/* * Copyright (c) 2014 - 2019, NVIDIA CORPORATION. All rights reserved. * * Author: * Mikko Perttunen * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../thermal_core.h" #include "soctherm.h" #define SENSOR_CONFIG0 0 #define SENSOR_CONFIG0_STOP BIT(0) #define SENSOR_CONFIG0_CPTR_OVER BIT(2) #define SENSOR_CONFIG0_OVER BIT(3) #define SENSOR_CONFIG0_TCALC_OVER BIT(4) #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8) #define SENSOR_CONFIG0_TALL_SHIFT 8 #define SENSOR_CONFIG1 4 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15) #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24) #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31) #define TS_TEMP_SW_OVERRIDE 0x1d8 /* * SENSOR_CONFIG2 is defined in soctherm.h * because, it will be used by tegra_soctherm_fuse.c */ #define SENSOR_STATUS0 0xc #define SENSOR_STATUS0_VALID_MASK BIT(31) #define SENSOR_STATUS0_CAPTURE_MASK 0xffff #define SENSOR_STATUS1 0x10 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31) #define SENSOR_STATUS1_TEMP_MASK 0xffff #define READBACK_VALUE_MASK 0xff00 #define READBACK_VALUE_SHIFT 8 #define READBACK_ADD_HALF BIT(7) #define READBACK_NEGATE BIT(0) /* * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h * because it will be used by tegraxxx_soctherm.c */ #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8) #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5) #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3) #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2) #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3 #define THERMCTL_LVL0_UP_STATS 0x10 #define THERMCTL_LVL0_DN_STATS 0x14 #define THERMCTL_STATS_CTL 0x94 #define STATS_CTL_CLR_DN 0x8 #define STATS_CTL_EN_DN 0x4 #define STATS_CTL_CLR_UP 0x2 #define STATS_CTL_EN_UP 0x1 #define THERMCTL_INTR_STATUS 0x84 #define THERMCTL_INTR_EN 0x88 #define THERMCTL_INTR_DISABLE 0x8c #define TH_INTR_UP_DN_EN 0x3 #define TH_INTR_MD0_MASK BIT(25) #define TH_INTR_MU0_MASK BIT(24) #define TH_INTR_GD0_MASK BIT(17) #define TH_INTR_GU0_MASK BIT(16) #define TH_INTR_CD0_MASK BIT(9) #define TH_INTR_CU0_MASK BIT(8) #define TH_INTR_PD0_MASK BIT(1) #define TH_INTR_PU0_MASK BIT(0) #define TH_INTR_IGNORE_MASK 0xFCFCFCFC #define THROT_GLOBAL_CFG 0x400 #define THROT_GLOBAL_ENB_MASK BIT(0) #define CPU_PSKIP_STATUS 0x418 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12) #define XPU_PSKIP_STATUS_N_MASK (0xff << 4) #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1) #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0) #define THROT_PRIORITY_LOCK 0x424 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff #define THROT_STATUS 0x428 #define THROT_STATUS_BREACH_MASK BIT(12) #define THROT_STATUS_STATE_MASK (0xff << 4) #define THROT_STATUS_ENABLED_MASK BIT(0) #define THROT_PSKIP_CTRL_LITE_CPU 0x430 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31) #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16) #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8) #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7 #define THROT_VECT_NONE 0x0 /* 3'b000 */ #define THROT_VECT_LOW 0x1 /* 3'b001 */ #define THROT_VECT_MED 0x3 /* 3'b011 */ #define THROT_VECT_HIGH 0x7 /* 3'b111 */ #define THROT_PSKIP_RAMP_LITE_CPU 0x434 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) #define THROT_PSKIP_RAMP_STEP_MASK 0xff #define THROT_PRIORITY_LITE 0x444 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff #define THROT_DELAY_LITE 0x448 #define THROT_DELAY_LITE_DELAY_MASK 0xff #define OC1_CFG 0x310 #define OC1_CFG_LONG_LATENCY_MASK BIT(6) #define OC1_CFG_HW_RESTORE_MASK BIT(5) #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4) #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2) #define OC1_CFG_ALARM_POLARITY_MASK BIT(1) #define OC1_CFG_EN_THROTTLE_MASK BIT(0) #define OC1_CNT_THRESHOLD 0x314 #define OC1_THROTTLE_PERIOD 0x318 #define OC1_ALARM_COUNT 0x31c #define OC1_FILTER 0x320 #define OC1_STATS 0x3a8 #define OC2_STATS 0x3ac #define OC3_STATS 0x3b0 #define OC4_STATS 0x3b4 #define OC5_STATS 0x3b8 #define OC_INTR_STATUS 0x39c #define OC_INTR_ENABLE 0x3a0 #define OC_INTR_DISABLE 0x3a4 #define OC_STATS_CTL 0x3c4 #define OC_STATS_CTL_CLR_ALL 0x2 #define OC_STATS_CTL_EN_ALL 0x1 #define OC_INTR_OC1_MASK BIT(0) #define OC_INTR_OC2_MASK BIT(1) #define OC_INTR_OC3_MASK BIT(2) #define OC_INTR_OC4_MASK BIT(3) #define OC_INTR_OC5_MASK BIT(4) /* car register offsets needed for enabling HW throttling */ #define CAR_SUPER_CCLKG_DIVIDER 0x36c #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30) /* ccroc register offsets needed for enabling HW throttling for Tegra132 */ #define CCROC_SUPER_CCLKG_DIVIDER 0x024 #define CCROC_GLOBAL_CFG 0x148 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff #define CCROC_THROT_PSKIP_CTRL_CPU 0x154 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31) #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff /* get val from register(r) mask bits(m) */ #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1)) /* set val(v) to mask bits(m) of register(r) */ #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \ (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1))) /* get dividend from the depth */ #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1) /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-sochterm.h * level vector * NONE 3'b000 * LOW 3'b001 * MED 3'b011 * HIGH 3'b111 */ #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1) /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */ #define THROT_OFFSET 0x30 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \ (THROT_OFFSET * throt) + (8 * dev)) #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \ (THROT_OFFSET * throt) + (8 * dev)) /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */ #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \ (THROT_OFFSET * throt)) #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \ (THROT_OFFSET * throt)) #define ALARM_OFFSET 0x14 #define ALARM_CFG(throt) (OC1_CFG + \ (ALARM_OFFSET * (throt - THROTTLE_OC1))) #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \ (ALARM_OFFSET * (throt - THROTTLE_OC1))) #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \ (ALARM_OFFSET * (throt - THROTTLE_OC1))) #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \ (ALARM_OFFSET * (throt - THROTTLE_OC1))) #define ALARM_FILTER(throt) (OC1_FILTER + \ (ALARM_OFFSET * (throt - THROTTLE_OC1))) #define ALARM_STATS(throt) (OC1_STATS + \ (4 * (throt - THROTTLE_OC1))) /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/ #define CCROC_THROT_OFFSET 0x0c #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \ (CCROC_THROT_OFFSET * vect)) #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \ (CCROC_THROT_OFFSET * vect)) /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */ #define THERMCTL_LVL_REGS_SIZE 0x20 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE)) #define OC_THROTTLE_MODE_DISABLED 0 #define OC_THROTTLE_MODE_BRIEF 2 static const int min_low_temp = -127000; static const int max_high_temp = 127000; enum soctherm_throttle_id { THROTTLE_LIGHT = 0, THROTTLE_HEAVY, THROTTLE_OC1, THROTTLE_OC2, THROTTLE_OC3, THROTTLE_OC4, THROTTLE_OC5, /* OC5 is reserved for WAR to Bug 1415030 */ THROTTLE_SIZE, }; enum soctherm_oc_irq_id { TEGRA_SOC_OC_IRQ_1, TEGRA_SOC_OC_IRQ_2, TEGRA_SOC_OC_IRQ_3, TEGRA_SOC_OC_IRQ_4, TEGRA_SOC_OC_IRQ_5, TEGRA_SOC_OC_IRQ_MAX, }; enum soctherm_throttle_dev_id { THROTTLE_DEV_CPU = 0, THROTTLE_DEV_GPU, THROTTLE_DEV_SIZE, }; static const char *const throt_names[] = { [THROTTLE_LIGHT] = "light", [THROTTLE_HEAVY] = "heavy", [THROTTLE_OC1] = "oc1", [THROTTLE_OC2] = "oc2", [THROTTLE_OC3] = "oc3", [THROTTLE_OC4] = "oc4", [THROTTLE_OC5] = "oc5", }; struct tegra_soctherm; struct tegra_thermctl_zone { void __iomem *reg; struct device *dev; struct tegra_soctherm *ts; struct thermal_zone_device *tz; const struct tegra_tsensor_group *sg; }; struct soctherm_oc_cfg { u32 active_low; u32 throt_period; u32 alarm_cnt_thresh; u32 alarm_filter; u32 mode; bool intr_en; u64 oc_cnt; }; struct soctherm_throt_cfg { struct soctherm_oc_cfg oc_cfg; const char *name; unsigned int id; u8 cpu_throt_level; u32 cpu_throt_depth; u32 gpu_throt_level; struct thermal_cooling_device *cdev; bool init; u8 priority; }; struct tegra_soctherm { struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE]; struct mutex thermctl_lock; struct reset_control *reset; struct clk *clock_tsensor; struct clk *clock_soctherm; void __iomem *regs; void __iomem *ccroc_regs; u32 *calib; struct thermal_zone_device **thermctl_tzs; struct tegra_soctherm_soc *soc; struct dentry *debugfs_dir; int thermal_irq; int edp_irq; }; struct soctherm_oc_irq_chip_data { struct mutex irq_lock; /* serialize OC IRQs */ struct irq_chip irq_chip; struct irq_domain *domain; int irq_enable; }; struct tsensor_hw_pllx_offset { bool cpu_rail_low_voltage; bool gpu_rail_low_voltage; void __iomem *sensor_valid_reg; }; static struct soctherm_oc_irq_chip_data soc_irq_cdata; static struct tsensor_hw_pllx_offset hw_pllx; static DEFINE_SPINLOCK(soctherm_lock); static void throttlectl_cpu_mn(struct tegra_soctherm *ts, enum soctherm_throttle_id throt); static void throttlectl_gpu_level(struct tegra_soctherm *ts, enum soctherm_throttle_id throt); /** * ccroc_writel() - writes a value to a CCROC register * @ts: pointer to a struct tegra_soctherm * @v: the value to write * @reg: the register offset * * Writes @v to @reg. No return value. */ static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg) { writel(value, (ts->ccroc_regs + reg)); } /** * ccroc_readl() - reads specified register from CCROC IP block * @ts: pointer to a struct tegra_soctherm * @reg: register address to be read * * Return: the value of the register */ static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg) { return readl(ts->ccroc_regs + reg); } /** * clear_oc_counters() - clear the counters of all oc events * @ts: pointer to a struct tegra_soctherm * * No return value. */ static void clear_oc_counters(struct tegra_soctherm *ts) { writel(OC_STATS_CTL_CLR_ALL | OC_STATS_CTL_EN_ALL, (ts->regs + OC_STATS_CTL)); } static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i) { const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i]; void __iomem *base = tegra->regs + sensor->base; unsigned int val; val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT; writel(val, base + SENSOR_CONFIG0); val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT; val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT; val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT; val |= SENSOR_CONFIG1_TEMP_ENABLE; writel(val, base + SENSOR_CONFIG1); writel(tegra->calib[i], base + SENSOR_CONFIG2); } #ifdef CONFIG_DEBUG_FS /** * translate_temp_reverse() - Translates the given temperature from two's * complement to the signed magnitude form used in SOC_THERM registers * @temp: The temperature to be translated * * The register value returned will have the following bit assignment: * 15:7 magnitude of temperature in (1/2 or 1 degree precision) centigrade * 0 the sign bit of the temperature * * This function is the inverse of the temp_translate() function * * Return: The register value. */ static u32 translate_temp_reverse(u32 temp) { int sign, low_bit; u32 lsb = 0, abs = 0, reg = 0; sign = (temp > 0 ? 1 : -1); low_bit = (sign > 0 ? 0 : 1); temp *= sign; lsb = ((temp % 1000) > 0) ? 1 : 0; abs = (temp - 500 * lsb) / 1000; abs &= 0xff; reg = ((abs << 8) | (lsb << 7) | low_bit); return reg; } #endif /* * Translate from soctherm readback format to millicelsius. * The soctherm readback format in bits is as follows: * TTTTTTTT H______N * where T's contain the temperature in Celsius, * H denotes an addition of 0.5 Celsius and N denotes negation * of the final value. */ static int translate_temp(u16 val) { int t; t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000; if (val & READBACK_ADD_HALF) t += 500; if (val & READBACK_NEGATE) t *= -1; return t; } static int tegra_thermctl_get_temp(void *data, int *out_temp) { struct tegra_thermctl_zone *zone = data; u32 val; val = readl(zone->reg); val = REG_GET_MASK(val, zone->sg->sensor_temp_mask); *out_temp = translate_temp(val); return 0; } /** * enforce_temp_range() - check and enforce temperature range [min, max] * @trip_temp: the trip temperature to check * * Checks and enforces the permitted temperature range that SOC_THERM * HW can support This is * done while taking care of precision. * * Return: The precision adjusted capped temperature in millicelsius. */ static int enforce_temp_range(struct device *dev, int trip_temp) { int temp; temp = clamp_val(trip_temp, min_low_temp, max_high_temp); if (temp != trip_temp) dev_info(dev, "soctherm: trip temperature %d forced to %d\n", trip_temp, temp); return temp; } /** * thermtrip_program() - Configures the hardware to shut down the * system if a given sensor group reaches a given temperature * @dev: ptr to the struct device for the SOC_THERM IP block * @sg: pointer to the sensor group to set the thermtrip temperature for * @trip_temp: the temperature in millicelsius to trigger the thermal trip at * * Sets the thermal trip threshold of the given sensor group to be the * @trip_temp. If this threshold is crossed, the hardware will shut * down. * * Note that, although @trip_temp is specified in millicelsius, the * hardware is programmed in degrees Celsius. * * Return: 0 upon success, or %-EINVAL upon failure. */ static int thermtrip_program(struct device *dev, const struct tegra_tsensor_group *sg, int trip_temp) { struct tegra_soctherm *ts = dev_get_drvdata(dev); int temp; u32 r; if (!sg || !sg->thermtrip_threshold_mask) return -EINVAL; temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp); r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1); r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0); writel(r, ts->regs + THERMCTL_THERMTRIP_CTL); return 0; } /** * throttrip_program() - Configures the hardware to throttle the * pulse if a given sensor group reaches a given temperature * @dev: ptr to the struct device for the SOC_THERM IP block * @sg: pointer to the sensor group to set the thermtrip temperature for * @stc: pointer to the throttle need to be triggered * @trip_temp: the temperature in millicelsius to trigger the thermal trip at * * Sets the thermal trip threshold and throttle event of the given sensor * group. If this threshold is crossed, the hardware will trigger the * throttle. * * Note that, although @trip_temp is specified in millicelsius, the * hardware is programmed in degrees Celsius. * * Return: 0 upon success, or %-EINVAL upon failure. */ static int throttrip_program(struct device *dev, const struct tegra_tsensor_group *sg, struct soctherm_throt_cfg *stc, int trip_temp) { struct tegra_soctherm *ts; int temp, cpu_throt, gpu_throt; unsigned int throt; u32 r, reg_off; if (!dev || !sg || !stc || !stc->init) return -EINVAL; ts = dev_get_drvdata(dev); temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */ throt = stc->id; reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1); if (throt == THROTTLE_LIGHT) { cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT; gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT; } else { cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY; gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY; if (throt != THROTTLE_HEAVY) dev_warn(dev, "invalid throt id %d - assuming HEAVY", throt); } r = readl(ts->regs + reg_off); r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp); r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp); r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt); r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt); r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); writel(r, ts->regs + reg_off); return 0; } static struct soctherm_throt_cfg * find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name) { unsigned int i; for (i = 0; ts->throt_cfgs[i].name; i++) if (!strcmp(ts->throt_cfgs[i].name, name)) return &ts->throt_cfgs[i]; return NULL; } static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id) { int i, temp = min_low_temp; struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; if (tt) { for (i = 0; i < ts->soc->num_ttgs; i++) { if (tt[i].id == id) return tt[i].temp; } } return temp; } static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp) { struct tegra_thermctl_zone *zone = data; struct thermal_zone_device *tz = zone->tz; struct tegra_soctherm *ts = zone->ts; const struct tegra_tsensor_group *sg = zone->sg; struct device *dev = zone->dev; enum thermal_trip_type type; int ret; if (!tz) return -EINVAL; ret = tz->ops->get_trip_type(tz, trip, &type); if (ret) return ret; if (type == THERMAL_TRIP_CRITICAL) { /* dont allow if soctherm has thermtrips property in DT */ if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id)) return thermtrip_program(dev, sg, temp); else return 0; } else if (type == THERMAL_TRIP_HOT) { int i; for (i = 0; i < THROTTLE_SIZE; i++) { struct thermal_cooling_device *cdev; struct soctherm_throt_cfg *stc; if (!ts->throt_cfgs[i].init) continue; cdev = ts->throt_cfgs[i].cdev; if (get_thermal_instance(tz, cdev, trip)) stc = find_throttle_cfg_by_name(ts, cdev->type); else continue; return throttrip_program(dev, sg, stc, temp); } } return 0; } static void thermal_irq_enable(struct tegra_thermctl_zone *zn) { u32 r; /* multiple zones could be handling and setting trips at once */ mutex_lock(&zn->ts->thermctl_lock); r = readl(zn->ts->regs + THERMCTL_INTR_EN); r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN); writel(r, zn->ts->regs + THERMCTL_INTR_EN); mutex_unlock(&zn->ts->thermctl_lock); } static void thermal_irq_disable(struct tegra_thermctl_zone *zn) { u32 r; /* multiple zones could be handling and setting trips at once */ mutex_lock(&zn->ts->thermctl_lock); r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE); r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0); writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE); mutex_unlock(&zn->ts->thermctl_lock); } static int tegra_thermctl_set_trips(void *data, int lo, int hi) { struct tegra_thermctl_zone *zone = data; u32 r; thermal_irq_disable(zone); r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset); r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0); writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain; hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain; dev_dbg(zone->dev, "tegra_thermctl_set_trips hi:%d, lo:%d\n", hi, lo); r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi); r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo); r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); thermal_irq_enable(zone); return 0; } static int tegra_thermctl_get_trend(void *data, int trip, enum thermal_trend *trend) { struct tegra_thermctl_zone *zone = data; int ret; int trip_temp, temp, last_temp; if (!zone->tz) return 0; ret = zone->tz->ops->get_trip_temp(zone->tz, trip, &trip_temp); if (ret) return ret; mutex_lock(&zone->tz->lock); temp = zone->tz->temperature; last_temp = zone->tz->last_temperature; mutex_unlock(&zone->tz->lock); if (temp > trip_temp) { if (temp >= last_temp) *trend = THERMAL_TREND_RAISING; else *trend = THERMAL_TREND_STABLE; } else if (temp < trip_temp) { *trend = THERMAL_TREND_DROPPING; } else { *trend = THERMAL_TREND_STABLE; } return 0; } static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = { .get_temp = tegra_thermctl_get_temp, .set_trip_temp = tegra_thermctl_set_trip_temp, .set_trips = tegra_thermctl_set_trips, .get_trend = tegra_thermctl_get_trend, }; static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp) { int ntrips, i, ret; enum thermal_trip_type type; ntrips = of_thermal_get_ntrips(tz); if (ntrips <= 0) return -EINVAL; for (i = 0; i < ntrips; i++) { ret = tz->ops->get_trip_type(tz, i, &type); if (ret) return -EINVAL; if (type == THERMAL_TRIP_HOT) { ret = tz->ops->get_trip_temp(tz, i, temp); if (!ret) *trip = i; return ret; } } return -EINVAL; } /** * tegra_soctherm_set_hwtrips() - set HW trip point from DT data * @dev: struct device * of the SOC_THERM instance * * Configure the SOC_THERM HW trip points, setting "THERMTRIP" * "THROTTLE" trip points , using "critical" or "hot" type trip_temp * from thermal zone. * After they have been configured, THERMTRIP or THROTTLE will take * action when the configured SoC thermal sensor group reaches a * certain temperature. * * Return: 0 upon success, or a negative error code on failure. * "Success" does not mean that trips was enabled; it could also * mean that no node was found in DT. * THERMTRIP has been enabled successfully when a message similar to * this one appears on the serial console: * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC" * THROTTLE has been enabled successfully when a message similar to * this one appears on the serial console: * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC" */ static int tegra_soctherm_set_hwtrips(struct device *dev, const struct tegra_tsensor_group *sg, struct thermal_zone_device *tz) { struct tegra_soctherm *ts = dev_get_drvdata(dev); struct soctherm_throt_cfg *stc; int i, trip, temperature, ret; temperature = tsensor_group_thermtrip_get(ts, sg->id); if (min_low_temp == temperature) if (tz->ops->get_crit_temp(tz, &temperature)) temperature = max_high_temp; dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n", sg->name, temperature); ret = thermtrip_program(dev, sg, temperature); if (ret) { dev_err(dev, "thermtrip: %s: error during enable\n", sg->name); return ret; } ret = get_hot_temp(tz, &trip, &temperature); if (ret) { dev_info(dev, "throttrip: %s: missing hot temperature\n", sg->name); return 0; } for (i = 0; i < THROTTLE_OC1; i++) { struct thermal_cooling_device *cdev; if (!ts->throt_cfgs[i].init) continue; cdev = ts->throt_cfgs[i].cdev; if (get_thermal_instance(tz, cdev, trip)) stc = find_throttle_cfg_by_name(ts, cdev->type); else continue; ret = throttrip_program(dev, sg, stc, temperature); if (ret) { dev_err(dev, "throttrip: %s: error during enable\n", sg->name); return ret; } dev_info(dev, "throttrip: will throttle when %s reaches %d mC\n", sg->name, temperature); break; } if (i == THROTTLE_SIZE) dev_info(dev, "throttrip: %s: missing throttle cdev\n", sg->name); return 0; } static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id) { struct tegra_soctherm *ts = dev_id; u32 r; /* Case for no lock: * Although interrupts are enabled in set_trips, there is still no need * to lock here because the interrupts are disabled before programming * new trip points. Hence there cant be a interrupt on the same sensor. * An interrupt can however occur on a sensor while trips are being * programmed on a different one. This beign a LEVEL interrupt won't * cause a new interrupt but this is taken care of by the re-reading of * the STATUS register in the thread function. */ r = readl(ts->regs + THERMCTL_INTR_STATUS); writel(r, ts->regs + THERMCTL_INTR_DISABLE); return IRQ_WAKE_THREAD; } /** * soctherm_thermal_isr_thread() - Handles a thermal interrupt request * @irq: The interrupt number being requested; not used * @dev_id: Opaque pointer to tegra_soctherm; * * Clears the interrupt status register if there are expected * interrupt bits set. * The interrupt(s) are then handled by updating the corresponding * thermal zones. * * An error is logged if any unexpected interrupt bits are set. * * Disabled interrupts are re-enabled. * * Return: %IRQ_HANDLED. Interrupt was handled and no further processing * is needed. */ static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id) { struct tegra_soctherm *ts = dev_id; struct thermal_zone_device *tz; u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0; st = readl(ts->regs + THERMCTL_INTR_STATUS); /* deliberately clear expected interrupts handled in SW */ cp |= st & TH_INTR_CD0_MASK; cp |= st & TH_INTR_CU0_MASK; gp |= st & TH_INTR_GD0_MASK; gp |= st & TH_INTR_GU0_MASK; pl |= st & TH_INTR_PD0_MASK; pl |= st & TH_INTR_PU0_MASK; me |= st & TH_INTR_MD0_MASK; me |= st & TH_INTR_MU0_MASK; ex |= cp | gp | pl | me; if (ex) { writel(ex, ts->regs + THERMCTL_INTR_STATUS); st &= ~ex; if (cp) { tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU]; thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED); } if (gp) { tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU]; thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED); } if (pl) { tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX]; thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED); } if (me) { tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM]; thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED); } } /* deliberately ignore expected interrupts NOT handled in SW */ ex |= TH_INTR_IGNORE_MASK; st &= ~ex; if (st) { /* Whine about any other unexpected INTR bits still set */ pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st); writel(st, ts->regs + THERMCTL_INTR_STATUS); } return IRQ_HANDLED; } /** * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt * @alarm: The soctherm throttle id * @enable: Flag indicating enable the soctherm over-current * interrupt or disable it * * Enables a specific over-current pins @alarm to raise an interrupt if the flag * is set and the alarm corresponds to OC1, OC2, OC3, or OC4. */ static void soctherm_oc_intr_enable(struct tegra_soctherm *ts, enum soctherm_throttle_id alarm, bool enable) { u32 r; if (!enable) return; r = readl(ts->regs + OC_INTR_ENABLE); switch (alarm) { case THROTTLE_OC1: r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1); break; case THROTTLE_OC2: r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1); break; case THROTTLE_OC3: r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1); break; case THROTTLE_OC4: r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1); break; case THROTTLE_OC5: r = REG_SET_MASK(r, OC_INTR_OC5_MASK, 1); break; default: r = 0; break; } writel(r, ts->regs + OC_INTR_ENABLE); } /** * soctherm_handle_alarm() - Handles soctherm alarms * @alarm: The soctherm throttle id * @tegra_soctherm: soctherm struct * * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing * a warning or informative message. * * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success). */ static int soctherm_handle_alarm(enum soctherm_throttle_id alarm, struct tegra_soctherm *ts) { struct soctherm_throt_cfg *throt_cfgs = ts->throt_cfgs; int rv = -EINVAL, val = 0; switch (alarm) { case THROTTLE_OC1: pr_debug("soctherm: Successfully handled OC1 alarm\n"); /* add OC1 alarm handling code here */ val = readl(ts->regs + OC1_STATS); rv = 0; break; case THROTTLE_OC2: pr_debug("soctherm: Successfully handled OC2 alarm\n"); /* TODO: add OC2 alarm handling code here */ val = readl(ts->regs + OC2_STATS); rv = 0; break; case THROTTLE_OC3: pr_debug("soctherm: Successfully handled OC3 alarm\n"); /* add OC3 alarm handling code here */ val = readl(ts->regs + OC3_STATS); rv = 0; break; case THROTTLE_OC4: pr_debug("soctherm: Successfully handled OC4 alarm\n"); /* TODO: add OC4 alarm handling code here */ val = readl(ts->regs + OC4_STATS); rv = 0; break; case THROTTLE_OC5: pr_debug("soctherm: Successfully handled OC5 alarm\n"); /* TODO: add OC5 alarm handling code here */ val = readl(ts->regs + OC5_STATS); rv = 0; break; default: break; } if ((alarm >= THROTTLE_OC1) && (alarm <= THROTTLE_OC5)) { throt_cfgs[alarm].oc_cfg.oc_cnt += val; } if (rv) pr_err("soctherm: ERROR in handling %s alarm\n", throt_names[alarm]); return rv; } /** * soctherm_edp_isr_thread() - log an over-current interrupt request * @irq: OC irq number. Currently not being used. See description * @arg: a void pointer for callback, currently not being used * * Over-current events are handled in hardware. This function is called to log * and handle any OC events that happened. Additionally, it checks every * over-current interrupt registers for registers are set but * was not expected (i.e. any discrepancy in interrupt status) by the function, * the discrepancy will logged. * * Return: %IRQ_HANDLED */ static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg) { struct tegra_soctherm *ts = arg; u32 st, ex, oc1, oc2, oc3, oc4, oc5; static unsigned long j; st = readl(ts->regs + OC_INTR_STATUS); /* deliberately clear expected interrupts handled in SW */ oc1 = st & OC_INTR_OC1_MASK; oc2 = st & OC_INTR_OC2_MASK; oc3 = st & OC_INTR_OC3_MASK; oc4 = st & OC_INTR_OC4_MASK; oc5 = st & OC_INTR_OC5_MASK; ex = oc1 | oc2 | oc3 | oc4; /* rate limiting irq message to every one second */ if (printk_timed_ratelimit(&j, 1000)) { pr_err("soctherm: OC ALARM 0x%08x\n", ex); ledtrig_throttle_event(); } if (ex) { writel(st, ts->regs + OC_INTR_STATUS); st &= ~ex; if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1, ts)) soctherm_oc_intr_enable(ts, THROTTLE_OC1, true); if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2, ts)) soctherm_oc_intr_enable(ts, THROTTLE_OC2, true); if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3, ts)) soctherm_oc_intr_enable(ts, THROTTLE_OC3, true); if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4, ts)) soctherm_oc_intr_enable(ts, THROTTLE_OC4, true); if (oc5 && !soctherm_handle_alarm(THROTTLE_OC5, ts)) soctherm_oc_intr_enable(ts, THROTTLE_OC5, true); clear_oc_counters(ts); if (oc1 && soc_irq_cdata.irq_enable & BIT(0)) handle_nested_irq( irq_find_mapping(soc_irq_cdata.domain, 0)); if (oc2 && soc_irq_cdata.irq_enable & BIT(1)) handle_nested_irq( irq_find_mapping(soc_irq_cdata.domain, 1)); if (oc3 && soc_irq_cdata.irq_enable & BIT(2)) handle_nested_irq( irq_find_mapping(soc_irq_cdata.domain, 2)); if (oc4 && soc_irq_cdata.irq_enable & BIT(3)) handle_nested_irq( irq_find_mapping(soc_irq_cdata.domain, 3)); } if (st) { pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st); writel(st, ts->regs + OC_INTR_STATUS); } return IRQ_HANDLED; } /** * soctherm_edp_isr() - Disables any active interrupts * @irq: The interrupt request number * @arg: Opaque pointer to an argument * * Writes to the OC_INTR_DISABLE register the over current interrupt status, * masking any asserted interrupts. Doing this prevents the same interrupts * from triggering this isr repeatedly. The thread woken by this isr will * handle asserted interrupts and subsequently unmask/re-enable them. * * The OC_INTR_DISABLE register indicates which OC interrupts * have been disabled. * * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread */ static irqreturn_t soctherm_edp_isr(int irq, void *arg) { struct tegra_soctherm *ts = arg; u32 r; if (!ts) return IRQ_NONE; r = readl(ts->regs + OC_INTR_STATUS); writel(r, ts->regs + OC_INTR_DISABLE); return IRQ_WAKE_THREAD; } /** * soctherm_oc_irq_lock() - locks the over-current interrupt request * @data: Interrupt request data * * Looks up the chip data from @data and locks the mutex associated with * a particular over-current interrupt request. */ static void soctherm_oc_irq_lock(struct irq_data *data) { struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); mutex_lock(&d->irq_lock); } /** * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request * @data: Interrupt request data * * Looks up the interrupt request data @data and unlocks the mutex associated * with a particular over-current interrupt request. */ static void soctherm_oc_irq_sync_unlock(struct irq_data *data) { struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); mutex_unlock(&d->irq_lock); } /** * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue * @data: irq_data structure of the chip * * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM * to respond to over-current interrupts. * */ static void soctherm_oc_irq_enable(struct irq_data *data) { struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); d->irq_enable |= BIT(data->hwirq); } /** * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests * @irq_data: The interrupt request information * * Clears the interrupt request enable bit of the overcurrent * interrupt request chip data. * * Return: Nothing is returned (void) */ static void soctherm_oc_irq_disable(struct irq_data *data) { struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); d->irq_enable &= ~BIT(data->hwirq); } static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type) { return 0; } /** * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper * @h: Interrupt request domain * @virq: Virtual interrupt request number * @hw: Hardware interrupt request number * * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM * interrupt request is called, the irq_domain takes the request's virtual * request number (much like a virtual memory address) and maps it to a * physical hardware request number. * * When a mapping doesn't already exist for a virtual request number, the * irq_domain calls this function to associate the virtual request number with * a hardware request number. * * Return: 0 */ static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq, irq_hw_number_t hw) { struct soctherm_oc_irq_chip_data *data = h->host_data; irq_set_chip_data(virq, data); irq_set_chip(virq, &data->irq_chip); irq_set_nested_thread(virq, 1); return 0; } /** * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts * @d: Interrupt request domain * @intspec: Array of u32s from DTs "interrupt" property * @intsize: Number of values inside the intspec array * @out_hwirq: HW IRQ value associated with this interrupt * @out_type: The IRQ SENSE type for this interrupt. * * This Device Tree IRQ specifier translation function will translate a * specific "interrupt" as defined by 2 DT values where the cell values map * the hwirq number + 1 and linux irq flags. Since the output is the hwirq * number, this function will subtract 1 from the value listed in DT. * * Return: 0 */ static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d, struct device_node *ctrlr, const u32 *intspec, unsigned int intsize, irq_hw_number_t *out_hwirq, unsigned int *out_type) { if (WARN_ON(intsize < 2)) return -EINVAL; /* * The HW value is 1 index less than the DT IRQ values. * i.e. OC4 goes to HW index 3. */ *out_hwirq = intspec[0] - 1; *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK; return 0; } static struct irq_domain_ops soctherm_oc_domain_ops = { .map = soctherm_oc_irq_map, .xlate = soctherm_irq_domain_xlate_twocell, }; /** * soctherm_oc_int_init() - Initial enabling of the over * current interrupts * @np: The devicetree node for soctherm * @num_irqs: The number of new interrupt requests * * Sets the over current interrupt request chip data * * Return: 0 on success or if overcurrent interrupts are not enabled, * -ENOMEM (out of memory), or irq_base if the function failed to * allocate the irqs */ static int soctherm_oc_int_init(struct device_node *np, int num_irqs) { if (!num_irqs) { pr_info("%s(): OC interrupts are not enabled\n", __func__); return 0; } mutex_init(&soc_irq_cdata.irq_lock); soc_irq_cdata.irq_enable = 0; soc_irq_cdata.irq_chip.name = "soc_therm_oc"; soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock; soc_irq_cdata.irq_chip.irq_bus_sync_unlock = soctherm_oc_irq_sync_unlock; soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable; soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable; soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type; soc_irq_cdata.irq_chip.irq_set_wake = NULL; soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs, &soctherm_oc_domain_ops, &soc_irq_cdata); if (!soc_irq_cdata.domain) { pr_err("%s: Failed to create IRQ domain\n", __func__); return -ENOMEM; } pr_debug("%s(): OC interrupts enabled successful\n", __func__); return 0; } #ifdef CONFIG_DEBUG_FS static int regs_show(struct seq_file *s, void *data) { struct platform_device *pdev = s->private; struct tegra_soctherm *ts = platform_get_drvdata(pdev); const struct tegra_tsensor *tsensors = ts->soc->tsensors; const struct tegra_tsensor_group **ttgs = ts->soc->ttgs; u32 r, state; int i, level; seq_puts(s, "-----TSENSE (convert HW)-----\n"); for (i = 0; i < ts->soc->num_tsensors; i++) { r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1); state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE); seq_printf(s, "%s: ", tsensors[i].name); seq_printf(s, "En(%d) ", state); if (!state) { seq_puts(s, "\n"); continue; } state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK); seq_printf(s, "tiddq(%d) ", state); state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK); seq_printf(s, "ten_count(%d) ", state); state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK); seq_printf(s, "tsample(%d) ", state + 1); r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1); state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK); seq_printf(s, "Temp(%d/", state); state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK); seq_printf(s, "%d) ", translate_temp(state)); r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0); state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK); seq_printf(s, "Capture(%d/", state); state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK); seq_printf(s, "%d) ", state); r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0); state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP); seq_printf(s, "Stop(%d) ", state); state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK); seq_printf(s, "Tall(%d) ", state); state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER); seq_printf(s, "Over(%d/", state); state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER); seq_printf(s, "%d/", state); state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER); seq_printf(s, "%d) ", state); r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2); state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK); seq_printf(s, "Therm_A/B(%d/", state); state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK); seq_printf(s, "%d)\n", (s16)state); } r = readl(ts->regs + SENSOR_PDIV); seq_printf(s, "PDIV: 0x%x\n", r); r = readl(ts->regs + SENSOR_HOTSPOT_OFF); seq_printf(s, "HOTSPOT: 0x%x\n", r); r = readl(ts->regs + SENSOR_HW_PLLX_OFFSET_MAX); seq_printf(s, "HW_PLLX_OFFSET_MAX: 0x%x\n", r); r = readl(ts->regs + SENSOR_HW_PLLX_OFFSET_MIN); seq_printf(s, "HW_PLLX_OFFSET_MIN: 0x%x\n", r); seq_puts(s, "\n"); seq_puts(s, "-----SOC_THERM-----\n"); r = readl(ts->regs + SENSOR_TEMP1); state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK); seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state)); state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK); seq_printf(s, " GPU(%d) ", translate_temp(state)); r = readl(ts->regs + SENSOR_TEMP2); state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK); seq_printf(s, " PLLX(%d) ", translate_temp(state)); state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK); seq_printf(s, " MEM(%d)\n", translate_temp(state)); for (i = 0; i < ts->soc->num_ttgs; i++) { seq_printf(s, "%s:\n", ttgs[i]->name); for (level = 0; level < 4; level++) { s32 v; u32 mask; u16 off = ttgs[i]->thermctl_lvl0_offset; r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); mask = ttgs[i]->thermctl_lvl0_up_thresh_mask; state = REG_GET_MASK(r, mask); v = sign_extend32(state, ts->soc->bptt - 1); v *= ts->soc->thresh_grain; seq_printf(s, " %d: Up/Dn(%d /", level, v); mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask; state = REG_GET_MASK(r, mask); v = sign_extend32(state, ts->soc->bptt - 1); v *= ts->soc->thresh_grain; seq_printf(s, "%d ) ", v); mask = THERMCTL_LVL0_CPU0_EN_MASK; state = REG_GET_MASK(r, mask); seq_printf(s, "En(%d) ", state); mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK; state = REG_GET_MASK(r, mask); seq_puts(s, "CPU Throt"); if (!state) seq_printf(s, "(%s) ", "none"); else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT) seq_printf(s, "(%s) ", "L"); else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY) seq_printf(s, "(%s) ", "H"); else seq_printf(s, "(%s) ", "H+L"); mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK; state = REG_GET_MASK(r, mask); seq_puts(s, "GPU Throt"); if (!state) seq_printf(s, "(%s) ", "none"); else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT) seq_printf(s, "(%s) ", "L"); else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY) seq_printf(s, "(%s) ", "H"); else seq_printf(s, "(%s) ", "H+L"); mask = THERMCTL_LVL0_CPU0_STATUS_MASK; state = REG_GET_MASK(r, mask); seq_printf(s, "Status(%s)\n", state == 0 ? "LO" : state == 1 ? "In" : state == 2 ? "Res" : "HI"); } } r = readl(ts->regs + THERMCTL_STATS_CTL); seq_printf(s, "STATS: Up(%s) Dn(%s)\n", r & STATS_CTL_EN_UP ? "En" : "--", r & STATS_CTL_EN_DN ? "En" : "--"); for (level = 0; level < 4; level++) { u16 off; off = THERMCTL_LVL0_UP_STATS; r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); seq_printf(s, " Level_%d Up(%d) ", level, r); off = THERMCTL_LVL0_DN_STATS; r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); seq_printf(s, "Dn(%d)\n", r); } r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask); seq_printf(s, "Thermtrip Any En(%d)\n", state); for (i = 0; i < ts->soc->num_ttgs; i++) { state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask); seq_printf(s, " %s En(%d) ", ttgs[i]->name, state); state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask); state *= ts->soc->thresh_grain; seq_printf(s, "Thresh(%d)\n", state); } r = readl(ts->regs + THROT_GLOBAL_CFG); seq_puts(s, "\n"); seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r); seq_puts(s, "---------------------------------------------------\n"); r = readl(ts->regs + THROT_STATUS); state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK); seq_printf(s, "THROT STATUS: breach(%d) ", state); state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK); seq_printf(s, "state(%d) ", state); state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK); seq_printf(s, "enabled(%d)\n", state); r = readl(ts->regs + CPU_PSKIP_STATUS); if (ts->soc->use_ccroc) { state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state); } else { state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK); seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state); state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK); seq_printf(s, "N(%d) ", state); state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); seq_printf(s, "enabled(%d)\n", state); } return 0; } static int regs_open(struct inode *inode, struct file *file) { return single_open(file, regs_show, inode->i_private); } static const struct file_operations regs_fops = { .open = regs_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int temp_get(void *data, u64 *val) { int temp; tegra_thermctl_get_temp(data, &temp); *val = temp; return 0; } static int temp_set(void *data, u64 val) { struct tegra_thermctl_zone *t = data; u32 r; r = readl(t->reg); val = translate_temp_reverse((u32)val); r = REG_SET_MASK(r, t->sg->sensor_temp_mask, val); writel(r, t->reg); return 0; } DEFINE_SIMPLE_ATTRIBUTE(temp_fops, temp_get, temp_set, "%lld\n"); static void soctherm_hw_pllx_offsets_init(struct tegra_soctherm *tegra); static int max_off_get(void *data, u64 *val) { struct tegra_thermctl_zone *z = data; u32 r; r = readl(z->ts->regs + SENSOR_HW_PLLX_OFFSET_MAX); *val = REG_GET_MASK(r, z->sg->hw_pllx_offset_mask); return 0; } static int max_off_set(void *data, u64 val) { struct tegra_thermctl_zone *z = data; struct tsensor_group_offsets *toffs = z->ts->soc->toffs; u32 id = z->sg->id; int i; for (i = 0; i < z->ts->soc->num_ttgs; i++) if (toffs[i].ttg->id == id) break; toffs[i].max = val; soctherm_hw_pllx_offsets_init(z->ts); return 0; } DEFINE_SIMPLE_ATTRIBUTE(max_fops, max_off_get, max_off_set, "%lld\n"); static int min_off_get(void *data, u64 *val) { struct tegra_thermctl_zone *z = data; u32 r; r = readl(z->ts->regs + SENSOR_HW_PLLX_OFFSET_MIN); *val = REG_GET_MASK(r, z->sg->hw_pllx_offset_mask); return 0; } static int min_off_set(void *data, u64 val) { struct tegra_thermctl_zone *z = data; struct tsensor_group_offsets *toffs = z->ts->soc->toffs; u32 id = z->sg->id; int i; for (i = 0; i < z->ts->soc->num_ttgs; i++) if (toffs[i].ttg->id == id) break; toffs[i].min = val; soctherm_hw_pllx_offsets_init(z->ts); return 0; } DEFINE_SIMPLE_ATTRIBUTE(min_fops, min_off_get, min_off_set, "%lld\n"); static int hw_pllx_offsetting_set(void *data, u64 val) { bool low_v = (val) ? true : false; tegra_soctherm_cpu_tsens_invalidate(low_v); tegra_soctherm_gpu_tsens_invalidate(low_v); return 0; } DEFINE_SIMPLE_ATTRIBUTE(hw_pllx_off_fops, NULL, hw_pllx_offsetting_set, "%lld\n"); static int thermtrip_get(void *data, u64 *val) { struct tegra_thermctl_zone *z = data; u32 r; r = readl(z->ts->regs + THERMCTL_THERMTRIP_CTL); *val = REG_GET_MASK(r, z->sg->thermtrip_threshold_mask); *val *= z->ts->soc->thresh_grain; return 0; } static int thermtrip_set(void *data, u64 val) { struct tegra_thermctl_zone *z = data; return thermtrip_program(z->dev, z->sg, (int)val); } DEFINE_SIMPLE_ATTRIBUTE(tt_fops, thermtrip_get, thermtrip_set, "%lld\n"); static int thermtrip_en_get(void *data, u64 *val) { struct tegra_thermctl_zone *z = data; u32 r; r = readl(z->ts->regs + THERMCTL_THERMTRIP_CTL); *val = REG_GET_MASK(r, z->sg->thermtrip_enable_mask); return 0; } static int thermtrip_en_set(void *data, u64 val) { struct tegra_thermctl_zone *z = data; u32 r; r = readl(z->ts->regs + THERMCTL_THERMTRIP_CTL); r = REG_SET_MASK(r, z->sg->thermtrip_enable_mask, !!val); writel(r, z->ts->regs + THERMCTL_THERMTRIP_CTL); return 0; } DEFINE_SIMPLE_ATTRIBUTE(tt_en_fops, thermtrip_en_get, thermtrip_en_set, "%lld\n"); static int tempoverride_get(void *data, u64 *val) { struct tegra_soctherm *tegra = data; *val = readl(tegra->regs + TS_TEMP_SW_OVERRIDE); return 0; } static int tempoverride_set(void *data, u64 val) { struct tegra_soctherm *tegra = data; val = (val) ? 1 : 0; writel(val, tegra->regs + TS_TEMP_SW_OVERRIDE); return 0; } DEFINE_SIMPLE_ATTRIBUTE(tempoverride_fops, tempoverride_get, tempoverride_set, "%lld\n"); static int mode_get(void *data, u64 *val) { struct soctherm_throt_cfg *stc = data; *val = stc->oc_cfg.mode; return 0; } static int mode_set(void *data, u64 val) { u32 r; struct soctherm_throt_cfg *stc = data; struct soctherm_throt_cfg *start = stc - stc->id; struct tegra_soctherm *ts; ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]); stc->oc_cfg.mode = val; r = readl(ts->regs + ALARM_CFG(stc->id)); r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, stc->oc_cfg.mode); writel(r, ts->regs + ALARM_CFG(stc->id)); return 0; } DEFINE_SIMPLE_ATTRIBUTE(mode_fops, mode_get, mode_set, "%lld\n"); static int thresh_get(void *data, u64 *val) { struct soctherm_throt_cfg *stc = data; *val = stc->oc_cfg.alarm_cnt_thresh; return 0; } static int thresh_set(void *data, u64 val) { struct soctherm_throt_cfg *stc = data; struct soctherm_throt_cfg *start = stc - stc->id; struct tegra_soctherm *ts; ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]); stc->oc_cfg.alarm_cnt_thresh = val; writel(stc->oc_cfg.alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(stc->id)); return 0; } DEFINE_SIMPLE_ATTRIBUTE(thresh_fops, thresh_get, thresh_set, "%lld\n"); static int filter_get(void *data, u64 *val) { struct soctherm_throt_cfg *stc = data; *val = stc->oc_cfg.alarm_filter; return 0; } static int filter_set(void *data, u64 val) { struct soctherm_throt_cfg *stc = data; struct soctherm_throt_cfg *start = stc - stc->id; struct tegra_soctherm *ts; ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]); stc->oc_cfg.alarm_filter = val; writel(stc->oc_cfg.alarm_filter, ts->regs + ALARM_FILTER(stc->id)); return 0; } DEFINE_SIMPLE_ATTRIBUTE(filter_fops, filter_get, filter_set, "%lld\n"); static int period_get(void *data, u64 *val) { struct soctherm_throt_cfg *stc = data; *val = stc->oc_cfg.throt_period; return 0; } static int period_set(void *data, u64 val) { struct soctherm_throt_cfg *stc = data; struct soctherm_throt_cfg *start = stc - stc->id; struct tegra_soctherm *ts; ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]); stc->oc_cfg.throt_period = val; writel(stc->oc_cfg.throt_period, ts->regs + ALARM_THROTTLE_PERIOD(stc->id)); return 0; } DEFINE_SIMPLE_ATTRIBUTE(period_fops, period_get, period_set, "%lld\n"); static int polarity_get(void *data, u64 *val) { struct soctherm_throt_cfg *stc = data; *val = stc->oc_cfg.active_low; return 0; } static int polarity_set(void *data, u64 val) { u32 r; struct soctherm_throt_cfg *stc = data; struct soctherm_throt_cfg *start = stc - stc->id; struct tegra_soctherm *ts; ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]); stc->oc_cfg.active_low = val; r = readl(ts->regs + ALARM_CFG(stc->id)); r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, stc->oc_cfg.active_low); writel(r, ts->regs + ALARM_CFG(stc->id)); return 0; } DEFINE_SIMPLE_ATTRIBUTE(polarity_fops, polarity_get, polarity_set, "%lld\n"); static int level_set(void *data, u64 val) { struct soctherm_throt_cfg *stc = data; struct soctherm_throt_cfg *start = stc - stc->id; struct tegra_soctherm *ts; ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]); if (val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) stc->gpu_throt_level = val; throttlectl_gpu_level(ts, stc->id); return 0; } static int level_get(void *data, u64 *val) { struct soctherm_throt_cfg *stc = data; *val = stc->gpu_throt_level; return 0; } DEFINE_SIMPLE_ATTRIBUTE(lvl_fops, level_get, level_set, "%lld\n"); static int depth_set(void *data, u64 val) { struct soctherm_throt_cfg *stc = data; struct soctherm_throt_cfg *start = stc - stc->id; struct tegra_soctherm *ts; ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]); if (val <= 100) stc->cpu_throt_depth = val; throttlectl_cpu_mn(ts, stc->id); return 0; } static int depth_get(void *data, u64 *val) { struct soctherm_throt_cfg *stc = data; *val = stc->cpu_throt_depth; return 0; } DEFINE_SIMPLE_ATTRIBUTE(depth_fops, depth_get, depth_set, "%lld\n"); static struct dentry *soctherm_throttle_debug_init(struct dentry *root, struct platform_device *pdev) { struct tegra_soctherm *ts = platform_get_drvdata(pdev); struct soctherm_throt_cfg *stc; struct dentry *dir, *sdir, *file; int i; dir = debugfs_create_dir("throttle-cfg", root); if (!dir) { pr_err("unable to create throttle-cfg\n"); return NULL; } for (i = 0; i < THROTTLE_SIZE; i++) { stc = &ts->throt_cfgs[i]; sdir = debugfs_create_dir(stc->name, dir); if (!sdir) return NULL; file = debugfs_create_file("cpu", 0644, sdir, stc, &depth_fops); file = file ? debugfs_create_file("gpu", 0644, sdir, stc, &lvl_fops) : file; if (stc->id < THROTTLE_OC1) continue; file = file ? debugfs_create_file("polarity", 0644, sdir, stc, &polarity_fops) : file; file = file ? debugfs_create_file("mode", 0644, sdir, stc, &mode_fops) : file; file = file ? debugfs_create_file("threshold", 0644, sdir, stc, &thresh_fops) : file; file = file ? debugfs_create_file("filter", 0644, sdir, stc, &filter_fops) : file; file = file ? debugfs_create_file("period", 0644, sdir, stc, &period_fops) : file; if (!file) return NULL; } return file; } static void soctherm_debug_init(struct platform_device *pdev) { struct tegra_soctherm *tegra = platform_get_drvdata(pdev); struct dentry *root, *file; root = debugfs_create_dir("soctherm", NULL); if (!root) { dev_err(&pdev->dev, "failed to create debugfs directory\n"); return; } tegra->debugfs_dir = root; file = debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops); file = (file) ? debugfs_create_file("tempoverride", 0644, root, tegra, &tempoverride_fops) : file; file = (file) ? debugfs_create_file("pllx_offset_en", 0644, root, NULL, &hw_pllx_off_fops) : file; file = (file) ? soctherm_throttle_debug_init(root, pdev) : file; if (!file) { dev_err(&pdev->dev, "failed to create debugfs file\n"); debugfs_remove_recursive(tegra->debugfs_dir); tegra->debugfs_dir = NULL; } } static void soctherm_debug_temp_add(struct tegra_thermctl_zone *z) { struct dentry *dir; dir = debugfs_create_dir(z->sg->name, z->ts->debugfs_dir); if (!dir) { dev_err(z->dev, "%s error id:%d\n", __func__, z->sg->id); return; } debugfs_create_file("temp", 0644, dir, z, &temp_fops); if (tsensor_group_thermtrip_get(z->ts, z->sg->id) > 0) { debugfs_create_file("thermtrip", 0644, dir, z, &tt_fops); debugfs_create_file("thermtrip_en", 0644, dir, z, &tt_en_fops); } if (z->sg->id != TEGRA124_SOCTHERM_SENSOR_PLLX) { debugfs_create_file("pllx_offset_max", 0644, dir, z, &max_fops); debugfs_create_file("pllx_offset_min", 0644, dir, z, &min_fops); } return; } #else static inline void soctherm_debug_init(struct platform_device *pdev) {} static inline void soctherm_debug_temp_add(struct tegra_thermctl_zone *z) {} #endif static int soctherm_clk_enable(struct platform_device *pdev, bool enable) { struct tegra_soctherm *tegra = platform_get_drvdata(pdev); int err; if (!tegra->clock_soctherm || !tegra->clock_tsensor) return -EINVAL; reset_control_assert(tegra->reset); if (enable) { err = clk_prepare_enable(tegra->clock_soctherm); if (err) { reset_control_deassert(tegra->reset); return err; } err = clk_prepare_enable(tegra->clock_tsensor); if (err) { clk_disable_unprepare(tegra->clock_soctherm); reset_control_deassert(tegra->reset); return err; } } else { clk_disable_unprepare(tegra->clock_tsensor); clk_disable_unprepare(tegra->clock_soctherm); } reset_control_deassert(tegra->reset); return 0; } static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev, unsigned long *max_state) { *max_state = 1; return 0; } static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev, unsigned long *cur_state) { struct tegra_soctherm *ts = cdev->devdata; u32 r; r = readl(ts->regs + THROT_STATUS); if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK)) *cur_state = 1; else *cur_state = 0; return 0; } static int throt_set_cdev_state(struct thermal_cooling_device *cdev, unsigned long cur_state) { return 0; } static struct thermal_cooling_device_ops throt_cooling_ops = { .get_max_state = throt_get_cdev_max_state, .get_cur_state = throt_get_cdev_cur_state, .set_cur_state = throt_set_cdev_state, }; static int soctherm_thermtrips_parse(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tegra_soctherm *ts = dev_get_drvdata(dev); struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; const int max_num_prop = ts->soc->num_ttgs * 2; int i = 0, j = 0, r, n; u32 off[max_num_prop]; if (!tt) return 0; n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips"); if (n <= 0) { dev_err(dev, "invalid dt prop: thermtrips:%d\n", n); return n; } n = min(max_num_prop, n); r = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips", off, n); if (r) { dev_err(dev, "invalid num ele: thermtrips:%d\n", r); return r; } for (j = 0; j < n; j = j + 2) { if (off[j] >= TEGRA124_SOCTHERM_SENSOR_NUM) continue; tt[i].id = off[j]; tt[i].temp = off[j+1]; i++; } return 0; } static int soctherm_hw_pllx_offsets_parse(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tegra_soctherm *ts = dev_get_drvdata(dev); struct tsensor_group_offsets *toffs = ts->soc->toffs; int i = 0, j = 0, r, n; const u32 ele_per_prop = 3; /* offset from PLLX, no need to configure PLLX */ const u32 max_num_props = (ts->soc->num_ttgs - 1) * ele_per_prop; u32 off[max_num_props]; if (!toffs) return 0; hw_pllx.sensor_valid_reg = ts->regs + SENSOR_VALID; n = of_property_count_u32_elems(dev->of_node, "hw-pllx-offsets"); if (n <= 0) { dev_err(dev, "invalid dt prop: hw-pllx-offsets:%d\n", n); return n; } if (n > max_num_props || n % ele_per_prop != 0) { dev_err(dev, "invalid num of hw_pllx_offsets: %d\n", n); return -EINVAL; } r = of_property_read_u32_array(dev->of_node, "hw-pllx-offsets", off, n); if (r) { dev_info(dev, "hw_pllx_offset not enabled:%d, num:%d\n", r, n); return r; } for (j = 0; j < n; j = j + ele_per_prop) { if (off[j] >= TEGRA124_SOCTHERM_SENSOR_NUM || off[j] == TEGRA124_SOCTHERM_SENSOR_PLLX) continue; for (i = 0; i < ts->soc->num_ttgs; i++) if (toffs[i].ttg->id == off[j]) break; if (i == ts->soc->num_ttgs) continue; toffs[i].hw_offsetting_en = 1; toffs[i].min = off[j+1] / 500; toffs[i].max = off[j+2] / 500; dev_info(dev, "pllx_offset tz:%d max:%d, min:%d\n", toffs[i].ttg->id, toffs[i].max, toffs[i].min); } return 0; } static void soctherm_oc_cfg_parse(struct device *dev, struct device_node *np_oc, struct soctherm_throt_cfg *stc) { u32 val; if (!of_property_read_u32(np_oc, "nvidia,polarity-active-low", &val)) stc->oc_cfg.active_low = val; if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) { stc->oc_cfg.intr_en = 1; stc->oc_cfg.alarm_cnt_thresh = val; } if (!of_property_read_u32(np_oc, "nvidia,throttle-period", &val)) stc->oc_cfg.throt_period = val; if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val)) stc->oc_cfg.alarm_filter = val; /* BRIEF throttling by default, do not support STICKY */ stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF; stc->init = true; } static int soctherm_throt_cfg_parse(struct device *dev, struct device_node *np, struct soctherm_throt_cfg *stc) { struct tegra_soctherm *ts = dev_get_drvdata(dev); int r, r1; u32 val; r = of_property_read_u32(np, "nvidia,priority", &val); if (r) { dev_err(dev, "throttle-cfg: %s: inv priority\n", stc->name); return -EINVAL; } stc->priority = val; r = of_property_read_u32(np, ts->soc->use_ccroc ? "nvidia,cpu-throt-level" : "nvidia,cpu-throt-percent", &val); if (!r && ts->soc->use_ccroc) stc->cpu_throt_level = val; else if (!r && val <= 100) stc->cpu_throt_depth = val; r1 = of_property_read_u32(np, "nvidia,gpu-throt-level", &val); if (!r1 && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) stc->gpu_throt_level = val; if (r && r1) { dev_err(dev, "throttle-cfg: %s: no throt prop\n", stc->name); return -EINVAL; } return 0; } /** * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations * and register them as cooling devices. */ static void soctherm_init_hw_throt_cdev(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tegra_soctherm *ts = dev_get_drvdata(dev); struct device_node *np, *c; const char *name; int i, err; for (i = 0; i < THROTTLE_SIZE; i++) { ts->throt_cfgs[i].name = throt_names[i]; ts->throt_cfgs[i].id = i; ts->throt_cfgs[i].init = false; } np = of_get_child_by_name(dev->of_node, "throttle-cfgs"); if (!np) { dev_info(dev, "throttle-cfg: no throttle-cfgs\n"); return; } for_each_child_of_node(np, c) { struct soctherm_throt_cfg *stc; struct thermal_cooling_device *tcd; name = c->name; stc = find_throttle_cfg_by_name(ts, name); if (!stc) { dev_err(dev, "throttle-cfg: could not find %s\n", name); continue; } if (stc->init) { dev_err(dev, "throttle-cfg: %s: redefined!\n", name); break; } err = soctherm_throt_cfg_parse(dev, c, stc); if (err) continue; if (stc->id >= THROTTLE_OC1) { soctherm_oc_cfg_parse(dev, c, stc); } else { tcd = thermal_of_cooling_device_register(c, (char *)name, ts, &throt_cooling_ops); if (IS_ERR_OR_NULL(tcd)) { dev_err(dev, "%s: cdev register failed\n", name); } else { stc->cdev = tcd; stc->init = true; } } } of_node_put(np); } /** * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config * @level: describing the level LOW/MED/HIGH of throttling * * It's necessary to set up the CPU-local CCROC NV_THERM instance with * the M/N values desired for each level. This function does this. * * This function pre-programs the CCROC NV_THERM levels in terms of * pre-configured "Low", "Medium" or "Heavy" throttle levels which are * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY. */ static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level) { u8 depth, dividend; u32 r; switch (level) { case TEGRA_SOCTHERM_THROT_LEVEL_LOW: depth = 50; break; case TEGRA_SOCTHERM_THROT_LEVEL_MED: depth = 75; break; case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: depth = 80; break; case TEGRA_SOCTHERM_THROT_LEVEL_NONE: return; default: return; } dividend = THROT_DEPTH_DIVIDEND(depth); /* setup PSKIP in ccroc nv_therm registers */ r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff); r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf); ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1); r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); } /** * throttlectl_cpu_level_select() - program CPU pulse skipper config * @throt: the LIGHT/HEAVY of throttle event id * * Pulse skippers are used to throttle clock frequencies. This * function programs the pulse skippers based on @throt and platform * data. This function is used on SoCs which have CPU-local pulse * skipper control, such as T13x. It programs soctherm's interface to * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling * vectors. PSKIP_BYPASS mode is set as required per HW spec. */ static void throttlectl_cpu_level_select(struct tegra_soctherm *ts, enum soctherm_throttle_id throt) { u32 r, throt_vect; /* Denver:CCROC NV_THERM interface N:3 Mapping */ switch (ts->throt_cfgs[throt].cpu_throt_level) { case TEGRA_SOCTHERM_THROT_LEVEL_LOW: throt_vect = THROT_VECT_LOW; break; case TEGRA_SOCTHERM_THROT_LEVEL_MED: throt_vect = THROT_VECT_MED; break; case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: throt_vect = THROT_VECT_HIGH; break; default: throt_vect = THROT_VECT_NONE; break; } r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect); r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect); writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); /* bypass sequencer in soc_therm as it is programmed in ccroc */ r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1); writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); } /** * throttlectl_gpu_level() - selects throttling level for GPU * @throt: the LIGHT/HEAVY of throttle event id * * This function programs soctherm's interface to GK20a NV_THERM to select * pre-configured "Low", "Medium" or "Heavy" throttle levels. * * Return: boolean true if HW was programmed */ static void throttlectl_gpu_level(struct tegra_soctherm *ts, enum soctherm_throttle_id throt) { u32 r, depth, throt_vect; depth = ts->throt_cfgs[throt].gpu_throt_level; throt_vect = THROT_LEVEL_TO_DEPTH(depth); r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect); writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); } /** * throttlectl_cpu_mn() - program CPU pulse skipper configuration * @throt: the LIGHT/HEAVY of throttle event id * * Pulse skippers are used to throttle clock frequencies. This * function programs the pulse skippers based on @throt and platform * data. This function is used for CPUs that have "remote" pulse * skipper control, e.g., the CPU pulse skipper is controlled by the * SOC_THERM IP block. (SOC_THERM is located outside the CPU * complex.) */ static void throttlectl_cpu_mn(struct tegra_soctherm *ts, enum soctherm_throttle_id throt) { u32 r, depth; u8 dividend; depth = ts->throt_cfgs[throt].cpu_throt_depth; dividend = THROT_DEPTH_DIVIDEND(depth); r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff); r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf); writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); } static int soctherm_oc_cfg_program(struct tegra_soctherm *ts, enum soctherm_throttle_id throt) { u32 r; struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg; if (oc->mode == OC_THROTTLE_MODE_DISABLED) return -EINVAL; r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1); r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode); r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low); r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1); writel(r, ts->regs + ALARM_CFG(throt)); writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt)); writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt)); writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt)); soctherm_oc_intr_enable(ts, throt, oc->intr_en); return 0; } /** * soctherm_throttle_program() - programs pulse skippers' configuration * @throt: the LIGHT/HEAVY of the throttle event id. * * Pulse skippers are used to throttle clock frequencies. * This function programs the pulse skippers. */ static void soctherm_throttle_program(struct tegra_soctherm *ts, enum soctherm_throttle_id throt) { u32 r; int err = 0; struct soctherm_throt_cfg stc = ts->throt_cfgs[throt]; if (!stc.init) return; if (throt >= THROTTLE_OC1) err = soctherm_oc_cfg_program(ts, throt); if (err) return; /* Setup PSKIP parameters */ if (ts->soc->use_ccroc) throttlectl_cpu_level_select(ts, throt); else throttlectl_cpu_mn(ts, throt); throttlectl_gpu_level(ts, throt); r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority); writel(r, ts->regs + THROT_PRIORITY_CTRL(throt)); r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0); writel(r, ts->regs + THROT_DELAY_CTRL(throt)); r = readl(ts->regs + THROT_PRIORITY_LOCK); r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK); if (r >= stc.priority) return; r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK, stc.priority); writel(r, ts->regs + THROT_PRIORITY_LOCK); } static void tegra_soctherm_throttle(struct device *dev) { struct tegra_soctherm *ts = dev_get_drvdata(dev); u32 v; int i; /* configure LOW, MED and HIGH levels for CCROC NV_THERM */ if (ts->soc->use_ccroc) { throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW); throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED); throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH); } /* Thermal HW throttle programming */ for (i = 0; i < THROTTLE_SIZE; i++) soctherm_throttle_program(ts, i); v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1); if (ts->soc->use_ccroc) { ccroc_writel(ts, v, CCROC_GLOBAL_CFG); v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER); v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER); } else { writel(v, ts->regs + THROT_GLOBAL_CFG); tegra_super_cdiv_use_therm_controls(true); } /* initialize stats collection */ v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN | STATS_CTL_CLR_UP | STATS_CTL_EN_UP; writel(v, ts->regs + THERMCTL_STATS_CTL); } static int soctherm_interrupts_init(struct platform_device *pdev, struct tegra_soctherm *tegra) { struct device_node *np = pdev->dev.of_node; int ret; ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX); if (ret < 0) { dev_err(&pdev->dev, "soctherm_oc_int_init failed\n"); return ret; } tegra->thermal_irq = platform_get_irq(pdev, 0); if (tegra->thermal_irq < 0) { dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n"); return 0; } tegra->edp_irq = platform_get_irq(pdev, 1); if (tegra->edp_irq < 0) { dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n"); return 0; } ret = devm_request_threaded_irq(&pdev->dev, tegra->thermal_irq, soctherm_thermal_isr, soctherm_thermal_isr_thread, IRQF_ONESHOT, dev_name(&pdev->dev), tegra); if (ret < 0) { dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n"); return ret; } ret = devm_request_threaded_irq(&pdev->dev, tegra->edp_irq, soctherm_edp_isr, soctherm_edp_isr_thread, IRQF_ONESHOT, "soctherm_edp", tegra); if (ret < 0) { dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n"); return ret; } return 0; } static void soctherm_sensor_invalidate(void) { tegra_soctherm_cpu_tsens_invalidate(hw_pllx.cpu_rail_low_voltage); tegra_soctherm_gpu_tsens_invalidate(hw_pllx.gpu_rail_low_voltage); } void tegra_soctherm_cpu_tsens_invalidate(bool low_voltage_range) { u32 r; unsigned long flags; if (!hw_pllx.sensor_valid_reg) return; spin_lock_irqsave(&soctherm_lock, flags); hw_pllx.cpu_rail_low_voltage = low_voltage_range; r = readl(hw_pllx.sensor_valid_reg); r = (hw_pllx.cpu_rail_low_voltage) ? (r | SENSOR_CPU_VALID_MASK) : (r & ~SENSOR_CPU_VALID_MASK); writel(r, hw_pllx.sensor_valid_reg); spin_unlock_irqrestore(&soctherm_lock, flags); } void tegra_soctherm_gpu_tsens_invalidate(bool low_voltage_range) { u32 r; unsigned long flags; if (!hw_pllx.sensor_valid_reg) return; spin_lock_irqsave(&soctherm_lock, flags); hw_pllx.gpu_rail_low_voltage = low_voltage_range; r = readl(hw_pllx.sensor_valid_reg); r = (hw_pllx.gpu_rail_low_voltage) ? (r | SENSOR_GPU_VALID_MASK) : (r & ~SENSOR_GPU_VALID_MASK); writel(r, hw_pllx.sensor_valid_reg); spin_unlock_irqrestore(&soctherm_lock, flags); } EXPORT_SYMBOL_GPL(tegra_soctherm_gpu_tsens_invalidate); static void soctherm_hw_pllx_offsets_init(struct tegra_soctherm *tegra) { const struct tegra_tsensor_group *ttg; struct tsensor_group_offsets *toff; u32 i, max = 0, min = 0, en = 0; if (!tegra->soc->toffs) return; for (i = 0; i < tegra->soc->num_ttgs; ++i) { toff = &tegra->soc->toffs[i]; ttg = toff->ttg; if (!toff->hw_offsetting_en) continue; max = REG_SET_MASK(max, ttg->hw_pllx_offset_mask, toff->max); min = REG_SET_MASK(min, ttg->hw_pllx_offset_mask, toff->min); en = REG_SET_MASK(en, ttg->hw_pllx_offset_en_mask, 1); } if (en) { writel(max, tegra->regs + SENSOR_HW_PLLX_OFFSET_MAX); writel(min, tegra->regs + SENSOR_HW_PLLX_OFFSET_MIN); writel(en, tegra->regs + SENSOR_HW_PLLX_OFFSET_EN); soctherm_sensor_invalidate(); } } static void soctherm_init(struct platform_device *pdev) { struct tegra_soctherm *tegra = platform_get_drvdata(pdev); const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs; int i; u32 pdiv, hotspot; /* Initialize raw sensors */ for (i = 0; i < tegra->soc->num_tsensors; ++i) enable_tsensor(tegra, i); pdiv = readl(tegra->regs + SENSOR_PDIV); hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF); for (i = 0; i < tegra->soc->num_ttgs; ++i) { pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask, tegra->soc->tsensors[0].config->pdiv); /* hotspot offset from PLLX, doesn't need to configure PLLX */ if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX) continue; hotspot = REG_SET_MASK(hotspot, ttgs[i]->pllx_hotspot_mask, ttgs[i]->pllx_hotspot_diff); } writel(pdiv, tegra->regs + SENSOR_PDIV); writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF); /* use hw offsets if available */ soctherm_hw_pllx_offsets_init(tegra); /* Configure hw throttle */ tegra_soctherm_throttle(&pdev->dev); } static ssize_t show_oc_stats_sysfs(struct device *dev, struct device_attribute *attr, char *buf) { struct tegra_soctherm *ts = dev_get_drvdata(dev); struct soctherm_throt_cfg *throt_cfgs = ts->throt_cfgs; int ret = 0; if (!ts) return -EINVAL; ret = sprintf(buf, "oc1:%llu oc2:%llu oc3:%llu oc4:%llu oc5:%llu\n", throt_cfgs[THROTTLE_OC1].oc_cfg.oc_cnt + readl(ts->regs + OC1_STATS), throt_cfgs[THROTTLE_OC2].oc_cfg.oc_cnt + readl(ts->regs + OC2_STATS), throt_cfgs[THROTTLE_OC3].oc_cfg.oc_cnt + readl(ts->regs + OC3_STATS), throt_cfgs[THROTTLE_OC4].oc_cfg.oc_cnt + readl(ts->regs + OC4_STATS), throt_cfgs[THROTTLE_OC5].oc_cfg.oc_cnt + readl(ts->regs + OC5_STATS)); return ret; } static DEVICE_ATTR(oc_stats, S_IRUGO, show_oc_stats_sysfs, NULL); static void soctherm_oc_counter_init(struct platform_device *pdev) { struct tegra_soctherm *tegra = platform_get_drvdata(pdev); writel(OC_STATS_CTL_EN_ALL, (tegra->regs + OC_STATS_CTL)); device_create_file(&pdev->dev, &dev_attr_oc_stats); } static const struct of_device_id tegra_soctherm_of_match[] = { #ifdef CONFIG_ARCH_TEGRA_124_SOC { .compatible = "nvidia,tegra124-soctherm", .data = &tegra124_soctherm, }, #endif #ifdef CONFIG_ARCH_TEGRA_132_SOC { .compatible = "nvidia,tegra132-soctherm", .data = &tegra132_soctherm, }, #endif #ifdef CONFIG_ARCH_TEGRA_210_SOC { .compatible = "nvidia,tegra210-soctherm", .data = &tegra210_soctherm, }, { .compatible = "nvidia,tegra210b01-soctherm", .data = &tegra210b01_soctherm, }, #endif { }, }; MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match); static int tegra_soctherm_probe(struct platform_device *pdev) { const struct of_device_id *match; struct tegra_soctherm *tegra; struct thermal_zone_device *z; struct tsensor_shared_calib shared_calib; struct resource *res; struct tegra_soctherm_soc *soc; unsigned int i; int err; match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node); if (!match) return -ENODEV; soc = (struct tegra_soctherm_soc *)match->data; if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM) return -EINVAL; tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); if (!tegra) return -ENOMEM; mutex_init(&tegra->thermctl_lock); dev_set_drvdata(&pdev->dev, tegra); tegra->soc = soc; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "soctherm-reg"); tegra->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(tegra->regs)) { dev_err(&pdev->dev, "can't get soctherm registers"); return PTR_ERR(tegra->regs); } if (tegra->soc->use_ccroc) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ccroc-reg"); tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(tegra->ccroc_regs)) { dev_err(&pdev->dev, "can't get ccroc registers"); return PTR_ERR(tegra->ccroc_regs); } } tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm"); if (IS_ERR(tegra->reset)) { dev_err(&pdev->dev, "can't get soctherm reset\n"); return PTR_ERR(tegra->reset); } tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor"); if (IS_ERR(tegra->clock_tsensor)) { dev_err(&pdev->dev, "can't get tsensor clock\n"); return PTR_ERR(tegra->clock_tsensor); } tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm"); if (IS_ERR(tegra->clock_soctherm)) { dev_err(&pdev->dev, "can't get soctherm clock\n"); return PTR_ERR(tegra->clock_soctherm); } tegra->calib = devm_kzalloc(&pdev->dev, sizeof(u32) * soc->num_tsensors, GFP_KERNEL); if (!tegra->calib) return -ENOMEM; /* calculate shared calibration data */ err = tegra_calc_shared_calib(soc->tfuse, &shared_calib); if (err) return err; /* calculate tsensor calibaration data */ for (i = 0; i < soc->num_tsensors; ++i) { err = tegra_calc_tsensor_calib(soc->tsensors[i].config, &shared_calib, &soc->tsensors[i].fuse_corr, &tegra->calib[i], soc->tsensors[i].calib_fuse_offset); if (err) return err; } tegra->thermctl_tzs = devm_kzalloc(&pdev->dev, sizeof(z) * soc->num_ttgs, GFP_KERNEL); if (!tegra->thermctl_tzs) return -ENOMEM; err = soctherm_clk_enable(pdev, true); if (err) return err; soctherm_init_hw_throt_cdev(pdev); soctherm_thermtrips_parse(pdev); soctherm_hw_pllx_offsets_parse(pdev); soctherm_init(pdev); soctherm_debug_init(pdev); soctherm_oc_counter_init(pdev); for (i = 0; i < soc->num_ttgs; ++i) { struct tegra_thermctl_zone *zone = devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL); if (!zone) { err = -ENOMEM; goto disable_clocks; } zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset; zone->dev = &pdev->dev; zone->sg = soc->ttgs[i]; zone->ts = tegra; soctherm_debug_temp_add(zone); z = devm_thermal_zone_of_sensor_register(&pdev->dev, soc->ttgs[i]->id, zone, &tegra_of_thermal_ops); if (IS_ERR(z)) { err = PTR_ERR(z); dev_info(&pdev->dev, "failed to register sensor: %d\n", err); continue; } zone->tz = z; tegra->thermctl_tzs[soc->ttgs[i]->id] = z; /* Configure hw trip points */ err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z); if (err) goto disable_clocks; } err = soctherm_interrupts_init(pdev, tegra); return err; disable_clocks: soctherm_clk_enable(pdev, false); return err; } static int tegra_soctherm_remove(struct platform_device *pdev) { struct tegra_soctherm *tegra = platform_get_drvdata(pdev); debugfs_remove_recursive(tegra->debugfs_dir); soctherm_clk_enable(pdev, false); return 0; } static int __maybe_unused soctherm_suspend(struct device *dev) { return 0; } static int __maybe_unused soctherm_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct tegra_soctherm *tegra = platform_get_drvdata(pdev); struct tegra_soctherm_soc *soc = tegra->soc; int err, i; soctherm_init(pdev); for (i = 0; i < soc->num_ttgs; ++i) { struct thermal_zone_device *tz; tz = tegra->thermctl_tzs[soc->ttgs[i]->id]; if (!tz) continue; err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz); if (err) { dev_err(&pdev->dev, "Resume failed: set hwtrips failed\n"); return err; } } return 0; } static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume); static struct platform_driver tegra_soctherm_driver = { .probe = tegra_soctherm_probe, .remove = tegra_soctherm_remove, .driver = { .name = "tegra_soctherm", .pm = &tegra_soctherm_pm, .of_match_table = tegra_soctherm_of_match, }, }; module_platform_driver(tegra_soctherm_driver); MODULE_AUTHOR("Mikko Perttunen "); MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver"); MODULE_LICENSE("GPL v2");