/* * Gadget Function Driver for MTP * * Copyright (C) 2010 Google, Inc. * Copyright (c) 2013-2018, NVIDIA CORPORATION. All rights reserved. * * Author: Mike Lockwood * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ /* #define DEBUG */ /* #define VERBOSE_DEBUG */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "configfs.h" #define MTP_BULK_BUFFER_SIZE 131072 #define INTR_BUFFER_SIZE 28 #define MAX_INST_NAME_LEN 40 #define MTP_MAX_FILE_SIZE 0xFFFFFFFFL /* String IDs */ #define INTERFACE_STRING_INDEX 0 /* values for mtp_dev.state */ #define STATE_OFFLINE 0 /* initial state, disconnected */ #define STATE_READY 1 /* ready for userspace calls */ #define STATE_BUSY 2 /* processing userspace calls */ #define STATE_CANCELED 3 /* transaction canceled by host */ #define STATE_ERROR 4 /* error from completion routine */ /* number of tx and rx requests to allocate */ #define TX_REQ_MAX 4 #define RX_REQ_MAX 2 #define INTR_REQ_MAX 5 /* ID for Microsoft MTP OS String */ #define MTP_OS_STRING_ID 0xEE /* MTP class reqeusts */ #define MTP_REQ_CANCEL 0x64 #define MTP_REQ_GET_EXT_EVENT_DATA 0x65 #define MTP_REQ_RESET 0x66 #define MTP_REQ_GET_DEVICE_STATUS 0x67 /* constants for device status */ #define MTP_RESPONSE_OK 0x2001 #define MTP_RESPONSE_DEVICE_BUSY 0x2019 #define DRIVER_NAME "mtp" static const char mtp_shortname[] = DRIVER_NAME "_usb"; struct mtp_dev { struct usb_function function; struct usb_composite_dev *cdev; spinlock_t lock; struct usb_ep *ep_in; struct usb_ep *ep_out; struct usb_ep *ep_intr; int state; /* synchronize access to our device file */ atomic_t open_excl; /* to enforce only one ioctl at a time */ atomic_t ioctl_excl; struct list_head tx_idle; struct list_head intr_idle; wait_queue_head_t read_wq; wait_queue_head_t write_wq; wait_queue_head_t intr_wq; struct usb_request *rx_req[RX_REQ_MAX]; int rx_done; /* for processing MTP_SEND_FILE, MTP_RECEIVE_FILE and * MTP_SEND_FILE_WITH_HEADER ioctls on a work queue */ struct workqueue_struct *wq; struct work_struct send_file_work; struct work_struct receive_file_work; struct file *xfer_file; loff_t xfer_file_offset; int64_t xfer_file_length; unsigned xfer_send_header; uint16_t xfer_command; uint32_t xfer_transaction_id; int xfer_result; }; static struct usb_interface_descriptor mtp_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 0, .bNumEndpoints = 3, .bInterfaceClass = USB_CLASS_VENDOR_SPEC, .bInterfaceSubClass = USB_SUBCLASS_VENDOR_SPEC, .bInterfaceProtocol = 0, }; static struct usb_interface_descriptor ptp_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, .bInterfaceNumber = 0, .bNumEndpoints = 3, .bInterfaceClass = USB_CLASS_STILL_IMAGE, .bInterfaceSubClass = 1, .bInterfaceProtocol = 1, }; static struct usb_endpoint_descriptor mtp_ss_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = __constant_cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor mtp_ss_in_comp_desc = { .bLength = sizeof(mtp_ss_in_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, /* .bMaxBurst = DYNAMIC, */ }; static struct usb_endpoint_descriptor mtp_ss_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = __constant_cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor mtp_ss_out_comp_desc = { .bLength = sizeof(mtp_ss_out_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, /* .bMaxBurst = DYNAMIC, */ }; static struct usb_endpoint_descriptor mtp_highspeed_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = __constant_cpu_to_le16(512), }; static struct usb_endpoint_descriptor mtp_highspeed_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = __constant_cpu_to_le16(512), }; static struct usb_endpoint_descriptor mtp_fullspeed_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor mtp_fullspeed_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor mtp_intr_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = __constant_cpu_to_le16(INTR_BUFFER_SIZE), .bInterval = 6, }; static struct usb_ss_ep_comp_descriptor mtp_intr_ss_comp_desc = { .bLength = sizeof(mtp_intr_ss_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, .wBytesPerInterval = cpu_to_le16(INTR_BUFFER_SIZE), }; static struct usb_descriptor_header *fs_mtp_descs[] = { (struct usb_descriptor_header *) &mtp_interface_desc, (struct usb_descriptor_header *) &mtp_fullspeed_in_desc, (struct usb_descriptor_header *) &mtp_fullspeed_out_desc, (struct usb_descriptor_header *) &mtp_intr_desc, NULL, }; static struct usb_descriptor_header *hs_mtp_descs[] = { (struct usb_descriptor_header *) &mtp_interface_desc, (struct usb_descriptor_header *) &mtp_highspeed_in_desc, (struct usb_descriptor_header *) &mtp_highspeed_out_desc, (struct usb_descriptor_header *) &mtp_intr_desc, NULL, }; static struct usb_descriptor_header *ss_mtp_descs[] = { (struct usb_descriptor_header *) &mtp_interface_desc, (struct usb_descriptor_header *) &mtp_ss_in_desc, (struct usb_descriptor_header *) &mtp_ss_in_comp_desc, (struct usb_descriptor_header *) &mtp_ss_out_desc, (struct usb_descriptor_header *) &mtp_ss_out_comp_desc, (struct usb_descriptor_header *) &mtp_intr_desc, (struct usb_descriptor_header *) &mtp_intr_ss_comp_desc, NULL, }; static struct usb_descriptor_header *fs_ptp_descs[] = { (struct usb_descriptor_header *) &ptp_interface_desc, (struct usb_descriptor_header *) &mtp_fullspeed_in_desc, (struct usb_descriptor_header *) &mtp_fullspeed_out_desc, (struct usb_descriptor_header *) &mtp_intr_desc, NULL, }; static struct usb_descriptor_header *hs_ptp_descs[] = { (struct usb_descriptor_header *) &ptp_interface_desc, (struct usb_descriptor_header *) &mtp_highspeed_in_desc, (struct usb_descriptor_header *) &mtp_highspeed_out_desc, (struct usb_descriptor_header *) &mtp_intr_desc, NULL, }; static struct usb_descriptor_header *ss_ptp_descs[] = { (struct usb_descriptor_header *) &ptp_interface_desc, (struct usb_descriptor_header *) &mtp_ss_in_desc, (struct usb_descriptor_header *) &mtp_ss_in_comp_desc, (struct usb_descriptor_header *) &mtp_ss_out_desc, (struct usb_descriptor_header *) &mtp_ss_out_comp_desc, (struct usb_descriptor_header *) &mtp_intr_desc, (struct usb_descriptor_header *) &mtp_intr_ss_comp_desc, NULL, }; static struct usb_string mtp_string_defs[] = { /* Naming interface "MTP" so libmtp will recognize us */ [INTERFACE_STRING_INDEX].s = "MTP", { }, /* end of list */ }; static struct usb_gadget_strings mtp_string_table = { .language = 0x0409, /* en-US */ .strings = mtp_string_defs, }; static struct usb_gadget_strings *mtp_strings[] = { &mtp_string_table, NULL, }; /* Microsoft MTP OS String */ static u8 mtp_os_string[] = { 18, /* sizeof(mtp_os_string) */ USB_DT_STRING, /* Signature field: "MSFT100" */ 'M', 0, 'S', 0, 'F', 0, 'T', 0, '1', 0, '0', 0, '0', 0, /* vendor code */ 1, /* padding */ 0 }; /* Microsoft Extended Configuration Descriptor Header Section */ struct mtp_ext_config_desc_header { __le32 dwLength; __u16 bcdVersion; __le16 wIndex; __u8 bCount; __u8 reserved[7]; }; /* Microsoft Extended Configuration Descriptor Function Section */ struct mtp_ext_config_desc_function { __u8 bFirstInterfaceNumber; __u8 bInterfaceCount; __u8 compatibleID[8]; __u8 subCompatibleID[8]; __u8 reserved[6]; }; /* MTP Extended Configuration Descriptor */ struct { struct mtp_ext_config_desc_header header; struct mtp_ext_config_desc_function function; } mtp_ext_config_desc = { .header = { .dwLength = __constant_cpu_to_le32(sizeof(mtp_ext_config_desc)), .bcdVersion = __constant_cpu_to_le16(0x0100), .wIndex = __constant_cpu_to_le16(4), .bCount = 1, }, .function = { .bFirstInterfaceNumber = 0, .bInterfaceCount = 1, .compatibleID = { 'M', 'T', 'P' }, }, }; struct mtp_device_status { __le16 wLength; __le16 wCode; }; struct mtp_data_header { /* length of packet, including this header */ __le32 length; /* container type (2 for data packet) */ __le16 type; /* MTP command code */ __le16 command; /* MTP transaction ID */ __le32 transaction_id; }; struct mtp_instance { struct usb_function_instance func_inst; const char *name; struct mtp_dev *dev; char mtp_ext_compat_id[16]; struct usb_os_desc mtp_os_desc; }; /* temporary variable used between mtp_open() and mtp_gadget_bind() */ static struct mtp_dev *_mtp_dev; static inline struct mtp_dev *func_to_mtp(struct usb_function *f) { return container_of(f, struct mtp_dev, function); } static struct usb_request *mtp_request_new(struct usb_ep *ep, int buffer_size) { struct usb_request *req = usb_ep_alloc_request(ep, GFP_KERNEL); if (!req) return NULL; /* now allocate buffers for the requests */ req->buf = kmalloc(buffer_size, GFP_KERNEL); if (!req->buf) { usb_ep_free_request(ep, req); return NULL; } return req; } static void mtp_request_free(struct usb_request *req, struct usb_ep *ep) { if (req) { kfree(req->buf); usb_ep_free_request(ep, req); } } static inline int mtp_lock(atomic_t *excl) { if (atomic_inc_return(excl) == 1) { return 0; } else { atomic_dec(excl); return -1; } } static inline void mtp_unlock(atomic_t *excl) { atomic_dec(excl); } /* add a request to the tail of a list */ static void mtp_req_put(struct mtp_dev *dev, struct list_head *head, struct usb_request *req) { unsigned long flags; spin_lock_irqsave(&dev->lock, flags); list_add_tail(&req->list, head); spin_unlock_irqrestore(&dev->lock, flags); } /* remove a request from the head of a list */ static struct usb_request *mtp_req_get(struct mtp_dev *dev, struct list_head *head) { unsigned long flags; struct usb_request *req; spin_lock_irqsave(&dev->lock, flags); if (list_empty(head)) { req = 0; } else { req = list_first_entry(head, struct usb_request, list); list_del(&req->list); } spin_unlock_irqrestore(&dev->lock, flags); return req; } static void mtp_complete_in(struct usb_ep *ep, struct usb_request *req) { struct mtp_dev *dev = _mtp_dev; if (req->status != 0) dev->state = STATE_ERROR; mtp_req_put(dev, &dev->tx_idle, req); wake_up(&dev->write_wq); } static void mtp_complete_out(struct usb_ep *ep, struct usb_request *req) { struct mtp_dev *dev = _mtp_dev; dev->rx_done = 1; if (req->status != 0) dev->state = STATE_ERROR; wake_up(&dev->read_wq); } static void mtp_complete_intr(struct usb_ep *ep, struct usb_request *req) { struct mtp_dev *dev = _mtp_dev; if (req->status != 0) dev->state = STATE_ERROR; mtp_req_put(dev, &dev->intr_idle, req); wake_up(&dev->intr_wq); } static int mtp_create_bulk_endpoints(struct mtp_dev *dev, struct usb_endpoint_descriptor *in_desc, struct usb_endpoint_descriptor *out_desc, struct usb_endpoint_descriptor *intr_desc) { struct usb_composite_dev *cdev = dev->cdev; struct usb_request *req; struct usb_ep *ep; int i; DBG(cdev, "create_bulk_endpoints dev: %p\n", dev); ep = usb_ep_autoconfig(cdev->gadget, in_desc); if (!ep) { DBG(cdev, "usb_ep_autoconfig for ep_in failed\n"); return -ENODEV; } DBG(cdev, "usb_ep_autoconfig for ep_in got %s\n", ep->name); ep->driver_data = dev; /* claim the endpoint */ dev->ep_in = ep; ep = usb_ep_autoconfig(cdev->gadget, out_desc); if (!ep) { DBG(cdev, "usb_ep_autoconfig for ep_out failed\n"); return -ENODEV; } DBG(cdev, "usb_ep_autoconfig for mtp ep_out got %s\n", ep->name); ep->driver_data = dev; /* claim the endpoint */ dev->ep_out = ep; ep = usb_ep_autoconfig(cdev->gadget, intr_desc); if (!ep) { DBG(cdev, "usb_ep_autoconfig for ep_intr failed\n"); return -ENODEV; } DBG(cdev, "usb_ep_autoconfig for mtp ep_intr got %s\n", ep->name); ep->driver_data = dev; /* claim the endpoint */ dev->ep_intr = ep; /* now allocate requests for our endpoints */ for (i = 0; i < TX_REQ_MAX; i++) { req = mtp_request_new(dev->ep_in, MTP_BULK_BUFFER_SIZE); if (!req) goto fail; req->complete = mtp_complete_in; mtp_req_put(dev, &dev->tx_idle, req); } for (i = 0; i < RX_REQ_MAX; i++) { req = mtp_request_new(dev->ep_out, MTP_BULK_BUFFER_SIZE); if (!req) goto fail; req->complete = mtp_complete_out; dev->rx_req[i] = req; } for (i = 0; i < INTR_REQ_MAX; i++) { req = mtp_request_new(dev->ep_intr, INTR_BUFFER_SIZE); if (!req) goto fail; req->complete = mtp_complete_intr; mtp_req_put(dev, &dev->intr_idle, req); } return 0; fail: pr_err("mtp_bind() could not allocate requests\n"); return -1; } static ssize_t mtp_read(struct file *fp, char __user *buf, size_t count, loff_t *pos) { struct mtp_dev *dev = fp->private_data; struct usb_composite_dev *cdev = dev->cdev; struct usb_request *req; ssize_t r = count; unsigned xfer; int ret = 0; size_t len = 0; if (cdev) DBG(cdev, "%s(%zu)\n", __func__, count); /* we will block until we're online */ if (cdev) DBG(cdev, "%s: waiting for online state\n", __func__); ret = wait_event_interruptible(dev->read_wq, dev->state != STATE_OFFLINE); if (ret < 0) { r = ret; goto done; } cdev = dev->cdev; spin_lock_irq(&dev->lock); if (dev->ep_out->desc) { len = usb_ep_align_maybe(cdev->gadget, dev->ep_out, count); if (len > MTP_BULK_BUFFER_SIZE) { spin_unlock_irq(&dev->lock); return -EINVAL; } } if (dev->state == STATE_CANCELED) { /* report cancelation to userspace */ dev->state = STATE_READY; spin_unlock_irq(&dev->lock); return -ECANCELED; } dev->state = STATE_BUSY; spin_unlock_irq(&dev->lock); requeue_req: /* queue a request */ req = dev->rx_req[0]; req->length = len; dev->rx_done = 0; ret = usb_ep_queue(dev->ep_out, req, GFP_KERNEL); if (ret < 0) { r = -EIO; goto done; } else { DBG(cdev, "rx %p queue\n", req); } /* wait for a request to complete */ ret = wait_event_interruptible(dev->read_wq, dev->rx_done); if (ret < 0) { r = ret; usb_ep_dequeue(dev->ep_out, req); goto done; } if (dev->state == STATE_BUSY) { /* If we got a 0-len packet, throw it back and try again. */ if (req->actual == 0) goto requeue_req; DBG(cdev, "rx %p %d\n", req, req->actual); xfer = (req->actual < count) ? req->actual : count; r = xfer; if (copy_to_user(buf, req->buf, xfer)) r = -EFAULT; } else r = -EIO; done: spin_lock_irq(&dev->lock); if (dev->state == STATE_CANCELED) r = -ECANCELED; else if (dev->state != STATE_OFFLINE) dev->state = STATE_READY; spin_unlock_irq(&dev->lock); if (cdev) DBG(cdev, "%s returning %zd\n", __func__, r); return r; } static ssize_t mtp_write(struct file *fp, const char __user *buf, size_t count, loff_t *pos) { struct mtp_dev *dev = fp->private_data; struct usb_composite_dev *cdev = dev->cdev; struct usb_request *req = 0; ssize_t r = count; unsigned xfer; int sendZLP = 0; int ret; DBG(cdev, "mtp_write(%zu)\n", count); spin_lock_irq(&dev->lock); if (dev->state == STATE_CANCELED) { /* report cancelation to userspace */ dev->state = STATE_READY; spin_unlock_irq(&dev->lock); return -ECANCELED; } if (dev->state == STATE_OFFLINE) { spin_unlock_irq(&dev->lock); return -ENODEV; } dev->state = STATE_BUSY; spin_unlock_irq(&dev->lock); /* we need to send a zero length packet to signal the end of transfer * if the transfer size is aligned to a packet boundary. */ if ((count & (dev->ep_in->maxpacket - 1)) == 0) sendZLP = 1; while (count > 0 || sendZLP) { /* so we exit after sending ZLP */ if (count == 0) sendZLP = 0; if (dev->state != STATE_BUSY) { DBG(cdev, "mtp_write dev->error\n"); r = -EIO; break; } /* get an idle tx request to use */ req = 0; ret = wait_event_interruptible(dev->write_wq, ((req = mtp_req_get(dev, &dev->tx_idle)) || dev->state != STATE_BUSY)); if (!req) { r = ret; break; } if (count > MTP_BULK_BUFFER_SIZE) xfer = MTP_BULK_BUFFER_SIZE; else xfer = count; if (xfer && copy_from_user(req->buf, buf, xfer)) { r = -EFAULT; break; } req->length = xfer; ret = usb_ep_queue(dev->ep_in, req, GFP_KERNEL); if (ret < 0) { DBG(cdev, "mtp_write: xfer error %d\n", ret); r = -EIO; break; } buf += xfer; count -= xfer; /* zero this so we don't try to free it on error exit */ req = 0; } if (req) mtp_req_put(dev, &dev->tx_idle, req); spin_lock_irq(&dev->lock); if (dev->state == STATE_CANCELED) r = -ECANCELED; else if (dev->state != STATE_OFFLINE) dev->state = STATE_READY; spin_unlock_irq(&dev->lock); DBG(cdev, "mtp_write returning %zd\n", r); return r; } /* read from a local file and write to USB */ static void send_file_work(struct work_struct *data) { struct mtp_dev *dev = container_of(data, struct mtp_dev, send_file_work); struct usb_composite_dev *cdev = dev->cdev; struct usb_request *req = 0; struct mtp_data_header *header; struct file *filp; loff_t offset; int64_t count; int xfer, ret, hdr_size; int r = 0; int sendZLP = 0; /* read our parameters */ smp_rmb(); filp = dev->xfer_file; offset = dev->xfer_file_offset; count = dev->xfer_file_length; DBG(cdev, "send_file_work(%lld %lld)\n", offset, count); if (dev->xfer_send_header) { hdr_size = sizeof(struct mtp_data_header); count += hdr_size; } else { hdr_size = 0; } /* we need to send a zero length packet to signal the end of transfer * if the transfer size is aligned to a packet boundary. */ if ((count & (dev->ep_in->maxpacket - 1)) == 0) sendZLP = 1; while (count > 0 || sendZLP) { /* so we exit after sending ZLP */ if (count == 0) sendZLP = 0; /* get an idle tx request to use */ req = 0; ret = wait_event_interruptible(dev->write_wq, (req = mtp_req_get(dev, &dev->tx_idle)) || dev->state != STATE_BUSY); if (dev->state == STATE_CANCELED) { r = -ECANCELED; break; } if (!req) { r = ret; break; } if (count > MTP_BULK_BUFFER_SIZE) xfer = MTP_BULK_BUFFER_SIZE; else xfer = count; if (hdr_size) { /* prepend MTP data header */ header = (struct mtp_data_header *)req->buf; /* * set file size with header according to * MTP Specification v1.0 */ header->length = (count > MTP_MAX_FILE_SIZE) ? MTP_MAX_FILE_SIZE : __cpu_to_le32(count); header->type = __cpu_to_le16(2); /* data packet */ header->command = __cpu_to_le16(dev->xfer_command); header->transaction_id = __cpu_to_le32(dev->xfer_transaction_id); } ret = vfs_read(filp, req->buf + hdr_size, xfer - hdr_size, &offset); if (ret < 0) { r = ret; break; } xfer = ret + hdr_size; hdr_size = 0; req->length = xfer; ret = usb_ep_queue(dev->ep_in, req, GFP_KERNEL); if (ret < 0) { DBG(cdev, "send_file_work: xfer error %d\n", ret); dev->state = STATE_ERROR; r = -EIO; break; } count -= xfer; /* zero this so we don't try to free it on error exit */ req = 0; } if (req) mtp_req_put(dev, &dev->tx_idle, req); DBG(cdev, "send_file_work returning %d\n", r); /* write the result */ dev->xfer_result = r; smp_wmb(); } /* read from USB and write to a local file */ static void receive_file_work(struct work_struct *data) { struct mtp_dev *dev = container_of(data, struct mtp_dev, receive_file_work); struct usb_composite_dev *cdev = dev->cdev; struct usb_request *read_req = NULL, *write_req = NULL; struct file *filp; loff_t offset; int64_t count, len; int ret, cur_buf = 0; int r = 0; /* read our parameters */ smp_rmb(); filp = dev->xfer_file; offset = dev->xfer_file_offset; count = dev->xfer_file_length; DBG(cdev, "receive_file_work(%lld)\n", count); while (count > 0 || write_req) { if (count > 0) { /* queue a request */ read_req = dev->rx_req[cur_buf]; cur_buf = (cur_buf + 1) % RX_REQ_MAX; len = usb_ep_align_maybe(cdev->gadget, dev->ep_out, count); if (len > MTP_BULK_BUFFER_SIZE) len = MTP_BULK_BUFFER_SIZE; read_req->length = len; dev->rx_done = 0; ret = usb_ep_queue(dev->ep_out, read_req, GFP_KERNEL); if (ret < 0) { r = -EIO; dev->state = STATE_ERROR; break; } } if (write_req) { DBG(cdev, "rx %p %d\n", write_req, write_req->actual); ret = vfs_write(filp, write_req->buf, write_req->actual, &offset); DBG(cdev, "vfs_write %d\n", ret); if (ret != write_req->actual) { r = -EIO; dev->state = STATE_ERROR; break; } write_req = NULL; } if (read_req) { /* wait for our last read to complete */ ret = wait_event_interruptible(dev->read_wq, dev->rx_done || dev->state != STATE_BUSY); if (dev->state == STATE_CANCELED) { r = -ECANCELED; if (!dev->rx_done) usb_ep_dequeue(dev->ep_out, read_req); break; } if (read_req->status) { r = read_req->status; break; } /* if xfer_file_length is 0xFFFFFFFF, then we read until * we get a zero length packet */ if (count != 0xFFFFFFFF) count -= read_req->actual; if (read_req->actual < read_req->length) { /* * short packet is used to signal EOF for * sizes > 4 gig */ DBG(cdev, "got short packet\n"); count = 0; } write_req = read_req; read_req = NULL; } } DBG(cdev, "receive_file_work returning %d\n", r); /* write the result */ dev->xfer_result = r; smp_wmb(); } static int mtp_send_event(struct mtp_dev *dev, struct mtp_event *event) { struct usb_request *req = NULL; int ret; int length = event->length; DBG(dev->cdev, "mtp_send_event(%zu)\n", event->length); if (length < 0 || length > INTR_BUFFER_SIZE) return -EINVAL; if (dev->state == STATE_OFFLINE) return -ENODEV; ret = wait_event_interruptible_timeout(dev->intr_wq, (req = mtp_req_get(dev, &dev->intr_idle)), msecs_to_jiffies(1000)); if (!req) return -ETIME; if (copy_from_user(req->buf, (void __user *)event->data, length)) { mtp_req_put(dev, &dev->intr_idle, req); return -EFAULT; } req->length = length; ret = usb_ep_queue(dev->ep_intr, req, GFP_KERNEL); if (ret) mtp_req_put(dev, &dev->intr_idle, req); return ret; } static long mtp_ioctl(struct file *fp, unsigned code, unsigned long value) { struct mtp_dev *dev = fp->private_data; struct file *filp = NULL; int ret = -EINVAL; if (mtp_lock(&dev->ioctl_excl)) return -EBUSY; switch (code) { case MTP_SEND_FILE: case MTP_RECEIVE_FILE: case MTP_SEND_FILE_WITH_HEADER: { struct mtp_file_range mfr; struct work_struct *work; spin_lock_irq(&dev->lock); if (dev->state == STATE_CANCELED) { /* report cancelation to userspace */ dev->state = STATE_READY; spin_unlock_irq(&dev->lock); ret = -ECANCELED; goto out; } if (dev->state == STATE_OFFLINE) { spin_unlock_irq(&dev->lock); ret = -ENODEV; goto out; } dev->state = STATE_BUSY; spin_unlock_irq(&dev->lock); if (copy_from_user(&mfr, (void __user *)value, sizeof(mfr))) { ret = -EFAULT; goto fail; } /* hold a reference to the file while we are working with it */ filp = fget(mfr.fd); if (!filp) { ret = -EBADF; goto fail; } /* write the parameters */ dev->xfer_file = filp; dev->xfer_file_offset = mfr.offset; dev->xfer_file_length = mfr.length; smp_wmb(); if (code == MTP_SEND_FILE_WITH_HEADER) { work = &dev->send_file_work; dev->xfer_send_header = 1; dev->xfer_command = mfr.command; dev->xfer_transaction_id = mfr.transaction_id; } else if (code == MTP_SEND_FILE) { work = &dev->send_file_work; dev->xfer_send_header = 0; } else { work = &dev->receive_file_work; } /* We do the file transfer on a work queue so it will run * in kernel context, which is necessary for vfs_read and * vfs_write to use our buffers in the kernel address space. */ queue_work(dev->wq, work); /* wait for operation to complete */ flush_workqueue(dev->wq); fput(filp); /* read the result */ smp_rmb(); ret = dev->xfer_result; break; } case MTP_SEND_EVENT: { struct mtp_event event; /* return here so we don't change dev->state below, * which would interfere with bulk transfer state. */ if (copy_from_user(&event, (void __user *)value, sizeof(event))) ret = -EFAULT; else ret = mtp_send_event(dev, &event); goto out; } } fail: spin_lock_irq(&dev->lock); if (dev->state == STATE_CANCELED) ret = -ECANCELED; else if (dev->state != STATE_OFFLINE) dev->state = STATE_READY; spin_unlock_irq(&dev->lock); out: mtp_unlock(&dev->ioctl_excl); DBG(dev->cdev, "ioctl returning %d\n", ret); return ret; } static int mtp_open(struct inode *ip, struct file *fp) { printk(KERN_INFO "mtp_open\n"); if (mtp_lock(&_mtp_dev->open_excl)) return -EBUSY; /* clear any error condition */ if (_mtp_dev->state != STATE_OFFLINE) _mtp_dev->state = STATE_READY; fp->private_data = _mtp_dev; return 0; } static int mtp_release(struct inode *ip, struct file *fp) { printk(KERN_INFO "mtp_release\n"); mtp_unlock(&_mtp_dev->open_excl); return 0; } /* file operations for /dev/mtp_usb */ static const struct file_operations mtp_fops = { .owner = THIS_MODULE, .read = mtp_read, .write = mtp_write, .unlocked_ioctl = mtp_ioctl, .open = mtp_open, .release = mtp_release, }; static struct miscdevice mtp_device = { .minor = MISC_DYNAMIC_MINOR, .name = mtp_shortname, .fops = &mtp_fops, }; static int mtp_ctrlrequest(struct usb_composite_dev *cdev, const struct usb_ctrlrequest *ctrl) { struct mtp_dev *dev = _mtp_dev; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); unsigned long flags; VDBG(cdev, "mtp_ctrlrequest " "%02x.%02x v%04x i%04x l%u\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); /* Handle MTP OS string */ if (ctrl->bRequestType == (USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE) && ctrl->bRequest == USB_REQ_GET_DESCRIPTOR && (w_value >> 8) == USB_DT_STRING && (w_value & 0xFF) == MTP_OS_STRING_ID) { value = (w_length < sizeof(mtp_os_string) ? w_length : sizeof(mtp_os_string)); memcpy(cdev->req->buf, mtp_os_string, value); } else if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_VENDOR) { /* Handle MTP OS descriptor */ DBG(cdev, "vendor request: %d index: %d value: %d length: %d\n", ctrl->bRequest, w_index, w_value, w_length); if (ctrl->bRequest == 1 && (ctrl->bRequestType & USB_DIR_IN) && (w_index == 4 || w_index == 5)) { value = (w_length < sizeof(mtp_ext_config_desc) ? w_length : sizeof(mtp_ext_config_desc)); memcpy(cdev->req->buf, &mtp_ext_config_desc, value); } } else if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_CLASS) { DBG(cdev, "class request: %d index: %d value: %d length: %d\n", ctrl->bRequest, w_index, w_value, w_length); if (ctrl->bRequest == MTP_REQ_CANCEL && w_index == 0 && w_value == 0) { DBG(cdev, "MTP_REQ_CANCEL\n"); spin_lock_irqsave(&dev->lock, flags); if (dev->state == STATE_BUSY) { dev->state = STATE_CANCELED; wake_up(&dev->read_wq); wake_up(&dev->write_wq); } spin_unlock_irqrestore(&dev->lock, flags); /* We need to queue a request to read the remaining * bytes, but we don't actually need to look at * the contents. */ value = w_length; } else if (ctrl->bRequest == MTP_REQ_GET_DEVICE_STATUS && w_index == 0 && w_value == 0) { struct mtp_device_status *status = cdev->req->buf; status->wLength = __constant_cpu_to_le16(sizeof(*status)); DBG(cdev, "MTP_REQ_GET_DEVICE_STATUS\n"); spin_lock_irqsave(&dev->lock, flags); /* device status is "busy" until we report * the cancelation to userspace */ if (dev->state == STATE_CANCELED) status->wCode = __cpu_to_le16(MTP_RESPONSE_DEVICE_BUSY); else status->wCode = __cpu_to_le16(MTP_RESPONSE_OK); spin_unlock_irqrestore(&dev->lock, flags); value = sizeof(*status); } } /* respond with data transfer or status phase? */ if (value >= 0) { int rc; cdev->req->zero = value < w_length; cdev->req->length = value; rc = usb_ep_queue(cdev->gadget->ep0, cdev->req, GFP_ATOMIC); if (rc < 0) ERROR(cdev, "%s: response queue error\n", __func__); } return value; } static int mtp_function_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct mtp_dev *dev = func_to_mtp(f); int id; int ret; struct mtp_instance *fi_mtp; dev->cdev = cdev; DBG(cdev, "mtp_function_bind dev: %p\n", dev); /* allocate interface ID(s) */ id = usb_interface_id(c, f); if (id < 0) return id; mtp_interface_desc.bInterfaceNumber = id; ptp_interface_desc.bInterfaceNumber = id; if (mtp_string_defs[INTERFACE_STRING_INDEX].id == 0) { ret = usb_string_id(c->cdev); if (ret < 0) return ret; mtp_string_defs[INTERFACE_STRING_INDEX].id = ret; mtp_interface_desc.iInterface = ret; } fi_mtp = container_of(f->fi, struct mtp_instance, func_inst); if (cdev->use_os_string) { f->os_desc_table = kzalloc(sizeof(*f->os_desc_table), GFP_KERNEL); if (!f->os_desc_table) return -ENOMEM; f->os_desc_n = 1; f->os_desc_table[0].if_id = id; f->os_desc_table[0].os_desc = &fi_mtp->mtp_os_desc; } /* allocate endpoints */ ret = mtp_create_bulk_endpoints(dev, &mtp_fullspeed_in_desc, &mtp_fullspeed_out_desc, &mtp_intr_desc); if (ret) return ret; /* support high speed hardware */ if (gadget_is_dualspeed(c->cdev->gadget)) { mtp_highspeed_in_desc.bEndpointAddress = mtp_fullspeed_in_desc.bEndpointAddress; mtp_highspeed_out_desc.bEndpointAddress = mtp_fullspeed_out_desc.bEndpointAddress; } /* support super speed hardware */ if (gadget_is_superspeed(c->cdev->gadget)) { unsigned max_burst; /* Calculate bMaxBurst, we know packet size is 1024 */ max_burst = min_t(unsigned, MTP_BULK_BUFFER_SIZE / 1024, 15); mtp_ss_in_desc.bEndpointAddress = mtp_fullspeed_in_desc.bEndpointAddress; mtp_ss_in_comp_desc.bMaxBurst = max_burst; mtp_ss_out_desc.bEndpointAddress = mtp_fullspeed_out_desc.bEndpointAddress; mtp_ss_out_comp_desc.bMaxBurst = max_burst; } DBG(cdev, "%s speed %s: IN/%s, OUT/%s\n", gadget_is_superspeed(c->cdev->gadget) ? "super" : (gadget_is_dualspeed(c->cdev->gadget) ? "dual" : "full"), f->name, dev->ep_in->name, dev->ep_out->name); return 0; } static void mtp_function_unbind(struct usb_configuration *c, struct usb_function *f) { struct mtp_dev *dev = func_to_mtp(f); struct usb_request *req; int i; mtp_string_defs[INTERFACE_STRING_INDEX].id = 0; while ((req = mtp_req_get(dev, &dev->tx_idle))) mtp_request_free(req, dev->ep_in); for (i = 0; i < RX_REQ_MAX; i++) mtp_request_free(dev->rx_req[i], dev->ep_out); while ((req = mtp_req_get(dev, &dev->intr_idle))) mtp_request_free(req, dev->ep_intr); dev->state = STATE_OFFLINE; kfree(f->os_desc_table); f->os_desc_table = NULL; f->os_desc_n = 0; } static int mtp_function_set_alt(struct usb_function *f, unsigned intf, unsigned alt) { struct mtp_dev *dev = func_to_mtp(f); struct usb_composite_dev *cdev = f->config->cdev; int ret; DBG(cdev, "mtp_function_set_alt intf: %d alt: %d\n", intf, alt); ret = config_ep_by_speed(cdev->gadget, f, dev->ep_in); if (ret) return ret; ret = usb_ep_enable(dev->ep_in); if (ret) return ret; ret = config_ep_by_speed(cdev->gadget, f, dev->ep_out); if (ret) return ret; ret = usb_ep_enable(dev->ep_out); if (ret) { usb_ep_disable(dev->ep_in); return ret; } ret = config_ep_by_speed(cdev->gadget, f, dev->ep_intr); if (ret) return ret; ret = usb_ep_enable(dev->ep_intr); if (ret) { usb_ep_disable(dev->ep_out); usb_ep_disable(dev->ep_in); return ret; } dev->state = STATE_READY; /* readers may be blocked waiting for us to go online */ wake_up(&dev->read_wq); return 0; } static void mtp_function_disable(struct usb_function *f) { struct mtp_dev *dev = func_to_mtp(f); struct usb_composite_dev *cdev = dev->cdev; DBG(cdev, "mtp_function_disable\n"); dev->state = STATE_OFFLINE; usb_ep_disable(dev->ep_in); usb_ep_disable(dev->ep_out); usb_ep_disable(dev->ep_intr); /* readers may be blocked waiting for us to go online */ wake_up(&dev->read_wq); VDBG(cdev, "%s disabled\n", dev->function.name); } static int __mtp_setup(struct mtp_instance *fi_mtp) { struct mtp_dev *dev; int ret; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (fi_mtp != NULL) fi_mtp->dev = dev; if (!dev) return -ENOMEM; spin_lock_init(&dev->lock); init_waitqueue_head(&dev->read_wq); init_waitqueue_head(&dev->write_wq); init_waitqueue_head(&dev->intr_wq); atomic_set(&dev->open_excl, 0); atomic_set(&dev->ioctl_excl, 0); INIT_LIST_HEAD(&dev->tx_idle); INIT_LIST_HEAD(&dev->intr_idle); dev->wq = create_singlethread_workqueue("f_mtp"); if (!dev->wq) { ret = -ENOMEM; goto err1; } INIT_WORK(&dev->send_file_work, send_file_work); INIT_WORK(&dev->receive_file_work, receive_file_work); _mtp_dev = dev; ret = misc_register(&mtp_device); if (ret) goto err2; return 0; err2: destroy_workqueue(dev->wq); err1: _mtp_dev = NULL; kfree(dev); printk(KERN_ERR "mtp gadget driver failed to initialize\n"); return ret; } static int mtp_setup_configfs(struct mtp_instance *fi_mtp) { return __mtp_setup(fi_mtp); } static void mtp_cleanup(void) { struct mtp_dev *dev = _mtp_dev; if (!dev) return; misc_deregister(&mtp_device); destroy_workqueue(dev->wq); _mtp_dev = NULL; kfree(dev); } static struct mtp_instance *to_mtp_instance(struct config_item *item) { return container_of(to_config_group(item), struct mtp_instance, func_inst.group); } static void mtp_attr_release(struct config_item *item) { struct mtp_instance *fi_mtp = to_mtp_instance(item); usb_put_function_instance(&fi_mtp->func_inst); } static struct configfs_item_operations mtp_item_ops = { .release = mtp_attr_release, }; static struct config_item_type mtp_func_type = { .ct_item_ops = &mtp_item_ops, .ct_owner = THIS_MODULE, }; static struct mtp_instance *to_fi_mtp(struct usb_function_instance *fi) { return container_of(fi, struct mtp_instance, func_inst); } static int mtp_set_inst_name(struct usb_function_instance *fi, const char *name) { struct mtp_instance *fi_mtp; char *ptr; int name_len; name_len = strlen(name) + 1; if (name_len > MAX_INST_NAME_LEN) return -ENAMETOOLONG; ptr = kstrndup(name, name_len, GFP_KERNEL); if (!ptr) return -ENOMEM; fi_mtp = to_fi_mtp(fi); fi_mtp->name = ptr; return 0; } static void mtp_free_inst(struct usb_function_instance *fi) { struct mtp_instance *fi_mtp; fi_mtp = to_fi_mtp(fi); kfree(fi_mtp->name); mtp_cleanup(); kfree(fi_mtp); } struct usb_function_instance *alloc_inst_mtp_ptp(bool mtp_config) { struct mtp_instance *fi_mtp; int ret = 0; struct usb_os_desc *descs[1]; char *names[1]; fi_mtp = kzalloc(sizeof(*fi_mtp), GFP_KERNEL); if (!fi_mtp) return ERR_PTR(-ENOMEM); fi_mtp->func_inst.set_inst_name = mtp_set_inst_name; fi_mtp->func_inst.free_func_inst = mtp_free_inst; fi_mtp->mtp_os_desc.ext_compat_id = fi_mtp->mtp_ext_compat_id; INIT_LIST_HEAD(&fi_mtp->mtp_os_desc.ext_prop); descs[0] = &fi_mtp->mtp_os_desc; names[0] = "MTP"; if (mtp_config) { ret = mtp_setup_configfs(fi_mtp); if (ret) { kfree(fi_mtp); pr_err("Error setting MTP\n"); return ERR_PTR(ret); } } else fi_mtp->dev = _mtp_dev; config_group_init_type_name(&fi_mtp->func_inst.group, "", &mtp_func_type); usb_os_desc_prepare_interf_dir(&fi_mtp->func_inst.group, 1, descs, names, THIS_MODULE); return &fi_mtp->func_inst; } EXPORT_SYMBOL_GPL(alloc_inst_mtp_ptp); static struct usb_function_instance *mtp_alloc_inst(void) { return alloc_inst_mtp_ptp(true); } static int mtp_ctrlreq_configfs(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { return mtp_ctrlrequest(f->config->cdev, ctrl); } static void mtp_free(struct usb_function *f) { /*NO-OP: no function specific resource allocation in mtp_alloc*/ } struct usb_function *function_alloc_mtp_ptp(struct usb_function_instance *fi, bool mtp_config) { struct mtp_instance *fi_mtp = to_fi_mtp(fi); struct mtp_dev *dev; /* * PTP piggybacks on MTP function so make sure we have * created MTP function before we associate this PTP * function with a gadget configuration. */ if (fi_mtp->dev == NULL) { pr_err("Error: Create MTP function before linking" " PTP function with a gadget configuration\n"); pr_err("\t1: Delete existing PTP function if any\n"); pr_err("\t2: Create MTP function\n"); pr_err("\t3: Create and symlink PTP function" " with a gadget configuration\n"); return ERR_PTR(-EINVAL); /* Invalid Configuration */ } dev = fi_mtp->dev; dev->function.name = DRIVER_NAME; dev->function.strings = mtp_strings; if (mtp_config) { dev->function.fs_descriptors = fs_mtp_descs; dev->function.hs_descriptors = hs_mtp_descs; dev->function.ss_descriptors = ss_mtp_descs; } else { dev->function.fs_descriptors = fs_ptp_descs; dev->function.hs_descriptors = hs_ptp_descs; dev->function.ss_descriptors = ss_ptp_descs; } dev->function.bind = mtp_function_bind; dev->function.unbind = mtp_function_unbind; dev->function.set_alt = mtp_function_set_alt; dev->function.disable = mtp_function_disable; dev->function.setup = mtp_ctrlreq_configfs; dev->function.free_func = mtp_free; return &dev->function; } EXPORT_SYMBOL_GPL(function_alloc_mtp_ptp); static struct usb_function *mtp_alloc(struct usb_function_instance *fi) { return function_alloc_mtp_ptp(fi, true); } DECLARE_USB_FUNCTION_INIT(mtp, mtp_alloc_inst, mtp_alloc); MODULE_LICENSE("GPL");