#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" enum scan_result { SCAN_FAIL, SCAN_SUCCEED, SCAN_PMD_NULL, SCAN_EXCEED_NONE_PTE, SCAN_PTE_NON_PRESENT, SCAN_PAGE_RO, SCAN_LACK_REFERENCED_PAGE, SCAN_PAGE_NULL, SCAN_SCAN_ABORT, SCAN_PAGE_COUNT, SCAN_PAGE_LRU, SCAN_PAGE_LOCK, SCAN_PAGE_ANON, SCAN_PAGE_COMPOUND, SCAN_ANY_PROCESS, SCAN_VMA_NULL, SCAN_VMA_CHECK, SCAN_ADDRESS_RANGE, SCAN_SWAP_CACHE_PAGE, SCAN_DEL_PAGE_LRU, SCAN_ALLOC_HUGE_PAGE_FAIL, SCAN_CGROUP_CHARGE_FAIL, SCAN_EXCEED_SWAP_PTE, SCAN_TRUNCATED, }; #define CREATE_TRACE_POINTS #include static struct task_struct *khugepaged_thread __read_mostly; static DEFINE_MUTEX(khugepaged_mutex); /* default scan 8*512 pte (or vmas) every 30 second */ static unsigned int khugepaged_pages_to_scan __read_mostly; static unsigned int khugepaged_pages_collapsed; static unsigned int khugepaged_full_scans; static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; /* during fragmentation poll the hugepage allocator once every minute */ static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; static unsigned long khugepaged_sleep_expire; static DEFINE_SPINLOCK(khugepaged_mm_lock); static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); /* * default collapse hugepages if there is at least one pte mapped like * it would have happened if the vma was large enough during page * fault. */ static unsigned int khugepaged_max_ptes_none __read_mostly; static unsigned int khugepaged_max_ptes_swap __read_mostly; #define MM_SLOTS_HASH_BITS 10 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); static struct kmem_cache *mm_slot_cache __read_mostly; /** * struct mm_slot - hash lookup from mm to mm_slot * @hash: hash collision list * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head * @mm: the mm that this information is valid for */ struct mm_slot { struct hlist_node hash; struct list_head mm_node; struct mm_struct *mm; }; /** * struct khugepaged_scan - cursor for scanning * @mm_head: the head of the mm list to scan * @mm_slot: the current mm_slot we are scanning * @address: the next address inside that to be scanned * * There is only the one khugepaged_scan instance of this cursor structure. */ struct khugepaged_scan { struct list_head mm_head; struct mm_slot *mm_slot; unsigned long address; }; static struct khugepaged_scan khugepaged_scan = { .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), }; #ifdef CONFIG_SYSFS static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); } static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned long msecs; int err; err = kstrtoul(buf, 10, &msecs); if (err || msecs > UINT_MAX) return -EINVAL; khugepaged_scan_sleep_millisecs = msecs; khugepaged_sleep_expire = 0; wake_up_interruptible(&khugepaged_wait); return count; } static struct kobj_attribute scan_sleep_millisecs_attr = __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, scan_sleep_millisecs_store); static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); } static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { unsigned long msecs; int err; err = kstrtoul(buf, 10, &msecs); if (err || msecs > UINT_MAX) return -EINVAL; khugepaged_alloc_sleep_millisecs = msecs; khugepaged_sleep_expire = 0; wake_up_interruptible(&khugepaged_wait); return count; } static struct kobj_attribute alloc_sleep_millisecs_attr = __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, alloc_sleep_millisecs_store); static ssize_t pages_to_scan_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%u\n", khugepaged_pages_to_scan); } static ssize_t pages_to_scan_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long pages; err = kstrtoul(buf, 10, &pages); if (err || !pages || pages > UINT_MAX) return -EINVAL; khugepaged_pages_to_scan = pages; return count; } static struct kobj_attribute pages_to_scan_attr = __ATTR(pages_to_scan, 0644, pages_to_scan_show, pages_to_scan_store); static ssize_t pages_collapsed_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%u\n", khugepaged_pages_collapsed); } static struct kobj_attribute pages_collapsed_attr = __ATTR_RO(pages_collapsed); static ssize_t full_scans_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%u\n", khugepaged_full_scans); } static struct kobj_attribute full_scans_attr = __ATTR_RO(full_scans); static ssize_t khugepaged_defrag_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return single_hugepage_flag_show(kobj, attr, buf, TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); } static ssize_t khugepaged_defrag_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { return single_hugepage_flag_store(kobj, attr, buf, count, TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); } static struct kobj_attribute khugepaged_defrag_attr = __ATTR(defrag, 0644, khugepaged_defrag_show, khugepaged_defrag_store); /* * max_ptes_none controls if khugepaged should collapse hugepages over * any unmapped ptes in turn potentially increasing the memory * footprint of the vmas. When max_ptes_none is 0 khugepaged will not * reduce the available free memory in the system as it * runs. Increasing max_ptes_none will instead potentially reduce the * free memory in the system during the khugepaged scan. */ static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%u\n", khugepaged_max_ptes_none); } static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long max_ptes_none; err = kstrtoul(buf, 10, &max_ptes_none); if (err || max_ptes_none > HPAGE_PMD_NR-1) return -EINVAL; khugepaged_max_ptes_none = max_ptes_none; return count; } static struct kobj_attribute khugepaged_max_ptes_none_attr = __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, khugepaged_max_ptes_none_store); static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%u\n", khugepaged_max_ptes_swap); } static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long max_ptes_swap; err = kstrtoul(buf, 10, &max_ptes_swap); if (err || max_ptes_swap > HPAGE_PMD_NR-1) return -EINVAL; khugepaged_max_ptes_swap = max_ptes_swap; return count; } static struct kobj_attribute khugepaged_max_ptes_swap_attr = __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, khugepaged_max_ptes_swap_store); static struct attribute *khugepaged_attr[] = { &khugepaged_defrag_attr.attr, &khugepaged_max_ptes_none_attr.attr, &pages_to_scan_attr.attr, &pages_collapsed_attr.attr, &full_scans_attr.attr, &scan_sleep_millisecs_attr.attr, &alloc_sleep_millisecs_attr.attr, &khugepaged_max_ptes_swap_attr.attr, NULL, }; struct attribute_group khugepaged_attr_group = { .attrs = khugepaged_attr, .name = "khugepaged", }; #endif /* CONFIG_SYSFS */ #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags, int advice) { switch (advice) { case MADV_HUGEPAGE: #ifdef CONFIG_S390 /* * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 * can't handle this properly after s390_enable_sie, so we simply * ignore the madvise to prevent qemu from causing a SIGSEGV. */ if (mm_has_pgste(vma->vm_mm)) return 0; #endif *vm_flags &= ~VM_NOHUGEPAGE; *vm_flags |= VM_HUGEPAGE; /* * If the vma become good for khugepaged to scan, * register it here without waiting a page fault that * may not happen any time soon. */ if (!(*vm_flags & VM_NO_KHUGEPAGED) && khugepaged_enter_vma_merge(vma, *vm_flags)) return -ENOMEM; break; case MADV_NOHUGEPAGE: *vm_flags &= ~VM_HUGEPAGE; *vm_flags |= VM_NOHUGEPAGE; /* * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning * this vma even if we leave the mm registered in khugepaged if * it got registered before VM_NOHUGEPAGE was set. */ break; } return 0; } int __init khugepaged_init(void) { mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", sizeof(struct mm_slot), __alignof__(struct mm_slot), 0, NULL); if (!mm_slot_cache) return -ENOMEM; khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; return 0; } void __init khugepaged_destroy(void) { kmem_cache_destroy(mm_slot_cache); } static inline struct mm_slot *alloc_mm_slot(void) { if (!mm_slot_cache) /* initialization failed */ return NULL; return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); } static inline void free_mm_slot(struct mm_slot *mm_slot) { kmem_cache_free(mm_slot_cache, mm_slot); } static struct mm_slot *get_mm_slot(struct mm_struct *mm) { struct mm_slot *mm_slot; hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) if (mm == mm_slot->mm) return mm_slot; return NULL; } static void insert_to_mm_slots_hash(struct mm_struct *mm, struct mm_slot *mm_slot) { mm_slot->mm = mm; hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); } static inline int khugepaged_test_exit(struct mm_struct *mm) { return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm); } int __khugepaged_enter(struct mm_struct *mm) { struct mm_slot *mm_slot; int wakeup; mm_slot = alloc_mm_slot(); if (!mm_slot) return -ENOMEM; /* __khugepaged_exit() must not run from under us */ VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm); if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { free_mm_slot(mm_slot); return 0; } spin_lock(&khugepaged_mm_lock); insert_to_mm_slots_hash(mm, mm_slot); /* * Insert just behind the scanning cursor, to let the area settle * down a little. */ wakeup = list_empty(&khugepaged_scan.mm_head); list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); spin_unlock(&khugepaged_mm_lock); atomic_inc(&mm->mm_count); if (wakeup) wake_up_interruptible(&khugepaged_wait); return 0; } int khugepaged_enter_vma_merge(struct vm_area_struct *vma, unsigned long vm_flags) { unsigned long hstart, hend; if (!vma->anon_vma) /* * Not yet faulted in so we will register later in the * page fault if needed. */ return 0; if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED)) /* khugepaged not yet working on file or special mappings */ return 0; hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; hend = vma->vm_end & HPAGE_PMD_MASK; if (hstart < hend) return khugepaged_enter(vma, vm_flags); return 0; } void __khugepaged_exit(struct mm_struct *mm) { struct mm_slot *mm_slot; int free = 0; spin_lock(&khugepaged_mm_lock); mm_slot = get_mm_slot(mm); if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { hash_del(&mm_slot->hash); list_del(&mm_slot->mm_node); free = 1; } spin_unlock(&khugepaged_mm_lock); if (free) { clear_bit(MMF_VM_HUGEPAGE, &mm->flags); free_mm_slot(mm_slot); mmdrop(mm); } else if (mm_slot) { /* * This is required to serialize against * khugepaged_test_exit() (which is guaranteed to run * under mmap sem read mode). Stop here (after we * return all pagetables will be destroyed) until * khugepaged has finished working on the pagetables * under the mmap_sem. */ down_write(&mm->mmap_sem); up_write(&mm->mmap_sem); } } static void release_pte_page(struct page *page) { /* 0 stands for page_is_file_cache(page) == false */ dec_node_page_state(page, NR_ISOLATED_ANON + 0); unlock_page(page); putback_lru_page(page); } static void release_pte_pages(pte_t *pte, pte_t *_pte) { while (--_pte >= pte) { pte_t pteval = *_pte; if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval))) release_pte_page(pte_page(pteval)); } } static int __collapse_huge_page_isolate(struct vm_area_struct *vma, unsigned long address, pte_t *pte) { struct page *page = NULL; pte_t *_pte; int none_or_zero = 0, result = 0, referenced = 0; bool writable = false; for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++, address += PAGE_SIZE) { pte_t pteval = *_pte; if (pte_none(pteval) || (pte_present(pteval) && is_zero_pfn(pte_pfn(pteval)))) { if (!userfaultfd_armed(vma) && ++none_or_zero <= khugepaged_max_ptes_none) { continue; } else { result = SCAN_EXCEED_NONE_PTE; goto out; } } if (!pte_present(pteval)) { result = SCAN_PTE_NON_PRESENT; goto out; } page = vm_normal_page(vma, address, pteval); if (unlikely(!page)) { result = SCAN_PAGE_NULL; goto out; } /* TODO: teach khugepaged to collapse THP mapped with pte */ if (PageCompound(page)) { result = SCAN_PAGE_COMPOUND; goto out; } VM_BUG_ON_PAGE(!PageAnon(page), page); VM_BUG_ON_PAGE(!PageSwapBacked(page), page); /* * We can do it before isolate_lru_page because the * page can't be freed from under us. NOTE: PG_lock * is needed to serialize against split_huge_page * when invoked from the VM. */ if (!trylock_page(page)) { result = SCAN_PAGE_LOCK; goto out; } /* * cannot use mapcount: can't collapse if there's a gup pin. * The page must only be referenced by the scanned process * and page swap cache. */ if (page_count(page) != 1 + !!PageSwapCache(page)) { unlock_page(page); result = SCAN_PAGE_COUNT; goto out; } if (pte_write(pteval)) { writable = true; } else { if (PageSwapCache(page) && !reuse_swap_page(page, NULL)) { unlock_page(page); result = SCAN_SWAP_CACHE_PAGE; goto out; } /* * Page is not in the swap cache. It can be collapsed * into a THP. */ } /* * Isolate the page to avoid collapsing an hugepage * currently in use by the VM. */ if (isolate_lru_page(page)) { unlock_page(page); result = SCAN_DEL_PAGE_LRU; goto out; } /* 0 stands for page_is_file_cache(page) == false */ inc_node_page_state(page, NR_ISOLATED_ANON + 0); VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(PageLRU(page), page); /* There should be enough young pte to collapse the page */ if (pte_young(pteval) || page_is_young(page) || PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, address)) referenced++; } if (likely(writable)) { if (likely(referenced)) { result = SCAN_SUCCEED; trace_mm_collapse_huge_page_isolate(page, none_or_zero, referenced, writable, result); return 1; } } else { result = SCAN_PAGE_RO; } out: release_pte_pages(pte, _pte); trace_mm_collapse_huge_page_isolate(page, none_or_zero, referenced, writable, result); return 0; } static void __collapse_huge_page_copy(pte_t *pte, struct page *page, struct vm_area_struct *vma, unsigned long address, spinlock_t *ptl) { pte_t *_pte; for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { pte_t pteval = *_pte; struct page *src_page; if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { clear_user_highpage(page, address); add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); if (is_zero_pfn(pte_pfn(pteval))) { /* * ptl mostly unnecessary. */ spin_lock(ptl); /* * paravirt calls inside pte_clear here are * superfluous. */ pte_clear(vma->vm_mm, address, _pte); spin_unlock(ptl); } } else { src_page = pte_page(pteval); copy_user_highpage(page, src_page, address, vma); VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); release_pte_page(src_page); /* * ptl mostly unnecessary, but preempt has to * be disabled to update the per-cpu stats * inside page_remove_rmap(). */ spin_lock(ptl); /* * paravirt calls inside pte_clear here are * superfluous. */ pte_clear(vma->vm_mm, address, _pte); page_remove_rmap(src_page, false); spin_unlock(ptl); free_page_and_swap_cache(src_page); } address += PAGE_SIZE; page++; } } static void khugepaged_alloc_sleep(void) { DEFINE_WAIT(wait); add_wait_queue(&khugepaged_wait, &wait); freezable_schedule_timeout_interruptible( msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); remove_wait_queue(&khugepaged_wait, &wait); } static int khugepaged_node_load[MAX_NUMNODES]; static bool khugepaged_scan_abort(int nid) { int i; /* * If node_reclaim_mode is disabled, then no extra effort is made to * allocate memory locally. */ if (!node_reclaim_mode) return false; /* If there is a count for this node already, it must be acceptable */ if (khugepaged_node_load[nid]) return false; for (i = 0; i < MAX_NUMNODES; i++) { if (!khugepaged_node_load[i]) continue; if (node_distance(nid, i) > RECLAIM_DISTANCE) return true; } return false; } /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) { gfp_t gfp = khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; /* * Disable movable allocations to avoid fallback to CMA. * Unmovable allocations can fallback to movable anyway. */ gfp &= ~__GFP_MOVABLE; return gfp; } #ifdef CONFIG_NUMA static int khugepaged_find_target_node(void) { static int last_khugepaged_target_node = NUMA_NO_NODE; int nid, target_node = 0, max_value = 0; /* find first node with max normal pages hit */ for (nid = 0; nid < MAX_NUMNODES; nid++) if (khugepaged_node_load[nid] > max_value) { max_value = khugepaged_node_load[nid]; target_node = nid; } /* do some balance if several nodes have the same hit record */ if (target_node <= last_khugepaged_target_node) for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; nid++) if (max_value == khugepaged_node_load[nid]) { target_node = nid; break; } last_khugepaged_target_node = target_node; return target_node; } static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) { if (IS_ERR(*hpage)) { if (!*wait) return false; *wait = false; *hpage = NULL; khugepaged_alloc_sleep(); } else if (*hpage) { put_page(*hpage); *hpage = NULL; } return true; } static struct page * khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) { VM_BUG_ON_PAGE(*hpage, *hpage); *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); if (unlikely(!*hpage)) { count_vm_event(THP_COLLAPSE_ALLOC_FAILED); *hpage = ERR_PTR(-ENOMEM); return NULL; } prep_transhuge_page(*hpage); count_vm_event(THP_COLLAPSE_ALLOC); return *hpage; } #else static int khugepaged_find_target_node(void) { return 0; } static inline struct page *alloc_khugepaged_hugepage(void) { struct page *page; page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), HPAGE_PMD_ORDER); if (page) prep_transhuge_page(page); return page; } static struct page *khugepaged_alloc_hugepage(bool *wait) { struct page *hpage; do { hpage = alloc_khugepaged_hugepage(); if (!hpage) { count_vm_event(THP_COLLAPSE_ALLOC_FAILED); if (!*wait) return NULL; *wait = false; khugepaged_alloc_sleep(); } else count_vm_event(THP_COLLAPSE_ALLOC); } while (unlikely(!hpage) && likely(khugepaged_enabled())); return hpage; } static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) { /* * If the hpage allocated earlier was briefly exposed in page cache * before collapse_file() failed, it is possible that racing lookups * have not yet completed, and would then be unpleasantly surprised by * finding the hpage reused for the same mapping at a different offset. * Just release the previous allocation if there is any danger of that. */ if (*hpage && page_count(*hpage) > 1) { put_page(*hpage); *hpage = NULL; } if (!*hpage) *hpage = khugepaged_alloc_hugepage(wait); if (unlikely(!*hpage)) return false; return true; } static struct page * khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) { VM_BUG_ON(!*hpage); return *hpage; } #endif static bool hugepage_vma_check(struct vm_area_struct *vma) { if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || (vma->vm_flags & VM_NOHUGEPAGE)) return false; if (shmem_file(vma->vm_file)) { if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) return false; return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff, HPAGE_PMD_NR); } if (!vma->anon_vma || vma->vm_ops) return false; if (is_vma_temporary_stack(vma)) return false; return !(vma->vm_flags & VM_NO_KHUGEPAGED); } /* * If mmap_sem temporarily dropped, revalidate vma * before taking mmap_sem. * Return 0 if succeeds, otherwise return none-zero * value (scan code). */ static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, struct vm_area_struct **vmap) { struct vm_area_struct *vma; unsigned long hstart, hend; if (unlikely(khugepaged_test_exit(mm))) return SCAN_ANY_PROCESS; *vmap = vma = find_vma(mm, address); if (!vma) return SCAN_VMA_NULL; hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; hend = vma->vm_end & HPAGE_PMD_MASK; if (address < hstart || address + HPAGE_PMD_SIZE > hend) return SCAN_ADDRESS_RANGE; if (!hugepage_vma_check(vma)) return SCAN_VMA_CHECK; return 0; } /* * Bring missing pages in from swap, to complete THP collapse. * Only done if khugepaged_scan_pmd believes it is worthwhile. * * Called and returns without pte mapped or spinlocks held, * but with mmap_sem held to protect against vma changes. */ static bool __collapse_huge_page_swapin(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pmd_t *pmd, int referenced) { pte_t pteval; int swapped_in = 0, ret = 0; struct fault_env fe = { .vma = vma, .address = address, .flags = FAULT_FLAG_ALLOW_RETRY, .pmd = pmd, }; /* we only decide to swapin, if there is enough young ptes */ if (referenced < HPAGE_PMD_NR/2) { trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); return false; } fe.pte = pte_offset_map(pmd, address); for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE; fe.pte++, fe.address += PAGE_SIZE) { pteval = *fe.pte; if (!is_swap_pte(pteval)) continue; swapped_in++; ret = do_swap_page(&fe, pteval); /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */ if (ret & VM_FAULT_RETRY) { down_read(&mm->mmap_sem); if (hugepage_vma_revalidate(mm, address, &fe.vma)) { /* vma is no longer available, don't continue to swapin */ trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); return false; } /* check if the pmd is still valid */ if (mm_find_pmd(mm, address) != pmd) return false; } if (ret & VM_FAULT_ERROR) { trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); return false; } /* pte is unmapped now, we need to map it */ fe.pte = pte_offset_map(pmd, fe.address); } fe.pte--; pte_unmap(fe.pte); trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); return true; } static void collapse_huge_page(struct mm_struct *mm, unsigned long address, struct page **hpage, int node, int referenced) { pmd_t *pmd, _pmd; pte_t *pte; pgtable_t pgtable; struct page *new_page; spinlock_t *pmd_ptl, *pte_ptl; int isolated = 0, result = 0; struct mem_cgroup *memcg; struct vm_area_struct *vma; unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ gfp_t gfp; VM_BUG_ON(address & ~HPAGE_PMD_MASK); /* Only allocate from the target node */ gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE; /* * Before allocating the hugepage, release the mmap_sem read lock. * The allocation can take potentially a long time if it involves * sync compaction, and we do not need to hold the mmap_sem during * that. We will recheck the vma after taking it again in write mode. */ up_read(&mm->mmap_sem); new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out_nolock; } /* Do not oom kill for khugepaged charges */ if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY, &memcg, true))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out_nolock; } down_read(&mm->mmap_sem); result = hugepage_vma_revalidate(mm, address, &vma); if (result) { mem_cgroup_cancel_charge(new_page, memcg, true); up_read(&mm->mmap_sem); goto out_nolock; } pmd = mm_find_pmd(mm, address); if (!pmd) { result = SCAN_PMD_NULL; mem_cgroup_cancel_charge(new_page, memcg, true); up_read(&mm->mmap_sem); goto out_nolock; } /* * __collapse_huge_page_swapin always returns with mmap_sem locked. * If it fails, we release mmap_sem and jump out_nolock. * Continuing to collapse causes inconsistency. */ if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) { mem_cgroup_cancel_charge(new_page, memcg, true); up_read(&mm->mmap_sem); goto out_nolock; } up_read(&mm->mmap_sem); /* * Prevent all access to pagetables with the exception of * gup_fast later handled by the ptep_clear_flush and the VM * handled by the anon_vma lock + PG_lock. */ down_write(&mm->mmap_sem); result = SCAN_ANY_PROCESS; if (!mmget_still_valid(mm)) goto out; result = hugepage_vma_revalidate(mm, address, &vma); if (result) goto out; /* check if the pmd is still valid */ if (mm_find_pmd(mm, address) != pmd) goto out; anon_vma_lock_write(vma->anon_vma); pte = pte_offset_map(pmd, address); pte_ptl = pte_lockptr(mm, pmd); mmun_start = address; mmun_end = address + HPAGE_PMD_SIZE; mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ /* * After this gup_fast can't run anymore. This also removes * any huge TLB entry from the CPU so we won't allow * huge and small TLB entries for the same virtual address * to avoid the risk of CPU bugs in that area. */ _pmd = pmdp_collapse_flush(vma, address, pmd); spin_unlock(pmd_ptl); mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); spin_lock(pte_ptl); isolated = __collapse_huge_page_isolate(vma, address, pte); spin_unlock(pte_ptl); if (unlikely(!isolated)) { pte_unmap(pte); spin_lock(pmd_ptl); BUG_ON(!pmd_none(*pmd)); /* * We can only use set_pmd_at when establishing * hugepmds and never for establishing regular pmds that * points to regular pagetables. Use pmd_populate for that */ pmd_populate(mm, pmd, pmd_pgtable(_pmd)); spin_unlock(pmd_ptl); anon_vma_unlock_write(vma->anon_vma); result = SCAN_FAIL; goto out; } /* * All pages are isolated and locked so anon_vma rmap * can't run anymore. */ anon_vma_unlock_write(vma->anon_vma); __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl); pte_unmap(pte); __SetPageUptodate(new_page); pgtable = pmd_pgtable(_pmd); _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); /* * spin_lock() below is not the equivalent of smp_wmb(), so * this is needed to avoid the copy_huge_page writes to become * visible after the set_pmd_at() write. */ smp_wmb(); spin_lock(pmd_ptl); BUG_ON(!pmd_none(*pmd)); page_add_new_anon_rmap(new_page, vma, address, true); mem_cgroup_commit_charge(new_page, memcg, false, true); lru_cache_add_active_or_unevictable(new_page, vma); pgtable_trans_huge_deposit(mm, pmd, pgtable); set_pmd_at(mm, address, pmd, _pmd); update_mmu_cache_pmd(vma, address, pmd); spin_unlock(pmd_ptl); *hpage = NULL; khugepaged_pages_collapsed++; result = SCAN_SUCCEED; out_up_write: up_write(&mm->mmap_sem); out_nolock: trace_mm_collapse_huge_page(mm, isolated, result); return; out: mem_cgroup_cancel_charge(new_page, memcg, true); goto out_up_write; } static int khugepaged_scan_pmd(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, struct page **hpage) { pmd_t *pmd; pte_t *pte, *_pte; int ret = 0, none_or_zero = 0, result = 0, referenced = 0; struct page *page = NULL; unsigned long _address; spinlock_t *ptl; int node = NUMA_NO_NODE, unmapped = 0; bool writable = false; VM_BUG_ON(address & ~HPAGE_PMD_MASK); pmd = mm_find_pmd(mm, address); if (!pmd) { result = SCAN_PMD_NULL; goto out; } memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); pte = pte_offset_map_lock(mm, pmd, address, &ptl); for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++, _address += PAGE_SIZE) { pte_t pteval = *_pte; if (is_swap_pte(pteval)) { if (++unmapped <= khugepaged_max_ptes_swap) { continue; } else { result = SCAN_EXCEED_SWAP_PTE; goto out_unmap; } } if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { if (!userfaultfd_armed(vma) && ++none_or_zero <= khugepaged_max_ptes_none) { continue; } else { result = SCAN_EXCEED_NONE_PTE; goto out_unmap; } } if (!pte_present(pteval)) { result = SCAN_PTE_NON_PRESENT; goto out_unmap; } if (pte_write(pteval)) writable = true; page = vm_normal_page(vma, _address, pteval); if (unlikely(!page)) { result = SCAN_PAGE_NULL; goto out_unmap; } /* TODO: teach khugepaged to collapse THP mapped with pte */ if (PageCompound(page)) { result = SCAN_PAGE_COMPOUND; goto out_unmap; } /* * Record which node the original page is from and save this * information to khugepaged_node_load[]. * Khupaged will allocate hugepage from the node has the max * hit record. */ node = page_to_nid(page); if (khugepaged_scan_abort(node)) { result = SCAN_SCAN_ABORT; goto out_unmap; } khugepaged_node_load[node]++; if (!PageLRU(page)) { result = SCAN_PAGE_LRU; goto out_unmap; } if (PageLocked(page)) { result = SCAN_PAGE_LOCK; goto out_unmap; } if (!PageAnon(page)) { result = SCAN_PAGE_ANON; goto out_unmap; } /* * cannot use mapcount: can't collapse if there's a gup pin. * The page must only be referenced by the scanned process * and page swap cache. */ if (page_count(page) != 1 + !!PageSwapCache(page)) { result = SCAN_PAGE_COUNT; goto out_unmap; } if (pte_young(pteval) || page_is_young(page) || PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, address)) referenced++; } if (writable) { if (referenced) { result = SCAN_SUCCEED; ret = 1; } else { result = SCAN_LACK_REFERENCED_PAGE; } } else { result = SCAN_PAGE_RO; } out_unmap: pte_unmap_unlock(pte, ptl); if (ret) { node = khugepaged_find_target_node(); /* collapse_huge_page will return with the mmap_sem released */ collapse_huge_page(mm, address, hpage, node, referenced); } out: trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, none_or_zero, result, unmapped); return ret; } static void collect_mm_slot(struct mm_slot *mm_slot) { struct mm_struct *mm = mm_slot->mm; VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); if (khugepaged_test_exit(mm)) { /* free mm_slot */ hash_del(&mm_slot->hash); list_del(&mm_slot->mm_node); /* * Not strictly needed because the mm exited already. * * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); */ /* khugepaged_mm_lock actually not necessary for the below */ free_mm_slot(mm_slot); mmdrop(mm); } } #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) { struct vm_area_struct *vma; struct mm_struct *mm; unsigned long addr; pmd_t *pmd, _pmd; i_mmap_lock_write(mapping); vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { /* probably overkill */ if (vma->anon_vma) continue; addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); if (addr & ~HPAGE_PMD_MASK) continue; if (vma->vm_end < addr + HPAGE_PMD_SIZE) continue; mm = vma->vm_mm; pmd = mm_find_pmd(mm, addr); if (!pmd) continue; /* * We need exclusive mmap_sem to retract page table. * If trylock fails we would end up with pte-mapped THP after * re-fault. Not ideal, but it's more important to not disturb * the system too much. */ if (down_write_trylock(&mm->mmap_sem)) { if (!khugepaged_test_exit(mm)) { spinlock_t *ptl = pmd_lock(mm, pmd); /* assume page table is clear */ _pmd = pmdp_collapse_flush(vma, addr, pmd); spin_unlock(ptl); atomic_long_dec(&mm->nr_ptes); pte_free(mm, pmd_pgtable(_pmd)); } up_write(&mm->mmap_sem); } } i_mmap_unlock_write(mapping); } /** * collapse_shmem - collapse small tmpfs/shmem pages into huge one. * * Basic scheme is simple, details are more complex: * - allocate and lock a new huge page; * - scan over radix tree replacing old pages the new one * + swap in pages if necessary; * + fill in gaps; * + keep old pages around in case if rollback is required; * - if replacing succeed: * + copy data over; * + free old pages; * + unlock huge page; * - if replacing failed; * + put all pages back and unfreeze them; * + restore gaps in the radix-tree; * + unlock and free huge page; */ static void collapse_shmem(struct mm_struct *mm, struct address_space *mapping, pgoff_t start, struct page **hpage, int node) { gfp_t gfp; struct page *page, *new_page, *tmp; struct mem_cgroup *memcg; pgoff_t index, end = start + HPAGE_PMD_NR; LIST_HEAD(pagelist); struct radix_tree_iter iter; void **slot; int nr_none = 0, result = SCAN_SUCCEED; VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); /* Only allocate from the target node */ gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE; new_page = khugepaged_alloc_page(hpage, gfp, node); if (!new_page) { result = SCAN_ALLOC_HUGE_PAGE_FAIL; goto out; } /* Do not oom kill for khugepaged charges */ if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY, &memcg, true))) { result = SCAN_CGROUP_CHARGE_FAIL; goto out; } __SetPageLocked(new_page); __SetPageSwapBacked(new_page); new_page->index = start; new_page->mapping = mapping; /* * At this point the new_page is locked and not up-to-date. * It's safe to insert it into the page cache, because nobody would * be able to map it or use it in another way until we unlock it. */ index = start; spin_lock_irq(&mapping->tree_lock); radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { int n = min(iter.index, end) - index; /* * Stop if extent has been hole-punched, and is now completely * empty (the more obvious i_size_read() check would take an * irq-unsafe seqlock on 32-bit). */ if (n >= HPAGE_PMD_NR) { result = SCAN_TRUNCATED; goto tree_locked; } /* * Handle holes in the radix tree: charge it from shmem and * insert relevant subpage of new_page into the radix-tree. */ if (n && !shmem_charge(mapping->host, n)) { result = SCAN_FAIL; goto tree_locked; } for (; index < min(iter.index, end); index++) { radix_tree_insert(&mapping->page_tree, index, new_page + (index % HPAGE_PMD_NR)); } nr_none += n; /* We are done. */ if (index >= end) break; page = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) { spin_unlock_irq(&mapping->tree_lock); /* swap in or instantiate fallocated page */ if (shmem_getpage(mapping->host, index, &page, SGP_NOHUGE)) { result = SCAN_FAIL; goto tree_unlocked; } } else if (trylock_page(page)) { get_page(page); spin_unlock_irq(&mapping->tree_lock); } else { result = SCAN_PAGE_LOCK; goto tree_locked; } /* * The page must be locked, so we can drop the tree_lock * without racing with truncate. */ VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageUptodate(page), page); /* * If file was truncated then extended, or hole-punched, before * we locked the first page, then a THP might be there already. */ if (PageTransCompound(page)) { result = SCAN_PAGE_COMPOUND; goto out_unlock; } if (page_mapping(page) != mapping) { result = SCAN_TRUNCATED; goto out_unlock; } if (isolate_lru_page(page)) { result = SCAN_DEL_PAGE_LRU; goto out_unlock; } if (page_mapped(page)) unmap_mapping_range(mapping, index << PAGE_SHIFT, PAGE_SIZE, 0); spin_lock_irq(&mapping->tree_lock); slot = radix_tree_lookup_slot(&mapping->page_tree, index); VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot, &mapping->tree_lock), page); VM_BUG_ON_PAGE(page_mapped(page), page); /* * The page is expected to have page_count() == 3: * - we hold a pin on it; * - one reference from radix tree; * - one from isolate_lru_page; */ if (!page_ref_freeze(page, 3)) { result = SCAN_PAGE_COUNT; spin_unlock_irq(&mapping->tree_lock); putback_lru_page(page); goto out_unlock; } /* * Add the page to the list to be able to undo the collapse if * something go wrong. */ list_add_tail(&page->lru, &pagelist); /* Finally, replace with the new page. */ radix_tree_replace_slot(slot, new_page + (index % HPAGE_PMD_NR)); slot = radix_tree_iter_next(&iter); index++; continue; out_unlock: unlock_page(page); put_page(page); goto tree_unlocked; } /* * Handle hole in radix tree at the end of the range. * This code only triggers if there's nothing in radix tree * beyond 'end'. */ if (index < end) { int n = end - index; /* Stop if extent has been truncated, and is now empty */ if (n >= HPAGE_PMD_NR) { result = SCAN_TRUNCATED; goto tree_locked; } if (!shmem_charge(mapping->host, n)) { result = SCAN_FAIL; goto tree_locked; } for (; index < end; index++) { radix_tree_insert(&mapping->page_tree, index, new_page + (index % HPAGE_PMD_NR)); } nr_none += n; } __inc_node_page_state(new_page, NR_SHMEM_THPS); if (nr_none) { struct zone *zone = page_zone(new_page); __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none); __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none); } tree_locked: spin_unlock_irq(&mapping->tree_lock); tree_unlocked: if (result == SCAN_SUCCEED) { /* * Replacing old pages with new one has succeed, now we need to * copy the content and free old pages. */ index = start; list_for_each_entry_safe(page, tmp, &pagelist, lru) { while (index < page->index) { clear_highpage(new_page + (index % HPAGE_PMD_NR)); index++; } copy_highpage(new_page + (page->index % HPAGE_PMD_NR), page); list_del(&page->lru); page->mapping = NULL; page_ref_unfreeze(page, 1); ClearPageActive(page); ClearPageUnevictable(page); unlock_page(page); put_page(page); index++; } while (index < end) { clear_highpage(new_page + (index % HPAGE_PMD_NR)); index++; } SetPageUptodate(new_page); page_ref_add(new_page, HPAGE_PMD_NR - 1); set_page_dirty(new_page); mem_cgroup_commit_charge(new_page, memcg, false, true); lru_cache_add_anon(new_page); /* * Remove pte page tables, so we can re-fault the page as huge. */ retract_page_tables(mapping, start); *hpage = NULL; } else { /* Something went wrong: rollback changes to the radix-tree */ spin_lock_irq(&mapping->tree_lock); mapping->nrpages -= nr_none; shmem_uncharge(mapping->host, nr_none); radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { if (iter.index >= end) break; page = list_first_entry_or_null(&pagelist, struct page, lru); if (!page || iter.index < page->index) { if (!nr_none) break; nr_none--; /* Put holes back where they were */ radix_tree_delete(&mapping->page_tree, iter.index); slot = radix_tree_iter_next(&iter); continue; } VM_BUG_ON_PAGE(page->index != iter.index, page); /* Unfreeze the page. */ list_del(&page->lru); page_ref_unfreeze(page, 2); radix_tree_replace_slot(slot, page); spin_unlock_irq(&mapping->tree_lock); unlock_page(page); putback_lru_page(page); spin_lock_irq(&mapping->tree_lock); slot = radix_tree_iter_next(&iter); } VM_BUG_ON(nr_none); spin_unlock_irq(&mapping->tree_lock); mem_cgroup_cancel_charge(new_page, memcg, true); new_page->mapping = NULL; } unlock_page(new_page); out: VM_BUG_ON(!list_empty(&pagelist)); /* TODO: tracepoints */ } static void khugepaged_scan_shmem(struct mm_struct *mm, struct address_space *mapping, pgoff_t start, struct page **hpage) { struct page *page = NULL; struct radix_tree_iter iter; void **slot; int present, swap; int node = NUMA_NO_NODE; int result = SCAN_SUCCEED; present = 0; swap = 0; memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); rcu_read_lock(); radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { if (iter.index >= start + HPAGE_PMD_NR) break; page = radix_tree_deref_slot(slot); if (radix_tree_deref_retry(page)) { slot = radix_tree_iter_retry(&iter); continue; } if (radix_tree_exception(page)) { if (++swap > khugepaged_max_ptes_swap) { result = SCAN_EXCEED_SWAP_PTE; break; } continue; } if (PageTransCompound(page)) { result = SCAN_PAGE_COMPOUND; break; } node = page_to_nid(page); if (khugepaged_scan_abort(node)) { result = SCAN_SCAN_ABORT; break; } khugepaged_node_load[node]++; if (!PageLRU(page)) { result = SCAN_PAGE_LRU; break; } if (page_count(page) != 1 + page_mapcount(page)) { result = SCAN_PAGE_COUNT; break; } /* * We probably should check if the page is referenced here, but * nobody would transfer pte_young() to PageReferenced() for us. * And rmap walk here is just too costly... */ present++; if (need_resched()) { cond_resched_rcu(); slot = radix_tree_iter_next(&iter); } } rcu_read_unlock(); if (result == SCAN_SUCCEED) { if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { result = SCAN_EXCEED_NONE_PTE; } else { node = khugepaged_find_target_node(); collapse_shmem(mm, mapping, start, hpage, node); } } /* TODO: tracepoints */ } #else static void khugepaged_scan_shmem(struct mm_struct *mm, struct address_space *mapping, pgoff_t start, struct page **hpage) { BUILD_BUG(); } #endif static unsigned int khugepaged_scan_mm_slot(unsigned int pages, struct page **hpage) __releases(&khugepaged_mm_lock) __acquires(&khugepaged_mm_lock) { struct mm_slot *mm_slot; struct mm_struct *mm; struct vm_area_struct *vma; int progress = 0; VM_BUG_ON(!pages); VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); if (khugepaged_scan.mm_slot) mm_slot = khugepaged_scan.mm_slot; else { mm_slot = list_entry(khugepaged_scan.mm_head.next, struct mm_slot, mm_node); khugepaged_scan.address = 0; khugepaged_scan.mm_slot = mm_slot; } spin_unlock(&khugepaged_mm_lock); mm = mm_slot->mm; /* * Don't wait for semaphore (to avoid long wait times). Just move to * the next mm on the list. */ vma = NULL; if (unlikely(!down_read_trylock(&mm->mmap_sem))) goto breakouterloop_mmap_sem; if (likely(!khugepaged_test_exit(mm))) vma = find_vma(mm, khugepaged_scan.address); progress++; for (; vma; vma = vma->vm_next) { unsigned long hstart, hend; cond_resched(); if (unlikely(khugepaged_test_exit(mm))) { progress++; break; } if (!hugepage_vma_check(vma)) { skip: progress++; continue; } hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; hend = vma->vm_end & HPAGE_PMD_MASK; if (hstart >= hend) goto skip; if (khugepaged_scan.address > hend) goto skip; if (khugepaged_scan.address < hstart) khugepaged_scan.address = hstart; VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); while (khugepaged_scan.address < hend) { int ret; cond_resched(); if (unlikely(khugepaged_test_exit(mm))) goto breakouterloop; VM_BUG_ON(khugepaged_scan.address < hstart || khugepaged_scan.address + HPAGE_PMD_SIZE > hend); if (shmem_file(vma->vm_file)) { struct file *file; pgoff_t pgoff = linear_page_index(vma, khugepaged_scan.address); if (!shmem_huge_enabled(vma)) goto skip; file = get_file(vma->vm_file); up_read(&mm->mmap_sem); ret = 1; khugepaged_scan_shmem(mm, file->f_mapping, pgoff, hpage); fput(file); } else { ret = khugepaged_scan_pmd(mm, vma, khugepaged_scan.address, hpage); } /* move to next address */ khugepaged_scan.address += HPAGE_PMD_SIZE; progress += HPAGE_PMD_NR; if (ret) /* we released mmap_sem so break loop */ goto breakouterloop_mmap_sem; if (progress >= pages) goto breakouterloop; } } breakouterloop: up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ breakouterloop_mmap_sem: spin_lock(&khugepaged_mm_lock); VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); /* * Release the current mm_slot if this mm is about to die, or * if we scanned all vmas of this mm. */ if (khugepaged_test_exit(mm) || !vma) { /* * Make sure that if mm_users is reaching zero while * khugepaged runs here, khugepaged_exit will find * mm_slot not pointing to the exiting mm. */ if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { khugepaged_scan.mm_slot = list_entry( mm_slot->mm_node.next, struct mm_slot, mm_node); khugepaged_scan.address = 0; } else { khugepaged_scan.mm_slot = NULL; khugepaged_full_scans++; } collect_mm_slot(mm_slot); } return progress; } static int khugepaged_has_work(void) { return !list_empty(&khugepaged_scan.mm_head) && khugepaged_enabled(); } static int khugepaged_wait_event(void) { return !list_empty(&khugepaged_scan.mm_head) || kthread_should_stop(); } static void khugepaged_do_scan(void) { struct page *hpage = NULL; unsigned int progress = 0, pass_through_head = 0; unsigned int pages = khugepaged_pages_to_scan; bool wait = true; barrier(); /* write khugepaged_pages_to_scan to local stack */ while (progress < pages) { if (!khugepaged_prealloc_page(&hpage, &wait)) break; cond_resched(); if (unlikely(kthread_should_stop() || try_to_freeze())) break; spin_lock(&khugepaged_mm_lock); if (!khugepaged_scan.mm_slot) pass_through_head++; if (khugepaged_has_work() && pass_through_head < 2) progress += khugepaged_scan_mm_slot(pages - progress, &hpage); else progress = pages; spin_unlock(&khugepaged_mm_lock); } if (!IS_ERR_OR_NULL(hpage)) put_page(hpage); } static bool khugepaged_should_wakeup(void) { return kthread_should_stop() || time_after_eq(jiffies, khugepaged_sleep_expire); } static void khugepaged_wait_work(void) { if (khugepaged_has_work()) { const unsigned long scan_sleep_jiffies = msecs_to_jiffies(khugepaged_scan_sleep_millisecs); if (!scan_sleep_jiffies) return; khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; wait_event_freezable_timeout(khugepaged_wait, khugepaged_should_wakeup(), scan_sleep_jiffies); return; } if (khugepaged_enabled()) wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); } static int khugepaged(void *none) { struct mm_slot *mm_slot; set_freezable(); set_user_nice(current, MAX_NICE); while (!kthread_should_stop()) { khugepaged_do_scan(); khugepaged_wait_work(); } spin_lock(&khugepaged_mm_lock); mm_slot = khugepaged_scan.mm_slot; khugepaged_scan.mm_slot = NULL; if (mm_slot) collect_mm_slot(mm_slot); spin_unlock(&khugepaged_mm_lock); return 0; } static void set_recommended_min_free_kbytes(void) { struct zone *zone; int nr_zones = 0; unsigned long recommended_min; for_each_populated_zone(zone) nr_zones++; /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ recommended_min = pageblock_nr_pages * nr_zones * 2; /* * Make sure that on average at least two pageblocks are almost free * of another type, one for a migratetype to fall back to and a * second to avoid subsequent fallbacks of other types There are 3 * MIGRATE_TYPES we care about. */ recommended_min += pageblock_nr_pages * nr_zones * MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; /* don't ever allow to reserve more than 5% of the lowmem */ recommended_min = min(recommended_min, (unsigned long) nr_free_buffer_pages() / 20); recommended_min <<= (PAGE_SHIFT-10); if (recommended_min > min_free_kbytes) { if (user_min_free_kbytes >= 0) pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", min_free_kbytes, recommended_min); min_free_kbytes = recommended_min; } setup_per_zone_wmarks(); } int start_stop_khugepaged(void) { int err = 0; mutex_lock(&khugepaged_mutex); if (khugepaged_enabled()) { if (!khugepaged_thread) khugepaged_thread = kthread_run(khugepaged, NULL, "khugepaged"); if (IS_ERR(khugepaged_thread)) { pr_err("khugepaged: kthread_run(khugepaged) failed\n"); err = PTR_ERR(khugepaged_thread); khugepaged_thread = NULL; goto fail; } if (!list_empty(&khugepaged_scan.mm_head)) wake_up_interruptible(&khugepaged_wait); set_recommended_min_free_kbytes(); } else if (khugepaged_thread) { kthread_stop(khugepaged_thread); khugepaged_thread = NULL; } fail: mutex_unlock(&khugepaged_mutex); return err; } void khugepaged_min_free_kbytes_update(void) { mutex_lock(&khugepaged_mutex); if (khugepaged_enabled() && khugepaged_thread) set_recommended_min_free_kbytes(); mutex_unlock(&khugepaged_mutex); }