/* * linux/mm/memory.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * demand-loading started 01.12.91 - seems it is high on the list of * things wanted, and it should be easy to implement. - Linus */ /* * Ok, demand-loading was easy, shared pages a little bit tricker. Shared * pages started 02.12.91, seems to work. - Linus. * * Tested sharing by executing about 30 /bin/sh: under the old kernel it * would have taken more than the 6M I have free, but it worked well as * far as I could see. * * Also corrected some "invalidate()"s - I wasn't doing enough of them. */ /* * Real VM (paging to/from disk) started 18.12.91. Much more work and * thought has to go into this. Oh, well.. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. * Found it. Everything seems to work now. * 20.12.91 - Ok, making the swap-device changeable like the root. */ /* * 05.04.94 - Multi-page memory management added for v1.1. * Idea by Alex Bligh (alex@cconcepts.co.uk) * * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG * (Gerhard.Wichert@pdb.siemens.de) * * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. #endif #ifndef CONFIG_NEED_MULTIPLE_NODES /* use the per-pgdat data instead for discontigmem - mbligh */ unsigned long max_mapnr; struct page *mem_map; EXPORT_SYMBOL(max_mapnr); EXPORT_SYMBOL(mem_map); #endif /* * A number of key systems in x86 including ioremap() rely on the assumption * that high_memory defines the upper bound on direct map memory, then end * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL * and ZONE_HIGHMEM. */ void * high_memory; EXPORT_SYMBOL(high_memory); /* * Randomize the address space (stacks, mmaps, brk, etc.). * * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, * as ancient (libc5 based) binaries can segfault. ) */ int randomize_va_space __read_mostly = #ifdef CONFIG_COMPAT_BRK 1; #else 2; #endif static int __init disable_randmaps(char *s) { randomize_va_space = 0; return 1; } __setup("norandmaps", disable_randmaps); unsigned long zero_pfn __read_mostly; unsigned long highest_memmap_pfn __read_mostly; EXPORT_SYMBOL(zero_pfn); /* * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() */ static int __init init_zero_pfn(void) { zero_pfn = page_to_pfn(ZERO_PAGE(0)); return 0; } core_initcall(init_zero_pfn); #if defined(SPLIT_RSS_COUNTING) void sync_mm_rss(struct mm_struct *mm) { int i; for (i = 0; i < NR_MM_COUNTERS; i++) { if (current->rss_stat.count[i]) { add_mm_counter(mm, i, current->rss_stat.count[i]); current->rss_stat.count[i] = 0; } } current->rss_stat.events = 0; } static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) { struct task_struct *task = current; if (likely(task->mm == mm)) task->rss_stat.count[member] += val; else add_mm_counter(mm, member, val); } #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) /* sync counter once per 64 page faults */ #define TASK_RSS_EVENTS_THRESH (64) static void check_sync_rss_stat(struct task_struct *task) { if (unlikely(task != current)) return; if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) sync_mm_rss(task->mm); } #else /* SPLIT_RSS_COUNTING */ #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) static void check_sync_rss_stat(struct task_struct *task) { } #endif /* SPLIT_RSS_COUNTING */ #ifdef HAVE_GENERIC_MMU_GATHER static bool tlb_next_batch(struct mmu_gather *tlb) { struct mmu_gather_batch *batch; batch = tlb->active; if (batch->next) { tlb->active = batch->next; return true; } if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) return false; batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); if (!batch) return false; tlb->batch_count++; batch->next = NULL; batch->nr = 0; batch->max = MAX_GATHER_BATCH; tlb->active->next = batch; tlb->active = batch; return true; } /* tlb_gather_mmu * Called to initialize an (on-stack) mmu_gather structure for page-table * tear-down from @mm. The @fullmm argument is used when @mm is without * users and we're going to destroy the full address space (exit/execve). */ void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) { tlb->mm = mm; /* Is it from 0 to ~0? */ tlb->fullmm = !(start | (end+1)); tlb->need_flush_all = 0; tlb->local.next = NULL; tlb->local.nr = 0; tlb->local.max = ARRAY_SIZE(tlb->__pages); tlb->active = &tlb->local; tlb->batch_count = 0; #ifdef CONFIG_HAVE_RCU_TABLE_FREE tlb->batch = NULL; #endif tlb->page_size = 0; __tlb_reset_range(tlb); } static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) { if (!tlb->end) return; tlb_flush(tlb); mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); #ifdef CONFIG_HAVE_RCU_TABLE_FREE tlb_table_flush(tlb); #endif __tlb_reset_range(tlb); } static void tlb_flush_mmu_free(struct mmu_gather *tlb) { struct mmu_gather_batch *batch; for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { free_pages_and_swap_cache(batch->pages, batch->nr); batch->nr = 0; } tlb->active = &tlb->local; } void tlb_flush_mmu(struct mmu_gather *tlb) { tlb_flush_mmu_tlbonly(tlb); tlb_flush_mmu_free(tlb); } /* tlb_finish_mmu * Called at the end of the shootdown operation to free up any resources * that were required. */ void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) { struct mmu_gather_batch *batch, *next; tlb_flush_mmu(tlb); /* keep the page table cache within bounds */ check_pgt_cache(); for (batch = tlb->local.next; batch; batch = next) { next = batch->next; free_pages((unsigned long)batch, 0); } tlb->local.next = NULL; } /* __tlb_remove_page * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while * handling the additional races in SMP caused by other CPUs caching valid * mappings in their TLBs. Returns the number of free page slots left. * When out of page slots we must call tlb_flush_mmu(). *returns true if the caller should flush. */ bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) { struct mmu_gather_batch *batch; VM_BUG_ON(!tlb->end); if (!tlb->page_size) tlb->page_size = page_size; else { if (page_size != tlb->page_size) return true; } batch = tlb->active; if (batch->nr == batch->max) { if (!tlb_next_batch(tlb)) return true; batch = tlb->active; } VM_BUG_ON_PAGE(batch->nr > batch->max, page); batch->pages[batch->nr++] = page; return false; } #endif /* HAVE_GENERIC_MMU_GATHER */ #ifdef CONFIG_HAVE_RCU_TABLE_FREE /* * See the comment near struct mmu_table_batch. */ static void tlb_remove_table_smp_sync(void *arg) { /* Simply deliver the interrupt */ } static void tlb_remove_table_one(void *table) { /* * This isn't an RCU grace period and hence the page-tables cannot be * assumed to be actually RCU-freed. * * It is however sufficient for software page-table walkers that rely on * IRQ disabling. See the comment near struct mmu_table_batch. */ smp_call_function(tlb_remove_table_smp_sync, NULL, 1); __tlb_remove_table(table); } static void tlb_remove_table_rcu(struct rcu_head *head) { struct mmu_table_batch *batch; int i; batch = container_of(head, struct mmu_table_batch, rcu); for (i = 0; i < batch->nr; i++) __tlb_remove_table(batch->tables[i]); free_page((unsigned long)batch); } void tlb_table_flush(struct mmu_gather *tlb) { struct mmu_table_batch **batch = &tlb->batch; if (*batch) { call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); *batch = NULL; } } void tlb_remove_table(struct mmu_gather *tlb, void *table) { struct mmu_table_batch **batch = &tlb->batch; if (*batch == NULL) { *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); if (*batch == NULL) { tlb_remove_table_one(table); return; } (*batch)->nr = 0; } (*batch)->tables[(*batch)->nr++] = table; if ((*batch)->nr == MAX_TABLE_BATCH) tlb_table_flush(tlb); } #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ /* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, unsigned long addr) { pgtable_t token = pmd_pgtable(*pmd); pmd_clear(pmd); pte_free_tlb(tlb, token, addr); atomic_long_dec(&tlb->mm->nr_ptes); } static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pmd_t *pmd; unsigned long next; unsigned long start; start = addr; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; free_pte_range(tlb, pmd, addr); } while (pmd++, addr = next, addr != end); start &= PUD_MASK; if (start < floor) return; if (ceiling) { ceiling &= PUD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pmd = pmd_offset(pud, start); pud_clear(pud); pmd_free_tlb(tlb, pmd, start); mm_dec_nr_pmds(tlb->mm); } static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pud_t *pud; unsigned long next; unsigned long start; start = addr; pud = pud_offset(pgd, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; free_pmd_range(tlb, pud, addr, next, floor, ceiling); } while (pud++, addr = next, addr != end); start &= PGDIR_MASK; if (start < floor) return; if (ceiling) { ceiling &= PGDIR_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) return; pud = pud_offset(pgd, start); pgd_clear(pgd); pud_free_tlb(tlb, pud, start); } /* * This function frees user-level page tables of a process. */ void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, unsigned long end, unsigned long floor, unsigned long ceiling) { pgd_t *pgd; unsigned long next; /* * The next few lines have given us lots of grief... * * Why are we testing PMD* at this top level? Because often * there will be no work to do at all, and we'd prefer not to * go all the way down to the bottom just to discover that. * * Why all these "- 1"s? Because 0 represents both the bottom * of the address space and the top of it (using -1 for the * top wouldn't help much: the masks would do the wrong thing). * The rule is that addr 0 and floor 0 refer to the bottom of * the address space, but end 0 and ceiling 0 refer to the top * Comparisons need to use "end - 1" and "ceiling - 1" (though * that end 0 case should be mythical). * * Wherever addr is brought up or ceiling brought down, we must * be careful to reject "the opposite 0" before it confuses the * subsequent tests. But what about where end is brought down * by PMD_SIZE below? no, end can't go down to 0 there. * * Whereas we round start (addr) and ceiling down, by different * masks at different levels, in order to test whether a table * now has no other vmas using it, so can be freed, we don't * bother to round floor or end up - the tests don't need that. */ addr &= PMD_MASK; if (addr < floor) { addr += PMD_SIZE; if (!addr) return; } if (ceiling) { ceiling &= PMD_MASK; if (!ceiling) return; } if (end - 1 > ceiling - 1) end -= PMD_SIZE; if (addr > end - 1) return; pgd = pgd_offset(tlb->mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; free_pud_range(tlb, pgd, addr, next, floor, ceiling); } while (pgd++, addr = next, addr != end); } void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long floor, unsigned long ceiling) { while (vma) { struct vm_area_struct *next = vma->vm_next; unsigned long addr = vma->vm_start; /* * Hide vma from rmap and truncate_pagecache before freeing * pgtables */ unlink_anon_vmas(vma); unlink_file_vma(vma); if (is_vm_hugetlb_page(vma)) { hugetlb_free_pgd_range(tlb, addr, vma->vm_end, floor, next? next->vm_start: ceiling); } else { /* * Optimization: gather nearby vmas into one call down */ while (next && next->vm_start <= vma->vm_end + PMD_SIZE && !is_vm_hugetlb_page(next)) { vma = next; next = vma->vm_next; unlink_anon_vmas(vma); unlink_file_vma(vma); } free_pgd_range(tlb, addr, vma->vm_end, floor, next? next->vm_start: ceiling); } vma = next; } } int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) { spinlock_t *ptl; pgtable_t new = pte_alloc_one(mm, address); if (!new) return -ENOMEM; /* * Ensure all pte setup (eg. pte page lock and page clearing) are * visible before the pte is made visible to other CPUs by being * put into page tables. * * The other side of the story is the pointer chasing in the page * table walking code (when walking the page table without locking; * ie. most of the time). Fortunately, these data accesses consist * of a chain of data-dependent loads, meaning most CPUs (alpha * being the notable exception) will already guarantee loads are * seen in-order. See the alpha page table accessors for the * smp_read_barrier_depends() barriers in page table walking code. */ smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ ptl = pmd_lock(mm, pmd); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ atomic_long_inc(&mm->nr_ptes); pmd_populate(mm, pmd, new); new = NULL; } spin_unlock(ptl); if (new) pte_free(mm, new); return 0; } int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) { pte_t *new = pte_alloc_one_kernel(&init_mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&init_mm.page_table_lock); if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ pmd_populate_kernel(&init_mm, pmd, new); new = NULL; } spin_unlock(&init_mm.page_table_lock); if (new) pte_free_kernel(&init_mm, new); return 0; } static inline void init_rss_vec(int *rss) { memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); } static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) { int i; if (current->mm == mm) sync_mm_rss(mm); for (i = 0; i < NR_MM_COUNTERS; i++) if (rss[i]) add_mm_counter(mm, i, rss[i]); } /* * This function is called to print an error when a bad pte * is found. For example, we might have a PFN-mapped pte in * a region that doesn't allow it. * * The calling function must still handle the error. */ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, pte_t pte, struct page *page) { pgd_t *pgd = pgd_offset(vma->vm_mm, addr); pud_t *pud = pud_offset(pgd, addr); pmd_t *pmd = pmd_offset(pud, addr); struct address_space *mapping; pgoff_t index; static unsigned long resume; static unsigned long nr_shown; static unsigned long nr_unshown; /* * Allow a burst of 60 reports, then keep quiet for that minute; * or allow a steady drip of one report per second. */ if (nr_shown == 60) { if (time_before(jiffies, resume)) { nr_unshown++; return; } if (nr_unshown) { pr_alert("BUG: Bad page map: %lu messages suppressed\n", nr_unshown); nr_unshown = 0; } nr_shown = 0; } if (nr_shown++ == 0) resume = jiffies + 60 * HZ; mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; index = linear_page_index(vma, addr); pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", current->comm, (long long)pte_val(pte), (long long)pmd_val(*pmd)); if (page) dump_page(page, "bad pte"); pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); /* * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y */ pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", vma->vm_file, vma->vm_ops ? vma->vm_ops->fault : NULL, vma->vm_file ? vma->vm_file->f_op->mmap : NULL, mapping ? mapping->a_ops->readpage : NULL); dump_stack(); add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); } /* * vm_normal_page -- This function gets the "struct page" associated with a pte. * * "Special" mappings do not wish to be associated with a "struct page" (either * it doesn't exist, or it exists but they don't want to touch it). In this * case, NULL is returned here. "Normal" mappings do have a struct page. * * There are 2 broad cases. Firstly, an architecture may define a pte_special() * pte bit, in which case this function is trivial. Secondly, an architecture * may not have a spare pte bit, which requires a more complicated scheme, * described below. * * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a * special mapping (even if there are underlying and valid "struct pages"). * COWed pages of a VM_PFNMAP are always normal. * * The way we recognize COWed pages within VM_PFNMAP mappings is through the * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit * set, and the vm_pgoff will point to the first PFN mapped: thus every special * mapping will always honor the rule * * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) * * And for normal mappings this is false. * * This restricts such mappings to be a linear translation from virtual address * to pfn. To get around this restriction, we allow arbitrary mappings so long * as the vma is not a COW mapping; in that case, we know that all ptes are * special (because none can have been COWed). * * * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. * * VM_MIXEDMAP mappings can likewise contain memory with or without "struct * page" backing, however the difference is that _all_ pages with a struct * page (that is, those where pfn_valid is true) are refcounted and considered * normal pages by the VM. The disadvantage is that pages are refcounted * (which can be slower and simply not an option for some PFNMAP users). The * advantage is that we don't have to follow the strict linearity rule of * PFNMAP mappings in order to support COWable mappings. * */ #ifdef __HAVE_ARCH_PTE_SPECIAL # define HAVE_PTE_SPECIAL 1 #else # define HAVE_PTE_SPECIAL 0 #endif struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte, bool with_public_device) { unsigned long pfn = pte_pfn(pte); if (HAVE_PTE_SPECIAL) { if (likely(!pte_special(pte))) goto check_pfn; if (vma->vm_ops && vma->vm_ops->find_special_page) return vma->vm_ops->find_special_page(vma, addr); if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) return NULL; if (is_zero_pfn(pfn)) return NULL; /* * Device public pages are special pages (they are ZONE_DEVICE * pages but different from persistent memory). They behave * allmost like normal pages. The difference is that they are * not on the lru and thus should never be involve with any- * thing that involve lru manipulation (mlock, numa balancing, * ...). * * This is why we still want to return NULL for such page from * vm_normal_page() so that we do not have to special case all * call site of vm_normal_page(). */ if (likely(pfn < highest_memmap_pfn)) { struct page *page = pfn_to_page(pfn); if (is_device_public_page(page)) { if (with_public_device) return page; return NULL; } } print_bad_pte(vma, addr, pte, NULL); return NULL; } /* !HAVE_PTE_SPECIAL case follows: */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (is_zero_pfn(pfn)) return NULL; check_pfn: if (unlikely(pfn > highest_memmap_pfn)) { print_bad_pte(vma, addr, pte, NULL); return NULL; } /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t pmd) { unsigned long pfn = pmd_pfn(pmd); /* * There is no pmd_special() but there may be special pmds, e.g. * in a direct-access (dax) mapping, so let's just replicate the * !HAVE_PTE_SPECIAL case from vm_normal_page() here. */ if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { if (!pfn_valid(pfn)) return NULL; goto out; } else { unsigned long off; off = (addr - vma->vm_start) >> PAGE_SHIFT; if (pfn == vma->vm_pgoff + off) return NULL; if (!is_cow_mapping(vma->vm_flags)) return NULL; } } if (is_zero_pfn(pfn)) return NULL; if (unlikely(pfn > highest_memmap_pfn)) return NULL; /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. */ out: return pfn_to_page(pfn); } #endif /* * copy one vm_area from one task to the other. Assumes the page tables * already present in the new task to be cleared in the whole range * covered by this vma. */ static inline unsigned long copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, unsigned long addr, int *rss) { unsigned long vm_flags = vma->vm_flags; pte_t pte = *src_pte; struct page *page; /* pte contains position in swap or file, so copy. */ if (unlikely(!pte_present(pte))) { swp_entry_t entry = pte_to_swp_entry(pte); if (likely(!non_swap_entry(entry))) { if (swap_duplicate(entry) < 0) return entry.val; /* make sure dst_mm is on swapoff's mmlist. */ if (unlikely(list_empty(&dst_mm->mmlist))) { spin_lock(&mmlist_lock); if (list_empty(&dst_mm->mmlist)) list_add(&dst_mm->mmlist, &src_mm->mmlist); spin_unlock(&mmlist_lock); } rss[MM_SWAPENTS]++; } else if (is_migration_entry(entry)) { page = migration_entry_to_page(entry); rss[mm_counter(page)]++; if (is_write_migration_entry(entry) && is_cow_mapping(vm_flags)) { /* * COW mappings require pages in both * parent and child to be set to read. */ make_migration_entry_read(&entry); pte = swp_entry_to_pte(entry); if (pte_swp_soft_dirty(*src_pte)) pte = pte_swp_mksoft_dirty(pte); set_pte_at(src_mm, addr, src_pte, pte); } } else if (is_device_private_entry(entry)) { page = device_private_entry_to_page(entry); /* * Update rss count even for unaddressable pages, as * they should treated just like normal pages in this * respect. * * We will likely want to have some new rss counters * for unaddressable pages, at some point. But for now * keep things as they are. */ get_page(page); rss[mm_counter(page)]++; page_dup_rmap(page, false); /* * We do not preserve soft-dirty information, because so * far, checkpoint/restore is the only feature that * requires that. And checkpoint/restore does not work * when a device driver is involved (you cannot easily * save and restore device driver state). */ if (is_write_device_private_entry(entry) && is_cow_mapping(vm_flags)) { make_device_private_entry_read(&entry); pte = swp_entry_to_pte(entry); set_pte_at(src_mm, addr, src_pte, pte); } } goto out_set_pte; } /* * If it's a COW mapping, write protect it both * in the parent and the child */ if (is_cow_mapping(vm_flags)) { ptep_set_wrprotect(src_mm, addr, src_pte); pte = pte_wrprotect(pte); } /* * If it's a shared mapping, mark it clean in * the child */ if (vm_flags & VM_SHARED) pte = pte_mkclean(pte); pte = pte_mkold(pte); page = vm_normal_page(vma, addr, pte); if (page) { get_page(page); page_dup_rmap(page, false); rss[mm_counter(page)]++; } else if (pte_devmap(pte)) { page = pte_page(pte); /* * Cache coherent device memory behave like regular page and * not like persistent memory page. For more informations see * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h */ if (is_device_public_page(page)) { get_page(page); page_dup_rmap(page, false); rss[mm_counter(page)]++; } } out_set_pte: set_pte_at(dst_mm, addr, dst_pte, pte); return 0; } static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, unsigned long addr, unsigned long end) { pte_t *orig_src_pte, *orig_dst_pte; pte_t *src_pte, *dst_pte; spinlock_t *src_ptl, *dst_ptl; int progress = 0; int rss[NR_MM_COUNTERS]; swp_entry_t entry = (swp_entry_t){0}; again: init_rss_vec(rss); dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); if (!dst_pte) return -ENOMEM; src_pte = pte_offset_map(src_pmd, addr); src_ptl = pte_lockptr(src_mm, src_pmd); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); orig_src_pte = src_pte; orig_dst_pte = dst_pte; arch_enter_lazy_mmu_mode(); do { /* * We are holding two locks at this point - either of them * could generate latencies in another task on another CPU. */ if (progress >= 32) { progress = 0; if (need_resched() || spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) break; } if (pte_none(*src_pte)) { progress++; continue; } entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); if (entry.val) break; progress += 8; } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); spin_unlock(src_ptl); pte_unmap(orig_src_pte); add_mm_rss_vec(dst_mm, rss); pte_unmap_unlock(orig_dst_pte, dst_ptl); cond_resched(); if (entry.val) { if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) return -ENOMEM; progress = 0; } if (addr != end) goto again; return 0; } static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, unsigned long addr, unsigned long end) { pmd_t *src_pmd, *dst_pmd; unsigned long next; dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); if (!dst_pmd) return -ENOMEM; src_pmd = pmd_offset(src_pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { int err; VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, addr, vma); if (err == -ENOMEM) return -ENOMEM; if (!err) continue; /* fall through */ } if (pmd_none_or_clear_bad(src_pmd)) continue; if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, vma, addr, next)) return -ENOMEM; } while (dst_pmd++, src_pmd++, addr = next, addr != end); return 0; } static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, unsigned long addr, unsigned long end) { pud_t *src_pud, *dst_pud; unsigned long next; dst_pud = pud_alloc(dst_mm, dst_pgd, addr); if (!dst_pud) return -ENOMEM; src_pud = pud_offset(src_pgd, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(src_pud)) continue; if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, vma, addr, next)) return -ENOMEM; } while (dst_pud++, src_pud++, addr = next, addr != end); return 0; } int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, struct vm_area_struct *vma) { pgd_t *src_pgd, *dst_pgd; unsigned long next; unsigned long addr = vma->vm_start; unsigned long end = vma->vm_end; unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ bool is_cow; int ret; /* * Don't copy ptes where a page fault will fill them correctly. * Fork becomes much lighter when there are big shared or private * readonly mappings. The tradeoff is that copy_page_range is more * efficient than faulting. */ if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && !vma->anon_vma) return 0; if (is_vm_hugetlb_page(vma)) return copy_hugetlb_page_range(dst_mm, src_mm, vma); if (unlikely(vma->vm_flags & VM_PFNMAP)) { /* * We do not free on error cases below as remove_vma * gets called on error from higher level routine */ ret = track_pfn_copy(vma); if (ret) return ret; } /* * We need to invalidate the secondary MMU mappings only when * there could be a permission downgrade on the ptes of the * parent mm. And a permission downgrade will only happen if * is_cow_mapping() returns true. */ is_cow = is_cow_mapping(vma->vm_flags); mmun_start = addr; mmun_end = end; if (is_cow) mmu_notifier_invalidate_range_start(src_mm, mmun_start, mmun_end); ret = 0; dst_pgd = pgd_offset(dst_mm, addr); src_pgd = pgd_offset(src_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(src_pgd)) continue; if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, vma, addr, next))) { ret = -ENOMEM; break; } } while (dst_pgd++, src_pgd++, addr = next, addr != end); if (is_cow) mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); return ret; } static unsigned long zap_pte_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, struct zap_details *details) { struct mm_struct *mm = tlb->mm; int force_flush = 0; int rss[NR_MM_COUNTERS]; spinlock_t *ptl; pte_t *start_pte; pte_t *pte; swp_entry_t entry; struct page *pending_page = NULL; again: init_rss_vec(rss); start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); pte = start_pte; flush_tlb_batched_pending(mm); arch_enter_lazy_mmu_mode(); do { pte_t ptent = *pte; if (pte_none(ptent)) { continue; } if (pte_present(ptent)) { struct page *page; page = _vm_normal_page(vma, addr, ptent, true); if (unlikely(details) && page) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping && details->check_mapping != page_rmapping(page)) continue; } ptent = ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); tlb_remove_tlb_entry(tlb, pte, addr); if (unlikely(!page)) continue; if (!PageAnon(page)) { if (pte_dirty(ptent)) { /* * oom_reaper cannot tear down dirty * pages */ if (unlikely(details && details->ignore_dirty)) continue; force_flush = 1; set_page_dirty(page); } if (pte_young(ptent) && likely(!(vma->vm_flags & VM_SEQ_READ))) mark_page_accessed(page); } rss[mm_counter(page)]--; page_remove_rmap(page, false); if (unlikely(page_mapcount(page) < 0)) print_bad_pte(vma, addr, ptent, page); if (unlikely(__tlb_remove_page(tlb, page))) { force_flush = 1; pending_page = page; addr += PAGE_SIZE; break; } continue; } entry = pte_to_swp_entry(ptent); if (non_swap_entry(entry) && is_device_private_entry(entry)) { struct page *page = device_private_entry_to_page(entry); if (unlikely(details && details->check_mapping)) { /* * unmap_shared_mapping_pages() wants to * invalidate cache without truncating: * unmap shared but keep private pages. */ if (details->check_mapping != page_rmapping(page)) continue; } pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); rss[mm_counter(page)]--; page_remove_rmap(page, false); put_page(page); continue; } /* only check swap_entries if explicitly asked for in details */ if (unlikely(details && !details->check_swap_entries)) continue; if (!non_swap_entry(entry)) rss[MM_SWAPENTS]--; else if (is_migration_entry(entry)) { struct page *page; page = migration_entry_to_page(entry); rss[mm_counter(page)]--; } if (unlikely(!free_swap_and_cache(entry))) print_bad_pte(vma, addr, ptent, NULL); pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); } while (pte++, addr += PAGE_SIZE, addr != end); add_mm_rss_vec(mm, rss); arch_leave_lazy_mmu_mode(); /* Do the actual TLB flush before dropping ptl */ if (force_flush) tlb_flush_mmu_tlbonly(tlb); pte_unmap_unlock(start_pte, ptl); /* * If we forced a TLB flush (either due to running out of * batch buffers or because we needed to flush dirty TLB * entries before releasing the ptl), free the batched * memory too. Restart if we didn't do everything. */ if (force_flush) { force_flush = 0; tlb_flush_mmu_free(tlb); if (pending_page) { /* remove the page with new size */ __tlb_remove_pte_page(tlb, pending_page); pending_page = NULL; } if (addr != end) goto again; } return addr; } static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, struct zap_details *details) { pmd_t *pmd; unsigned long next; pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { if (next - addr != HPAGE_PMD_SIZE) { VM_BUG_ON_VMA(vma_is_anonymous(vma) && !rwsem_is_locked(&tlb->mm->mmap_sem), vma); split_huge_pmd(vma, pmd, addr); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) goto next; /* fall through */ } /* * Here there can be other concurrent MADV_DONTNEED or * trans huge page faults running, and if the pmd is * none or trans huge it can change under us. This is * because MADV_DONTNEED holds the mmap_sem in read * mode. */ if (pmd_none_or_trans_huge_or_clear_bad(pmd)) goto next; next = zap_pte_range(tlb, vma, pmd, addr, next, details); next: cond_resched(); } while (pmd++, addr = next, addr != end); return addr; } static inline unsigned long zap_pud_range(struct mmu_gather *tlb, struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, struct zap_details *details) { pud_t *pud; unsigned long next; pud = pud_offset(pgd, addr); do { next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; next = zap_pmd_range(tlb, vma, pud, addr, next, details); } while (pud++, addr = next, addr != end); return addr; } void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long addr, unsigned long end, struct zap_details *details) { pgd_t *pgd; unsigned long next; BUG_ON(addr >= end); tlb_start_vma(tlb, vma); pgd = pgd_offset(vma->vm_mm, addr); do { next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; next = zap_pud_range(tlb, vma, pgd, addr, next, details); } while (pgd++, addr = next, addr != end); tlb_end_vma(tlb, vma); } static void unmap_single_vma(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { unsigned long start = max(vma->vm_start, start_addr); unsigned long end; if (start >= vma->vm_end) return; end = min(vma->vm_end, end_addr); if (end <= vma->vm_start) return; if (vma->vm_file) uprobe_munmap(vma, start, end); if (unlikely(vma->vm_flags & VM_PFNMAP)) untrack_pfn(vma, 0, 0); if (start != end) { if (unlikely(is_vm_hugetlb_page(vma))) { /* * It is undesirable to test vma->vm_file as it * should be non-null for valid hugetlb area. * However, vm_file will be NULL in the error * cleanup path of mmap_region. When * hugetlbfs ->mmap method fails, * mmap_region() nullifies vma->vm_file * before calling this function to clean up. * Since no pte has actually been setup, it is * safe to do nothing in this case. */ if (vma->vm_file) { i_mmap_lock_write(vma->vm_file->f_mapping); __unmap_hugepage_range_final(tlb, vma, start, end, NULL); i_mmap_unlock_write(vma->vm_file->f_mapping); } } else unmap_page_range(tlb, vma, start, end, details); } } /** * unmap_vmas - unmap a range of memory covered by a list of vma's * @tlb: address of the caller's struct mmu_gather * @vma: the starting vma * @start_addr: virtual address at which to start unmapping * @end_addr: virtual address at which to end unmapping * * Unmap all pages in the vma list. * * Only addresses between `start' and `end' will be unmapped. * * The VMA list must be sorted in ascending virtual address order. * * unmap_vmas() assumes that the caller will flush the whole unmapped address * range after unmap_vmas() returns. So the only responsibility here is to * ensure that any thus-far unmapped pages are flushed before unmap_vmas() * drops the lock and schedules. */ void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr) { struct mm_struct *mm = vma->vm_mm; mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); } /** * zap_page_range - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @start: starting address of pages to zap * @size: number of bytes to zap * @details: details of shared cache invalidation * * Caller must protect the VMA list */ void zap_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long size, struct zap_details *details) { struct mm_struct *mm = vma->vm_mm; struct mmu_gather tlb; unsigned long end = start + size; lru_add_drain(); tlb_gather_mmu(&tlb, mm, start, end); update_hiwater_rss(mm); mmu_notifier_invalidate_range_start(mm, start, end); for ( ; vma && vma->vm_start < end; vma = vma->vm_next) unmap_single_vma(&tlb, vma, start, end, details); mmu_notifier_invalidate_range_end(mm, start, end); tlb_finish_mmu(&tlb, start, end); } /** * zap_page_range_single - remove user pages in a given range * @vma: vm_area_struct holding the applicable pages * @address: starting address of pages to zap * @size: number of bytes to zap * @details: details of shared cache invalidation * * The range must fit into one VMA. */ static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, unsigned long size, struct zap_details *details) { struct mm_struct *mm = vma->vm_mm; struct mmu_gather tlb; unsigned long end = address + size; lru_add_drain(); tlb_gather_mmu(&tlb, mm, address, end); update_hiwater_rss(mm); mmu_notifier_invalidate_range_start(mm, address, end); unmap_single_vma(&tlb, vma, address, end, details); mmu_notifier_invalidate_range_end(mm, address, end); tlb_finish_mmu(&tlb, address, end); } /** * zap_vma_ptes - remove ptes mapping the vma * @vma: vm_area_struct holding ptes to be zapped * @address: starting address of pages to zap * @size: number of bytes to zap * * This function only unmaps ptes assigned to VM_PFNMAP vmas. * * The entire address range must be fully contained within the vma. * * Returns 0 if successful. */ int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, unsigned long size) { if (address < vma->vm_start || address + size > vma->vm_end || !(vma->vm_flags & VM_PFNMAP)) return -1; zap_page_range_single(vma, address, size, NULL); return 0; } EXPORT_SYMBOL_GPL(zap_vma_ptes); pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { pgd_t * pgd = pgd_offset(mm, addr); pud_t * pud = pud_alloc(mm, pgd, addr); if (pud) { pmd_t * pmd = pmd_alloc(mm, pud, addr); if (pmd) { VM_BUG_ON(pmd_trans_huge(*pmd)); return pte_alloc_map_lock(mm, pmd, addr, ptl); } } return NULL; } /* * This is the old fallback for page remapping. * * For historical reasons, it only allows reserved pages. Only * old drivers should use this, and they needed to mark their * pages reserved for the old functions anyway. */ static int insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot) { struct mm_struct *mm = vma->vm_mm; int retval; pte_t *pte; spinlock_t *ptl; retval = -EINVAL; if (PageAnon(page)) goto out; retval = -ENOMEM; flush_dcache_page(page); pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto out; retval = -EBUSY; if (!pte_none(*pte)) goto out_unlock; /* Ok, finally just insert the thing.. */ get_page(page); inc_mm_counter_fast(mm, mm_counter_file(page)); page_add_file_rmap(page, false); set_pte_at(mm, addr, pte, mk_pte(page, prot)); retval = 0; pte_unmap_unlock(pte, ptl); return retval; out_unlock: pte_unmap_unlock(pte, ptl); out: return retval; } /** * vm_insert_page - insert single page into user vma * @vma: user vma to map to * @addr: target user address of this page * @page: source kernel page * * This allows drivers to insert individual pages they've allocated * into a user vma. * * The page has to be a nice clean _individual_ kernel allocation. * If you allocate a compound page, you need to have marked it as * such (__GFP_COMP), or manually just split the page up yourself * (see split_page()). * * NOTE! Traditionally this was done with "remap_pfn_range()" which * took an arbitrary page protection parameter. This doesn't allow * that. Your vma protection will have to be set up correctly, which * means that if you want a shared writable mapping, you'd better * ask for a shared writable mapping! * * The page does not need to be reserved. * * Usually this function is called from f_op->mmap() handler * under mm->mmap_sem write-lock, so it can change vma->vm_flags. * Caller must set VM_MIXEDMAP on vma if it wants to call this * function from other places, for example from page-fault handler. */ int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) { if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (!page_count(page)) return -EINVAL; if (!(vma->vm_flags & VM_MIXEDMAP)) { BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); BUG_ON(vma->vm_flags & VM_PFNMAP); vma->vm_flags |= VM_MIXEDMAP; } return insert_page(vma, addr, page, vma->vm_page_prot); } EXPORT_SYMBOL(vm_insert_page); static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn, pgprot_t prot) { struct mm_struct *mm = vma->vm_mm; int retval; pte_t *pte, entry; spinlock_t *ptl; retval = -ENOMEM; pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto out; retval = -EBUSY; if (!pte_none(*pte)) goto out_unlock; /* Ok, finally just insert the thing.. */ if (pfn_t_devmap(pfn)) entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); else entry = pte_mkspecial(pfn_t_pte(pfn, prot)); set_pte_at(mm, addr, pte, entry); update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ retval = 0; out_unlock: pte_unmap_unlock(pte, ptl); out: return retval; } /** * vm_insert_pfn - insert single pfn into user vma * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * * Similar to vm_insert_page, this allows drivers to insert individual pages * they've allocated into a user vma. Same comments apply. * * This function should only be called from a vm_ops->fault handler, and * in that case the handler should return NULL. * * vma cannot be a COW mapping. * * As this is called only for pages that do not currently exist, we * do not need to flush old virtual caches or the TLB. */ int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); } EXPORT_SYMBOL(vm_insert_pfn); /** * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot * @vma: user vma to map to * @addr: target user address of this page * @pfn: source kernel pfn * @pgprot: pgprot flags for the inserted page * * This is exactly like vm_insert_pfn, except that it allows drivers to * to override pgprot on a per-page basis. * * This only makes sense for IO mappings, and it makes no sense for * cow mappings. In general, using multiple vmas is preferable; * vm_insert_pfn_prot should only be used if using multiple VMAs is * impractical. */ int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t pgprot) { int ret; /* * Technically, architectures with pte_special can avoid all these * restrictions (same for remap_pfn_range). However we would like * consistency in testing and feature parity among all, so we should * try to keep these invariants in place for everybody. */ BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == (VM_PFNMAP|VM_MIXEDMAP)); BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV))) return -EINVAL; if (!pfn_modify_allowed(pfn, pgprot)) return -EACCES; ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); return ret; } EXPORT_SYMBOL(vm_insert_pfn_prot); int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, pfn_t pfn) { pgprot_t pgprot = vma->vm_page_prot; BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); if (addr < vma->vm_start || addr >= vma->vm_end) return -EFAULT; if (track_pfn_insert(vma, &pgprot, pfn)) return -EINVAL; if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) return -EACCES; /* * If we don't have pte special, then we have to use the pfn_valid() * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* * refcount the page if pfn_valid is true (hence insert_page rather * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP * without pte special, it would there be refcounted as a normal page. */ if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { struct page *page; /* * At this point we are committed to insert_page() * regardless of whether the caller specified flags that * result in pfn_t_has_page() == false. */ page = pfn_to_page(pfn_t_to_pfn(pfn)); return insert_page(vma, addr, page, pgprot); } return insert_pfn(vma, addr, pfn, pgprot); } EXPORT_SYMBOL(vm_insert_mixed); /* * maps a range of physical memory into the requested pages. the old * mappings are removed. any references to nonexistent pages results * in null mappings (currently treated as "copy-on-access") */ static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pte_t *pte; spinlock_t *ptl; int err = 0; pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; arch_enter_lazy_mmu_mode(); do { BUG_ON(!pte_none(*pte)); if (!pfn_modify_allowed(pfn, prot)) { err = -EACCES; break; } set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); pte_unmap_unlock(pte - 1, ptl); return err; } static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pmd_t *pmd; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; VM_BUG_ON(pmd_trans_huge(*pmd)); do { next = pmd_addr_end(addr, end); err = remap_pte_range(mm, pmd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pmd++, addr = next, addr != end); return 0; } static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long pfn, pgprot_t prot) { pud_t *pud; unsigned long next; int err; pfn -= addr >> PAGE_SHIFT; pud = pud_alloc(mm, pgd, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); err = remap_pmd_range(mm, pud, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) return err; } while (pud++, addr = next, addr != end); return 0; } /** * remap_pfn_range - remap kernel memory to userspace * @vma: user vma to map to * @addr: target user address to start at * @pfn: physical address of kernel memory * @size: size of map area * @prot: page protection flags for this mapping * * Note: this is only safe if the mm semaphore is held when called. */ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t prot) { pgd_t *pgd; unsigned long next; unsigned long end = addr + PAGE_ALIGN(size); struct mm_struct *mm = vma->vm_mm; unsigned long remap_pfn = pfn; int err; /* * Physically remapped pages are special. Tell the * rest of the world about it: * VM_IO tells people not to look at these pages * (accesses can have side effects). * VM_PFNMAP tells the core MM that the base pages are just * raw PFN mappings, and do not have a "struct page" associated * with them. * VM_DONTEXPAND * Disable vma merging and expanding with mremap(). * VM_DONTDUMP * Omit vma from core dump, even when VM_IO turned off. * * There's a horrible special case to handle copy-on-write * behaviour that some programs depend on. We mark the "original" * un-COW'ed pages by matching them up with "vma->vm_pgoff". * See vm_normal_page() for details. */ if (is_cow_mapping(vma->vm_flags)) { if (addr != vma->vm_start || end != vma->vm_end) return -EINVAL; vma->vm_pgoff = pfn; } err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); if (err) return -EINVAL; vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; BUG_ON(addr >= end); pfn -= addr >> PAGE_SHIFT; pgd = pgd_offset(mm, addr); flush_cache_range(vma, addr, end); do { next = pgd_addr_end(addr, end); err = remap_pud_range(mm, pgd, addr, next, pfn + (addr >> PAGE_SHIFT), prot); if (err) break; } while (pgd++, addr = next, addr != end); if (err) untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); return err; } EXPORT_SYMBOL(remap_pfn_range); /** * vm_iomap_memory - remap memory to userspace * @vma: user vma to map to * @start: start of area * @len: size of area * * This is a simplified io_remap_pfn_range() for common driver use. The * driver just needs to give us the physical memory range to be mapped, * we'll figure out the rest from the vma information. * * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get * whatever write-combining details or similar. */ int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) { unsigned long vm_len, pfn, pages; /* Check that the physical memory area passed in looks valid */ if (start + len < start) return -EINVAL; /* * You *really* shouldn't map things that aren't page-aligned, * but we've historically allowed it because IO memory might * just have smaller alignment. */ len += start & ~PAGE_MASK; pfn = start >> PAGE_SHIFT; pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; if (pfn + pages < pfn) return -EINVAL; /* We start the mapping 'vm_pgoff' pages into the area */ if (vma->vm_pgoff > pages) return -EINVAL; pfn += vma->vm_pgoff; pages -= vma->vm_pgoff; /* Can we fit all of the mapping? */ vm_len = vma->vm_end - vma->vm_start; if (vm_len >> PAGE_SHIFT > pages) return -EINVAL; /* Ok, let it rip */ return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); } EXPORT_SYMBOL(vm_iomap_memory); static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data) { pte_t *pte; int err; pgtable_t token; spinlock_t *uninitialized_var(ptl); pte = (mm == &init_mm) ? pte_alloc_kernel(pmd, addr) : pte_alloc_map_lock(mm, pmd, addr, &ptl); if (!pte) return -ENOMEM; BUG_ON(pmd_huge(*pmd)); arch_enter_lazy_mmu_mode(); token = pmd_pgtable(*pmd); do { err = fn(pte++, token, addr, data); if (err) break; } while (addr += PAGE_SIZE, addr != end); arch_leave_lazy_mmu_mode(); if (mm != &init_mm) pte_unmap_unlock(pte-1, ptl); return err; } static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, unsigned long addr, unsigned long end, pte_fn_t fn, void *data) { pmd_t *pmd; unsigned long next; int err; BUG_ON(pud_huge(*pud)); pmd = pmd_alloc(mm, pud, addr); if (!pmd) return -ENOMEM; do { next = pmd_addr_end(addr, end); err = apply_to_pte_range(mm, pmd, addr, next, fn, data); if (err) break; } while (pmd++, addr = next, addr != end); return err; } static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, unsigned long addr, unsigned long end, pte_fn_t fn, void *data) { pud_t *pud; unsigned long next; int err; pud = pud_alloc(mm, pgd, addr); if (!pud) return -ENOMEM; do { next = pud_addr_end(addr, end); err = apply_to_pmd_range(mm, pud, addr, next, fn, data); if (err) break; } while (pud++, addr = next, addr != end); return err; } /* * Scan a region of virtual memory, filling in page tables as necessary * and calling a provided function on each leaf page table. */ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, unsigned long size, pte_fn_t fn, void *data) { pgd_t *pgd; unsigned long next; unsigned long end = addr + size; int err; if (WARN_ON(addr >= end)) return -EINVAL; pgd = pgd_offset(mm, addr); do { next = pgd_addr_end(addr, end); err = apply_to_pud_range(mm, pgd, addr, next, fn, data); if (err) break; } while (pgd++, addr = next, addr != end); return err; } EXPORT_SYMBOL_GPL(apply_to_page_range); /* * handle_pte_fault chooses page fault handler according to an entry which was * read non-atomically. Before making any commitment, on those architectures * or configurations (e.g. i386 with PAE) which might give a mix of unmatched * parts, do_swap_page must check under lock before unmapping the pte and * proceeding (but do_wp_page is only called after already making such a check; * and do_anonymous_page can safely check later on). */ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, pte_t *page_table, pte_t orig_pte) { int same = 1; #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) if (sizeof(pte_t) > sizeof(unsigned long)) { spinlock_t *ptl = pte_lockptr(mm, pmd); spin_lock(ptl); same = pte_same(*page_table, orig_pte); spin_unlock(ptl); } #endif pte_unmap(page_table); return same; } static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) { debug_dma_assert_idle(src); /* * If the source page was a PFN mapping, we don't have * a "struct page" for it. We do a best-effort copy by * just copying from the original user address. If that * fails, we just zero-fill it. Live with it. */ if (unlikely(!src)) { void *kaddr = kmap_atomic(dst); void __user *uaddr = (void __user *)(va & PAGE_MASK); /* * This really shouldn't fail, because the page is there * in the page tables. But it might just be unreadable, * in which case we just give up and fill the result with * zeroes. */ if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) clear_page(kaddr); kunmap_atomic(kaddr); flush_dcache_page(dst); } else copy_user_highpage(dst, src, va, vma); } static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) { struct file *vm_file = vma->vm_file; if (vm_file) return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; /* * Special mappings (e.g. VDSO) do not have any file so fake * a default GFP_KERNEL for them. */ return GFP_KERNEL; } /* * Notify the address space that the page is about to become writable so that * it can prohibit this or wait for the page to get into an appropriate state. * * We do this without the lock held, so that it can sleep if it needs to. */ static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, unsigned long address) { struct vm_fault vmf; int ret; vmf.virtual_address = (void __user *)(address & PAGE_MASK); vmf.pgoff = page->index; vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; vmf.gfp_mask = __get_fault_gfp_mask(vma); vmf.page = page; vmf.cow_page = NULL; ret = vma->vm_ops->page_mkwrite(vma, &vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) return ret; if (unlikely(!(ret & VM_FAULT_LOCKED))) { lock_page(page); if (!page->mapping) { unlock_page(page); return 0; /* retry */ } ret |= VM_FAULT_LOCKED; } else VM_BUG_ON_PAGE(!PageLocked(page), page); return ret; } /* * Handle write page faults for pages that can be reused in the current vma * * This can happen either due to the mapping being with the VM_SHARED flag, * or due to us being the last reference standing to the page. In either * case, all we need to do here is to mark the page as writable and update * any related book-keeping. */ static inline int wp_page_reuse(struct fault_env *fe, pte_t orig_pte, struct page *page, int page_mkwrite, int dirty_shared) __releases(fe->ptl) { struct vm_area_struct *vma = fe->vma; pte_t entry; /* * Clear the pages cpupid information as the existing * information potentially belongs to a now completely * unrelated process. */ if (page) page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); flush_cache_page(vma, fe->address, pte_pfn(orig_pte)); entry = pte_mkyoung(orig_pte); entry = maybe_mkwrite(pte_mkdirty(entry), vma); if (ptep_set_access_flags(vma, fe->address, fe->pte, entry, 1)) update_mmu_cache(vma, fe->address, fe->pte); pte_unmap_unlock(fe->pte, fe->ptl); if (dirty_shared) { struct address_space *mapping; int dirtied; if (!page_mkwrite) lock_page(page); dirtied = set_page_dirty(page); VM_BUG_ON_PAGE(PageAnon(page), page); mapping = page->mapping; unlock_page(page); put_page(page); if ((dirtied || page_mkwrite) && mapping) { /* * Some device drivers do not set page.mapping * but still dirty their pages */ balance_dirty_pages_ratelimited(mapping); } if (!page_mkwrite) file_update_time(vma->vm_file); } return VM_FAULT_WRITE; } /* * Handle the case of a page which we actually need to copy to a new page. * * Called with mmap_sem locked and the old page referenced, but * without the ptl held. * * High level logic flow: * * - Allocate a page, copy the content of the old page to the new one. * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. * - Take the PTL. If the pte changed, bail out and release the allocated page * - If the pte is still the way we remember it, update the page table and all * relevant references. This includes dropping the reference the page-table * held to the old page, as well as updating the rmap. * - In any case, unlock the PTL and drop the reference we took to the old page. */ static int wp_page_copy(struct fault_env *fe, pte_t orig_pte, struct page *old_page, unsigned int flags) { struct vm_area_struct *vma = fe->vma; struct mm_struct *mm = vma->vm_mm; struct page *new_page = NULL; pte_t entry; int page_copied = 0; const unsigned long mmun_start = fe->address & PAGE_MASK; const unsigned long mmun_end = mmun_start + PAGE_SIZE; struct mem_cgroup *memcg; gfp_t gfp = GFP_HIGHUSER_MOVABLE; if (IS_ENABLED(CONFIG_CMA) && (flags & FAULT_FLAG_NO_CMA)) gfp &= ~__GFP_MOVABLE; if (unlikely(anon_vma_prepare(vma))) goto oom; if (is_zero_pfn(pte_pfn(orig_pte))) { new_page = alloc_zeroed_user_highpage(gfp, vma, fe->address); if (!new_page) goto oom; } else { new_page = alloc_page_vma(gfp, vma, fe->address); if (!new_page) goto oom; cow_user_page(new_page, old_page, fe->address, vma); } if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) goto oom_free_new; __SetPageUptodate(new_page); mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); /* * Re-check the pte - we dropped the lock */ fe->pte = pte_offset_map_lock(mm, fe->pmd, fe->address, &fe->ptl); if (likely(pte_same(*fe->pte, orig_pte))) { if (old_page) { if (!PageAnon(old_page)) { dec_mm_counter_fast(mm, mm_counter_file(old_page)); inc_mm_counter_fast(mm, MM_ANONPAGES); } } else { inc_mm_counter_fast(mm, MM_ANONPAGES); } flush_cache_page(vma, fe->address, pte_pfn(orig_pte)); entry = mk_pte(new_page, vma->vm_page_prot); entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* * Clear the pte entry and flush it first, before updating the * pte with the new entry. This will avoid a race condition * seen in the presence of one thread doing SMC and another * thread doing COW. */ ptep_clear_flush_notify(vma, fe->address, fe->pte); page_add_new_anon_rmap(new_page, vma, fe->address, false); mem_cgroup_commit_charge(new_page, memcg, false, false); lru_cache_add_active_or_unevictable(new_page, vma); /* * We call the notify macro here because, when using secondary * mmu page tables (such as kvm shadow page tables), we want the * new page to be mapped directly into the secondary page table. */ set_pte_at_notify(mm, fe->address, fe->pte, entry); update_mmu_cache(vma, fe->address, fe->pte); if (old_page) { /* * Only after switching the pte to the new page may * we remove the mapcount here. Otherwise another * process may come and find the rmap count decremented * before the pte is switched to the new page, and * "reuse" the old page writing into it while our pte * here still points into it and can be read by other * threads. * * The critical issue is to order this * page_remove_rmap with the ptp_clear_flush above. * Those stores are ordered by (if nothing else,) * the barrier present in the atomic_add_negative * in page_remove_rmap. * * Then the TLB flush in ptep_clear_flush ensures that * no process can access the old page before the * decremented mapcount is visible. And the old page * cannot be reused until after the decremented * mapcount is visible. So transitively, TLBs to * old page will be flushed before it can be reused. */ page_remove_rmap(old_page, false); } /* Free the old page.. */ new_page = old_page; page_copied = 1; } else { mem_cgroup_cancel_charge(new_page, memcg, false); } if (new_page) put_page(new_page); pte_unmap_unlock(fe->pte, fe->ptl); mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); if (old_page) { /* * Don't let another task, with possibly unlocked vma, * keep the mlocked page. */ if (page_copied && (vma->vm_flags & VM_LOCKED)) { lock_page(old_page); /* LRU manipulation */ if (PageMlocked(old_page)) munlock_vma_page(old_page); unlock_page(old_page); } put_page(old_page); } return page_copied ? VM_FAULT_WRITE : 0; oom_free_new: put_page(new_page); oom: if (old_page) put_page(old_page); return VM_FAULT_OOM; } /* * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED * mapping */ static int wp_pfn_shared(struct fault_env *fe, pte_t orig_pte) { struct vm_area_struct *vma = fe->vma; if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { struct vm_fault vmf = { .page = NULL, .pgoff = linear_page_index(vma, fe->address), .virtual_address = (void __user *)(fe->address & PAGE_MASK), .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, }; int ret; pte_unmap_unlock(fe->pte, fe->ptl); ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); if (ret & VM_FAULT_ERROR) return ret; fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, &fe->ptl); /* * We might have raced with another page fault while we * released the pte_offset_map_lock. */ if (!pte_same(*fe->pte, orig_pte)) { pte_unmap_unlock(fe->pte, fe->ptl); return 0; } } return wp_page_reuse(fe, orig_pte, NULL, 0, 0); } static int wp_page_shared(struct fault_env *fe, pte_t orig_pte, struct page *old_page) __releases(fe->ptl) { struct vm_area_struct *vma = fe->vma; int page_mkwrite = 0; get_page(old_page); if (vma->vm_ops && vma->vm_ops->page_mkwrite) { int tmp; pte_unmap_unlock(fe->pte, fe->ptl); tmp = do_page_mkwrite(vma, old_page, fe->address); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(old_page); return tmp; } /* * Since we dropped the lock we need to revalidate * the PTE as someone else may have changed it. If * they did, we just return, as we can count on the * MMU to tell us if they didn't also make it writable. */ fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, &fe->ptl); if (!pte_same(*fe->pte, orig_pte)) { unlock_page(old_page); pte_unmap_unlock(fe->pte, fe->ptl); put_page(old_page); return 0; } page_mkwrite = 1; } return wp_page_reuse(fe, orig_pte, old_page, page_mkwrite, 1); } /* * This routine handles present pages, when users try to write * to a shared page. It is done by copying the page to a new address * and decrementing the shared-page counter for the old page. * * Note that this routine assumes that the protection checks have been * done by the caller (the low-level page fault routine in most cases). * Thus we can safely just mark it writable once we've done any necessary * COW. * * We also mark the page dirty at this point even though the page will * change only once the write actually happens. This avoids a few races, * and potentially makes it more efficient. * * We enter with non-exclusive mmap_sem (to exclude vma changes, * but allow concurrent faults), with pte both mapped and locked. * We return with mmap_sem still held, but pte unmapped and unlocked. */ static int do_wp_page(struct fault_env *fe, pte_t orig_pte, unsigned int flags) __releases(fe->ptl) { struct vm_area_struct *vma = fe->vma; struct page *old_page; old_page = vm_normal_page(vma, fe->address, orig_pte); if (!old_page) { /* * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a * VM_PFNMAP VMA. * * We should not cow pages in a shared writeable mapping. * Just mark the pages writable and/or call ops->pfn_mkwrite. */ if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)) return wp_pfn_shared(fe, orig_pte); pte_unmap_unlock(fe->pte, fe->ptl); return wp_page_copy(fe, orig_pte, old_page, flags); } /* * Take out anonymous pages first, anonymous shared vmas are * not dirty accountable. */ if (PageAnon(old_page) && !PageKsm(old_page)) { int total_mapcount; if (!trylock_page(old_page)) { get_page(old_page); pte_unmap_unlock(fe->pte, fe->ptl); lock_page(old_page); fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, &fe->ptl); if (!pte_same(*fe->pte, orig_pte)) { unlock_page(old_page); pte_unmap_unlock(fe->pte, fe->ptl); put_page(old_page); return 0; } put_page(old_page); } if (reuse_swap_page(old_page, &total_mapcount)) { if (total_mapcount == 1) { /* * The page is all ours. Move it to * our anon_vma so the rmap code will * not search our parent or siblings. * Protected against the rmap code by * the page lock. */ page_move_anon_rmap(old_page, vma); } unlock_page(old_page); return wp_page_reuse(fe, orig_pte, old_page, 0, 0); } unlock_page(old_page); } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED))) { return wp_page_shared(fe, orig_pte, old_page); } /* * Ok, we need to copy. Oh, well.. */ get_page(old_page); pte_unmap_unlock(fe->pte, fe->ptl); return wp_page_copy(fe, orig_pte, old_page, flags); } static void unmap_mapping_range_vma(struct vm_area_struct *vma, unsigned long start_addr, unsigned long end_addr, struct zap_details *details) { zap_page_range_single(vma, start_addr, end_addr - start_addr, details); } static inline void unmap_mapping_range_tree(struct rb_root *root, struct zap_details *details) { struct vm_area_struct *vma; pgoff_t vba, vea, zba, zea; vma_interval_tree_foreach(vma, root, details->first_index, details->last_index) { vba = vma->vm_pgoff; vea = vba + vma_pages(vma) - 1; zba = details->first_index; if (zba < vba) zba = vba; zea = details->last_index; if (zea > vea) zea = vea; unmap_mapping_range_vma(vma, ((zba - vba) << PAGE_SHIFT) + vma->vm_start, ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, details); } } /** * unmap_mapping_range - unmap the portion of all mmaps in the specified * address_space corresponding to the specified page range in the underlying * file. * * @mapping: the address space containing mmaps to be unmapped. * @holebegin: byte in first page to unmap, relative to the start of * the underlying file. This will be rounded down to a PAGE_SIZE * boundary. Note that this is different from truncate_pagecache(), which * must keep the partial page. In contrast, we must get rid of * partial pages. * @holelen: size of prospective hole in bytes. This will be rounded * up to a PAGE_SIZE boundary. A holelen of zero truncates to the * end of the file. * @even_cows: 1 when truncating a file, unmap even private COWed pages; * but 0 when invalidating pagecache, don't throw away private data. */ void unmap_mapping_range(struct address_space *mapping, loff_t const holebegin, loff_t const holelen, int even_cows) { struct zap_details details = { }; pgoff_t hba = holebegin >> PAGE_SHIFT; pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; /* Check for overflow. */ if (sizeof(holelen) > sizeof(hlen)) { long long holeend = (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; if (holeend & ~(long long)ULONG_MAX) hlen = ULONG_MAX - hba + 1; } details.check_mapping = even_cows? NULL: mapping; details.first_index = hba; details.last_index = hba + hlen - 1; if (details.last_index < details.first_index) details.last_index = ULONG_MAX; i_mmap_lock_write(mapping); if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) unmap_mapping_range_tree(&mapping->i_mmap, &details); i_mmap_unlock_write(mapping); } EXPORT_SYMBOL(unmap_mapping_range); /* * We enter with non-exclusive mmap_sem (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with pte unmapped and unlocked. * * We return with the mmap_sem locked or unlocked in the same cases * as does filemap_fault(). */ int do_swap_page(struct fault_env *fe, pte_t orig_pte) { struct vm_area_struct *vma = fe->vma; struct page *page, *swapcache; struct mem_cgroup *memcg; swp_entry_t entry; pte_t pte; int locked; int exclusive = 0; int ret = 0; if (!pte_unmap_same(vma->vm_mm, fe->pmd, fe->pte, orig_pte)) goto out; entry = pte_to_swp_entry(orig_pte); if (unlikely(non_swap_entry(entry))) { if (is_migration_entry(entry)) { migration_entry_wait(vma->vm_mm, fe->pmd, fe->address); } else if (is_device_private_entry(entry)) { /* * For un-addressable device memory we call the pgmap * fault handler callback. The callback must migrate * the page back to some CPU accessible page. */ ret = device_private_entry_fault(vma, fe->address, entry, fe->flags, fe->pmd); } else if (is_hwpoison_entry(entry)) { ret = VM_FAULT_HWPOISON; } else { print_bad_pte(vma, fe->address, orig_pte, NULL); ret = VM_FAULT_SIGBUS; } goto out; } delayacct_set_flag(DELAYACCT_PF_SWAPIN); page = lookup_swap_cache(entry); if (!page) { page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma, fe->address); if (!page) { /* * Back out if somebody else faulted in this pte * while we released the pte lock. */ fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, &fe->ptl); if (likely(pte_same(*fe->pte, orig_pte))) ret = VM_FAULT_OOM; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); goto unlock; } /* Had to read the page from swap area: Major fault */ ret = VM_FAULT_MAJOR; count_vm_event(PGMAJFAULT); mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); } else if (PageHWPoison(page)) { /* * hwpoisoned dirty swapcache pages are kept for killing * owner processes (which may be unknown at hwpoison time) */ ret = VM_FAULT_HWPOISON; delayacct_clear_flag(DELAYACCT_PF_SWAPIN); swapcache = page; goto out_release; } swapcache = page; locked = lock_page_or_retry(page, vma->vm_mm, fe->flags); delayacct_clear_flag(DELAYACCT_PF_SWAPIN); if (!locked) { ret |= VM_FAULT_RETRY; goto out_release; } /* * Make sure try_to_free_swap or reuse_swap_page or swapoff did not * release the swapcache from under us. The page pin, and pte_same * test below, are not enough to exclude that. Even if it is still * swapcache, we need to check that the page's swap has not changed. */ if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) goto out_page; page = ksm_might_need_to_copy(page, vma, fe->address); if (unlikely(!page)) { ret = VM_FAULT_OOM; page = swapcache; goto out_page; } if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) { ret = VM_FAULT_OOM; goto out_page; } /* * Back out if somebody else already faulted in this pte. */ fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, &fe->ptl); if (unlikely(!pte_same(*fe->pte, orig_pte))) goto out_nomap; if (unlikely(!PageUptodate(page))) { ret = VM_FAULT_SIGBUS; goto out_nomap; } /* * The page isn't present yet, go ahead with the fault. * * Be careful about the sequence of operations here. * To get its accounting right, reuse_swap_page() must be called * while the page is counted on swap but not yet in mapcount i.e. * before page_add_anon_rmap() and swap_free(); try_to_free_swap() * must be called after the swap_free(), or it will never succeed. */ inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); pte = mk_pte(page, vma->vm_page_prot); if ((fe->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { pte = maybe_mkwrite(pte_mkdirty(pte), vma); fe->flags &= ~FAULT_FLAG_WRITE; ret |= VM_FAULT_WRITE; exclusive = RMAP_EXCLUSIVE; } flush_icache_page(vma, page); if (pte_swp_soft_dirty(orig_pte)) pte = pte_mksoft_dirty(pte); set_pte_at(vma->vm_mm, fe->address, fe->pte, pte); if (page == swapcache) { do_page_add_anon_rmap(page, vma, fe->address, exclusive); mem_cgroup_commit_charge(page, memcg, true, false); activate_page(page); } else { /* ksm created a completely new copy */ page_add_new_anon_rmap(page, vma, fe->address, false); mem_cgroup_commit_charge(page, memcg, false, false); lru_cache_add_active_or_unevictable(page, vma); } swap_free(entry); if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) try_to_free_swap(page); unlock_page(page); if (page != swapcache) { /* * Hold the lock to avoid the swap entry to be reused * until we take the PT lock for the pte_same() check * (to avoid false positives from pte_same). For * further safety release the lock after the swap_free * so that the swap count won't change under a * parallel locked swapcache. */ unlock_page(swapcache); put_page(swapcache); } if (fe->flags & FAULT_FLAG_WRITE) { ret |= do_wp_page(fe, pte, fe->flags); if (ret & VM_FAULT_ERROR) ret &= VM_FAULT_ERROR; goto out; } /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, fe->address, fe->pte); unlock: pte_unmap_unlock(fe->pte, fe->ptl); out: return ret; out_nomap: mem_cgroup_cancel_charge(page, memcg, false); pte_unmap_unlock(fe->pte, fe->ptl); out_page: unlock_page(page); out_release: put_page(page); if (page != swapcache) { unlock_page(swapcache); put_page(swapcache); } return ret; } bool is_vma_temporary_stack(struct vm_area_struct *vma); /* * We enter with non-exclusive mmap_sem (to exclude vma changes, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_sem still held, but pte unmapped and unlocked. */ static int do_anonymous_page(struct fault_env *fe) { struct vm_area_struct *vma = fe->vma; struct mem_cgroup *memcg; struct page *page; pte_t entry; /* File mapping without ->vm_ops ? */ if (vma->vm_flags & VM_SHARED) return VM_FAULT_SIGBUS; /* * Use pte_alloc() instead of pte_alloc_map(). We can't run * pte_offset_map() on pmds where a huge pmd might be created * from a different thread. * * pte_alloc_map() is safe to use under down_write(mmap_sem) or when * parallel threads are excluded by other means. * * Here we only have down_read(mmap_sem). */ if (pte_alloc(vma->vm_mm, fe->pmd, fe->address)) return VM_FAULT_OOM; /* See the comment in pte_alloc_one_map() */ if (unlikely(pmd_trans_unstable(fe->pmd))) return 0; /* Use the zero-page for reads */ if (!(fe->flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(vma->vm_mm)) { entry = pte_mkspecial(pfn_pte(my_zero_pfn(fe->address), vma->vm_page_prot)); fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, &fe->ptl); if (!pte_none(*fe->pte)) goto unlock; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(fe->pte, fe->ptl); return handle_userfault(fe, VM_UFFD_MISSING); } goto setpte; } /* Allocate our own private page. */ if (unlikely(anon_vma_prepare(vma))) goto oom; if (vma->vm_flags & VM_LOCKED || vma->vm_flags & FAULT_FLAG_NO_CMA || is_vma_temporary_stack(vma)) { page = alloc_zeroed_user_highpage(GFP_HIGHUSER, vma, fe->address); } else { page = alloc_zeroed_user_highpage_movable(vma, fe->address); } if (!page) goto oom; if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) goto oom_free_page; /* * The memory barrier inside __SetPageUptodate makes sure that * preceeding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); entry = mk_pte(page, vma->vm_page_prot); if (vma->vm_flags & VM_WRITE) entry = pte_mkwrite(pte_mkdirty(entry)); fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, &fe->ptl); if (!pte_none(*fe->pte)) goto release; /* Deliver the page fault to userland, check inside PT lock */ if (userfaultfd_missing(vma)) { pte_unmap_unlock(fe->pte, fe->ptl); mem_cgroup_cancel_charge(page, memcg, false); put_page(page); return handle_userfault(fe, VM_UFFD_MISSING); } inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, fe->address, false); mem_cgroup_commit_charge(page, memcg, false, false); lru_cache_add_active_or_unevictable(page, vma); setpte: set_pte_at(vma->vm_mm, fe->address, fe->pte, entry); /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, fe->address, fe->pte); unlock: pte_unmap_unlock(fe->pte, fe->ptl); return 0; release: mem_cgroup_cancel_charge(page, memcg, false); put_page(page); goto unlock; oom_free_page: put_page(page); oom: return VM_FAULT_OOM; } /* * The mmap_sem must have been held on entry, and may have been * released depending on flags and vma->vm_ops->fault() return value. * See filemap_fault() and __lock_page_retry(). */ static int __do_fault(struct fault_env *fe, pgoff_t pgoff, struct page *cow_page, struct page **page, void **entry) { struct vm_area_struct *vma = fe->vma; struct vm_fault vmf; int ret; /* * Preallocate pte before we take page_lock because this might lead to * deadlocks for memcg reclaim which waits for pages under writeback: * lock_page(A) * SetPageWriteback(A) * unlock_page(A) * lock_page(B) * lock_page(B) * pte_alloc_pne * shrink_page_list * wait_on_page_writeback(A) * SetPageWriteback(B) * unlock_page(B) * # flush A, B to clear the writeback */ if (pmd_none(*fe->pmd) && !fe->prealloc_pte) { fe->prealloc_pte = pte_alloc_one(vma->vm_mm, fe->address); if (!fe->prealloc_pte) return VM_FAULT_OOM; smp_wmb(); /* See comment in __pte_alloc() */ } vmf.virtual_address = (void __user *)(fe->address & PAGE_MASK); vmf.pgoff = pgoff; vmf.flags = fe->flags; vmf.page = NULL; vmf.gfp_mask = __get_fault_gfp_mask(vma); vmf.cow_page = cow_page; ret = vma->vm_ops->fault(vma, &vmf); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; if (ret & VM_FAULT_DAX_LOCKED) { *entry = vmf.entry; return ret; } if (unlikely(PageHWPoison(vmf.page))) { if (ret & VM_FAULT_LOCKED) unlock_page(vmf.page); put_page(vmf.page); return VM_FAULT_HWPOISON; } if (unlikely(!(ret & VM_FAULT_LOCKED))) lock_page(vmf.page); else VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); *page = vmf.page; return ret; } /* * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. * If we check pmd_trans_unstable() first we will trip the bad_pmd() check * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. */ static int pmd_devmap_trans_unstable(pmd_t *pmd) { return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); } static int pte_alloc_one_map(struct fault_env *fe) { struct vm_area_struct *vma = fe->vma; if (!pmd_none(*fe->pmd)) goto map_pte; if (fe->prealloc_pte) { fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); if (unlikely(!pmd_none(*fe->pmd))) { spin_unlock(fe->ptl); goto map_pte; } atomic_long_inc(&vma->vm_mm->nr_ptes); pmd_populate(vma->vm_mm, fe->pmd, fe->prealloc_pte); spin_unlock(fe->ptl); fe->prealloc_pte = 0; } else if (unlikely(pte_alloc(vma->vm_mm, fe->pmd, fe->address))) { return VM_FAULT_OOM; } map_pte: /* * If a huge pmd materialized under us just retry later. Use * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge * under us and then back to pmd_none, as a result of MADV_DONTNEED * running immediately after a huge pmd fault in a different thread of * this mm, in turn leading to a misleading pmd_trans_huge() retval. * All we have to ensure is that it is a regular pmd that we can walk * with pte_offset_map() and we can do that through an atomic read in * C, which is what pmd_trans_unstable() provides. */ if (pmd_devmap_trans_unstable(fe->pmd)) return VM_FAULT_NOPAGE; /* * At this point we know that our vmf->pmd points to a page of ptes * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() * for the duration of the fault. If a racing MADV_DONTNEED runs and * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still * be valid and we will re-check to make sure the vmf->pte isn't * pte_none() under vmf->ptl protection when we return to * alloc_set_pte(). */ fe->pte = pte_offset_map_lock(vma->vm_mm, fe->pmd, fe->address, &fe->ptl); return 0; } #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, unsigned long haddr) { if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) return false; if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) return false; return true; } static int do_set_pmd(struct fault_env *fe, struct page *page) { struct vm_area_struct *vma = fe->vma; bool write = fe->flags & FAULT_FLAG_WRITE; unsigned long haddr = fe->address & HPAGE_PMD_MASK; pmd_t entry; int i, ret; if (!transhuge_vma_suitable(vma, haddr)) return VM_FAULT_FALLBACK; ret = VM_FAULT_FALLBACK; page = compound_head(page); fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); if (unlikely(!pmd_none(*fe->pmd))) goto out; for (i = 0; i < HPAGE_PMD_NR; i++) flush_icache_page(vma, page + i); entry = mk_huge_pmd(page, vma->vm_page_prot); if (write) entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); page_add_file_rmap(page, true); set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); update_mmu_cache_pmd(vma, haddr, fe->pmd); /* fault is handled */ ret = 0; count_vm_event(THP_FILE_MAPPED); out: spin_unlock(fe->ptl); return ret; } #else static int do_set_pmd(struct fault_env *fe, struct page *page) { BUILD_BUG(); return 0; } #endif /** * alloc_set_pte - setup new PTE entry for given page and add reverse page * mapping. If needed, the fucntion allocates page table or use pre-allocated. * * @fe: fault environment * @memcg: memcg to charge page (only for private mappings) * @page: page to map * * Caller must take care of unlocking fe->ptl, if fe->pte is non-NULL on return. * * Target users are page handler itself and implementations of * vm_ops->map_pages. */ int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg, struct page *page) { struct vm_area_struct *vma = fe->vma; bool write = fe->flags & FAULT_FLAG_WRITE; pte_t entry; int ret; if (pmd_none(*fe->pmd) && PageTransCompound(page) && IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { /* THP on COW? */ VM_BUG_ON_PAGE(memcg, page); ret = do_set_pmd(fe, page); if (ret != VM_FAULT_FALLBACK) return ret; } if (!fe->pte) { ret = pte_alloc_one_map(fe); if (ret) return ret; } /* Re-check under ptl */ if (unlikely(!pte_none(*fe->pte))) return VM_FAULT_NOPAGE; flush_icache_page(vma, page); entry = mk_pte(page, vma->vm_page_prot); if (write) entry = maybe_mkwrite(pte_mkdirty(entry), vma); /* copy-on-write page */ if (write && !(vma->vm_flags & VM_SHARED)) { inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, fe->address, false); mem_cgroup_commit_charge(page, memcg, false, false); lru_cache_add_active_or_unevictable(page, vma); } else { inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); page_add_file_rmap(page, false); } set_pte_at(vma->vm_mm, fe->address, fe->pte, entry); /* no need to invalidate: a not-present page won't be cached */ update_mmu_cache(vma, fe->address, fe->pte); return 0; } static unsigned long fault_around_bytes __read_mostly = rounddown_pow_of_two(65536); #ifdef CONFIG_DEBUG_FS static int fault_around_bytes_get(void *data, u64 *val) { *val = fault_around_bytes; return 0; } /* * fault_around_pages() and fault_around_mask() expects fault_around_bytes * rounded down to nearest page order. It's what do_fault_around() expects to * see. */ static int fault_around_bytes_set(void *data, u64 val) { if (val / PAGE_SIZE > PTRS_PER_PTE) return -EINVAL; if (val > PAGE_SIZE) fault_around_bytes = rounddown_pow_of_two(val); else fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ return 0; } DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); static int __init fault_around_debugfs(void) { void *ret; ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, &fault_around_bytes_fops); if (!ret) pr_warn("Failed to create fault_around_bytes in debugfs"); return 0; } late_initcall(fault_around_debugfs); #endif /* * do_fault_around() tries to map few pages around the fault address. The hope * is that the pages will be needed soon and this will lower the number of * faults to handle. * * It uses vm_ops->map_pages() to map the pages, which skips the page if it's * not ready to be mapped: not up-to-date, locked, etc. * * This function is called with the page table lock taken. In the split ptlock * case the page table lock only protects only those entries which belong to * the page table corresponding to the fault address. * * This function doesn't cross the VMA boundaries, in order to call map_pages() * only once. * * fault_around_pages() defines how many pages we'll try to map. * do_fault_around() expects it to return a power of two less than or equal to * PTRS_PER_PTE. * * The virtual address of the area that we map is naturally aligned to the * fault_around_pages() value (and therefore to page order). This way it's * easier to guarantee that we don't cross page table boundaries. */ static int do_fault_around(struct fault_env *fe, pgoff_t start_pgoff) { unsigned long address = fe->address, nr_pages, mask; pgoff_t end_pgoff; int off, ret = 0; nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; fe->address = max(address & mask, fe->vma->vm_start); off = ((address - fe->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); start_pgoff -= off; /* * end_pgoff is either end of page table or end of vma * or fault_around_pages() from start_pgoff, depending what is nearest. */ end_pgoff = start_pgoff - ((fe->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + PTRS_PER_PTE - 1; end_pgoff = min3(end_pgoff, vma_pages(fe->vma) + fe->vma->vm_pgoff - 1, start_pgoff + nr_pages - 1); if (pmd_none(*fe->pmd)) { fe->prealloc_pte = pte_alloc_one(fe->vma->vm_mm, fe->address); if (!fe->prealloc_pte) goto out; smp_wmb(); /* See comment in __pte_alloc() */ } fe->vma->vm_ops->map_pages(fe, start_pgoff, end_pgoff); /* preallocated pagetable is unused: free it */ if (fe->prealloc_pte) { pte_free(fe->vma->vm_mm, fe->prealloc_pte); fe->prealloc_pte = 0; } /* Huge page is mapped? Page fault is solved */ if (pmd_trans_huge(*fe->pmd)) { ret = VM_FAULT_NOPAGE; goto out; } /* ->map_pages() haven't done anything useful. Cold page cache? */ if (!fe->pte) goto out; /* check if the page fault is solved */ fe->pte -= (fe->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); if (!pte_none(*fe->pte)) ret = VM_FAULT_NOPAGE; pte_unmap_unlock(fe->pte, fe->ptl); out: fe->address = address; fe->pte = NULL; return ret; } static int do_read_fault(struct fault_env *fe, pgoff_t pgoff) { struct vm_area_struct *vma = fe->vma; struct page *fault_page; int ret = 0; /* * Let's call ->map_pages() first and use ->fault() as fallback * if page by the offset is not ready to be mapped (cold cache or * something). */ if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { ret = do_fault_around(fe, pgoff); if (ret) return ret; } ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; ret |= alloc_set_pte(fe, NULL, fault_page); if (fe->pte) pte_unmap_unlock(fe->pte, fe->ptl); unlock_page(fault_page); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) put_page(fault_page); return ret; } static int do_cow_fault(struct fault_env *fe, pgoff_t pgoff) { struct vm_area_struct *vma = fe->vma; struct page *fault_page, *new_page; void *fault_entry; struct mem_cgroup *memcg; int ret; if (unlikely(anon_vma_prepare(vma))) return VM_FAULT_OOM; new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, fe->address); if (!new_page) return VM_FAULT_OOM; if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg, false)) { put_page(new_page); return VM_FAULT_OOM; } ret = __do_fault(fe, pgoff, new_page, &fault_page, &fault_entry); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; if (!(ret & VM_FAULT_DAX_LOCKED)) copy_user_highpage(new_page, fault_page, fe->address, vma); __SetPageUptodate(new_page); ret |= alloc_set_pte(fe, memcg, new_page); if (fe->pte) pte_unmap_unlock(fe->pte, fe->ptl); if (!(ret & VM_FAULT_DAX_LOCKED)) { unlock_page(fault_page); put_page(fault_page); } else { dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff); } if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) goto uncharge_out; return ret; uncharge_out: mem_cgroup_cancel_charge(new_page, memcg, false); put_page(new_page); return ret; } static int do_shared_fault(struct fault_env *fe, pgoff_t pgoff) { struct vm_area_struct *vma = fe->vma; struct page *fault_page; struct address_space *mapping; int dirtied = 0; int ret, tmp; ret = __do_fault(fe, pgoff, NULL, &fault_page, NULL); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) return ret; /* * Check if the backing address space wants to know that the page is * about to become writable */ if (vma->vm_ops->page_mkwrite) { unlock_page(fault_page); tmp = do_page_mkwrite(vma, fault_page, fe->address); if (unlikely(!tmp || (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { put_page(fault_page); return tmp; } } ret |= alloc_set_pte(fe, NULL, fault_page); if (fe->pte) pte_unmap_unlock(fe->pte, fe->ptl); if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) { unlock_page(fault_page); put_page(fault_page); return ret; } /* There's no need to set anon page dirty. */ if (!PageAnon(fault_page)) if (set_page_dirty(fault_page)) dirtied = 1; /* * Take a local copy of the address_space - page.mapping may be zeroed * by truncate after unlock_page(). The address_space itself remains * pinned by vma->vm_file's reference. We rely on unlock_page()'s * release semantics to prevent the compiler from undoing this copying. */ mapping = page_rmapping(fault_page); unlock_page(fault_page); if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { /* * Some device drivers do not set page.mapping but still * dirty their pages */ balance_dirty_pages_ratelimited(mapping); } if (!vma->vm_ops->page_mkwrite) file_update_time(vma->vm_file); return ret; } /* * We enter with non-exclusive mmap_sem (to exclude vma changes, * but allow concurrent faults). * The mmap_sem may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ static int do_fault(struct fault_env *fe) { struct vm_area_struct *vma = fe->vma; pgoff_t pgoff = linear_page_index(vma, fe->address); int ret; /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ if (!vma->vm_ops->fault) ret = VM_FAULT_SIGBUS; else if (!(fe->flags & FAULT_FLAG_WRITE)) ret = do_read_fault(fe, pgoff); else if (!(vma->vm_flags & VM_SHARED)) ret = do_cow_fault(fe, pgoff); else ret = do_shared_fault(fe, pgoff); /* preallocated pagetable is unused: free it */ if (fe->prealloc_pte) { pte_free(vma->vm_mm, fe->prealloc_pte); fe->prealloc_pte = 0; } return ret; } static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, unsigned long addr, int page_nid, int *flags) { get_page(page); count_vm_numa_event(NUMA_HINT_FAULTS); if (page_nid == numa_node_id()) { count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); *flags |= TNF_FAULT_LOCAL; } return mpol_misplaced(page, vma, addr); } static int do_numa_page(struct fault_env *fe, pte_t pte) { struct vm_area_struct *vma = fe->vma; struct page *page = NULL; int page_nid = -1; int last_cpupid; int target_nid; bool migrated = false; bool was_writable = pte_write(pte); int flags = 0; /* * The "pte" at this point cannot be used safely without * validation through pte_unmap_same(). It's of NUMA type but * the pfn may be screwed if the read is non atomic. * * We can safely just do a "set_pte_at()", because the old * page table entry is not accessible, so there would be no * concurrent hardware modifications to the PTE. */ fe->ptl = pte_lockptr(vma->vm_mm, fe->pmd); spin_lock(fe->ptl); if (unlikely(!pte_same(*fe->pte, pte))) { pte_unmap_unlock(fe->pte, fe->ptl); goto out; } /* Make it present again */ pte = pte_modify(pte, vma->vm_page_prot); pte = pte_mkyoung(pte); if (was_writable) pte = pte_mkwrite(pte); set_pte_at(vma->vm_mm, fe->address, fe->pte, pte); update_mmu_cache(vma, fe->address, fe->pte); page = vm_normal_page(vma, fe->address, pte); if (!page) { pte_unmap_unlock(fe->pte, fe->ptl); return 0; } /* TODO: handle PTE-mapped THP */ if (PageCompound(page)) { pte_unmap_unlock(fe->pte, fe->ptl); return 0; } /* * Avoid grouping on RO pages in general. RO pages shouldn't hurt as * much anyway since they can be in shared cache state. This misses * the case where a mapping is writable but the process never writes * to it but pte_write gets cleared during protection updates and * pte_dirty has unpredictable behaviour between PTE scan updates, * background writeback, dirty balancing and application behaviour. */ if (!pte_write(pte)) flags |= TNF_NO_GROUP; /* * Flag if the page is shared between multiple address spaces. This * is later used when determining whether to group tasks together */ if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) flags |= TNF_SHARED; last_cpupid = page_cpupid_last(page); page_nid = page_to_nid(page); target_nid = numa_migrate_prep(page, vma, fe->address, page_nid, &flags); pte_unmap_unlock(fe->pte, fe->ptl); if (target_nid == -1) { put_page(page); goto out; } /* Migrate to the requested node */ migrated = migrate_misplaced_page(page, vma, target_nid); if (migrated) { page_nid = target_nid; flags |= TNF_MIGRATED; } else flags |= TNF_MIGRATE_FAIL; out: if (page_nid != -1) task_numa_fault(last_cpupid, page_nid, 1, flags); return 0; } static int create_huge_pmd(struct fault_env *fe) { struct vm_area_struct *vma = fe->vma; if (vma_is_anonymous(vma)) return do_huge_pmd_anonymous_page(fe); if (vma->vm_ops->pmd_fault) return vma->vm_ops->pmd_fault(vma, fe->address, fe->pmd, fe->flags); return VM_FAULT_FALLBACK; } static int wp_huge_pmd(struct fault_env *fe, pmd_t orig_pmd) { if (vma_is_anonymous(fe->vma)) return do_huge_pmd_wp_page(fe, orig_pmd); if (fe->vma->vm_ops->pmd_fault) return fe->vma->vm_ops->pmd_fault(fe->vma, fe->address, fe->pmd, fe->flags); /* COW handled on pte level: split pmd */ VM_BUG_ON_VMA(fe->vma->vm_flags & VM_SHARED, fe->vma); split_huge_pmd(fe->vma, fe->pmd, fe->address); return VM_FAULT_FALLBACK; } static inline bool vma_is_accessible(struct vm_area_struct *vma) { return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); } /* * These routines also need to handle stuff like marking pages dirty * and/or accessed for architectures that don't do it in hardware (most * RISC architectures). The early dirtying is also good on the i386. * * There is also a hook called "update_mmu_cache()" that architectures * with external mmu caches can use to update those (ie the Sparc or * PowerPC hashed page tables that act as extended TLBs). * * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow * concurrent faults). * * The mmap_sem may have been released depending on flags and our return value. * See filemap_fault() and __lock_page_or_retry(). */ static int handle_pte_fault(struct fault_env *fe) { pte_t entry; pteval_t prot_vm_none = pgprot_val(vm_get_page_prot(VM_NONE)); bool fix_prot = false; if (unlikely(pmd_none(*fe->pmd))) { /* * Leave __pte_alloc() until later: because vm_ops->fault may * want to allocate huge page, and if we expose page table * for an instant, it will be difficult to retract from * concurrent faults and from rmap lookups. */ fe->pte = NULL; } else { /* See comment in pte_alloc_one_map() */ if (pmd_devmap_trans_unstable(fe->pmd)) return 0; /* * A regular pmd is established and it can't morph into a huge * pmd from under us anymore at this point because we hold the * mmap_sem read mode and khugepaged takes it in write mode. * So now it's safe to run pte_offset_map(). */ fe->pte = pte_offset_map(fe->pmd, fe->address); entry = *fe->pte; /* * some architectures can have larger ptes than wordsize, * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee * atomic accesses. The code below just needs a consistent * view for the ifs and we later double check anyway with the * ptl lock held. So here a barrier will do. */ barrier(); if (pte_none(entry)) { pte_unmap(fe->pte); fe->pte = NULL; } } if (!fe->pte) { if (vma_is_anonymous(fe->vma)) return do_anonymous_page(fe); else return do_fault(fe); } if (!pte_present(entry)) return do_swap_page(fe, entry); if (pte_protnone(entry) && vma_is_accessible(fe->vma)) return do_numa_page(fe, entry); if (fe->vma->vm_ops && fe->vma->vm_ops->fixup_prot && fe->vma->vm_ops->fault && ((prot_vm_none & pte_val(entry)) == prot_vm_none)) { pgoff_t pgoff = (((fe->address & PAGE_MASK) - fe->vma->vm_start) >> PAGE_SHIFT) + fe->vma->vm_pgoff; if (!fe->vma->vm_ops->fixup_prot(fe->vma, fe->address & PAGE_MASK, pgoff)) return VM_FAULT_SIGSEGV; /* access not granted */ fix_prot = true; } fe->ptl = pte_lockptr(fe->vma->vm_mm, fe->pmd); spin_lock(fe->ptl); if (unlikely(!pte_same(*fe->pte, entry))) goto unlock; if (fix_prot) { entry = pte_modify(entry, fe->vma->vm_page_prot); vm_stat_account(fe->vma->vm_mm, VM_NONE, -1); vm_stat_account(fe->vma->vm_mm, fe->vma->vm_flags, 1); } if (fe->flags & FAULT_FLAG_WRITE) { if (!pte_write(entry)) return do_wp_page(fe, entry, fe->flags); entry = pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (ptep_set_access_flags(fe->vma, fe->address, fe->pte, entry, fe->flags & FAULT_FLAG_WRITE)) { update_mmu_cache(fe->vma, fe->address, fe->pte); } else { /* * This is needed only for protection faults but the arch code * is not yet telling us if this is a protection fault or not. * This still avoids useless tlb flushes for .text page faults * with threads. */ if (fe->flags & FAULT_FLAG_WRITE) flush_tlb_fix_spurious_fault(fe->vma, fe->address); } unlock: pte_unmap_unlock(fe->pte, fe->ptl); return 0; } /* * By the time we get here, we already hold the mm semaphore * * The mmap_sem may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { struct fault_env fe = { .vma = vma, .address = address, .flags = flags, }; struct mm_struct *mm = vma->vm_mm; pgd_t *pgd; pud_t *pud; pgd = pgd_offset(mm, address); pud = pud_alloc(mm, pgd, address); if (!pud) return VM_FAULT_OOM; fe.pmd = pmd_alloc(mm, pud, address); if (!fe.pmd) return VM_FAULT_OOM; if (pmd_none(*fe.pmd) && transparent_hugepage_enabled(vma)) { int ret = create_huge_pmd(&fe); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { pmd_t orig_pmd = *fe.pmd; int ret; barrier(); if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) return do_huge_pmd_numa_page(&fe, orig_pmd); if ((fe.flags & FAULT_FLAG_WRITE) && !pmd_write(orig_pmd)) { ret = wp_huge_pmd(&fe, orig_pmd); if (!(ret & VM_FAULT_FALLBACK)) return ret; } else { huge_pmd_set_accessed(&fe, orig_pmd); return 0; } } } return handle_pte_fault(&fe); } /* * By the time we get here, we already hold the mm semaphore * * The mmap_sem may have been released depending on flags and our * return value. See filemap_fault() and __lock_page_or_retry(). */ int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, unsigned int flags) { int ret; __set_current_state(TASK_RUNNING); count_vm_event(PGFAULT); mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT); /* do counter updates before entering really critical section. */ check_sync_rss_stat(current); if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, flags & FAULT_FLAG_INSTRUCTION, flags & FAULT_FLAG_REMOTE)) return VM_FAULT_SIGSEGV; /* * Enable the memcg OOM handling for faults triggered in user * space. Kernel faults are handled more gracefully. */ if (flags & FAULT_FLAG_USER) mem_cgroup_oom_enable(); if (unlikely(is_vm_hugetlb_page(vma))) ret = hugetlb_fault(vma->vm_mm, vma, address, flags); else ret = __handle_mm_fault(vma, address, flags); if (flags & FAULT_FLAG_USER) { mem_cgroup_oom_disable(); /* * The task may have entered a memcg OOM situation but * if the allocation error was handled gracefully (no * VM_FAULT_OOM), there is no need to kill anything. * Just clean up the OOM state peacefully. */ if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) mem_cgroup_oom_synchronize(false); } /* * This mm has been already reaped by the oom reaper and so the * refault cannot be trusted in general. Anonymous refaults would * lose data and give a zero page instead e.g. This is especially * problem for use_mm() because regular tasks will just die and * the corrupted data will not be visible anywhere while kthread * will outlive the oom victim and potentially propagate the date * further. */ if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR) && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) { /* * We are going to enforce SIGBUS but the PF path might have * dropped the mmap_sem already so take it again so that * we do not break expectations of all arch specific PF paths * and g-u-p */ if (ret & VM_FAULT_RETRY) down_read(&vma->vm_mm->mmap_sem); ret = VM_FAULT_SIGBUS; } return ret; } EXPORT_SYMBOL_GPL(handle_mm_fault); #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. * We've already handled the fast-path in-line. */ int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) { pud_t *new = pud_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); if (pgd_present(*pgd)) /* Another has populated it */ pud_free(mm, new); else pgd_populate(mm, pgd, new); spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_PUD_FOLDED */ #ifndef __PAGETABLE_PMD_FOLDED /* * Allocate page middle directory. * We've already handled the fast-path in-line. */ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) { pmd_t *new = pmd_alloc_one(mm, address); if (!new) return -ENOMEM; smp_wmb(); /* See comment in __pte_alloc */ spin_lock(&mm->page_table_lock); #ifndef __ARCH_HAS_4LEVEL_HACK if (!pud_present(*pud)) { mm_inc_nr_pmds(mm); pud_populate(mm, pud, new); } else /* Another has populated it */ pmd_free(mm, new); #else if (!pgd_present(*pud)) { mm_inc_nr_pmds(mm); pgd_populate(mm, pud, new); } else /* Another has populated it */ pmd_free(mm, new); #endif /* __ARCH_HAS_4LEVEL_HACK */ spin_unlock(&mm->page_table_lock); return 0; } #endif /* __PAGETABLE_PMD_FOLDED */ static int __follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *ptep; pgd = pgd_offset(mm, address); if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) goto out; pud = pud_offset(pgd, address); if (pud_none(*pud) || unlikely(pud_bad(*pud))) goto out; pmd = pmd_offset(pud, address); VM_BUG_ON(pmd_trans_huge(*pmd)); if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) goto out; /* We cannot handle huge page PFN maps. Luckily they don't exist. */ if (pmd_huge(*pmd)) goto out; ptep = pte_offset_map_lock(mm, pmd, address, ptlp); if (!ptep) goto out; if (!pte_present(*ptep)) goto unlock; *ptepp = ptep; return 0; unlock: pte_unmap_unlock(ptep, *ptlp); out: return -EINVAL; } static inline int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, spinlock_t **ptlp) { int res; /* (void) is needed to make gcc happy */ (void) __cond_lock(*ptlp, !(res = __follow_pte(mm, address, ptepp, ptlp))); return res; } /** * follow_pfn - look up PFN at a user virtual address * @vma: memory mapping * @address: user virtual address * @pfn: location to store found PFN * * Only IO mappings and raw PFN mappings are allowed. * * Returns zero and the pfn at @pfn on success, -ve otherwise. */ int follow_pfn(struct vm_area_struct *vma, unsigned long address, unsigned long *pfn) { int ret = -EINVAL; spinlock_t *ptl; pte_t *ptep; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) return ret; ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); if (ret) return ret; *pfn = pte_pfn(*ptep); pte_unmap_unlock(ptep, ptl); return 0; } EXPORT_SYMBOL(follow_pfn); #ifdef CONFIG_HAVE_IOREMAP_PROT int follow_phys(struct vm_area_struct *vma, unsigned long address, unsigned int flags, unsigned long *prot, resource_size_t *phys) { int ret = -EINVAL; pte_t *ptep, pte; spinlock_t *ptl; if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) goto out; if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) goto out; pte = *ptep; if ((flags & FOLL_WRITE) && !pte_write(pte)) goto unlock; *prot = pgprot_val(pte_pgprot(pte)); *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; ret = 0; unlock: pte_unmap_unlock(ptep, ptl); out: return ret; } int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, void *buf, int len, int write) { resource_size_t phys_addr; unsigned long prot = 0; void __iomem *maddr; int offset = addr & (PAGE_SIZE-1); if (follow_phys(vma, addr, write, &prot, &phys_addr)) return -EINVAL; maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); if (!maddr) return -ENOMEM; if (write) memcpy_toio(maddr + offset, buf, len); else memcpy_fromio(buf, maddr + offset, len); iounmap(maddr); return len; } EXPORT_SYMBOL_GPL(generic_access_phys); #endif /* * Access another process' address space as given in mm. If non-NULL, use the * given task for page fault accounting. */ int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct vm_area_struct *vma; void *old_buf = buf; int write = gup_flags & FOLL_WRITE; down_read(&mm->mmap_sem); /* ignore errors, just check how much was successfully transferred */ while (len) { int bytes, ret, offset; void *maddr; struct page *page = NULL; ret = get_user_pages_remote(tsk, mm, addr, 1, gup_flags, &page, &vma); if (ret <= 0) { #ifndef CONFIG_HAVE_IOREMAP_PROT break; #else /* * Check if this is a VM_IO | VM_PFNMAP VMA, which * we can access using slightly different code. */ vma = find_vma(mm, addr); if (!vma || vma->vm_start > addr) break; if (vma->vm_ops && vma->vm_ops->access) ret = vma->vm_ops->access(vma, addr, buf, len, write); if (ret <= 0) break; bytes = ret; #endif } else { bytes = len; offset = addr & (PAGE_SIZE-1); if (bytes > PAGE_SIZE-offset) bytes = PAGE_SIZE-offset; maddr = kmap(page); if (write) { copy_to_user_page(vma, page, addr, maddr + offset, buf, bytes); set_page_dirty_lock(page); } else { copy_from_user_page(vma, page, addr, buf, maddr + offset, bytes); } kunmap(page); put_page(page); } len -= bytes; buf += bytes; addr += bytes; } up_read(&mm->mmap_sem); return buf - old_buf; } /** * access_remote_vm - access another process' address space * @mm: the mm_struct of the target address space * @addr: start address to access * @buf: source or destination buffer * @len: number of bytes to transfer * @gup_flags: flags modifying lookup behaviour * * The caller must hold a reference on @mm. */ int access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, int len, unsigned int gup_flags) { return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); } /* * Access another process' address space. * Source/target buffer must be kernel space, * Do not walk the page table directly, use get_user_pages */ int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, unsigned int gup_flags) { struct mm_struct *mm; int ret; mm = get_task_mm(tsk); if (!mm) return 0; ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); mmput(mm); return ret; } /* * Print the name of a VMA. */ void print_vma_addr(char *prefix, unsigned long ip) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; /* * Do not print if we are in atomic * contexts (in exception stacks, etc.): */ if (preempt_count()) return; down_read(&mm->mmap_sem); vma = find_vma(mm, ip); if (vma && vma->vm_file) { struct file *f = vma->vm_file; char *buf = (char *)__get_free_page(GFP_KERNEL); if (buf) { char *p; p = file_path(f, buf, PAGE_SIZE); if (IS_ERR(p)) p = "?"; printk("%s%s[%lx+%lx]", prefix, kbasename(p), vma->vm_start, vma->vm_end - vma->vm_start); free_page((unsigned long)buf); } } up_read(&mm->mmap_sem); } #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) void __might_fault(const char *file, int line) { /* * Some code (nfs/sunrpc) uses socket ops on kernel memory while * holding the mmap_sem, this is safe because kernel memory doesn't * get paged out, therefore we'll never actually fault, and the * below annotations will generate false positives. */ if (segment_eq(get_fs(), KERNEL_DS)) return; if (pagefault_disabled()) return; __might_sleep(file, line, 0); #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) if (current->mm) might_lock_read(¤t->mm->mmap_sem); #endif } EXPORT_SYMBOL(__might_fault); #endif #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) static void clear_gigantic_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page) { int i; struct page *p = page; might_sleep(); for (i = 0; i < pages_per_huge_page; i++, p = mem_map_next(p, page, i)) { cond_resched(); clear_user_highpage(p, addr + i * PAGE_SIZE); } } void clear_huge_page(struct page *page, unsigned long addr, unsigned int pages_per_huge_page) { int i; if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { clear_gigantic_page(page, addr, pages_per_huge_page); return; } might_sleep(); for (i = 0; i < pages_per_huge_page; i++) { cond_resched(); clear_user_highpage(page + i, addr + i * PAGE_SIZE); } } static void copy_user_gigantic_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { int i; struct page *dst_base = dst; struct page *src_base = src; for (i = 0; i < pages_per_huge_page; ) { cond_resched(); copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); i++; dst = mem_map_next(dst, dst_base, i); src = mem_map_next(src, src_base, i); } } void copy_user_huge_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma, unsigned int pages_per_huge_page) { int i; if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { copy_user_gigantic_page(dst, src, addr, vma, pages_per_huge_page); return; } might_sleep(); for (i = 0; i < pages_per_huge_page; i++) { cond_resched(); copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); } } #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS static struct kmem_cache *page_ptl_cachep; void __init ptlock_cache_init(void) { page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, SLAB_PANIC, NULL); } bool ptlock_alloc(struct page *page) { spinlock_t *ptl; ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); if (!ptl) return false; page->ptl = ptl; return true; } void ptlock_free(struct page *page) { kmem_cache_free(page_ptl_cachep, page->ptl); } #endif