/* * Copyright (C) 2011 STRATO. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include "ctree.h" #include "disk-io.h" #include "backref.h" #include "ulist.h" #include "transaction.h" #include "delayed-ref.h" #include "locking.h" /* Just an arbitrary number so we can be sure this happened */ #define BACKREF_FOUND_SHARED 6 struct extent_inode_elem { u64 inum; u64 offset; struct extent_inode_elem *next; }; /* * ref_root is used as the root of the ref tree that hold a collection * of unique references. */ struct ref_root { struct rb_root rb_root; /* * The unique_refs represents the number of ref_nodes with a positive * count stored in the tree. Even if a ref_node (the count is greater * than one) is added, the unique_refs will only increase by one. */ unsigned int unique_refs; }; /* ref_node is used to store a unique reference to the ref tree. */ struct ref_node { struct rb_node rb_node; /* For NORMAL_REF, otherwise all these fields should be set to 0 */ u64 root_id; u64 object_id; u64 offset; /* For SHARED_REF, otherwise parent field should be set to 0 */ u64 parent; /* Ref to the ref_mod of btrfs_delayed_ref_node */ int ref_mod; }; /* Dynamically allocate and initialize a ref_root */ static struct ref_root *ref_root_alloc(void) { struct ref_root *ref_tree; ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS); if (!ref_tree) return NULL; ref_tree->rb_root = RB_ROOT; ref_tree->unique_refs = 0; return ref_tree; } /* Free all nodes in the ref tree, and reinit ref_root */ static void ref_root_fini(struct ref_root *ref_tree) { struct ref_node *node; struct rb_node *next; while ((next = rb_first(&ref_tree->rb_root)) != NULL) { node = rb_entry(next, struct ref_node, rb_node); rb_erase(next, &ref_tree->rb_root); kfree(node); } ref_tree->rb_root = RB_ROOT; ref_tree->unique_refs = 0; } static void ref_root_free(struct ref_root *ref_tree) { if (!ref_tree) return; ref_root_fini(ref_tree); kfree(ref_tree); } /* * Compare ref_node with (root_id, object_id, offset, parent) * * The function compares two ref_node a and b. It returns an integer less * than, equal to, or greater than zero , respectively, to be less than, to * equal, or be greater than b. */ static int ref_node_cmp(struct ref_node *a, struct ref_node *b) { if (a->root_id < b->root_id) return -1; else if (a->root_id > b->root_id) return 1; if (a->object_id < b->object_id) return -1; else if (a->object_id > b->object_id) return 1; if (a->offset < b->offset) return -1; else if (a->offset > b->offset) return 1; if (a->parent < b->parent) return -1; else if (a->parent > b->parent) return 1; return 0; } /* * Search ref_node with (root_id, object_id, offset, parent) in the tree * * if found, the pointer of the ref_node will be returned; * if not found, NULL will be returned and pos will point to the rb_node for * insert, pos_parent will point to pos'parent for insert; */ static struct ref_node *__ref_tree_search(struct ref_root *ref_tree, struct rb_node ***pos, struct rb_node **pos_parent, u64 root_id, u64 object_id, u64 offset, u64 parent) { struct ref_node *cur = NULL; struct ref_node entry; int ret; entry.root_id = root_id; entry.object_id = object_id; entry.offset = offset; entry.parent = parent; *pos = &ref_tree->rb_root.rb_node; while (**pos) { *pos_parent = **pos; cur = rb_entry(*pos_parent, struct ref_node, rb_node); ret = ref_node_cmp(cur, &entry); if (ret > 0) *pos = &(**pos)->rb_left; else if (ret < 0) *pos = &(**pos)->rb_right; else return cur; } return NULL; } /* * Insert a ref_node to the ref tree * @pos used for specifiy the position to insert * @pos_parent for specifiy pos's parent * * success, return 0; * ref_node already exists, return -EEXIST; */ static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos, struct rb_node *pos_parent, struct ref_node *ins) { struct rb_node **p = NULL; struct rb_node *parent = NULL; struct ref_node *cur = NULL; if (!pos) { cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id, ins->object_id, ins->offset, ins->parent); if (cur) return -EEXIST; } else { p = pos; parent = pos_parent; } rb_link_node(&ins->rb_node, parent, p); rb_insert_color(&ins->rb_node, &ref_tree->rb_root); return 0; } /* Erase and free ref_node, caller should update ref_root->unique_refs */ static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node) { rb_erase(&node->rb_node, &ref_tree->rb_root); kfree(node); } /* * Update ref_root->unique_refs * * Call __ref_tree_search * 1. if ref_node doesn't exist, ref_tree_insert this node, and update * ref_root->unique_refs: * if ref_node->ref_mod > 0, ref_root->unique_refs++; * if ref_node->ref_mod < 0, do noting; * * 2. if ref_node is found, then get origin ref_node->ref_mod, and update * ref_node->ref_mod. * if ref_node->ref_mod is equal to 0,then call ref_tree_remove * * according to origin_mod and new_mod, update ref_root->items * +----------------+--------------+-------------+ * | |new_count <= 0|new_count > 0| * +----------------+--------------+-------------+ * |origin_count < 0| 0 | 1 | * +----------------+--------------+-------------+ * |origin_count > 0| -1 | 0 | * +----------------+--------------+-------------+ * * In case of allocation failure, -ENOMEM is returned and the ref_tree stays * unaltered. * Success, return 0 */ static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id, u64 offset, u64 parent, int count) { struct ref_node *node = NULL; struct rb_node **pos = NULL; struct rb_node *pos_parent = NULL; int origin_count; int ret; if (!count) return 0; node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id, object_id, offset, parent); if (node == NULL) { node = kmalloc(sizeof(*node), GFP_NOFS); if (!node) return -ENOMEM; node->root_id = root_id; node->object_id = object_id; node->offset = offset; node->parent = parent; node->ref_mod = count; ret = ref_tree_insert(ref_tree, pos, pos_parent, node); ASSERT(!ret); if (ret) { kfree(node); return ret; } ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0; return 0; } origin_count = node->ref_mod; node->ref_mod += count; if (node->ref_mod > 0) ref_tree->unique_refs += origin_count > 0 ? 0 : 1; else if (node->ref_mod <= 0) ref_tree->unique_refs += origin_count > 0 ? -1 : 0; if (!node->ref_mod) ref_tree_remove(ref_tree, node); return 0; } static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, struct btrfs_file_extent_item *fi, u64 extent_item_pos, struct extent_inode_elem **eie) { u64 offset = 0; struct extent_inode_elem *e; if (!btrfs_file_extent_compression(eb, fi) && !btrfs_file_extent_encryption(eb, fi) && !btrfs_file_extent_other_encoding(eb, fi)) { u64 data_offset; u64 data_len; data_offset = btrfs_file_extent_offset(eb, fi); data_len = btrfs_file_extent_num_bytes(eb, fi); if (extent_item_pos < data_offset || extent_item_pos >= data_offset + data_len) return 1; offset = extent_item_pos - data_offset; } e = kmalloc(sizeof(*e), GFP_NOFS); if (!e) return -ENOMEM; e->next = *eie; e->inum = key->objectid; e->offset = key->offset + offset; *eie = e; return 0; } static void free_inode_elem_list(struct extent_inode_elem *eie) { struct extent_inode_elem *eie_next; for (; eie; eie = eie_next) { eie_next = eie->next; kfree(eie); } } static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, u64 extent_item_pos, struct extent_inode_elem **eie) { u64 disk_byte; struct btrfs_key key; struct btrfs_file_extent_item *fi; int slot; int nritems; int extent_type; int ret; /* * from the shared data ref, we only have the leaf but we need * the key. thus, we must look into all items and see that we * find one (some) with a reference to our extent item. */ nritems = btrfs_header_nritems(eb); for (slot = 0; slot < nritems; ++slot) { btrfs_item_key_to_cpu(eb, &key, slot); if (key.type != BTRFS_EXTENT_DATA_KEY) continue; fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); extent_type = btrfs_file_extent_type(eb, fi); if (extent_type == BTRFS_FILE_EXTENT_INLINE) continue; /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); if (disk_byte != wanted_disk_byte) continue; ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); if (ret < 0) return ret; } return 0; } /* * this structure records all encountered refs on the way up to the root */ struct __prelim_ref { struct list_head list; u64 root_id; struct btrfs_key key_for_search; int level; int count; struct extent_inode_elem *inode_list; u64 parent; u64 wanted_disk_byte; }; static struct kmem_cache *btrfs_prelim_ref_cache; int __init btrfs_prelim_ref_init(void) { btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", sizeof(struct __prelim_ref), 0, SLAB_MEM_SPREAD, NULL); if (!btrfs_prelim_ref_cache) return -ENOMEM; return 0; } void btrfs_prelim_ref_exit(void) { kmem_cache_destroy(btrfs_prelim_ref_cache); } /* * the rules for all callers of this function are: * - obtaining the parent is the goal * - if you add a key, you must know that it is a correct key * - if you cannot add the parent or a correct key, then we will look into the * block later to set a correct key * * delayed refs * ============ * backref type | shared | indirect | shared | indirect * information | tree | tree | data | data * --------------------+--------+----------+--------+---------- * parent logical | y | - | - | - * key to resolve | - | y | y | y * tree block logical | - | - | - | - * root for resolving | y | y | y | y * * - column 1: we've the parent -> done * - column 2, 3, 4: we use the key to find the parent * * on disk refs (inline or keyed) * ============================== * backref type | shared | indirect | shared | indirect * information | tree | tree | data | data * --------------------+--------+----------+--------+---------- * parent logical | y | - | y | - * key to resolve | - | - | - | y * tree block logical | y | y | y | y * root for resolving | - | y | y | y * * - column 1, 3: we've the parent -> done * - column 2: we take the first key from the block to find the parent * (see __add_missing_keys) * - column 4: we use the key to find the parent * * additional information that's available but not required to find the parent * block might help in merging entries to gain some speed. */ static int __add_prelim_ref(struct list_head *head, u64 root_id, struct btrfs_key *key, int level, u64 parent, u64 wanted_disk_byte, int count, gfp_t gfp_mask) { struct __prelim_ref *ref; if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) return 0; ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); if (!ref) return -ENOMEM; ref->root_id = root_id; if (key) { ref->key_for_search = *key; /* * We can often find data backrefs with an offset that is too * large (>= LLONG_MAX, maximum allowed file offset) due to * underflows when subtracting a file's offset with the data * offset of its corresponding extent data item. This can * happen for example in the clone ioctl. * So if we detect such case we set the search key's offset to * zero to make sure we will find the matching file extent item * at add_all_parents(), otherwise we will miss it because the * offset taken form the backref is much larger then the offset * of the file extent item. This can make us scan a very large * number of file extent items, but at least it will not make * us miss any. * This is an ugly workaround for a behaviour that should have * never existed, but it does and a fix for the clone ioctl * would touch a lot of places, cause backwards incompatibility * and would not fix the problem for extents cloned with older * kernels. */ if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && ref->key_for_search.offset >= LLONG_MAX) ref->key_for_search.offset = 0; } else { memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); } ref->inode_list = NULL; ref->level = level; ref->count = count; ref->parent = parent; ref->wanted_disk_byte = wanted_disk_byte; list_add_tail(&ref->list, head); return 0; } static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, struct ulist *parents, struct __prelim_ref *ref, int level, u64 time_seq, const u64 *extent_item_pos, u64 total_refs) { int ret = 0; int slot; struct extent_buffer *eb; struct btrfs_key key; struct btrfs_key *key_for_search = &ref->key_for_search; struct btrfs_file_extent_item *fi; struct extent_inode_elem *eie = NULL, *old = NULL; u64 disk_byte; u64 wanted_disk_byte = ref->wanted_disk_byte; u64 count = 0; if (level != 0) { eb = path->nodes[level]; ret = ulist_add(parents, eb->start, 0, GFP_NOFS); if (ret < 0) return ret; return 0; } /* * We normally enter this function with the path already pointing to * the first item to check. But sometimes, we may enter it with * slot==nritems. In that case, go to the next leaf before we continue. */ if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { if (time_seq == (u64)-1) ret = btrfs_next_leaf(root, path); else ret = btrfs_next_old_leaf(root, path, time_seq); } while (!ret && count < total_refs) { eb = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(eb, &key, slot); if (key.objectid != key_for_search->objectid || key.type != BTRFS_EXTENT_DATA_KEY) break; fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); if (disk_byte == wanted_disk_byte) { eie = NULL; old = NULL; count++; if (extent_item_pos) { ret = check_extent_in_eb(&key, eb, fi, *extent_item_pos, &eie); if (ret < 0) break; } if (ret > 0) goto next; ret = ulist_add_merge_ptr(parents, eb->start, eie, (void **)&old, GFP_NOFS); if (ret < 0) break; if (!ret && extent_item_pos) { while (old->next) old = old->next; old->next = eie; } eie = NULL; } next: if (time_seq == (u64)-1) ret = btrfs_next_item(root, path); else ret = btrfs_next_old_item(root, path, time_seq); } if (ret > 0) ret = 0; else if (ret < 0) free_inode_elem_list(eie); return ret; } /* * resolve an indirect backref in the form (root_id, key, level) * to a logical address */ static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, struct btrfs_path *path, u64 time_seq, struct __prelim_ref *ref, struct ulist *parents, const u64 *extent_item_pos, u64 total_refs) { struct btrfs_root *root; struct btrfs_key root_key; struct extent_buffer *eb; int ret = 0; int root_level; int level = ref->level; int index; root_key.objectid = ref->root_id; root_key.type = BTRFS_ROOT_ITEM_KEY; root_key.offset = (u64)-1; index = srcu_read_lock(&fs_info->subvol_srcu); root = btrfs_get_fs_root(fs_info, &root_key, false); if (IS_ERR(root)) { srcu_read_unlock(&fs_info->subvol_srcu, index); ret = PTR_ERR(root); goto out; } if (btrfs_is_testing(fs_info)) { srcu_read_unlock(&fs_info->subvol_srcu, index); ret = -ENOENT; goto out; } if (path->search_commit_root) root_level = btrfs_header_level(root->commit_root); else if (time_seq == (u64)-1) root_level = btrfs_header_level(root->node); else root_level = btrfs_old_root_level(root, time_seq); if (root_level + 1 == level) { srcu_read_unlock(&fs_info->subvol_srcu, index); goto out; } path->lowest_level = level; if (time_seq == (u64)-1) ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 0, 0); else ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); /* root node has been locked, we can release @subvol_srcu safely here */ srcu_read_unlock(&fs_info->subvol_srcu, index); btrfs_debug(fs_info, "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", ref->root_id, level, ref->count, ret, ref->key_for_search.objectid, ref->key_for_search.type, ref->key_for_search.offset); if (ret < 0) goto out; eb = path->nodes[level]; while (!eb) { if (WARN_ON(!level)) { ret = 1; goto out; } level--; eb = path->nodes[level]; } ret = add_all_parents(root, path, parents, ref, level, time_seq, extent_item_pos, total_refs); out: path->lowest_level = 0; btrfs_release_path(path); return ret; } /* * resolve all indirect backrefs from the list */ static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, struct btrfs_path *path, u64 time_seq, struct list_head *head, const u64 *extent_item_pos, u64 total_refs, u64 root_objectid) { int err; int ret = 0; struct __prelim_ref *ref; struct __prelim_ref *ref_safe; struct __prelim_ref *new_ref; struct ulist *parents; struct ulist_node *node; struct ulist_iterator uiter; parents = ulist_alloc(GFP_NOFS); if (!parents) return -ENOMEM; /* * _safe allows us to insert directly after the current item without * iterating over the newly inserted items. * we're also allowed to re-assign ref during iteration. */ list_for_each_entry_safe(ref, ref_safe, head, list) { if (ref->parent) /* already direct */ continue; if (ref->count == 0) continue; if (root_objectid && ref->root_id != root_objectid) { ret = BACKREF_FOUND_SHARED; goto out; } err = __resolve_indirect_ref(fs_info, path, time_seq, ref, parents, extent_item_pos, total_refs); /* * we can only tolerate ENOENT,otherwise,we should catch error * and return directly. */ if (err == -ENOENT) { continue; } else if (err) { ret = err; goto out; } /* we put the first parent into the ref at hand */ ULIST_ITER_INIT(&uiter); node = ulist_next(parents, &uiter); ref->parent = node ? node->val : 0; ref->inode_list = node ? (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; /* additional parents require new refs being added here */ while ((node = ulist_next(parents, &uiter))) { new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, GFP_NOFS); if (!new_ref) { ret = -ENOMEM; goto out; } memcpy(new_ref, ref, sizeof(*ref)); new_ref->parent = node->val; new_ref->inode_list = (struct extent_inode_elem *) (uintptr_t)node->aux; list_add(&new_ref->list, &ref->list); } ulist_reinit(parents); } out: ulist_free(parents); return ret; } static inline int ref_for_same_block(struct __prelim_ref *ref1, struct __prelim_ref *ref2) { if (ref1->level != ref2->level) return 0; if (ref1->root_id != ref2->root_id) return 0; if (ref1->key_for_search.type != ref2->key_for_search.type) return 0; if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) return 0; if (ref1->key_for_search.offset != ref2->key_for_search.offset) return 0; if (ref1->parent != ref2->parent) return 0; return 1; } /* * read tree blocks and add keys where required. */ static int __add_missing_keys(struct btrfs_fs_info *fs_info, struct list_head *head) { struct __prelim_ref *ref; struct extent_buffer *eb; list_for_each_entry(ref, head, list) { if (ref->parent) continue; if (ref->key_for_search.type) continue; BUG_ON(!ref->wanted_disk_byte); eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 0); if (IS_ERR(eb)) { return PTR_ERR(eb); } else if (!extent_buffer_uptodate(eb)) { free_extent_buffer(eb); return -EIO; } btrfs_tree_read_lock(eb); if (btrfs_header_level(eb) == 0) btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); else btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); btrfs_tree_read_unlock(eb); free_extent_buffer(eb); } return 0; } /* * merge backrefs and adjust counts accordingly * * mode = 1: merge identical keys, if key is set * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. * additionally, we could even add a key range for the blocks we * looked into to merge even more (-> replace unresolved refs by those * having a parent). * mode = 2: merge identical parents */ static void __merge_refs(struct list_head *head, int mode) { struct __prelim_ref *pos1; list_for_each_entry(pos1, head, list) { struct __prelim_ref *pos2 = pos1, *tmp; list_for_each_entry_safe_continue(pos2, tmp, head, list) { struct __prelim_ref *ref1 = pos1, *ref2 = pos2; struct extent_inode_elem *eie; if (!ref_for_same_block(ref1, ref2)) continue; if (mode == 1) { if (!ref1->parent && ref2->parent) swap(ref1, ref2); } else { if (ref1->parent != ref2->parent) continue; } eie = ref1->inode_list; while (eie && eie->next) eie = eie->next; if (eie) eie->next = ref2->inode_list; else ref1->inode_list = ref2->inode_list; ref1->count += ref2->count; list_del(&ref2->list); kmem_cache_free(btrfs_prelim_ref_cache, ref2); cond_resched(); } } } /* * add all currently queued delayed refs from this head whose seq nr is * smaller or equal that seq to the list */ static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, struct list_head *prefs, u64 *total_refs, u64 inum) { struct btrfs_delayed_ref_node *node; struct btrfs_delayed_extent_op *extent_op = head->extent_op; struct btrfs_key key; struct btrfs_key op_key = {0}; int sgn; int ret = 0; if (extent_op && extent_op->update_key) btrfs_disk_key_to_cpu(&op_key, &extent_op->key); spin_lock(&head->lock); list_for_each_entry(node, &head->ref_list, list) { if (node->seq > seq) continue; switch (node->action) { case BTRFS_ADD_DELAYED_EXTENT: case BTRFS_UPDATE_DELAYED_HEAD: WARN_ON(1); continue; case BTRFS_ADD_DELAYED_REF: sgn = 1; break; case BTRFS_DROP_DELAYED_REF: sgn = -1; break; default: BUG_ON(1); } *total_refs += (node->ref_mod * sgn); switch (node->type) { case BTRFS_TREE_BLOCK_REF_KEY: { struct btrfs_delayed_tree_ref *ref; ref = btrfs_delayed_node_to_tree_ref(node); ret = __add_prelim_ref(prefs, ref->root, &op_key, ref->level + 1, 0, node->bytenr, node->ref_mod * sgn, GFP_ATOMIC); break; } case BTRFS_SHARED_BLOCK_REF_KEY: { struct btrfs_delayed_tree_ref *ref; ref = btrfs_delayed_node_to_tree_ref(node); ret = __add_prelim_ref(prefs, 0, NULL, ref->level + 1, ref->parent, node->bytenr, node->ref_mod * sgn, GFP_ATOMIC); break; } case BTRFS_EXTENT_DATA_REF_KEY: { struct btrfs_delayed_data_ref *ref; ref = btrfs_delayed_node_to_data_ref(node); key.objectid = ref->objectid; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = ref->offset; /* * Found a inum that doesn't match our known inum, we * know it's shared. */ if (inum && ref->objectid != inum) { ret = BACKREF_FOUND_SHARED; break; } ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, node->bytenr, node->ref_mod * sgn, GFP_ATOMIC); break; } case BTRFS_SHARED_DATA_REF_KEY: { struct btrfs_delayed_data_ref *ref; ref = btrfs_delayed_node_to_data_ref(node); ret = __add_prelim_ref(prefs, 0, NULL, 0, ref->parent, node->bytenr, node->ref_mod * sgn, GFP_ATOMIC); break; } default: WARN_ON(1); } if (ret) break; } spin_unlock(&head->lock); return ret; } /* * add all inline backrefs for bytenr to the list */ static int __add_inline_refs(struct btrfs_fs_info *fs_info, struct btrfs_path *path, u64 bytenr, int *info_level, struct list_head *prefs, struct ref_root *ref_tree, u64 *total_refs, u64 inum) { int ret = 0; int slot; struct extent_buffer *leaf; struct btrfs_key key; struct btrfs_key found_key; unsigned long ptr; unsigned long end; struct btrfs_extent_item *ei; u64 flags; u64 item_size; /* * enumerate all inline refs */ leaf = path->nodes[0]; slot = path->slots[0]; item_size = btrfs_item_size_nr(leaf, slot); BUG_ON(item_size < sizeof(*ei)); ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); flags = btrfs_extent_flags(leaf, ei); *total_refs += btrfs_extent_refs(leaf, ei); btrfs_item_key_to_cpu(leaf, &found_key, slot); ptr = (unsigned long)(ei + 1); end = (unsigned long)ei + item_size; if (found_key.type == BTRFS_EXTENT_ITEM_KEY && flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { struct btrfs_tree_block_info *info; info = (struct btrfs_tree_block_info *)ptr; *info_level = btrfs_tree_block_level(leaf, info); ptr += sizeof(struct btrfs_tree_block_info); BUG_ON(ptr > end); } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { *info_level = found_key.offset; } else { BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); } while (ptr < end) { struct btrfs_extent_inline_ref *iref; u64 offset; int type; iref = (struct btrfs_extent_inline_ref *)ptr; type = btrfs_extent_inline_ref_type(leaf, iref); offset = btrfs_extent_inline_ref_offset(leaf, iref); switch (type) { case BTRFS_SHARED_BLOCK_REF_KEY: ret = __add_prelim_ref(prefs, 0, NULL, *info_level + 1, offset, bytenr, 1, GFP_NOFS); break; case BTRFS_SHARED_DATA_REF_KEY: { struct btrfs_shared_data_ref *sdref; int count; sdref = (struct btrfs_shared_data_ref *)(iref + 1); count = btrfs_shared_data_ref_count(leaf, sdref); ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, bytenr, count, GFP_NOFS); if (ref_tree) { if (!ret) ret = ref_tree_add(ref_tree, 0, 0, 0, bytenr, count); if (!ret && ref_tree->unique_refs > 1) ret = BACKREF_FOUND_SHARED; } break; } case BTRFS_TREE_BLOCK_REF_KEY: ret = __add_prelim_ref(prefs, offset, NULL, *info_level + 1, 0, bytenr, 1, GFP_NOFS); break; case BTRFS_EXTENT_DATA_REF_KEY: { struct btrfs_extent_data_ref *dref; int count; u64 root; dref = (struct btrfs_extent_data_ref *)(&iref->offset); count = btrfs_extent_data_ref_count(leaf, dref); key.objectid = btrfs_extent_data_ref_objectid(leaf, dref); key.type = BTRFS_EXTENT_DATA_KEY; key.offset = btrfs_extent_data_ref_offset(leaf, dref); if (inum && key.objectid != inum) { ret = BACKREF_FOUND_SHARED; break; } root = btrfs_extent_data_ref_root(leaf, dref); ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr, count, GFP_NOFS); if (ref_tree) { if (!ret) ret = ref_tree_add(ref_tree, root, key.objectid, key.offset, 0, count); if (!ret && ref_tree->unique_refs > 1) ret = BACKREF_FOUND_SHARED; } break; } default: WARN_ON(1); } if (ret) return ret; ptr += btrfs_extent_inline_ref_size(type); } return 0; } /* * add all non-inline backrefs for bytenr to the list */ static int __add_keyed_refs(struct btrfs_fs_info *fs_info, struct btrfs_path *path, u64 bytenr, int info_level, struct list_head *prefs, struct ref_root *ref_tree, u64 inum) { struct btrfs_root *extent_root = fs_info->extent_root; int ret; int slot; struct extent_buffer *leaf; struct btrfs_key key; while (1) { ret = btrfs_next_item(extent_root, path); if (ret < 0) break; if (ret) { ret = 0; break; } slot = path->slots[0]; leaf = path->nodes[0]; btrfs_item_key_to_cpu(leaf, &key, slot); if (key.objectid != bytenr) break; if (key.type < BTRFS_TREE_BLOCK_REF_KEY) continue; if (key.type > BTRFS_SHARED_DATA_REF_KEY) break; switch (key.type) { case BTRFS_SHARED_BLOCK_REF_KEY: ret = __add_prelim_ref(prefs, 0, NULL, info_level + 1, key.offset, bytenr, 1, GFP_NOFS); break; case BTRFS_SHARED_DATA_REF_KEY: { struct btrfs_shared_data_ref *sdref; int count; sdref = btrfs_item_ptr(leaf, slot, struct btrfs_shared_data_ref); count = btrfs_shared_data_ref_count(leaf, sdref); ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, bytenr, count, GFP_NOFS); if (ref_tree) { if (!ret) ret = ref_tree_add(ref_tree, 0, 0, 0, bytenr, count); if (!ret && ref_tree->unique_refs > 1) ret = BACKREF_FOUND_SHARED; } break; } case BTRFS_TREE_BLOCK_REF_KEY: ret = __add_prelim_ref(prefs, key.offset, NULL, info_level + 1, 0, bytenr, 1, GFP_NOFS); break; case BTRFS_EXTENT_DATA_REF_KEY: { struct btrfs_extent_data_ref *dref; int count; u64 root; dref = btrfs_item_ptr(leaf, slot, struct btrfs_extent_data_ref); count = btrfs_extent_data_ref_count(leaf, dref); key.objectid = btrfs_extent_data_ref_objectid(leaf, dref); key.type = BTRFS_EXTENT_DATA_KEY; key.offset = btrfs_extent_data_ref_offset(leaf, dref); if (inum && key.objectid != inum) { ret = BACKREF_FOUND_SHARED; break; } root = btrfs_extent_data_ref_root(leaf, dref); ret = __add_prelim_ref(prefs, root, &key, 0, 0, bytenr, count, GFP_NOFS); if (ref_tree) { if (!ret) ret = ref_tree_add(ref_tree, root, key.objectid, key.offset, 0, count); if (!ret && ref_tree->unique_refs > 1) ret = BACKREF_FOUND_SHARED; } break; } default: WARN_ON(1); } if (ret) return ret; } return ret; } /* * this adds all existing backrefs (inline backrefs, backrefs and delayed * refs) for the given bytenr to the refs list, merges duplicates and resolves * indirect refs to their parent bytenr. * When roots are found, they're added to the roots list * * NOTE: This can return values > 0 * * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave * much like trans == NULL case, the difference only lies in it will not * commit root. * The special case is for qgroup to search roots in commit_transaction(). * * If check_shared is set to 1, any extent has more than one ref item, will * be returned BACKREF_FOUND_SHARED immediately. * * FIXME some caching might speed things up */ static int find_parent_nodes(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 bytenr, u64 time_seq, struct ulist *refs, struct ulist *roots, const u64 *extent_item_pos, u64 root_objectid, u64 inum, int check_shared) { struct btrfs_key key; struct btrfs_path *path; struct btrfs_delayed_ref_root *delayed_refs = NULL; struct btrfs_delayed_ref_head *head; int info_level = 0; int ret; struct list_head prefs_delayed; struct list_head prefs; struct __prelim_ref *ref; struct extent_inode_elem *eie = NULL; struct ref_root *ref_tree = NULL; u64 total_refs = 0; INIT_LIST_HEAD(&prefs); INIT_LIST_HEAD(&prefs_delayed); key.objectid = bytenr; key.offset = (u64)-1; if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) key.type = BTRFS_METADATA_ITEM_KEY; else key.type = BTRFS_EXTENT_ITEM_KEY; path = btrfs_alloc_path(); if (!path) return -ENOMEM; if (!trans) { path->search_commit_root = 1; path->skip_locking = 1; } if (time_seq == (u64)-1) path->skip_locking = 1; /* * grab both a lock on the path and a lock on the delayed ref head. * We need both to get a consistent picture of how the refs look * at a specified point in time */ again: head = NULL; if (check_shared) { if (!ref_tree) { ref_tree = ref_root_alloc(); if (!ref_tree) { ret = -ENOMEM; goto out; } } else { ref_root_fini(ref_tree); } } ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); if (ret < 0) goto out; BUG_ON(ret == 0); #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS if (trans && likely(trans->type != __TRANS_DUMMY) && time_seq != (u64)-1) { #else if (trans && time_seq != (u64)-1) { #endif /* * look if there are updates for this ref queued and lock the * head */ delayed_refs = &trans->transaction->delayed_refs; spin_lock(&delayed_refs->lock); head = btrfs_find_delayed_ref_head(trans, bytenr); if (head) { if (!mutex_trylock(&head->mutex)) { atomic_inc(&head->node.refs); spin_unlock(&delayed_refs->lock); btrfs_release_path(path); /* * Mutex was contended, block until it's * released and try again */ mutex_lock(&head->mutex); mutex_unlock(&head->mutex); btrfs_put_delayed_ref(&head->node); goto again; } spin_unlock(&delayed_refs->lock); ret = __add_delayed_refs(head, time_seq, &prefs_delayed, &total_refs, inum); mutex_unlock(&head->mutex); if (ret) goto out; } else { spin_unlock(&delayed_refs->lock); } if (check_shared && !list_empty(&prefs_delayed)) { /* * Add all delay_ref to the ref_tree and check if there * are multiple ref items added. */ list_for_each_entry(ref, &prefs_delayed, list) { if (ref->key_for_search.type) { ret = ref_tree_add(ref_tree, ref->root_id, ref->key_for_search.objectid, ref->key_for_search.offset, 0, ref->count); if (ret) goto out; } else { ret = ref_tree_add(ref_tree, 0, 0, 0, ref->parent, ref->count); if (ret) goto out; } } if (ref_tree->unique_refs > 1) { ret = BACKREF_FOUND_SHARED; goto out; } } } if (path->slots[0]) { struct extent_buffer *leaf; int slot; path->slots[0]--; leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &key, slot); if (key.objectid == bytenr && (key.type == BTRFS_EXTENT_ITEM_KEY || key.type == BTRFS_METADATA_ITEM_KEY)) { ret = __add_inline_refs(fs_info, path, bytenr, &info_level, &prefs, ref_tree, &total_refs, inum); if (ret) goto out; ret = __add_keyed_refs(fs_info, path, bytenr, info_level, &prefs, ref_tree, inum); if (ret) goto out; } } btrfs_release_path(path); list_splice_init(&prefs_delayed, &prefs); ret = __add_missing_keys(fs_info, &prefs); if (ret) goto out; __merge_refs(&prefs, 1); ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, extent_item_pos, total_refs, root_objectid); if (ret) goto out; __merge_refs(&prefs, 2); while (!list_empty(&prefs)) { ref = list_first_entry(&prefs, struct __prelim_ref, list); WARN_ON(ref->count < 0); if (roots && ref->count && ref->root_id && ref->parent == 0) { if (root_objectid && ref->root_id != root_objectid) { ret = BACKREF_FOUND_SHARED; goto out; } /* no parent == root of tree */ ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); if (ret < 0) goto out; } if (ref->count && ref->parent) { if (extent_item_pos && !ref->inode_list && ref->level == 0) { struct extent_buffer *eb; eb = read_tree_block(fs_info->extent_root, ref->parent, 0); if (IS_ERR(eb)) { ret = PTR_ERR(eb); goto out; } else if (!extent_buffer_uptodate(eb)) { free_extent_buffer(eb); ret = -EIO; goto out; } btrfs_tree_read_lock(eb); btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); ret = find_extent_in_eb(eb, bytenr, *extent_item_pos, &eie); btrfs_tree_read_unlock_blocking(eb); free_extent_buffer(eb); if (ret < 0) goto out; ref->inode_list = eie; } ret = ulist_add_merge_ptr(refs, ref->parent, ref->inode_list, (void **)&eie, GFP_NOFS); if (ret < 0) goto out; if (!ret && extent_item_pos) { /* * we've recorded that parent, so we must extend * its inode list here */ BUG_ON(!eie); while (eie->next) eie = eie->next; eie->next = ref->inode_list; } eie = NULL; } list_del(&ref->list); kmem_cache_free(btrfs_prelim_ref_cache, ref); } out: btrfs_free_path(path); ref_root_free(ref_tree); while (!list_empty(&prefs)) { ref = list_first_entry(&prefs, struct __prelim_ref, list); list_del(&ref->list); kmem_cache_free(btrfs_prelim_ref_cache, ref); } while (!list_empty(&prefs_delayed)) { ref = list_first_entry(&prefs_delayed, struct __prelim_ref, list); list_del(&ref->list); kmem_cache_free(btrfs_prelim_ref_cache, ref); } if (ret < 0) free_inode_elem_list(eie); return ret; } static void free_leaf_list(struct ulist *blocks) { struct ulist_node *node = NULL; struct extent_inode_elem *eie; struct ulist_iterator uiter; ULIST_ITER_INIT(&uiter); while ((node = ulist_next(blocks, &uiter))) { if (!node->aux) continue; eie = (struct extent_inode_elem *)(uintptr_t)node->aux; free_inode_elem_list(eie); node->aux = 0; } ulist_free(blocks); } /* * Finds all leafs with a reference to the specified combination of bytenr and * offset. key_list_head will point to a list of corresponding keys (caller must * free each list element). The leafs will be stored in the leafs ulist, which * must be freed with ulist_free. * * returns 0 on success, <0 on error */ static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 bytenr, u64 time_seq, struct ulist **leafs, const u64 *extent_item_pos) { int ret; *leafs = ulist_alloc(GFP_NOFS); if (!*leafs) return -ENOMEM; ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, *leafs, NULL, extent_item_pos, 0, 0, 0); if (ret < 0 && ret != -ENOENT) { free_leaf_list(*leafs); return ret; } return 0; } /* * walk all backrefs for a given extent to find all roots that reference this * extent. Walking a backref means finding all extents that reference this * extent and in turn walk the backrefs of those, too. Naturally this is a * recursive process, but here it is implemented in an iterative fashion: We * find all referencing extents for the extent in question and put them on a * list. In turn, we find all referencing extents for those, further appending * to the list. The way we iterate the list allows adding more elements after * the current while iterating. The process stops when we reach the end of the * list. Found roots are added to the roots list. * * returns 0 on success, < 0 on error. */ static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 bytenr, u64 time_seq, struct ulist **roots) { struct ulist *tmp; struct ulist_node *node = NULL; struct ulist_iterator uiter; int ret; tmp = ulist_alloc(GFP_NOFS); if (!tmp) return -ENOMEM; *roots = ulist_alloc(GFP_NOFS); if (!*roots) { ulist_free(tmp); return -ENOMEM; } ULIST_ITER_INIT(&uiter); while (1) { ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, tmp, *roots, NULL, 0, 0, 0); if (ret < 0 && ret != -ENOENT) { ulist_free(tmp); ulist_free(*roots); *roots = NULL; return ret; } node = ulist_next(tmp, &uiter); if (!node) break; bytenr = node->val; cond_resched(); } ulist_free(tmp); return 0; } int btrfs_find_all_roots(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 bytenr, u64 time_seq, struct ulist **roots) { int ret; if (!trans) down_read(&fs_info->commit_root_sem); ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots); if (!trans) up_read(&fs_info->commit_root_sem); return ret; } /** * btrfs_check_shared - tell us whether an extent is shared * * @trans: optional trans handle * * btrfs_check_shared uses the backref walking code but will short * circuit as soon as it finds a root or inode that doesn't match the * one passed in. This provides a significant performance benefit for * callers (such as fiemap) which want to know whether the extent is * shared but do not need a ref count. * * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. */ int btrfs_check_shared(struct btrfs_trans_handle *trans, struct btrfs_fs_info *fs_info, u64 root_objectid, u64 inum, u64 bytenr) { struct ulist *tmp = NULL; struct ulist *roots = NULL; struct ulist_iterator uiter; struct ulist_node *node; struct seq_list elem = SEQ_LIST_INIT(elem); int ret = 0; tmp = ulist_alloc(GFP_NOFS); roots = ulist_alloc(GFP_NOFS); if (!tmp || !roots) { ulist_free(tmp); ulist_free(roots); return -ENOMEM; } if (trans) btrfs_get_tree_mod_seq(fs_info, &elem); else down_read(&fs_info->commit_root_sem); ULIST_ITER_INIT(&uiter); while (1) { ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, roots, NULL, root_objectid, inum, 1); if (ret == BACKREF_FOUND_SHARED) { /* this is the only condition under which we return 1 */ ret = 1; break; } if (ret < 0 && ret != -ENOENT) break; ret = 0; node = ulist_next(tmp, &uiter); if (!node) break; bytenr = node->val; cond_resched(); } if (trans) btrfs_put_tree_mod_seq(fs_info, &elem); else up_read(&fs_info->commit_root_sem); ulist_free(tmp); ulist_free(roots); return ret; } int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, u64 start_off, struct btrfs_path *path, struct btrfs_inode_extref **ret_extref, u64 *found_off) { int ret, slot; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_inode_extref *extref; struct extent_buffer *leaf; unsigned long ptr; key.objectid = inode_objectid; key.type = BTRFS_INODE_EXTREF_KEY; key.offset = start_off; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) return ret; while (1) { leaf = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(leaf)) { /* * If the item at offset is not found, * btrfs_search_slot will point us to the slot * where it should be inserted. In our case * that will be the slot directly before the * next INODE_REF_KEY_V2 item. In the case * that we're pointing to the last slot in a * leaf, we must move one leaf over. */ ret = btrfs_next_leaf(root, path); if (ret) { if (ret >= 1) ret = -ENOENT; break; } continue; } btrfs_item_key_to_cpu(leaf, &found_key, slot); /* * Check that we're still looking at an extended ref key for * this particular objectid. If we have different * objectid or type then there are no more to be found * in the tree and we can exit. */ ret = -ENOENT; if (found_key.objectid != inode_objectid) break; if (found_key.type != BTRFS_INODE_EXTREF_KEY) break; ret = 0; ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); extref = (struct btrfs_inode_extref *)ptr; *ret_extref = extref; if (found_off) *found_off = found_key.offset; break; } return ret; } /* * this iterates to turn a name (from iref/extref) into a full filesystem path. * Elements of the path are separated by '/' and the path is guaranteed to be * 0-terminated. the path is only given within the current file system. * Therefore, it never starts with a '/'. the caller is responsible to provide * "size" bytes in "dest". the dest buffer will be filled backwards. finally, * the start point of the resulting string is returned. this pointer is within * dest, normally. * in case the path buffer would overflow, the pointer is decremented further * as if output was written to the buffer, though no more output is actually * generated. that way, the caller can determine how much space would be * required for the path to fit into the buffer. in that case, the returned * value will be smaller than dest. callers must check this! */ char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, u32 name_len, unsigned long name_off, struct extent_buffer *eb_in, u64 parent, char *dest, u32 size) { int slot; u64 next_inum; int ret; s64 bytes_left = ((s64)size) - 1; struct extent_buffer *eb = eb_in; struct btrfs_key found_key; int leave_spinning = path->leave_spinning; struct btrfs_inode_ref *iref; if (bytes_left >= 0) dest[bytes_left] = '\0'; path->leave_spinning = 1; while (1) { bytes_left -= name_len; if (bytes_left >= 0) read_extent_buffer(eb, dest + bytes_left, name_off, name_len); if (eb != eb_in) { if (!path->skip_locking) btrfs_tree_read_unlock_blocking(eb); free_extent_buffer(eb); } ret = btrfs_find_item(fs_root, path, parent, 0, BTRFS_INODE_REF_KEY, &found_key); if (ret > 0) ret = -ENOENT; if (ret) break; next_inum = found_key.offset; /* regular exit ahead */ if (parent == next_inum) break; slot = path->slots[0]; eb = path->nodes[0]; /* make sure we can use eb after releasing the path */ if (eb != eb_in) { if (!path->skip_locking) btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); path->nodes[0] = NULL; path->locks[0] = 0; } btrfs_release_path(path); iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); name_len = btrfs_inode_ref_name_len(eb, iref); name_off = (unsigned long)(iref + 1); parent = next_inum; --bytes_left; if (bytes_left >= 0) dest[bytes_left] = '/'; } btrfs_release_path(path); path->leave_spinning = leave_spinning; if (ret) return ERR_PTR(ret); return dest + bytes_left; } /* * this makes the path point to (logical EXTENT_ITEM *) * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for * tree blocks and <0 on error. */ int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, struct btrfs_path *path, struct btrfs_key *found_key, u64 *flags_ret) { int ret; u64 flags; u64 size = 0; u32 item_size; struct extent_buffer *eb; struct btrfs_extent_item *ei; struct btrfs_key key; if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) key.type = BTRFS_METADATA_ITEM_KEY; else key.type = BTRFS_EXTENT_ITEM_KEY; key.objectid = logical; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); if (ret < 0) return ret; ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); if (ret) { if (ret > 0) ret = -ENOENT; return ret; } btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); if (found_key->type == BTRFS_METADATA_ITEM_KEY) size = fs_info->extent_root->nodesize; else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) size = found_key->offset; if (found_key->objectid > logical || found_key->objectid + size <= logical) { btrfs_debug(fs_info, "logical %llu is not within any extent", logical); return -ENOENT; } eb = path->nodes[0]; item_size = btrfs_item_size_nr(eb, path->slots[0]); BUG_ON(item_size < sizeof(*ei)); ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); flags = btrfs_extent_flags(eb, ei); btrfs_debug(fs_info, "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", logical, logical - found_key->objectid, found_key->objectid, found_key->offset, flags, item_size); WARN_ON(!flags_ret); if (flags_ret) { if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; else if (flags & BTRFS_EXTENT_FLAG_DATA) *flags_ret = BTRFS_EXTENT_FLAG_DATA; else BUG_ON(1); return 0; } return -EIO; } /* * helper function to iterate extent inline refs. ptr must point to a 0 value * for the first call and may be modified. it is used to track state. * if more refs exist, 0 is returned and the next call to * __get_extent_inline_ref must pass the modified ptr parameter to get the * next ref. after the last ref was processed, 1 is returned. * returns <0 on error */ static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, struct btrfs_key *key, struct btrfs_extent_item *ei, u32 item_size, struct btrfs_extent_inline_ref **out_eiref, int *out_type) { unsigned long end; u64 flags; struct btrfs_tree_block_info *info; if (!*ptr) { /* first call */ flags = btrfs_extent_flags(eb, ei); if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { if (key->type == BTRFS_METADATA_ITEM_KEY) { /* a skinny metadata extent */ *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); } else { WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); info = (struct btrfs_tree_block_info *)(ei + 1); *out_eiref = (struct btrfs_extent_inline_ref *)(info + 1); } } else { *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); } *ptr = (unsigned long)*out_eiref; if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) return -ENOENT; } end = (unsigned long)ei + item_size; *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); *ptr += btrfs_extent_inline_ref_size(*out_type); WARN_ON(*ptr > end); if (*ptr == end) return 1; /* last */ return 0; } /* * reads the tree block backref for an extent. tree level and root are returned * through out_level and out_root. ptr must point to a 0 value for the first * call and may be modified (see __get_extent_inline_ref comment). * returns 0 if data was provided, 1 if there was no more data to provide or * <0 on error. */ int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, struct btrfs_key *key, struct btrfs_extent_item *ei, u32 item_size, u64 *out_root, u8 *out_level) { int ret; int type; struct btrfs_extent_inline_ref *eiref; if (*ptr == (unsigned long)-1) return 1; while (1) { ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size, &eiref, &type); if (ret < 0) return ret; if (type == BTRFS_TREE_BLOCK_REF_KEY || type == BTRFS_SHARED_BLOCK_REF_KEY) break; if (ret == 1) return 1; } /* we can treat both ref types equally here */ *out_root = btrfs_extent_inline_ref_offset(eb, eiref); if (key->type == BTRFS_EXTENT_ITEM_KEY) { struct btrfs_tree_block_info *info; info = (struct btrfs_tree_block_info *)(ei + 1); *out_level = btrfs_tree_block_level(eb, info); } else { ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); *out_level = (u8)key->offset; } if (ret == 1) *ptr = (unsigned long)-1; return 0; } static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, struct extent_inode_elem *inode_list, u64 root, u64 extent_item_objectid, iterate_extent_inodes_t *iterate, void *ctx) { struct extent_inode_elem *eie; int ret = 0; for (eie = inode_list; eie; eie = eie->next) { btrfs_debug(fs_info, "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", extent_item_objectid, eie->inum, eie->offset, root); ret = iterate(eie->inum, eie->offset, root, ctx); if (ret) { btrfs_debug(fs_info, "stopping iteration for %llu due to ret=%d", extent_item_objectid, ret); break; } } return ret; } /* * calls iterate() for every inode that references the extent identified by * the given parameters. * when the iterator function returns a non-zero value, iteration stops. */ int iterate_extent_inodes(struct btrfs_fs_info *fs_info, u64 extent_item_objectid, u64 extent_item_pos, int search_commit_root, iterate_extent_inodes_t *iterate, void *ctx) { int ret; struct btrfs_trans_handle *trans = NULL; struct ulist *refs = NULL; struct ulist *roots = NULL; struct ulist_node *ref_node = NULL; struct ulist_node *root_node = NULL; struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); struct ulist_iterator ref_uiter; struct ulist_iterator root_uiter; btrfs_debug(fs_info, "resolving all inodes for extent %llu", extent_item_objectid); if (!search_commit_root) { trans = btrfs_attach_transaction(fs_info->extent_root); if (IS_ERR(trans)) { if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) return PTR_ERR(trans); trans = NULL; } } if (trans) btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); else down_read(&fs_info->commit_root_sem); ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, tree_mod_seq_elem.seq, &refs, &extent_item_pos); if (ret) goto out; ULIST_ITER_INIT(&ref_uiter); while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val, tree_mod_seq_elem.seq, &roots); if (ret) break; ULIST_ITER_INIT(&root_uiter); while (!ret && (root_node = ulist_next(roots, &root_uiter))) { btrfs_debug(fs_info, "root %llu references leaf %llu, data list %#llx", root_node->val, ref_node->val, ref_node->aux); ret = iterate_leaf_refs(fs_info, (struct extent_inode_elem *) (uintptr_t)ref_node->aux, root_node->val, extent_item_objectid, iterate, ctx); } ulist_free(roots); } free_leaf_list(refs); out: if (trans) { btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); btrfs_end_transaction(trans, fs_info->extent_root); } else { up_read(&fs_info->commit_root_sem); } return ret; } int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, struct btrfs_path *path, iterate_extent_inodes_t *iterate, void *ctx) { int ret; u64 extent_item_pos; u64 flags = 0; struct btrfs_key found_key; int search_commit_root = path->search_commit_root; ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); btrfs_release_path(path); if (ret < 0) return ret; if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) return -EINVAL; extent_item_pos = logical - found_key.objectid; ret = iterate_extent_inodes(fs_info, found_key.objectid, extent_item_pos, search_commit_root, iterate, ctx); return ret; } typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, struct extent_buffer *eb, void *ctx); static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, struct btrfs_path *path, iterate_irefs_t *iterate, void *ctx) { int ret = 0; int slot; u32 cur; u32 len; u32 name_len; u64 parent = 0; int found = 0; struct extent_buffer *eb; struct btrfs_item *item; struct btrfs_inode_ref *iref; struct btrfs_key found_key; while (!ret) { ret = btrfs_find_item(fs_root, path, inum, parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, &found_key); if (ret < 0) break; if (ret) { ret = found ? 0 : -ENOENT; break; } ++found; parent = found_key.offset; slot = path->slots[0]; eb = btrfs_clone_extent_buffer(path->nodes[0]); if (!eb) { ret = -ENOMEM; break; } extent_buffer_get(eb); btrfs_tree_read_lock(eb); btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); btrfs_release_path(path); item = btrfs_item_nr(slot); iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { name_len = btrfs_inode_ref_name_len(eb, iref); /* path must be released before calling iterate()! */ btrfs_debug(fs_root->fs_info, "following ref at offset %u for inode %llu in tree %llu", cur, found_key.objectid, fs_root->objectid); ret = iterate(parent, name_len, (unsigned long)(iref + 1), eb, ctx); if (ret) break; len = sizeof(*iref) + name_len; iref = (struct btrfs_inode_ref *)((char *)iref + len); } btrfs_tree_read_unlock_blocking(eb); free_extent_buffer(eb); } btrfs_release_path(path); return ret; } static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, struct btrfs_path *path, iterate_irefs_t *iterate, void *ctx) { int ret; int slot; u64 offset = 0; u64 parent; int found = 0; struct extent_buffer *eb; struct btrfs_inode_extref *extref; u32 item_size; u32 cur_offset; unsigned long ptr; while (1) { ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, &offset); if (ret < 0) break; if (ret) { ret = found ? 0 : -ENOENT; break; } ++found; slot = path->slots[0]; eb = btrfs_clone_extent_buffer(path->nodes[0]); if (!eb) { ret = -ENOMEM; break; } extent_buffer_get(eb); btrfs_tree_read_lock(eb); btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); btrfs_release_path(path); item_size = btrfs_item_size_nr(eb, slot); ptr = btrfs_item_ptr_offset(eb, slot); cur_offset = 0; while (cur_offset < item_size) { u32 name_len; extref = (struct btrfs_inode_extref *)(ptr + cur_offset); parent = btrfs_inode_extref_parent(eb, extref); name_len = btrfs_inode_extref_name_len(eb, extref); ret = iterate(parent, name_len, (unsigned long)&extref->name, eb, ctx); if (ret) break; cur_offset += btrfs_inode_extref_name_len(eb, extref); cur_offset += sizeof(*extref); } btrfs_tree_read_unlock_blocking(eb); free_extent_buffer(eb); offset++; } btrfs_release_path(path); return ret; } static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, struct btrfs_path *path, iterate_irefs_t *iterate, void *ctx) { int ret; int found_refs = 0; ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); if (!ret) ++found_refs; else if (ret != -ENOENT) return ret; ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); if (ret == -ENOENT && found_refs) return 0; return ret; } /* * returns 0 if the path could be dumped (probably truncated) * returns <0 in case of an error */ static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, struct extent_buffer *eb, void *ctx) { struct inode_fs_paths *ipath = ctx; char *fspath; char *fspath_min; int i = ipath->fspath->elem_cnt; const int s_ptr = sizeof(char *); u32 bytes_left; bytes_left = ipath->fspath->bytes_left > s_ptr ? ipath->fspath->bytes_left - s_ptr : 0; fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, name_off, eb, inum, fspath_min, bytes_left); if (IS_ERR(fspath)) return PTR_ERR(fspath); if (fspath > fspath_min) { ipath->fspath->val[i] = (u64)(unsigned long)fspath; ++ipath->fspath->elem_cnt; ipath->fspath->bytes_left = fspath - fspath_min; } else { ++ipath->fspath->elem_missed; ipath->fspath->bytes_missing += fspath_min - fspath; ipath->fspath->bytes_left = 0; } return 0; } /* * this dumps all file system paths to the inode into the ipath struct, provided * is has been created large enough. each path is zero-terminated and accessed * from ipath->fspath->val[i]. * when it returns, there are ipath->fspath->elem_cnt number of paths available * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would * have been needed to return all paths. */ int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) { return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, inode_to_path, ipath); } struct btrfs_data_container *init_data_container(u32 total_bytes) { struct btrfs_data_container *data; size_t alloc_bytes; alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); data = vmalloc(alloc_bytes); if (!data) return ERR_PTR(-ENOMEM); if (total_bytes >= sizeof(*data)) { data->bytes_left = total_bytes - sizeof(*data); data->bytes_missing = 0; } else { data->bytes_missing = sizeof(*data) - total_bytes; data->bytes_left = 0; } data->elem_cnt = 0; data->elem_missed = 0; return data; } /* * allocates space to return multiple file system paths for an inode. * total_bytes to allocate are passed, note that space usable for actual path * information will be total_bytes - sizeof(struct inode_fs_paths). * the returned pointer must be freed with free_ipath() in the end. */ struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, struct btrfs_path *path) { struct inode_fs_paths *ifp; struct btrfs_data_container *fspath; fspath = init_data_container(total_bytes); if (IS_ERR(fspath)) return (void *)fspath; ifp = kmalloc(sizeof(*ifp), GFP_NOFS); if (!ifp) { vfree(fspath); return ERR_PTR(-ENOMEM); } ifp->btrfs_path = path; ifp->fspath = fspath; ifp->fs_root = fs_root; return ifp; } void free_ipath(struct inode_fs_paths *ipath) { if (!ipath) return; vfree(ipath->fspath); kfree(ipath); }