback) tspi->spi_slave_ready_callback(tspi->client_data); return ret; } static struct tegra_spi_device_controller_data *tegra_spi_get_cdata_dt(struct spi_device *spi, struct tegra_spi_data *tspi) { struct tegra_spi_device_controller_data *cdata; struct device_node *slave_np, *data_np; int ret; slave_np = spi->dev.of_node; if (!slave_np) { dev_dbg(&spi->dev, "device node not found\n"); return NULL; } data_np = of_get_child_by_name(slave_np, "controller-data"); if (!data_np) { dev_dbg(&spi->dev, "child node 'controller-data' not found\n"); return NULL; } cdata = &tspi->cdata[spi->chip_select]; memset(cdata, 0, sizeof(*cdata)); ret = of_property_read_bool(data_np, "nvidia,variable-length-transfer"); if (ret) cdata->variable_length_transfer = 1; tspi->lsbyte_first = of_property_read_bool(data_np, "nvidia,lsbyte-first"); of_node_put(data_np); return cdata; } static int tegra_spi_setup(struct spi_device *spi) { struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master); struct tegra_spi_device_controller_data *cdata = spi->controller_data; unsigned long val; unsigned long flags; int ret; unsigned int cs_pol_bit[MAX_CHIP_SELECT] = { SPI_CS_POL_INACTIVE_0, SPI_CS_POL_INACTIVE_1, SPI_CS_POL_INACTIVE_2, SPI_CS_POL_INACTIVE_3, }; dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n", spi->bits_per_word, spi->mode & SPI_CPOL ? "" : "~", spi->mode & SPI_CPHA ? "" : "~", spi->max_speed_hz); if (!cdata) { cdata = tegra_spi_get_cdata_dt(spi, tspi); spi->controller_data = cdata; } /* Set speed to the spi max fequency if spi device has not set */ spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency; ret = pm_runtime_get_sync(tspi->dev); if (ret < 0) { dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret); return ret; } spin_lock_irqsave(&tspi->lock, flags); val = tspi->def_command1_reg; if (spi->mode & SPI_CS_HIGH) val &= ~cs_pol_bit[spi->chip_select]; else val |= cs_pol_bit[spi->chip_select]; if (tspi->lsbyte_first) val |= SPI_LSBYTE_FE; tspi->def_command1_reg = val; tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); spin_unlock_irqrestore(&tspi->lock, flags); pm_runtime_put(tspi->dev); return 0; } static void handle_cpu_based_err_xfer(struct tegra_spi_data *tspi) { if (tspi->tx_status || tspi->rx_status) { dump_regs(err_ratelimited, tspi, "cpu-xfer-err [status:%08x]", tspi->status_reg); tspi->reset_ctrl_status = true; } } static void handle_dma_based_err_xfer(struct tegra_spi_data *tspi) { int err = 0; /* Abort dmas if any error */ if (tspi->cur_direction & DATA_DIR_TX) { if (tspi->tx_status) { dmaengine_terminate_all(tspi->tx_dma_chan); dump_regs(err_ratelimited, tspi, "tx-dma-err [status:%08x]", tspi->status_reg); err += 1; } } if (tspi->cur_direction & DATA_DIR_RX) { if (tspi->rx_status) { dmaengine_terminate_all(tspi->rx_dma_chan); dump_regs(err_ratelimited, tspi, "rx-dma-err [status:%08x]", tspi->status_reg); err += 2; } } if (err) tspi->reset_ctrl_status = true; } static int tegra_spi_wait_on_message_xfer(struct tegra_spi_data *tspi) { long ret; unsigned long timeout; /* delay_usecs is used as timeout for slave, value of 0 is inf wait. * since delay_usecs will be too small for practical use (65ms max) * a multiplier of 1000 is used to make as msecs. */ timeout = tspi->curr_xfer->delay_usecs ? usecs_to_jiffies(tspi->curr_xfer->delay_usecs * DELAY_MUL_FACTOR) : MAX_SCHEDULE_TIMEOUT; /* wait for spi isr */ ret = wait_for_completion_interruptible_timeout( &tspi->xfer_completion, timeout); if (ret <= 0) { /* interrupted-wait/late interrupt is considered spurious */ atomic_set(&tspi->isr_expected, 0); if (ret == -ERESTARTSYS) { flush_signals(current); dev_warn(tspi->dev, "waiting for master was interrupted\n"); } if (ret == 0) dev_info(tspi->dev, "Timeout waiting for master\n"); dump_regs(dbg, tspi, "spi-int-timeout [ret:%ld]", ret); if (tspi->is_curr_dma_xfer && (tspi->cur_direction & DATA_DIR_TX)) dmaengine_terminate_all(tspi->tx_dma_chan); if (tspi->is_curr_dma_xfer && (tspi->cur_direction & DATA_DIR_RX)) dmaengine_terminate_all(tspi->rx_dma_chan); /* resetting controller to unarm spi */ tspi->reset_ctrl_status = true; ret = -EIO; return ret; } /* interrupt came and status in tspi->status_reg */ if (tspi->cur_direction & DATA_DIR_TX) tspi->tx_status = tspi->status_reg & (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF); if (tspi->cur_direction & DATA_DIR_RX) tspi->rx_status = tspi->status_reg & (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF); /* workaround when number of packets is 64K. The transfer status * field is 16bit and zero based count (0...2^16-1) and hence for 64K * the counter resets to 0. Hence for a transfer, if count is * reported as zero, expected is 64K and there is no error, then * we correct it to 64K. Packets greater than 64K is not allowed. */ tspi->words_to_transfer = (tspi->words_to_transfer == 0 && tspi->curr_xfer->len == MAX_PACKETS) ? MAX_PACKETS : tspi->words_to_transfer; /* check if required bytes where transferred */ if (!tspi->variable_length_transfer && tspi->words_to_transfer != tspi->curr_xfer->len/tspi->bytes_per_word) { dump_regs(err_ratelimited, tspi, "transferred[%d] != requested[%d]", tspi->words_to_transfer, tspi->curr_xfer->len/tspi->bytes_per_word); tspi->tx_status = SPI_TX_FIFO_UNF; tspi->rx_status = SPI_RX_FIFO_OVF; } /* cs inactive intr while it is masked, mark as error */ if (tspi->chip_data->mask_cs_inactive_intr && (tspi->status_reg & SPI_CS_INACTIVE)) { dev_dbg(tspi->dev, "cs inactive intr, status_reg = 0x%x\n", tspi->status_reg); tspi->tx_status = SPI_TX_FIFO_UNF; tspi->rx_status = SPI_RX_FIFO_OVF; } if (!tspi->is_curr_dma_xfer) handle_cpu_based_err_xfer(tspi); else handle_dma_based_err_xfer(tspi); /* truncate in case we received more than requested */ tspi->words_to_transfer = min(tspi->words_to_transfer, tspi->curr_xfer->len/tspi->bytes_per_word); return (tspi->tx_status || tspi->rx_status) ? -EIO : 0; } static int tegra_spi_handle_message(struct tegra_spi_data *tspi, struct spi_transfer *xfer) { int ret = 0; long wait_status; unsigned pending_rx_word_count; unsigned long fifo_status; unsigned long word_tfr_status; unsigned long actual_words_xferrd; /* we are here, so no io-error and received the expected num bytes * expect in variable length case where received <= expected */ if (!tspi->is_curr_dma_xfer) { if (tspi->cur_direction & DATA_DIR_RX) tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, xfer); } else { if (tspi->cur_direction & DATA_DIR_TX) { if ((IS_SPI_CS_INACTIVE(tspi->status_reg)) && tspi->variable_length_transfer) { /* Check for TX DMA completion. If the TX DMA * is already completed, No need to terminate * the DMA xfer. */ wait_status = try_wait_for_completion( &tspi->tx_dma_complete); if (!wait_status) { dev_dbg(tspi->dev, "terminating tx dma\n"); dmaengine_terminate_all( tspi->tx_dma_chan); async_tx_ack(tspi->tx_dma_desc); } else dev_dbg(tspi->dev, "received tx dma completion\n"); tspi->reset_ctrl_status = true; } else { wait_status = wait_for_completion_interruptible_timeout( &tspi->tx_dma_complete, SPI_DMA_TIMEOUT); if (wait_status <= 0) { dmaengine_terminate_all( tspi->tx_dma_chan); dump_regs(dbg, tspi, "tx-dma-timeout [wait:%ld]", wait_status); tspi->reset_ctrl_status = true; ret = -EIO; return ret; } } } if (tspi->cur_direction & DATA_DIR_RX) { if (tspi->variable_length_transfer) { dmaengine_terminate_all(tspi->rx_dma_chan); async_tx_ack(tspi->rx_dma_desc); fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS); pending_rx_word_count = SPI_RX_FIFO_FULL_COUNT(fifo_status); word_tfr_status = DIV_ROUND_UP(tspi->words_to_transfer , tspi->words_per_32bit); if (word_tfr_status < pending_rx_word_count) { dmaengine_terminate_all( tspi->rx_dma_chan); dump_regs(err_ratelimited, tspi, "available bytes less than expected"); tspi->reset_ctrl_status = true; ret = -EIO; return ret; } actual_words_xferrd = word_tfr_status - pending_rx_word_count; while (pending_rx_word_count > 0) { tspi->rx_dma_buf[actual_words_xferrd] = tegra_spi_readl(tspi, SPI_RX_FIFO); actual_words_xferrd++; pending_rx_word_count--; } } else { wait_status = wait_for_completion_interruptible_timeout( &tspi->rx_dma_complete, SPI_DMA_TIMEOUT); if (wait_status <= 0) { dmaengine_terminate_all( tspi->rx_dma_chan); dump_regs(dbg, tspi, "rx-dma-timeout [wait:%ld]", wait_status); tspi->reset_ctrl_status = true; ret = -EIO; return ret; } } tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, xfer); } } /* For TX direction, It might be possible that CS deassert happens * before the tranfer completion(variable length case). In this scenario * actual transferred data is less than the requested data. So to update * the curr_pos(and finally xfer->len) read the data transfer count from * SPI_TRANS_STATUS and update the xfer->len accordingly. * * In case of RX direction, tspi->curr_rx_pos contains actual received * data. We can directly use it to update the xfer->len. */ if (tspi->cur_direction & DATA_DIR_TX) { tspi->curr_pos += tspi->words_to_transfer * tspi->bytes_per_word; tspi->rem_len -= tspi->curr_pos; } if (tspi->cur_direction & DATA_DIR_RX) tspi->curr_pos = tspi->curr_rx_pos; /* If external master de-asserts the CS randomly and after that is SW wants to do a fresh transfer, SW needs to apply controller reset to flush the fifos and internal pipeline as controller might have fetched more data from memory by then. */ if (tspi->curr_pos == xfer->len || (IS_SPI_CS_INACTIVE(tspi->status_reg) && tspi->variable_length_transfer)) { xfer->len = tspi->curr_pos; if ((IS_SPI_CS_INACTIVE(tspi->status_reg)) && tspi->variable_length_transfer && tspi->chip_data->new_features && (tspi->cur_direction & DATA_DIR_TX)) { tspi->reset_ctrl_status = true; } } return ret; } static int tegra_spi_transfer_one_message(struct spi_master *master, struct spi_message *msg) { bool is_first_msg = true; int single_xfer; struct tegra_spi_data *tspi = spi_master_get_devdata(master); struct spi_transfer *xfer; struct spi_device *spi = msg->spi; int ret; msg->status = 0; msg->actual_length = 0; ret = pm_runtime_get_sync(tspi->dev); if (ret < 0) { dev_err(tspi->dev, "runtime PM get failed: %d\n", ret); msg->status = ret; spi_finalize_current_message(master); return ret; } /* allow SIGINT for interrupting the sleep */ allow_signal(SIGINT); /* Fix me - Implement proper sequnce for CDC */ tegra_spi_ext_clk_enable(false, tspi); reset_controller(tspi); tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); single_xfer = list_is_singular(&msg->transfers); list_for_each_entry(xfer, &msg->transfers, transfer_list) { reinit_completion(&tspi->xfer_completion); tspi->rem_len = xfer->len; tspi->words_to_transfer = 0; dump_xfer(tspi, xfer); /* program hardware */ ret = tegra_spi_start_transfer_one(spi, xfer, is_first_msg, single_xfer); if (ret < 0) { dev_err(tspi->dev, "spi can not start transfer, err %d\n", ret); goto exit; } is_first_msg = false; /* wait for spi-interrupt and handle transfer error */ ret = tegra_spi_wait_on_message_xfer(tspi); if (ret) { tegra_spi_slave_busy(tspi); goto exit; } /* unpack and copy data to client */ ret = tegra_spi_handle_message(tspi, xfer); if (ret < 0) goto exit; if (tspi->variable_length_transfer) msg->actual_length += xfer->len; else msg->actual_length += (xfer->len - tspi->rem_len); #ifdef PROFILE_SPI_SLAVE { ktime_t time; tspi->end_time = ktime_get(); tspi->profile_size = xfer->len - tspi->rem_len; time = ktime_sub(tspi->end_time, tspi->start_time); dev_dbg(tspi->dev, "Profile: size=%dB time-from-spi-int=%lldns\n", tspi->profile_size, time.tv64); } #endif if (tspi->rem_len) dump_sw_state(tspi, "Error transfer was truncated [rem:%d]", tspi->rem_len); /* checks for any error after s/w handling the transfer */ ret = tegra_spi_readl(tspi, SPI_FIFO_STATUS); if (ret & (SPI_FRAME_END | SPI_CS_INACTIVE | SPI_ERR | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF | SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF)) dump_regs(dbg, tspi, "sw-handle-error"); if (!(ret & SPI_FIFO_EMPTY)) dump_regs(dbg, tspi, "rx/tx fifo are not empty"); } ret = 0; exit: tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); pm_runtime_put(tspi->dev); msg->status = ret; spi_finalize_current_message(master); return ret; } static irqreturn_t tegra_spi_isr(int irq, void *context_data) { struct tegra_spi_data *tspi = context_data; unsigned long status_reg; status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS); dump_regs(dbg, tspi, "@isr"); tegra_spi_clear_status(tspi); /* if isr was not expected */ if (!atomic_xchg(&tspi->isr_expected, 0)) { dev_err_ratelimited(tspi->dev, "spurious interrupt, status_reg = 0x%x\n", tspi->status_reg); return IRQ_NONE; } #ifdef PROFILE_SPI_SLAVE tspi->start_time = ktime_get(); #endif tspi->status_reg = status_reg; tspi->words_to_transfer = SPI_BLK_CNT( tegra_spi_readl(tspi, SPI_TRANS_STATUS)); tegra_spi_slave_busy(tspi); /* Inform client about controller interrupt. */ if (tspi->spi_slave_isr_callback) tspi->spi_slave_isr_callback(tspi->client_data); complete(&tspi->xfer_completion); return IRQ_HANDLED; } static struct tegra_spi_platform_data *tegra_spi_parse_dt( struct platform_device *pdev) { struct tegra_spi_platform_data *pdata; const unsigned int *prop; struct device_node *np = pdev->dev.of_node; enum of_gpio_flags gpio_flags; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { dev_err(&pdev->dev, "Memory alloc for pdata failed\n"); return NULL; } prop = of_get_property(np, "spi-max-frequency", NULL); if (prop) pdata->spi_max_frequency = be32_to_cpup(prop); prop = of_get_property(np, "nvidia,rx-trigger-words", NULL); if (prop) pdata->rx_trig_words = be32_to_cpup(prop); prop = of_get_property(np, "nvidia,least-significant-bit", NULL); if (prop) pdata->ls_bit = (be32_to_cpup(prop)) & 0x1; if (of_find_property(np, "nvidia,clock-always-on", NULL)) pdata->is_clkon_always = true; pdata->gpio_slave_ready = of_get_named_gpio_flags(np, "nvidia,slave-ready-gpio", 0, &gpio_flags); if (gpio_flags & OF_GPIO_ACTIVE_LOW) pdata->slave_ready_active_high = false; else pdata->slave_ready_active_high = true; return pdata; } static struct tegra_spi_chip_data tegra124_spi_chip_data = { .intr_mask_reg = false, .mask_cs_inactive_intr = true, .new_features = false, }; static struct tegra_spi_chip_data tegra210_spi_chip_data = { .intr_mask_reg = true, .mask_cs_inactive_intr = false, .new_features = false, }; static struct tegra_spi_chip_data tegra186_spi_chip_data = { .intr_mask_reg = true, .mask_cs_inactive_intr = false, .new_features = true, }; static struct of_device_id tegra_spi_of_match[] = { { .compatible = "nvidia,tegra124-spi-slave", .data = &tegra124_spi_chip_data, }, { .compatible = "nvidia,tegra210-spi-slave", .data = &tegra210_spi_chip_data, }, { .compatible = "nvidia,tegra186-spi-slave", .data = &tegra186_spi_chip_data, }, {} }; MODULE_DEVICE_TABLE(of, tegra_spi_of_match); static int tegra_spi_probe(struct platform_device *pdev) { struct spi_master *master; struct tegra_spi_data *tspi; struct resource *r; struct tegra_spi_platform_data *pdata = pdev->dev.platform_data; const struct of_device_id *match; const struct tegra_spi_chip_data *chip_data = &tegra124_spi_chip_data; int ret, spi_irq; int bus_num; int deassert_val; if (pdev->dev.of_node) { bus_num = of_alias_get_id(pdev->dev.of_node, "spi"); if (bus_num < 0) { dev_warn(&pdev->dev, "Dynamic bus number will be registerd\n"); bus_num = -1; } } else { bus_num = pdev->id; } if (!pdata && pdev->dev.of_node) pdata = tegra_spi_parse_dt(pdev); if (!pdata) { dev_err(&pdev->dev, "No platform data, exiting\n"); return -ENODEV; } if (!pdata->spi_max_frequency) pdata->spi_max_frequency = 25000000; /* 25MHz */ if (pdata->rx_trig_words != 0 && pdata->rx_trig_words != 4 && pdata->rx_trig_words != 8) pdata->rx_trig_words = 0; master = spi_alloc_master(&pdev->dev, sizeof(*tspi)); if (!master) { dev_err(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } /* the spi->mode bits understood by this driver: */ master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; /* supported bpw 8-32 */ master->bits_per_word_mask = (u32) ~(BIT(0)|BIT(1)| BIT(2)|BIT(3)|BIT(4)|BIT(5)|BIT(6)); master->setup = tegra_spi_setup; master->transfer_one_message = tegra_spi_transfer_one_message; master->num_chipselect = MAX_CHIP_SELECT; master->bus_num = bus_num; dev_set_drvdata(&pdev->dev, master); tspi = spi_master_get_devdata(master); tspi->master = master; tspi->clock_always_on = pdata->is_clkon_always; tspi->rx_trig_words = pdata->rx_trig_words; tspi->dev = &pdev->dev; dev_dbg(&pdev->dev, "rx-trigger:%d clock-always-on:%d\n", tspi->rx_trig_words, tspi->clock_always_on); if (pdev->dev.of_node) { match = of_match_device(tegra_spi_of_match, &pdev->dev); if (match) chip_data = match->data; } tspi->chip_data = chip_data; tspi->gpio_slave_ready = pdata->gpio_slave_ready; if (gpio_is_valid(tspi->gpio_slave_ready)) if (gpio_cansleep(tspi->gpio_slave_ready)) { dev_err(&pdev->dev, "Slave Ready GPIO %d is unusable as it can sleep\n", tspi->gpio_slave_ready); ret = -EINVAL; goto exit_free_master; } tspi->slave_ready_active_high = pdata->slave_ready_active_high; if (gpio_is_valid(tspi->gpio_slave_ready)) { ret = devm_gpio_request(&pdev->dev, tspi->gpio_slave_ready, "gpio-spi-slave-ready"); if (!ret) { if (tspi->slave_ready_active_high) deassert_val = 0; else deassert_val = 1; gpio_direction_output(tspi->gpio_slave_ready, deassert_val); } else { dev_err(&pdev->dev, "Slave Ready GPIO %d is busy\n", tspi->gpio_slave_ready); goto exit_free_master; } } spin_lock_init(&tspi->lock); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(&pdev->dev, "No IO memory resource\n"); ret = -ENODEV; goto exit_free_master; } tspi->phys = r->start; tspi->base = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(tspi->base)) { dev_err(&pdev->dev, "Cannot request memregion/iomap dma address\n"); ret = PTR_ERR(tspi->base); goto exit_free_master; } tspi->rstc = devm_reset_control_get(&pdev->dev, "spi"); if (IS_ERR(tspi->rstc)) { dev_err(&pdev->dev, "Reset control is not found\n"); return PTR_ERR(tspi->rstc); } atomic_set(&tspi->isr_expected, 0); spi_irq = platform_get_irq(pdev, 0); tspi->irq = spi_irq; ret = request_irq(tspi->irq, tegra_spi_isr, 0, dev_name(&pdev->dev), tspi); if (ret < 0) { dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n", tspi->irq); goto exit_free_master; } tspi->clk = devm_clk_get(&pdev->dev, "spi"); if (IS_ERR(tspi->clk)) { dev_err(&pdev->dev, "can not get clock\n"); ret = PTR_ERR(tspi->clk); goto exit_free_irq; } tspi->max_buf_size = SPI_FIFO_DEPTH << 2; tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN; tspi->spi_max_frequency = pdata->spi_max_frequency; ret = tegra_spi_init_dma_param(tspi, true); if (ret < 0) { if (ret == -EPROBE_DEFER) /* GPCDMA is not available at this point. * probe will be deferred */ dev_info(&pdev->dev, "Probe Deferred, ret %d\n", ret); else dev_err(&pdev->dev, "RxDma Init failed, err %d\n", ret); goto exit_free_irq; } ret = tegra_spi_init_dma_param(tspi, false); if (ret < 0) { dev_err(&pdev->dev, "TxDma Init failed, err %d\n", ret); goto exit_rx_dma_free; } tspi->max_buf_size = tspi->dma_buf_size; init_completion(&tspi->tx_dma_complete); init_completion(&tspi->rx_dma_complete); init_completion(&tspi->xfer_completion); if (tspi->clock_always_on) { ret = clk_prepare_enable(tspi->clk); if (ret < 0) { dev_err(tspi->dev, "clk_prepare failed: %d\n", ret); goto exit_deinit_dma; } } tspi->reset_ctrl_status = false; pm_runtime_enable(&pdev->dev); if (!pm_runtime_enabled(&pdev->dev)) { ret = tegra_spi_runtime_resume(&pdev->dev); if (ret) goto exit_pm_disable; } ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); goto exit_pm_disable; } reset_control_reset(tspi->rstc); tegra_spi_ext_clk_enable(false, tspi); tspi->def_command1_reg = SPI_CS_SW_HW | SPI_CS_POL_INACTIVE_0 | SPI_CS_POL_INACTIVE_1 | SPI_CS_POL_INACTIVE_2 | SPI_CS_POL_INACTIVE_3 | SPI_CS_SS_VAL | SPI_CONTROL_MODE_1; tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1); /* set CS inactive b/w packets to mask CS_INACTIVE interrupts */ if (tspi->chip_data->mask_cs_inactive_intr) tegra_spi_writel(tspi, 0, SPI_CS_TIMING2); pm_runtime_put(&pdev->dev); master->dev.of_node = pdev->dev.of_node; ret = spi_register_master(master); if (ret < 0) { dev_err(&pdev->dev, "can not register to master err %d\n", ret); goto exit_pm_disable; } #ifdef TEGRA_SPI_SLAVE_DEBUG ret = device_create_file(&pdev->dev, &dev_attr_force_unpacked_mode); if (ret != 0) goto exit_unregister_master; return ret; exit_unregister_master: spi_unregister_master(master); #endif return ret; exit_pm_disable: pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) tegra_spi_runtime_suspend(&pdev->dev); if (tspi->clock_always_on) clk_disable_unprepare(tspi->clk); exit_deinit_dma: tegra_spi_deinit_dma_param(tspi, false); exit_rx_dma_free: tegra_spi_deinit_dma_param(tspi, true); exit_free_irq: free_irq(spi_irq, tspi); exit_free_master: spi_master_put(master); return ret; } static int tegra_spi_remove(struct platform_device *pdev) { struct spi_master *master = dev_get_drvdata(&pdev->dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); #ifdef TEGRA_SPI_SLAVE_DEBUG device_remove_file(&pdev->dev, &dev_attr_force_unpacked_mode); #endif free_irq(tspi->irq, tspi); spi_unregister_master(master); if (tspi->tx_dma_chan) tegra_spi_deinit_dma_param(tspi, false); if (tspi->rx_dma_chan) tegra_spi_deinit_dma_param(tspi, true); pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) tegra_spi_runtime_suspend(&pdev->dev); if (tspi->clock_always_on) clk_disable_unprepare(tspi->clk); return 0; } #ifdef CONFIG_PM_SLEEP static int tegra_spi_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); int ret; ret = spi_master_suspend(master); if (tspi->clock_always_on) clk_disable_unprepare(tspi->clk); return ret; } static int tegra_spi_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); int ret; if (tspi->clock_always_on) { ret = clk_prepare_enable(tspi->clk); if (ret < 0) { dev_err(tspi->dev, "clk_prepare failed: %d\n", ret); return ret; } } ret = pm_runtime_get_sync(dev); if (ret < 0) { dev_err(dev, "pm runtime failed, e = %d\n", ret); return ret; } tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1); pm_runtime_put(dev); return spi_master_resume(master); } #endif static int tegra_spi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); /* Flush all write which are in PPSB queue by reading back */ tegra_spi_readl(tspi, SPI_COMMAND1); clk_disable_unprepare(tspi->clk); return 0; } static int tegra_spi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct tegra_spi_data *tspi = spi_master_get_devdata(master); int ret; ret = clk_prepare_enable(tspi->clk); if (ret < 0) { dev_err(tspi->dev, "clk_prepare failed: %d\n", ret); return ret; } return 0; } static const struct dev_pm_ops tegra_spi_pm_ops = { SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend, tegra_spi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume) }; static struct platform_driver tegra_spi_driver = { .driver = { .name = "spi-tegra124-slave", .owner = THIS_MODULE, .pm = &tegra_spi_pm_ops, .of_match_table = of_match_ptr(tegra_spi_of_match), }, .probe = tegra_spi_probe, .remove = tegra_spi_remove, }; module_platform_driver(tegra_spi_driver); MODULE_ALIAS("platform:spi-tegra124"); MODULE_DESCRIPTION("NVIDIA Tegra124 SPI Controller Driver"); MODULE_AUTHOR("Laxman Dewangan Yousuf A "); MODULE_LICENSE("GPL v2");