/*
* ahci-tegra.c - AHCI SATA support for TEGRA AHCI device
*
* Copyright (c) 2011-2018, NVIDIA Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*
* libata documentation is available via 'make {ps|pdf}docs',
* as Documentation/DocBook/libata.*
*
* AHCI hardware documentation:
* http://www.intel.com/technology/serialata/pdf/rev1_0.pdf
* http://www.intel.com/technology/serialata/pdf/rev1_1.pdf
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "ahci.h"
#include
#include
#include
#include
#include
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)
#include
#else
#include
#endif
#include
#include
#include "../../arch/arm/mach-tegra/iomap.h"
#include
#include
#include
#include
#include
#include
#include
#define DRV_NAME "tegra-sata"
#define DRV_VERSION "1.0"
#define ENABLE_AHCI_DBG_PRINT 0
#if ENABLE_AHCI_DBG_PRINT
#define AHCI_DBG_PRINT(fmt, arg...) printk(KERN_ERR fmt, ## arg)
#else
#define AHCI_DBG_PRINT(fmt, arg...) do {} while (0)
#endif
/* number of AHCI ports */
#define TEGRA_AHCI_NUM_PORTS 1
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
/* idle timeout for PM in msec */
#define TEGRA_AHCI_DEFAULT_IDLE_TIME 10000
#endif
/* Bit 0 (EN_FPCI) to allow FPCI accesses to SATA */
#define SATA_CONFIGURATION_0_OFFSET 0x180
#define EN_FPCI (1 << 0)
#define CLK_OVERRIDE (1 << 31)
#define SATA_INTR_MASK_0_OFFSET 0x188
#define IP_INT_MASK (1 << 16)
/* Need to write 0x00400200 to 0x70020094 */
#define SATA_FPCI_BAR5_0_OFFSET 0x094
#define CPU_IER_SATA_CTL (1 << 23)
#define AHCI_BAR5_CONFIG_LOCATION 0x24
#define TEGRA_SATA_BAR5_INIT_PROGRAM 0xFFFFFFFF
#define TEGRA_SATA_BAR5_FINAL_PROGRAM 0x40020000
#define FUSE_SATA_CALIB_OFFSET 0x224
#define FUSE_SATA_CALIB_MASK 0x3
#define T_SATA0_CFG_PHY_REG 0x120
#define T_SATA0_CFG_PHY_SQUELCH_MASK (1 << 24)
#define PHY_USE_7BIT_ALIGN_DET_FOR_SPD_MASK (1 << 11)
#define T_SATA0_CFG_POWER_GATE 0x4ac
#define POWER_GATE_SSTS_RESTORED_MASK (1 << 23)
#define POWER_GATE_SSTS_RESTORED_YES (1 << 23)
#define POWER_GATE_SSTS_RESTORED_NO (0 << 23)
#define T_SATA0_DBG0_OFFSET 0x550
#define T_SATA0_INDEX_OFFSET 0x680
#define SATA0_NONE_SELECTED 0
#define SATA0_CH1_SELECTED (1 << 0)
#define T_SATA0_CHX_PHY_CTRL1_GEN1_OFFSET 0x690
#define SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT 0
#define SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_MASK (0xff << 0)
#define SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT 8
#define SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_MASK (0xff << 8)
#define T_SATA0_CHX_PHY_CTRL1_GEN2_OFFSET 0x694
#define SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_SHIFT 0
#define SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_MASK (0xff << 0)
#define SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_SHIFT 12
#define SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_MASK (0xff << 12)
#define SATA0_CHX_PHY_CTRL1_GEN2_RX_EQ_SHIFT 24
#define SATA0_CHX_PHY_CTRL1_GEN2_RX_EQ_MASK (0xf << 24)
#define T_SATA0_CFG_LINK_0 0x174
#define T_SATA0_CFG_LINK_0_USE_POSEDGE_SCTL_DET BIT(24)
/* AHCI config space defines */
#define TEGRA_PRIVATE_AHCI_CC_BKDR 0x4a4
#define TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE 0x54c
#define TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE_EN (1 << 12)
#define TEGRA_PRIVATE_AHCI_CC_BKDR_PGM 0x01060100
/* AHCI HBA_CAP */
#define TEGRA_PRIVATE_AHCI_CAP_BKDR 0xa0
#define T_SATA0_AHCI_HBA_CAP_BKDR 0x300
#define AHCI_HBA_PLL_CTRL_0 0xa8
#define CLAMP_TXCLK_ON_SLUMBER (1 << 13)
#define CLAMP_TXCLK_ON_DEVSLP (1 << 24)
#define SHUTDOWN_TXCLK_ON_DEVSLP (1 << 22)
#define SHUTDOWN_TXCLK_ON_SLUMBER (1 << 6)
#define NO_CLAMP_SHUT_DOWN (1 << 3)
#define TEGRA_SATA_IO_SPACE_OFFSET 4
#define TEGRA_SATA_ENABLE_IO_SPACE (1 << 0)
#define TEGRA_SATA_ENABLE_MEM_SPACE (1 << 1)
#define TEGRA_SATA_ENABLE_BUS_MASTER (1 << 2)
#define TEGRA_SATA_ENABLE_SERR (1 << 8)
#define TEGRA_SATA_CORE_CLOCK_FREQ_HZ (102*1000*1000)
#define TEGRA_SATA_OOB_CLOCK_FREQ_HZ (204*1000*1000)
#define APB_PMC_SATA_PWRGT_0_REG 0x1ac
#define CLK_RST_SATA_PLL_CFG0_REG 0x490
#define CLK_RST_SATA_PLL_CFG1_REG 0x494
#define CLK_RST_CONTROLLER_RST_DEVICES_V_0 0x358
#define CLK_RST_CONTROLLER_RST_DEVICES_W_0 0x35c
#define CLK_RST_CONTROLLER_RST_DEV_W_CLR_0 0x43c
#define CLK_RST_CONTROLLER_RST_DEV_V_CLR_0 0x434
#define CLK_RST_CONTROLLER_CLK_ENB_V_CLR_0 0x444
#define CLK_RST_CONTROLLER_CLK_ENB_V_SET_0 0x440
#define CLK_RST_CONTROLLER_CLK_ENB_V_0 0x360
#define CLK_RST_CONTROLLER_RST_DEV_W_SET 0x438
#define CLK_RST_CONTROLLER_RST_DEV_V_SET 0x430
#define SET_CEC_RESET 0x100
#define CLR_CLK_ENB_SATA_OOB (1 << 27)
#define CLR_CLK_ENB_SATA (1 << 28)
#define T_SATA0_FIFO 0x170
#define T_SATA0_FIFO_L2P_FIFO_DEPTH_MASK (0xf<<12)
#define T_SATA0_FIFO_L2P_FIFO_DEPTH_SHIFT 12
#define CLK_RST_CONTROLLER_PLLE_MISC_0 0x0ec
#define CLK_RST_CONTROLLER_PLLE_MISC_0_VALUE 0x00070300
#define CLK_RST_CONTROLLER_PLLE_BASE_0 0xe8
#define PLLE_ENABLE (1 << 30)
#define PLLE_ENABLE_T210 (1 << 31)
#define CLK_RST_CONTROLLER_PLLE_AUX_0 0x48c
#define CLK_RST_CONTROLLER_PLLE_AUX_0_MASK (1 << 1)
#define CLR_SATACOLD_RST (1 << 1)
#define SWR_SATACOLD_RST (1 << 1)
#define SWR_SATA_RST (1 << 28)
#define SWR_SATA_OOB_RST (1 << 27)
#define DEVSLP_OVERRIDE (1 << 17)
#define SDS_SUPPORT (1 << 13)
#define DESO_SUPPORT (1 << 15)
#define SATA_AUX_PAD_PLL_CNTL_1_REG 0x00
#define SATA_AUX_MISC_CNTL_1_REG 0x08
#define SATA_AUX_SPARE_CFG0_0 0x18
/* for tegra_pmc_sata_pwrgt_update() */
#define PMC_SATA_PG_INFO_MASK (1 << 6)
#define PMC_SATA_PG_INFO_ON (1 << 6)
#define PMC_SATA_PG_INFO_OFF (0 << 6)
#define PLLE_IDDQ_SWCTL_MASK (1 << 4)
#define PADPHY_IDDQ_OVERRIDE_VALUE_MASK (1 << 3)
#define PADPHY_IDDQ_OVERRIDE_VALUE_ON (1 << 3)
#define PADPHY_IDDQ_OVERRIDE_VALUE_OFF (0 << 3)
#define PADPHY_IDDQ_SWCTL_MASK (1 << 2)
#define PADPHY_IDDQ_SWCTL_ON (1 << 2)
#define PADPHY_IDDQ_SWCTL_OFF (0 << 2)
#define PADPLL_IDDQ_OVERRIDE_VALUE_MASK (1 << 1)
#define PADPLL_IDDQ_OVERRIDE_VALUE_ON (1 << 1)
#define PADPLL_IDDQ_OVERRIDE_VALUE_OFF (0 << 1)
#define PADPLL_IDDQ_SWCTL_MASK (1 << 0)
#define PADPLL_IDDQ_SWCTL_ON (1 << 0)
#define PADPLL_IDDQ_SWCTL_OFF (0 << 0)
#define START (1 < 8)
#define PARTID_VALUE 0x8
#define SAX_MASK (1 << 8)
/* for CLK_RST_SATA_PLL_CFG0_REG */
#define PADPLL_RESET_OVERRIDE_VALUE_MASK (1 << 1)
#define PADPLL_RESET_OVERRIDE_VALUE_ON (1 << 1)
#define PADPLL_RESET_OVERRIDE_VALUE_OFF (0 << 1)
#define PADPLL_RESET_SWCTL_MASK (1 << 0)
#define PADPLL_RESET_SWCTL_ON (1 << 0)
#define PADPLL_RESET_SWCTL_OFF (0 << 0)
#define PLLE_IDDQ_SWCTL_ON (1 << 4)
#define PLLE_IDDQ_SWCTL_OFF (0 << 4)
#define PLLE_SATA_SEQ_ENABLE (1 << 24)
#define PLLE_SATA_SEQ_START_STATE (1 << 25)
#define SATA_SEQ_PADPLL_PD_INPUT_VALUE (1 << 7)
#define SATA_SEQ_LANE_PD_INPUT_VALUE (1 << 6)
#define SATA_SEQ_RESET_INPUT_VALUE (1 << 5)
#define SATA_PADPLL_SLEEP_IDDQ (1 << 13)
#define SATA_PADPLL_USE_LOCKDET (1 << 2)
/* for CLK_RST_SATA_PLL_CFG1_REG */
#define IDDQ2LANE_SLUMBER_DLY_MASK (0xffL << 16)
#define IDDQ2LANE_SLUMBER_DLY_SHIFT 16
#define IDDQ2LANE_SLUMBER_DLY_3MS (3 << 16)
#define IDDQ2LANE_IDDQ_DLY_SHIFT 0
#define IDDQ2LANE_IDDQ_DLY_MASK (0xffL << 0)
/* for SATA_AUX_PAD_PLL_CNTL_1_REG */
#define REFCLK_SEL_MASK (3 << 11)
#define REFCLK_SEL_INT_CML (0 << 11)
#define LOCKDET_FIELD (1 << 6)
/* for SATA_AUX_MISC_CNTL_1_REG */
#define NVA2SATA_OOB_ON_POR_MASK (1 << 7)
#define NVA2SATA_OOB_ON_POR_YES (1 << 7)
#define NVA2SATA_OOB_ON_POR_NO (0 << 7)
#define L0_RX_IDLE_T_SAX_SHIFT 5
#define L0_RX_IDLE_T_SAX_MASK (3 << 5)
#define L0_RX_IDLE_T_NPG_SHIFT 3
#define L0_RX_IDLE_T_NPG_MASK (3 << 3)
#define L0_RX_IDLE_T_MUX_MASK (1 << 2)
#define L0_RX_IDLE_T_MUX_FROM_APB_MISC (1 << 2)
#define L0_RX_IDLE_T_MUX_FROM_SATA (0 << 2)
#define SSTAT_IPM_STATE_MASK 0xF00
#define SSTAT_IPM_SLUMBER_STATE 0x600
#define SATA_AXI_BAR5_START_0 0x54
#define SATA_AXI_BAR5_SZ_0 0x14
#define SATA_AXI_BAR5_START_VALUE 0x70020
#define AXI_BAR5_SIZE_VALUE 0x00008
#define FPCI_BAR5_0_START_VALUE 0x0010000
#define FPCI_BAR5_0_FINAL_VALUE 0x40020100
#define FPCI_BAR5_0_ACCESS_TYPE (1 << 0)
/* Spread Settings */
#define SATA0_CHX_PHY_CTRL11_0 0x6D0
#define SATA0_CHX_PHY_CTRL2_0 0x69c
#define GEN2_RX_EQ (0x2800 << 16)
#define CDR_CNTL_GEN1 0x23
#define CLK_RST_CONTROLLER_PLLE_SS_CNTL_0 0x68
#define PLLE_SSCCENTER (1 << 14)
#define PLLE_SSCINVERT (1 << 15)
#define PLLE_SSCMAX (0x25)
#define PLLE_SSCINCINTRV (0x20 << 24)
#define PLLE_SSCINC (1 << 16)
#define PLLE_BYPASS_SS (1 << 10)
#define PLLE_SSCBYP (1 << 12)
#define PLLE_INTERP_RESET (1 << 11)
#define SATA_AUX_RX_STAT_INT_0 0x110c
#define SATA_RX_STAT_INT_DISABLE (1 << 2)
#define SATA_AUX_RX_STAT_INT_0_SATA_DEVSLP (0x1 << 7)
#define SATA_AUX_MISC_CNTL_1_0 0x1108
#define SATA_AUX_MISC_CNTL_1_0_DEVSLP_OVERRIDE (0x1 << 17)
#define T_SATA0_NVOOB 0x114
#define T_SATA0_NVOOB_COMMA_CNT (0x7 << 28)
#define T_SATA0_NVOOB_SQUELCH_FILTER_MODE_SHIFT 24
#define T_SATA0_NVOOB_SQUELCH_FILTER_MODE_MASK (3 << 24)
#define T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH_SHIFT 26
#define T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH_MASK (3 << 26)
#define PXSSTS_DEVICE_DETECTED (1 << 0)
/*Electrical settings for better link stability */
#define SATA_CHX_PHY_CTRL17_0 0x6e8
#define SATA_CHX_PHY_CTRL18_0 0x6ec
#define SATA_CHX_PHY_CTRL20_0 0x6f4
#define SATA_CHX_PHY_CTRL21_0 0x6f8
#define SATA0_CFG_35_0 0x094
#define IDP_INDEX (0x2a << 2)
#define SATA0_AHCI_IDP1_0 0x098
#define SATA0_AHCI_IDP1_0_DATA (1 << 6 | 1 << 22)
#define SATA0_CFG_PHY_1_0 0x12c
#define PAD_IDDQ_EN (1 << 23)
#define PAD_PLL_IDDQ_EN (1 << 22)
/* SATA Port Registers*/
#define PXSSTS 0X28
#define T_AHCI_PORT_PXSSTS_IPM_MASK (0xF00)
#define T_AHCI_PORT_PXSSTS_IPM_SHIFT (8)
#define TEGRA_AHCI_READ_LOG_EXT_NOENTRY 0x80
#ifdef CONFIG_PM_GENERIC_DOMAINS_OF
static struct of_device_id tegra_sata_pd[] = {
{ .compatible = "nvidia,tegra210-sata-pd", },
{},
};
#endif
enum {
AHCI_PCI_BAR = 5,
};
enum tegra_ahci_port_runtime_status {
TEGRA_AHCI_PORT_RUNTIME_ACTIVE = 1,
TEGRA_AHCI_PORT_RUNTIME_PARTIAL = 2,
TEGRA_AHCI_PORT_RUNTIME_SLUMBER = 6,
TEGRA_AHCI_PORT_RUNTIME_DEVSLP = 8,
};
enum port_idle_status {
PORT_IS_NOT_IDLE,
PORT_IS_IDLE,
PORT_IS_IDLE_NOT_SLUMBER,
PORT_IS_SLUMBER,
};
enum sata_state {
SATA_ON,
SATA_OFF,
SATA_GOING_ON,
SATA_GOING_OFF,
SATA_ABORT_OFF,
};
enum clk_gate_state {
CLK_OFF,
CLK_ON,
};
enum sata_connectors {
MINI_SATA,
MICRO_SATA,
SLIMLINE_SATA,
E_SATA,
E_SATA_P,
SATA_EXPRESS,
STANDARD_SATA,
};
/* Sata Pad Cntrl Values */
struct sata_pad_cntrl {
u8 gen1_tx_amp;
u8 gen1_tx_peak;
u8 gen2_tx_amp;
u8 gen2_tx_peak;
};
/*
* tegra_ahci_host_priv is the extension of ahci_host_priv
* with extra fields: idle_timer, pg_save, pg_state, etc.
*/
struct tegra_ahci_host_priv {
struct ahci_host_priv ahci_host_priv;
struct regulator **power_rails;
void __iomem *bars_table[6];
struct ata_host *host;
struct timer_list idle_timer;
struct device *dev;
struct platform_device *pdev;
void *pg_save;
enum sata_state pg_state;
enum sata_connectors sata_connector;
struct clk *clk_sata;
struct clk *clk_sata_oob;
struct clk *clk_pllp;
struct clk *clk_cml1;
struct reset_control *rst_sata;
struct reset_control *rst_sata_oob;
struct reset_control *rst_sata_cold;
enum clk_gate_state clk_state;
s16 gen2_rx_eq;
int pexp_gpio_high;
int pexp_gpio_low;
enum tegra_chipid cid;
struct tegra_sata_soc_data *soc_data;
struct tegra_prod *prod_list;
void __iomem *base_list[6];
u32 reg_offset[6];
void __iomem *base_car;
struct sata_pad_cntrl pad_val;
bool dtContainsPadval;
bool skip_rtpm;
u8 fifo_depth;
};
#ifdef CONFIG_DEBUG_FS
static int tegra_ahci_dump_debuginit(void);
#endif
static int tegra_ahci_init_one(struct platform_device *pdev);
static int tegra_ahci_t210_controller_init(void *hpriv, int lp0);
static int tegra_ahci_remove_one(struct platform_device *pdev);
static void tegra_ahci_shutdown(struct platform_device *pdev);
static void tegra_ahci_put_sata_in_iddq(struct ata_host *host);
#ifdef CONFIG_PM
static bool tegra_ahci_power_un_gate(struct ata_host *host);
static bool tegra_ahci_power_gate(struct ata_host *host);
static void tegra_ahci_abort_power_gate(struct ata_host *host);
static int tegra_ahci_controller_suspend(struct platform_device *pdev);
static int tegra_ahci_controller_resume(struct platform_device *pdev);
#ifndef CONFIG_TEGRA_SATA_IDLE_POWERGATE
static int tegra_ahci_suspend(struct platform_device *pdev, pm_message_t mesg);
static int tegra_ahci_resume(struct platform_device *pdev);
#else
static int tegra_ahci_suspend(struct device *dev);
static int tegra_ahci_resume(struct device *dev);
#endif
static enum port_idle_status tegra_ahci_is_port_idle(struct ata_port *ap);
static bool tegra_ahci_are_all_ports_idle(struct ata_host *host);
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
#ifndef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
static void tegra_ahci_iddqlane_config(void);
static bool tegra_ahci_pad_resume(struct ata_host *host);
static bool tegra_ahci_pad_suspend(struct ata_host *host);
static void tegra_ahci_abort_pad_suspend(struct ata_host *host);
#endif
static int tegra_ahci_port_suspend(struct ata_port *ap, pm_message_t mesg);
static int tegra_ahci_port_resume(struct ata_port *ap);
static int tegra_ahci_runtime_suspend(struct device *dev);
static int tegra_ahci_runtime_resume(struct device *dev);
#endif
#else
#define tegra_ahci_controller_suspend NULL
#define tegra_ahci_controller_resume NULL
#define tegra_ahci_suspend NULL
#define tegra_ahci_resume NULL
#endif
static int tegra_ahci_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline);
static int tegra_ahci_softreset(struct ata_link *link, unsigned int *class,
unsigned long deadline);
static unsigned int tegra_ahci_qc_issue(struct ata_queued_cmd *qc);
static struct scsi_host_template ahci_sht = {
AHCI_SHT("tegra-sata"),
};
static struct ata_port_operations tegra_ahci_ops = {
.inherits = &ahci_ops,
.qc_issue = tegra_ahci_qc_issue,
#ifdef CONFIG_PM
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
.port_suspend = tegra_ahci_port_suspend,
.port_resume = tegra_ahci_port_resume,
#endif
#endif
.hardreset = tegra_ahci_hardreset,
.softreset = tegra_ahci_softreset,
};
static const struct ata_port_info ahci_port_info = {
.flags = AHCI_FLAG_COMMON,
.pio_mask = 0x1f, /* pio0-4 */
.udma_mask = ATA_UDMA6,
.port_ops = &tegra_ahci_ops,
};
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
static const struct dev_pm_ops tegra_ahci_dev_rt_ops = {
SET_SYSTEM_SLEEP_PM_OPS(tegra_ahci_suspend, tegra_ahci_resume)
SET_RUNTIME_PM_OPS(tegra_ahci_runtime_suspend,
tegra_ahci_runtime_resume, NULL)
};
#endif
static char * const t210_rail_names[] = {"dvdd_sata_pll", "hvdd_sata",
"l0_hvddio_sata", "l0_dvddio_sata", "hvdd_pex_pll_e"};
static const struct tegra_sata_soc_data tegra210_sata_data = {
.sata_regulator_names = t210_rail_names,
.num_sata_regulators = ARRAY_SIZE(t210_rail_names),
.controller_init = tegra_ahci_t210_controller_init,
};
static const struct of_device_id of_ahci_tegra_match[] = {
{
.compatible = "nvidia,tegra210-ahci-sata-shield",
.data = &tegra210_sata_data,
},
{},
};
MODULE_DEVICE_TABLE(of, of_ahci_tegra_match);
static const struct of_device_id car_match[] = {
{ .compatible = "nvidia,tegra210-car", },
{},
};
static struct platform_driver tegra_platform_ahci_driver = {
.probe = tegra_ahci_init_one,
.remove = tegra_ahci_remove_one,
.shutdown = tegra_ahci_shutdown,
#ifdef CONFIG_PM
#ifndef CONFIG_TEGRA_SATA_IDLE_POWERGATE
.suspend = tegra_ahci_suspend,
.resume = tegra_ahci_resume,
#endif
#endif
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(of_ahci_tegra_match),
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
.pm = &tegra_ahci_dev_rt_ops,
#endif
},
};
static struct tegra_ahci_host_priv *g_tegra_hpriv;
static inline u32 port_readl(u32 offset)
{
u32 val;
void __iomem *addr = g_tegra_hpriv->base_list[1] + 0x100 + offset;
val = readl(addr);
AHCI_DBG_PRINT("[0x%x] => 0x%08x\n", addr, val);
return val;
}
static inline void port_writel(u32 val, u32 offset)
{
void __iomem *addr = g_tegra_hpriv->base_list[1] + 0x100 + offset;
AHCI_DBG_PRINT("[0x%x] => 0x%08x\n", addr, val);
writel(val, addr);
readl(addr);
}
static inline u32 bar5_readl(u32 offset)
{
u32 val;
void __iomem *addr = g_tegra_hpriv->base_list[1] + offset;
val = readl(addr);
AHCI_DBG_PRINT("[0x%x] => 0x%08x\n", addr, val);
return val;
}
static inline void bar5_writel(u32 val, u32 offset)
{
void __iomem *addr = g_tegra_hpriv->base_list[1] + offset;
AHCI_DBG_PRINT("[0x%x] <= 0x%08x\n", addr, val);
writel(val, addr);
readl(addr);
}
static inline u32 clk_readl(u32 offset)
{
u32 val;
void __iomem *addr = g_tegra_hpriv->base_car + offset;
val = readl(addr);
AHCI_DBG_PRINT("[0x%x] => 0x%08x\n", addr, val);
return val;
}
static inline void clk_writel(u32 val, u32 offset)
{
void __iomem *addr = g_tegra_hpriv->base_car+offset;
AHCI_DBG_PRINT("[0x%x] <= 0x%08x\n", addr, val);
writel(val, addr);
readl(addr);
}
static inline u32 misc_readl(u32 offset)
{
u32 val;
void __iomem *addr = g_tegra_hpriv->base_list[2] + offset;
val = readl(addr);
AHCI_DBG_PRINT("[0x%x] => 0x%08x\n", addr, val);
return val;
}
static inline void misc_writel(u32 val, u32 offset)
{
void __iomem *addr = g_tegra_hpriv->base_list[2] + offset;
AHCI_DBG_PRINT("[0x%x] <= 0x%08x\n", addr, val);
writel(val, addr);
readl(addr);
}
static inline u32 sata_readl(u32 offset)
{
u32 val;
void __iomem *addr = g_tegra_hpriv->base_list[3] + offset;
val = readl(addr);
AHCI_DBG_PRINT("[0x%x] => 0x%08x\n", addr, val);
return val;
}
static inline void sata_writel(u32 val, u32 offset)
{
void __iomem *addr = g_tegra_hpriv->base_list[3] + offset;
AHCI_DBG_PRINT("[0x%x] <= 0x%08x\n", addr, val);
writel(val, addr);
readl(addr);
}
static inline u32 scfg_readl(u32 offset)
{
u32 val;
void __iomem *addr = g_tegra_hpriv->base_list[0] + offset;
val = readl(addr);
AHCI_DBG_PRINT("[0x%x] => 0x%08x\n", addr, val);
return val;
}
static inline void scfg_writel(u32 val, u32 offset)
{
void __iomem *addr = g_tegra_hpriv->base_list[0] + offset;
AHCI_DBG_PRINT("[0x%x] <= 0x%08x\n", addr, val);
writel(val, addr);
readl(addr);
}
static inline u32 fuse_readl(u32 offset)
{
u32 val;
if (!tegra_fuse_readl(offset, &val)) {
pr_err("%s: failed to read fuse register at 0x%x\n", __func__,
offset);
return 0;
}
return val;
}
static struct sata_pad_cntrl sata_calib_pad_val[] = {
{ /* SATA_CALIB[1:0] = 00 */
0x18,
0x04,
0x18,
0x0a
},
{ /* SATA_CALIB[1:0] = 01 */
0x0e,
0x04,
0x14,
0x0a
},
{ /* SATA_CALIB[1:0] = 10 */
0x0e,
0x07,
0x1a,
0x0e
},
{ /* SATA_CALIB[1:0] = 11 */
0x14,
0x0e,
0x1a,
0x0e
}
};
static u32 tegra_ahci_get_port_status(void)
{
u32 val;
val = port_readl(PXSSTS);
return val;
}
static void tegra_ahci_set_pad_cntrl_regs(
struct tegra_ahci_host_priv *tegra_hpriv)
{
int calib_val;
int val;
int i;
int err = 0;
if (tegra_hpriv->cid == TEGRA_CHIPID_TEGRA21) {
err = tegra_prod_set_by_name(
tegra_hpriv->base_list,
"prod",
tegra_hpriv->prod_list);
if (err) {
dev_err(tegra_hpriv->dev,
"Prod setting from DT failed\n");
} else {
scfg_writel(0x55010000, SATA_CHX_PHY_CTRL17_0);
scfg_writel(0x55010000, SATA_CHX_PHY_CTRL18_0);
scfg_writel(0x1, SATA_CHX_PHY_CTRL20_0);
scfg_writel(0x1, SATA_CHX_PHY_CTRL21_0);
}
return;
}
calib_val = fuse_readl(FUSE_SATA_CALIB_OFFSET) & FUSE_SATA_CALIB_MASK;
val = clk_readl(CLK_RST_CONTROLLER_PLLE_SS_CNTL_0);
val &= ~(PLLE_SSCCENTER | PLLE_SSCINVERT);
val |= (PLLE_SSCMAX | PLLE_SSCINCINTRV | PLLE_SSCINC);
clk_writel(val, CLK_RST_CONTROLLER_PLLE_SS_CNTL_0);
val = clk_readl(CLK_RST_CONTROLLER_PLLE_SS_CNTL_0);
val &= ~(PLLE_BYPASS_SS | PLLE_SSCBYP);
clk_writel(val, CLK_RST_CONTROLLER_PLLE_SS_CNTL_0);
udelay(2);
val = clk_readl(CLK_RST_CONTROLLER_PLLE_SS_CNTL_0);
val &= ~(PLLE_INTERP_RESET);
clk_writel(val, CLK_RST_CONTROLLER_PLLE_SS_CNTL_0);
for (i = 0; i < TEGRA_AHCI_NUM_PORTS; ++i) {
scfg_writel((1 << i), T_SATA0_INDEX_OFFSET);
val = scfg_readl(T_SATA0_CHX_PHY_CTRL1_GEN1_OFFSET);
val &= ~SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_MASK;
val |= (sata_calib_pad_val[calib_val].gen1_tx_amp <<
SATA0_CHX_PHY_CTRL1_GEN1_TX_AMP_SHIFT);
scfg_writel(val, T_SATA0_CHX_PHY_CTRL1_GEN1_OFFSET);
val = scfg_readl(T_SATA0_CHX_PHY_CTRL1_GEN1_OFFSET);
val &= ~SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_MASK;
val |= (sata_calib_pad_val[calib_val].gen1_tx_peak <<
SATA0_CHX_PHY_CTRL1_GEN1_TX_PEAK_SHIFT);
scfg_writel(val, T_SATA0_CHX_PHY_CTRL1_GEN1_OFFSET);
val = scfg_readl(T_SATA0_CHX_PHY_CTRL1_GEN2_OFFSET);
val &= ~SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_MASK;
val |= (sata_calib_pad_val[calib_val].gen2_tx_amp <<
SATA0_CHX_PHY_CTRL1_GEN2_TX_AMP_SHIFT);
scfg_writel(val, T_SATA0_CHX_PHY_CTRL1_GEN2_OFFSET);
val = scfg_readl(T_SATA0_CHX_PHY_CTRL1_GEN2_OFFSET);
val &= ~SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_MASK;
val |= (sata_calib_pad_val[calib_val].gen2_tx_peak <<
SATA0_CHX_PHY_CTRL1_GEN2_TX_PEAK_SHIFT);
scfg_writel(val, T_SATA0_CHX_PHY_CTRL1_GEN2_OFFSET);
val = GEN2_RX_EQ;
scfg_writel(val, SATA0_CHX_PHY_CTRL11_0);
val = CDR_CNTL_GEN1;
scfg_writel(val, SATA0_CHX_PHY_CTRL2_0);
}
scfg_writel(SATA0_NONE_SELECTED, T_SATA0_INDEX_OFFSET);
}
static int tegra_ahci_get_rails(struct tegra_ahci_host_priv *tegra_hpriv)
{
struct regulator *reg;
int i;
int ret = 0;
tegra_hpriv->power_rails = devm_kzalloc(tegra_hpriv->dev,
tegra_hpriv->soc_data->num_sata_regulators
* sizeof(struct regulator *), GFP_KERNEL);
for (i = 0; i < tegra_hpriv->soc_data->num_sata_regulators; ++i) {
reg = devm_regulator_get(tegra_hpriv->dev,
tegra_hpriv->soc_data->sata_regulator_names[i]);
if (IS_ERR(reg)) {
dev_err(tegra_hpriv->dev, "%s:can't get regulator %s\n",
__func__,
tegra_hpriv->soc_data->sata_regulator_names[i]);
WARN_ON(1);
ret = PTR_ERR(reg);
tegra_hpriv->power_rails[i] = NULL;
goto exit;
}
tegra_hpriv->power_rails[i] = reg;
}
exit:
return ret;
}
static int tegra_ahci_power_off_rails(struct tegra_ahci_host_priv *tegra_hpriv,
int num_reg)
{
struct regulator *reg;
int i;
int ret = 0;
int rc = 0;
for (i = 0; i < num_reg; ++i) {
reg = tegra_hpriv->power_rails[i];
if (!IS_ERR(reg)) {
ret = regulator_disable(reg);
if (ret) {
dev_err(tegra_hpriv->dev,
"%s: can't disable regulator[%d]\n",
__func__, i);
WARN_ON(1);
rc = ret;
}
}
}
return rc;
}
static int tegra_ahci_power_on_rails(struct tegra_ahci_host_priv *tegra_hpriv)
{
int i;
int ret = 0;
for (i = 0; i < tegra_hpriv->soc_data->num_sata_regulators; ++i) {
ret = regulator_enable(tegra_hpriv->power_rails[i]);
if (ret) {
dev_err(tegra_hpriv->dev,
"%s: can't enable regulator[%d]\n",
__func__, i);
WARN_ON(1);
tegra_ahci_power_off_rails(tegra_hpriv, i);
goto exit;
}
}
exit:
return ret;
}
static void tegra_first_level_clk_gate(void)
{
if (g_tegra_hpriv->clk_state == CLK_OFF)
return;
clk_disable_unprepare(g_tegra_hpriv->clk_sata);
clk_disable_unprepare(g_tegra_hpriv->clk_sata_oob);
if (g_tegra_hpriv->clk_cml1)
clk_disable_unprepare(g_tegra_hpriv->clk_cml1);
g_tegra_hpriv->clk_state = CLK_OFF;
}
static int tegra_first_level_clk_ungate(void)
{
int ret = 0;
const char *err_clk_name;
if (g_tegra_hpriv->clk_state == CLK_ON) {
ret = -1;
return ret;
}
if (clk_prepare_enable(g_tegra_hpriv->clk_sata)) {
err_clk_name = "SATA";
goto clk_sata_enb_error;
}
if (clk_prepare_enable(g_tegra_hpriv->clk_sata_oob)) {
err_clk_name = "SATA_OOB";
goto clk_sata_oob_enb_error;
}
if (g_tegra_hpriv->clk_cml1 &&
clk_prepare_enable(g_tegra_hpriv->clk_cml1)) {
err_clk_name = "cml1";
goto clk_cml1_enb_error;
}
g_tegra_hpriv->clk_state = CLK_ON;
return ret;
clk_cml1_enb_error:
clk_disable_unprepare(g_tegra_hpriv->clk_sata_oob);
clk_sata_oob_enb_error:
clk_disable_unprepare(g_tegra_hpriv->clk_sata);
clk_sata_enb_error:
pr_err("%s: unable to enable %s clock\n", __func__, err_clk_name);
return -ENODEV;
}
static int tegra_request_pexp_gpio(struct tegra_ahci_host_priv *tegra_hpriv)
{
u32 val = 0;
int err = 0;
if (gpio_is_valid(tegra_hpriv->pexp_gpio_high)) {
val = gpio_request(tegra_hpriv->pexp_gpio_high,
"ahci-tegra");
if (val) {
pr_err("failed to allocate Port expander gpio\n");
err = -ENODEV;
goto exit;
}
gpio_direction_output(tegra_hpriv->pexp_gpio_high, 1);
}
if (gpio_is_valid(tegra_hpriv->pexp_gpio_low)) {
val = gpio_request(tegra_hpriv->pexp_gpio_low,
"ahci-tegra");
if (val) {
pr_err("failed to allocate Port expander gpio\n");
err = -ENODEV;
goto exit;
}
gpio_direction_output(tegra_hpriv->pexp_gpio_low, 0);
}
exit:
return err;
}
static void tegra_free_pexp_gpio(struct tegra_ahci_host_priv *tegra_hpriv)
{
if (gpio_is_valid(tegra_hpriv->pexp_gpio_high))
gpio_free(tegra_hpriv->pexp_gpio_high);
if (gpio_is_valid(tegra_hpriv->pexp_gpio_low))
gpio_free(tegra_hpriv->pexp_gpio_low);
}
static unsigned int tegra_ahci_qc_issue(struct ata_queued_cmd *qc)
{
if (qc->tf.command == ATA_CMD_READ_LOG_EXT &&
qc->tf.lbal == ATA_LOG_SATA_NCQ) {
u8 *buf =
(u8 *) page_address((const struct page *)qc->sg->page_link);
/*
* Since our SATA Controller does not support this command
* don't send this command to the drive instead complete
* the function here and indicate to the upper layer
* that there is no entries in the buffer.
*/
buf += qc->sg->offset;
buf[0] = TEGRA_AHCI_READ_LOG_EXT_NOENTRY;
qc->complete_fn(qc);
return 0;
}
return ahci_ops.qc_issue(qc);
}
static int tegra_ahci_t210_controller_init(void *hpriv, int lp0)
{
struct tegra_ahci_host_priv *tegra_hpriv = hpriv;
struct clk *clk_sata = NULL;
struct clk *clk_sata_oob = NULL;
struct clk *clk_pllp = NULL;
struct reset_control *rst_sata = NULL;
struct reset_control *rst_sata_oob = NULL;
struct reset_control *rst_sata_cold = NULL;
int err = 0;
u32 val;
#if defined(CONFIG_TEGRA_SILICON_PLATFORM)
int partition_id;
#endif
if (!lp0) {
err = tegra_ahci_get_rails(tegra_hpriv);
if (err) {
pr_err("%s: fails to get rails (%d)\n", __func__, err);
goto exit;
}
err = tegra_ahci_power_on_rails(tegra_hpriv);
if (err) {
pr_err("%s: fails to power on rails (%d)\n",
__func__, err);
goto exit;
}
err = tegra_request_pexp_gpio(tegra_hpriv);
if (err < 0) {
tegra_free_pexp_gpio(tegra_hpriv);
goto exit;
}
tegra_hpriv->clk_cml1 = NULL;
/* pll_p is the parent of tegra_sata and tegra_sata_oob */
clk_pllp = clk_get_sys(NULL, "pll_p");
if (IS_ERR_OR_NULL(clk_pllp)) {
pr_err("%s: unable to get PLL_P clock\n", __func__);
err = PTR_ERR(clk_pllp);
goto exit;
}
tegra_hpriv->clk_pllp = clk_pllp;
clk_sata = devm_clk_get(tegra_hpriv->dev, "sata");
if (IS_ERR_OR_NULL(clk_sata)) {
pr_err("%s: unable to get SATA clock\n", __func__);
err = PTR_ERR(clk_sata);
goto exit;
}
tegra_hpriv->clk_sata = clk_sata;
clk_sata_oob = devm_clk_get(tegra_hpriv->dev, "sata_oob");
if (IS_ERR_OR_NULL(clk_sata_oob)) {
pr_err("%s: unable to get SATA OOB clock\n", __func__);
err = PTR_ERR(clk_sata_oob);
goto exit;
}
tegra_hpriv->clk_sata_oob = clk_sata_oob;
rst_sata = devm_reset_control_get(tegra_hpriv->dev, "sata");
if (IS_ERR_OR_NULL(rst_sata)) {
pr_err("%s: unable to get SATA reset\n", __func__);
err = PTR_ERR(rst_sata);
goto exit;
}
tegra_hpriv->rst_sata = rst_sata;
rst_sata_oob = devm_reset_control_get(tegra_hpriv->dev,
"sata-oob");
if (IS_ERR_OR_NULL(rst_sata_oob)) {
pr_err("%s: unable to get SATA OOB reset\n", __func__);
err = PTR_ERR(rst_sata_oob);
goto exit;
}
tegra_hpriv->rst_sata_oob = rst_sata_oob;
rst_sata_cold = devm_reset_control_get(tegra_hpriv->dev,
"sata-cold");
if (IS_ERR_OR_NULL(rst_sata_cold)) {
pr_err("%s: unable to get SATA COLD reset\n", __func__);
err = PTR_ERR(rst_sata_cold);
goto exit;
}
tegra_hpriv->rst_sata_cold = rst_sata_cold;
}
reset_control_assert(tegra_hpriv->rst_sata);
reset_control_assert(tegra_hpriv->rst_sata_oob);
reset_control_assert(tegra_hpriv->rst_sata_cold);
udelay(10);
/* need to establish both clocks divisors before setting clk sources */
clk_set_rate(tegra_hpriv->clk_sata,
clk_get_rate(tegra_hpriv->clk_sata)/10);
clk_set_rate(tegra_hpriv->clk_sata_oob,
clk_get_rate(tegra_hpriv->clk_sata_oob)/10);
/* set SATA clk and SATA_OOB clk source */
clk_set_parent(tegra_hpriv->clk_sata,
tegra_hpriv->clk_pllp);
clk_set_parent(tegra_hpriv->clk_sata_oob,
tegra_hpriv->clk_pllp);
/* Configure SATA clocks */
/* Core clock runs at 102MHz */
if (clk_set_rate(tegra_hpriv->clk_sata,
TEGRA_SATA_CORE_CLOCK_FREQ_HZ)) {
err = -ENODEV;
goto exit;
}
/* OOB clock runs at 204MHz */
if (clk_set_rate(tegra_hpriv->clk_sata_oob,
TEGRA_SATA_OOB_CLOCK_FREQ_HZ)) {
err = -ENODEV;
goto exit;
}
if (clk_prepare_enable(tegra_hpriv->clk_sata)) {
pr_err("%s: unable to enable SATA clock\n", __func__);
err = -ENODEV;
goto exit;
}
if (clk_prepare_enable(tegra_hpriv->clk_sata_oob)) {
pr_err("%s: unable to enable SATA OOB clock\n", __func__);
err = -ENODEV;
goto exit;
}
err = ahci_platform_enable_resources(hpriv);
if (err) {
pr_err("%s: unable to enable resources\n", __func__);
goto exit;
}
g_tegra_hpriv->clk_state = CLK_ON;
reset_control_deassert(tegra_hpriv->rst_sata);
reset_control_deassert(tegra_hpriv->rst_sata_oob);
reset_control_deassert(tegra_hpriv->rst_sata_cold);
/* select internal CML ref clk
* select PLLE as input to IO phy */
val = misc_readl(SATA_AUX_PAD_PLL_CNTL_1_REG);
val &= ~REFCLK_SEL_MASK;
val |= REFCLK_SEL_INT_CML;
misc_writel(val, SATA_AUX_PAD_PLL_CNTL_1_REG);
if (!lp0) {
#if defined(CONFIG_TEGRA_SILICON_PLATFORM)
#ifdef CONFIG_PM_GENERIC_DOMAINS_OF
partition_id = tegra_pd_get_powergate_id(tegra_sata_pd);
if (partition_id < 0)
return -EINVAL;
#else
partition_id = TEGRA_POWERGATE_SATA;
#endif
err = tegra_unpowergate_partition(partition_id);
if (err) {
pr_err("%s: ** failed to turn-on SATA (0x%x) **\n",
__func__, err);
goto exit;
}
#endif
}
/* clear NVA2SATA_OOB_ON_POR in SATA_AUX_MISC_CNTL_1_REG */
val = misc_readl(SATA_AUX_MISC_CNTL_1_REG);
val &= ~NVA2SATA_OOB_ON_POR_MASK;
misc_writel(val, SATA_AUX_MISC_CNTL_1_REG);
/* Revisit: Disable devslp until all devslp bugs are fixed */
val = misc_readl(SATA_AUX_MISC_CNTL_1_REG);
val &= ~SDS_SUPPORT;
misc_writel(val, SATA_AUX_MISC_CNTL_1_REG);
val = sata_readl(SATA_CONFIGURATION_0_OFFSET);
val |= EN_FPCI;
sata_writel(val, SATA_CONFIGURATION_0_OFFSET);
val |= CLK_OVERRIDE;
sata_writel(val, SATA_CONFIGURATION_0_OFFSET);
/* program sata pad control based on the fuse */
tegra_ahci_set_pad_cntrl_regs(tegra_hpriv);
/*
* clear bit T_SATA0_CFG_PHY_0_USE_7BIT_ALIGN_DET_FOR_SPD of
* T_SATA0_CFG_PHY_0
*/
val = scfg_readl(T_SATA0_CFG_PHY_REG);
val |= T_SATA0_CFG_PHY_SQUELCH_MASK;
val &= ~PHY_USE_7BIT_ALIGN_DET_FOR_SPD_MASK;
scfg_writel(val, T_SATA0_CFG_PHY_REG);
val = scfg_readl(T_SATA0_NVOOB);
val |= (1 << T_SATA0_NVOOB_SQUELCH_FILTER_MODE_SHIFT);
val |= (3 << T_SATA0_NVOOB_SQUELCH_FILTER_LENGTH_SHIFT);
val |= T_SATA0_NVOOB_COMMA_CNT;
scfg_writel(val, T_SATA0_NVOOB);
/*
* WAR: Before enabling SATA PLL shutdown, lockdet needs to be ignored.
* To ignore lockdet, T_SATA0_DBG0_OFFSET register bit 10 needs to
* be 1, and bit 8 needs to be 0.
*/
val = scfg_readl(T_SATA0_DBG0_OFFSET);
val |= (1 << 10);
val &= ~(1 << 8);
scfg_writel(val, T_SATA0_DBG0_OFFSET);
/* program class code and programming interface for AHCI */
val = scfg_readl(TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE);
val |= TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE_EN;
scfg_writel(val, TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE);
scfg_writel(TEGRA_PRIVATE_AHCI_CC_BKDR_PGM, TEGRA_PRIVATE_AHCI_CC_BKDR);
val &= ~TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE_EN;
scfg_writel(val, TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE);
/* Program config space registers: */
/* Enable BUS_MASTER+MEM+IO space, and SERR */
val = scfg_readl(TEGRA_SATA_IO_SPACE_OFFSET);
val |= TEGRA_SATA_ENABLE_IO_SPACE | TEGRA_SATA_ENABLE_MEM_SPACE |
TEGRA_SATA_ENABLE_BUS_MASTER | TEGRA_SATA_ENABLE_SERR;
scfg_writel(val, TEGRA_SATA_IO_SPACE_OFFSET);
/* program bar5 space, by first writing 1's to bar5 register */
scfg_writel(TEGRA_SATA_BAR5_INIT_PROGRAM, AHCI_BAR5_CONFIG_LOCATION);
/* flush */
val = scfg_readl(AHCI_BAR5_CONFIG_LOCATION);
/* then, write the BAR5_FINAL_PROGRAM address */
scfg_writel(TEGRA_SATA_BAR5_FINAL_PROGRAM, AHCI_BAR5_CONFIG_LOCATION);
/* flush */
scfg_readl(AHCI_BAR5_CONFIG_LOCATION);
sata_writel((FPCI_BAR5_0_FINAL_VALUE >> 8),
SATA_FPCI_BAR5_0_OFFSET);
val = scfg_readl(T_SATA0_AHCI_HBA_CAP_BKDR);
val |= (HOST_CAP_ALPM | HOST_CAP_SSC | HOST_CAP_PART | HOST_CAP_PMP);
scfg_writel(val, T_SATA0_AHCI_HBA_CAP_BKDR);
val = bar5_readl(AHCI_HBA_PLL_CTRL_0);
val |= (SHUTDOWN_TXCLK_ON_SLUMBER | SHUTDOWN_TXCLK_ON_DEVSLP);
val &= ~NO_CLAMP_SHUT_DOWN;
bar5_writel(val, AHCI_HBA_PLL_CTRL_0);
val = scfg_readl(SATA0_CFG_35_0);
val |= (IDP_INDEX);
scfg_writel(val, SATA0_CFG_35_0);
val = scfg_readl(SATA0_AHCI_IDP1_0);
val |= SATA0_AHCI_IDP1_0_DATA;
scfg_writel(val, SATA0_AHCI_IDP1_0);
val = scfg_readl(SATA0_CFG_PHY_1_0);
val |= (PAD_IDDQ_EN | PAD_PLL_IDDQ_EN);
scfg_writel(val, SATA0_CFG_PHY_1_0);
/* set IP_INT_MASK */
val = sata_readl(SATA_INTR_MASK_0_OFFSET);
val |= IP_INT_MASK;
sata_writel(val, SATA_INTR_MASK_0_OFFSET);
/* set fifo l2p depth */
if (tegra_hpriv->fifo_depth != 0) {
val = scfg_readl(T_SATA0_FIFO);
val &= ~T_SATA0_FIFO_L2P_FIFO_DEPTH_MASK;
val |= tegra_hpriv->fifo_depth <<
T_SATA0_FIFO_L2P_FIFO_DEPTH_SHIFT;
scfg_writel(val, T_SATA0_FIFO);
}
exit:
if (err && !lp0) {
/* turn off all SATA power rails; ignore returned status */
tegra_ahci_power_off_rails(tegra_hpriv,
tegra_hpriv->soc_data->num_sata_regulators);
}
return err;
}
static void tegra_ahci_controller_remove(struct platform_device *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
struct tegra_ahci_host_priv *tegra_hpriv;
int status;
tegra_hpriv = (struct tegra_ahci_host_priv *)host->private_data;
#ifdef CONFIG_PM
/* call tegra_ahci_controller_suspend() to power-down the SATA */
status = tegra_ahci_controller_suspend(pdev);
if (status)
dev_err(host->dev, "remove: error suspend SATA (0x%x)\n",
status);
#else
/* power off the sata */
#ifdef CONFIG_PM_GENERIC_DOMAINS_OF
int partition_id;
partition_id = tegra_pd_get_powergate_id(tegra_sata_pd);
if (partition_id < 0)
return -EINVAL;
#else
partition_id = TEGRA_POWERGATE_SATA;
#endif
status = tegra_powergate_partition_with_clk_off(partition_id);
if (status)
dev_err(host->dev, "remove: error turn-off SATA (0x%x)\n",
status);
tegra_ahci_power_off_rails(tegra_hpriv,
tegra_hpriv->soc_data->num_sata_regulators);
#endif
}
#ifdef CONFIG_PM
static int tegra_ahci_controller_suspend(struct platform_device *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
struct tegra_ahci_host_priv *tegra_hpriv;
tegra_hpriv = (struct tegra_ahci_host_priv *)host->private_data;
if (tegra_hpriv->pg_state == SATA_OFF)
dev_dbg(host->dev, "suspend: SATA already power gated\n");
else {
bool pg_ok;
dev_dbg(host->dev, "suspend: power gating SATA...\n");
pg_ok = tegra_ahci_power_gate(host);
if (pg_ok) {
dev_dbg(host->dev, "suspend: SATA is power gated\n");
} else {
tegra_ahci_abort_power_gate(host);
return -EBUSY;
}
}
return tegra_ahci_power_off_rails(tegra_hpriv,
tegra_hpriv->soc_data->num_sata_regulators);
}
static int tegra_ahci_controller_resume(struct platform_device *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
struct tegra_ahci_host_priv *tegra_hpriv;
int err;
tegra_hpriv = (struct tegra_ahci_host_priv *)host->private_data;
err = tegra_ahci_power_on_rails(tegra_hpriv);
if (err) {
pr_err("%s: fails to power on rails (%d)\n", __func__, err);
return err;
}
if (tegra_hpriv->pg_state == SATA_ON) {
dev_dbg(host->dev, "resume: SATA already powered on\n");
} else {
dev_dbg(host->dev, "resume: powering on SATA...\n");
tegra_ahci_power_un_gate(host);
}
tegra_first_level_clk_gate();
return 0;
}
#ifndef CONFIG_TEGRA_SATA_IDLE_POWERGATE
static int tegra_ahci_suspend(struct platform_device *pdev, pm_message_t mesg)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
void __iomem *mmio = host->iomap[AHCI_PCI_BAR];
u32 ctl;
int rc;
dev_dbg(host->dev, "** entering %s: **\n", __func__);
if (mesg.event & PM_EVENT_SLEEP) {
/*
* AHCI spec rev1.1 section 8.3.3:
* Software must disable interrupts prior to requesting a
* transition of the HBA to D3 state.
*/
ctl = readl(mmio + HOST_CTL);
ctl &= ~HOST_IRQ_EN;
writel(ctl, mmio + HOST_CTL);
readl(mmio + HOST_CTL); /* flush */
}
rc = ata_host_suspend(host, mesg);
if (rc)
return rc;
return tegra_ahci_controller_suspend(pdev);
}
static int tegra_ahci_resume(struct platform_device *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
int rc;
u32 val;
dev_dbg(host->dev, "** entering %s: **\n", __func__);
rc = tegra_ahci_controller_resume(pdev);
if (rc != 0)
return rc;
rc = g_tegra_hpriv->soc_data->controller_init(g_tegra_hpriv, 1);
if (rc != 0) {
dev_err(host->dev, "TEGRA SATA init failed in resume\n");
tegra_ahci_controller_suspend(pdev);
return rc;
}
if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
rc = ahci_reset_controller(host);
if (rc) {
dev_err(host->dev, "TEGRA SATA reset failed in resume\n");
tegra_ahci_controller_remove(pdev);
return rc;
}
val = misc_readl(SATA_AUX_RX_STAT_INT_0);
if (val & SATA_RX_STAT_INT_DISABLE) {
val &= ~SATA_RX_STAT_INT_DISABLE;
misc_writel(val, SATA_AUX_RX_STAT_INT_0);
}
ahci_init_controller(host);
}
ata_host_resume(host);
return 0;
}
#else
static int tegra_ahci_port_suspend(struct ata_port *ap, pm_message_t mesg)
{
struct ata_host *host = ap->host;
struct ahci_host_priv *hpriv = ap->host->private_data;
struct tegra_ahci_host_priv *tegra_hpriv = host->private_data;
struct ata_link *link;
struct ata_device *dev;
int ret = 0;
u32 port_status = 0;
int enter_slumber_timeout = 50;
enum tegra_ahci_port_runtime_status lpm_state;
int i;
lpm_state = TEGRA_AHCI_PORT_RUNTIME_ACTIVE;
tegra_hpriv->skip_rtpm = false;
if (!ata_dev_enabled(ap->link.device))
goto skip;
port_status = tegra_ahci_get_port_status();
port_status = (port_status & T_AHCI_PORT_PXSSTS_IPM_MASK) >>
T_AHCI_PORT_PXSSTS_IPM_SHIFT;
ata_for_each_link(link, ap, PMP_FIRST) {
if (link->flags & ATA_LFLAG_NO_LPM) {
ata_link_info(link, "No LPM on this link\n");
continue;
}
ata_for_each_dev(dev, link, ENABLED) {
bool hipm = ata_id_has_hipm(dev->id);
bool dipm = ata_id_has_dipm(dev->id) &&
(!(link->ap->flags & ATA_FLAG_NO_DIPM));
if (ap->target_lpm_policy == ATA_LPM_MIN_POWER) {
if ((hpriv->cap2 & HOST_CAP2_SDS) &&
(hpriv->cap2 & HOST_CAP2_SADM) &&
(link->device->flags & ATA_DFLAG_DEVSLP))
lpm_state =
TEGRA_AHCI_PORT_RUNTIME_DEVSLP;
else
lpm_state =
TEGRA_AHCI_PORT_RUNTIME_SLUMBER;
} else if (ap->target_lpm_policy == ATA_LPM_MED_POWER) {
lpm_state = TEGRA_AHCI_PORT_RUNTIME_PARTIAL;
}
if (hipm || dipm) {
for (i = 0; i < enter_slumber_timeout; i++) {
port_status =
tegra_ahci_get_port_status();
port_status =
(port_status & 0xF00) >> 8;
if (port_status < lpm_state)
mdelay(10);
else
break;
}
if (port_status < lpm_state) {
ata_link_err(link,
"Link didn't enter LPM\n");
if (ap->pm_mesg.event & PM_EVENT_AUTO)
ret = -EBUSY;
} else if (port_status !=
TEGRA_AHCI_PORT_RUNTIME_ACTIVE) {
ata_link_info(link,
"Link entered LPM\n");
}
} else {
ata_dev_info(dev,
"does not support HIPM/DIPM\n");
}
}
}
if (lpm_state == TEGRA_AHCI_PORT_RUNTIME_ACTIVE ||
port_status == TEGRA_AHCI_PORT_RUNTIME_ACTIVE) {
if (ap->pm_mesg.event & PM_EVENT_AUTO) {
tegra_hpriv->skip_rtpm = true;
return 0;
}
}
skip:
if (!ret && !(ap->pflags & ATA_PFLAG_SUSPENDED)) {
ret = ahci_ops.port_suspend(ap, mesg);
}
if (ret == 0) {
pm_runtime_mark_last_busy(&tegra_hpriv->pdev->dev);
pm_runtime_put_sync_autosuspend(&g_tegra_hpriv->pdev->dev);
}
return ret;
}
static int tegra_ahci_port_resume(struct ata_port *ap)
{
struct ata_host *host = ap->host;
struct tegra_ahci_host_priv *tegra_hpriv = host->private_data;
struct ata_link *link = NULL;
struct scsi_device *sdev = NULL;
int ret = 0;
if (tegra_hpriv->skip_rtpm) {
tegra_hpriv->skip_rtpm = false;
if (ap->pm_mesg.event & PM_EVENT_AUTO) {
ata_for_each_link(link, ap, HOST_FIRST) {
link->eh_info.action &= ~ATA_EH_RESET;
}
ata_eh_thaw_port(ap);
return 0;
}
}
ret = pm_runtime_get_sync(&tegra_hpriv->pdev->dev);
if (ret < 0) {
dev_err(&tegra_hpriv->pdev->dev,
"%s(%d) Failed to resume the devcie err=%d\n",
__func__, __LINE__, ret);
return AC_ERR_SYSTEM;
}
if (ap->pm_mesg.event & PM_EVENT_RESUME) {
if (ap->pm_mesg.event & PM_EVENT_AUTO)
ata_for_each_link(link, ap, HOST_FIRST) {
link->eh_info.action &= ~ATA_EH_RESET;
}
else
shost_for_each_device(sdev, ap->scsi_host) {
if (sdev->request_queue->rpm_status ==
RPM_SUSPENDED)
sdev->request_queue->rpm_status =
RPM_ACTIVE;
}
}
ret = ahci_ops.port_resume(ap);
if ((ap->pm_mesg.event & PM_EVENT_AUTO) &&
(ap->pm_mesg.event & PM_EVENT_RESUME))
ata_eh_thaw_port(ap);
return ret;
}
static int tegra_ahci_suspend_common(struct platform_device *pdev,
pm_message_t mesg)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
void __iomem *mmio = host->iomap[AHCI_PCI_BAR];
u32 ctl;
int rc;
dev_dbg(host->dev, "** entering %s: **\n", __func__);
if (mesg.event & PM_EVENT_SLEEP) {
/*
* AHCI spec rev1.1 section 8.3.3:
* Software must disable interrupts prior to requesting a
* transition of the HBA to D3 state.
*/
ctl = readl(mmio + HOST_CTL);
ctl &= ~HOST_IRQ_EN;
writel(ctl, mmio + HOST_CTL);
readl(mmio + HOST_CTL); /* flush */
}
rc = ata_host_suspend(host, mesg);
if (rc)
return rc;
return tegra_ahci_controller_suspend(pdev);
}
static int tegra_ahci_suspend(struct device *dev)
{
struct platform_device *pdev = g_tegra_hpriv->pdev;
dev_dbg(dev, "Suspending...\n");
return tegra_ahci_suspend_common(pdev, PMSG_SUSPEND);
}
static int tegra_ahci_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = g_tegra_hpriv->pdev;
struct ata_host *host = dev_get_drvdata(&pdev->dev);
int err = 0;
bool pg_ok;
if (tegra_ahci_are_all_ports_idle(host)) {
/* if all ports are in idle, do power-gate */
#ifdef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
pg_ok = tegra_ahci_power_gate(host);
#else
pg_ok = tegra_ahci_pad_suspend(host);
#endif
if (pg_ok) {
dev_dbg(dev, "rt-suspend Done\n");
} else {
dev_dbg(dev, "rt-suspend Failed\n");
#ifdef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
tegra_ahci_abort_power_gate(host);
#else
tegra_ahci_abort_pad_suspend(host);
#endif
err = -EBUSY;
}
} else {
dev_dbg(dev, "Port not idle...\n");
err = -EBUSY;
}
return err;
}
static int tegra_ahci_resume(struct device *dev)
{
struct platform_device *pdev = g_tegra_hpriv->pdev;
struct ata_host *host = dev_get_drvdata(&pdev->dev);
int rc;
u32 val;
dev_dbg(host->dev, "** entering %s: **\n", __func__);
rc = tegra_ahci_controller_resume(pdev);
if (rc != 0)
return rc;
rc = g_tegra_hpriv->soc_data->controller_init(g_tegra_hpriv, 1);
if (rc != 0) {
dev_err(host->dev, "TEGRA SATA init failed in resume\n");
tegra_ahci_controller_suspend(pdev);
return rc;
}
if (pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) {
rc = ahci_reset_controller(host);
if (rc) {
dev_err(host->dev, "TEGRA SATA reset failed in resume\n");
tegra_ahci_controller_remove(pdev);
return rc;
}
val = misc_readl(SATA_AUX_RX_STAT_INT_0);
if (val & SATA_RX_STAT_INT_DISABLE) {
val &= ~SATA_RX_STAT_INT_DISABLE;
misc_writel(val, SATA_AUX_RX_STAT_INT_0);
}
ahci_init_controller(host);
}
ata_host_resume(host);
#ifdef CONFIG_PM
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
pm_runtime_disable(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
#endif
#endif
return 0;
}
static int tegra_ahci_runtime_resume(struct device *dev)
{
struct platform_device *pdev = g_tegra_hpriv->pdev;
struct ata_host *host = dev_get_drvdata(&pdev->dev);
int err = 0;
#ifdef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
err = tegra_ahci_power_un_gate(host);
#else
err = tegra_ahci_pad_resume(host);
#endif
if (err)
return 0;
else
return -EBUSY;
}
#endif
static int tegra_ahci_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
int ret;
u32 val;
ret = ahci_ops.hardreset(link, class, deadline);
if (ret < 0) {
val = scfg_readl(T_SATA0_CFG_LINK_0);
val |= T_SATA0_CFG_LINK_0_USE_POSEDGE_SCTL_DET;
scfg_writel(val, T_SATA0_CFG_LINK_0);
}
return ret;
}
static int tegra_ahci_softreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
int ret;
u32 val;
ret = ahci_ops.softreset(link, class, deadline);
if (ret < 0) {
val = scfg_readl(T_SATA0_CFG_LINK_0);
val |= T_SATA0_CFG_LINK_0_USE_POSEDGE_SCTL_DET;
scfg_writel(val, T_SATA0_CFG_LINK_0);
}
return ret;
}
#ifdef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
static u16 pg_save_bar5_registers[] = {
0x018, /* T_AHCI_HBA_CCC_PORTS */
0x004, /* T_AHCI_HBA_GHC */
0x014, /* T_AHCI_HBA_CCC_CTL - OP (optional) */
0x01C, /* T_AHCI_HBA_EM_LOC */
0x020 /* T_AHCI_HBA_EM_CTL - OP */
};
static u16 pg_save_bar5_port_registers[] = {
0x100, /* T_AHCI_PORT_PXCLB */
0x104, /* T_AHCI_PORT_PXCLBU */
0x108, /* T_AHCI_PORT_PXFB */
0x10C, /* T_AHCI_PORT_PXFBU */
0x114, /* T_AHCI_PORT_PXIE */
0x118, /* T_AHCI_PORT_PXCMD */
0x12C, /* T_AHCI_PORT_PXSCTL */
0x144 /* T_AHCI_PORT_PXDEVSLP */
};
/*
* pg_save_bar5_bkdr_registers:
* These registers in BAR5 are read only.
* To restore back those register values, write the saved value
* to the registers specified in pg_restore_bar5_bkdr_registers[].
* These pg_restore_bar5_bkdr_registers[] are in SATA_CONFIG space.
*/
static u16 pg_save_bar5_bkdr_registers[] = {
/* Save and restore via bkdr writes */
0x000, /* T_AHCI_HBA_CAP */
0x00C, /* T_AHCI_HBA_PI */
0x024 /* T_AHCI_HBA_CAP2 */
};
static u16 pg_restore_bar5_bkdr_registers[] = {
/* Save and restore via bkdr writes */
0x300, /* BKDR of T_AHCI_HBA_CAP */
0x33c, /* BKDR of T_AHCI_HBA_PI */
0x330 /* BKDR of T_AHCI_HBA_CAP2 */
};
/* These registers are saved for each port */
static u16 pg_save_bar5_bkdr_port_registers[] = {
0x120, /* NV_PROJ__SATA0_CHX_AHCI_PORT_PXTFD */
0x124, /* NV_PROJ__SATA0_CHX_AHCI_PORT_PXSIG */
0x128 /* NV_PROJ__SATA0_CHX_AHCI_PORT_PXSSTS */
};
static u16 pg_restore_bar5_bkdr_port_registers[] = {
/* Save and restore via bkdr writes */
0x790, /* BKDR of NV_PROJ__SATA0_CHX_AHCI_PORT_PXTFD */
0x794, /* BKDR of NV_PROJ__SATA0_CHX_AHCI_PORT_PXSIG */
0x798 /* BKDR of NV_PROJ__SATA0_CHX_AHCI_PORT_PXSSTS */
};
static u16 pg_save_config_registers[] = {
0x004, /* T_SATA0_CFG_1 */
0x00C, /* T_SATA0_CFG_3 */
0x024, /* T_SATA0_CFG_9 */
0x028, /* T_SATA0_CFG_10 */
0x030, /* T_SATA0_CFG_12 */
0x034, /* T_SATA0_CFG_13 */
0x038, /* T_SATA0_CFG_14 */
0x03C, /* T_SATA0_CFG_15 */
0x040, /* T_SATA0_CFG_16 */
0x044, /* T_SATA0_CFG_17 */
0x048, /* T_SATA0_CFG_18 */
0x0B0, /* T_SATA0_MSI_CTRL */
0x0B4, /* T_SATA0_MSI_ADDR1 */
0x0B8, /* T_SATA0_MSI_ADDR2 */
0x0BC, /* T_SATA0_MSI_DATA */
0x0C0, /* T_SATA0_MSI_QUEUE */
0x0EC, /* T_SATA0_MSI_MAP */
0x124, /* T_SATA0_CFG_PHY_POWER */
0x128, /* T_SATA0_CFG_PHY_POWER_1 */
0x12C, /* T_SATA0_CFG_PHY_1 */
0x174, /* T_SATA0_CFG_LINK_0 */
0x178, /* T_SATA0_CFG_LINK_1 */
0x1D0, /* MCP_SATA0_CFG_TRANS_0 */
0x238, /* T_SATA0_ALPM_CTRL */
0x30C, /* T_SATA0_AHCI_HBA_CYA_0 */
0x320, /* T_SATA0_AHCI_HBA_SPARE_1 */
0x324, /* T_SATA0_AHCI_HBA_SPARE_2 */
0x328, /* T_SATA0_AHCI_HBA_DYN_CLK_CLAMP */
0x32C, /* T_SATA0_AHCI_CFG_ERR_CTRL */
0x338, /* T_SATA0_AHCI_HBA_CYA_1 */
0x340, /* T_SATA0_AHCI_HBA_PRE_STAGING_CONTROL */
0x430, /* T_SATA0_CFG_FPCI_0 */
0x494, /* T_SATA0_CFG_ESATA_CTRL */
0x4A0, /* T_SATA0_CYA1 */
0x4B0, /* T_SATA0_CFG_GLUE */
0x534, /* T_SATA0_PHY_CTRL */
0x540, /* T_SATA0_CTRL */
0x550, /* T_SATA0_DBG0 */
0x554 /* T_SATA0_LOW_POWER_COUNT */
};
static u16 pg_save_config_port_registers[] = {
/* Save and restore per port */
/* need to have port selected */
0x530, /* T_SATA0_CHXCFG1 */
0x684, /* T_SATA0_CHX_MISC */
0x700, /* T_SATA0_CHXCFG3 */
0x704, /* T_SATA0_CHXCFG4_CHX */
0x690, /* T_SATA0_CHX_PHY_CTRL1_GEN1 */
0x694, /* T_SATA0_CHX_PHY_CTRL1_GEN2 */
0x698, /* T_SATA0_CHX_PHY_CTRL1_GEN3 */
0x69C, /* T_SATA0_CHX_PHY_CTRL_2 */
0x6B0, /* T_SATA0_CHX_PHY_CTRL_3 */
0x6B4, /* T_SATA0_CHX_PHY_CTRL_4 */
0x6B8, /* T_SATA0_CHX_PHY_CTRL_5 */
0x6BC, /* T_SATA0_CHX_PHY_CTRL_6 */
0x714, /* T_SATA0_PRBS_CHX - OP */
0x750, /* T_SATA0_CHX_LINK0 */
0x7F0 /* T_SATA0_CHX_GLUE */
};
static u16 pg_save_ipfs_registers[] = {
0x094, /* SATA_FPCI_BAR5_0 */
0x0C0, /* SATA_MSI_BAR_SZ_0 */
0x0C4, /* SATA_MSI_AXI_BAR_ST_0 */
0x0C8, /* SATA_MSI_FPCI_BAR_ST_0 */
0x140, /* SATA_MSI_EN_VEC0_0 */
0x144, /* SATA_MSI_EN_VEC1_0 */
0x148, /* SATA_MSI_EN_VEC2_0 */
0x14C, /* SATA_MSI_EN_VEC3_0 */
0x150, /* SATA_MSI_EN_VEC4_0 */
0x154, /* SATA_MSI_EN_VEC5_0 */
0x158, /* SATA_MSI_EN_VEC6_0 */
0x15C, /* SATA_MSI_EN_VEC7_0 */
0x180, /* SATA_CONFIGURATION_0 */
0x184, /* SATA_FPCI_ERROR_MASKS_0 */
0x188, /* SATA_INTR_MASK_0 */
0x1A0, /* SATA_CFG_REVID_0 */
0x198, /* SATA_IPFS_INTR_ENABLE_0 */
0x1BC, /* SATA_CLKGATE_HYSTERSIS_0 */
0x1DC /* SATA_SATA_MCCIF_FIFOCTRL_0 */
};
static void tegra_ahci_save_regs(u32 **save_addr,
void __iomem *base,
u16 reg_array[],
u32 regs)
{
u32 i;
u32 *dest = *save_addr;
for (i = 0; i < regs; ++i, ++dest) {
*dest = readl(base + (u32)reg_array[i]);
AHCI_DBG_PRINT("save: [0x%x]=0x%08x\n",
(base+(u32)reg_array[i]), *dest);
}
*save_addr = dest;
}
static void tegra_ahci_restore_regs(void **save_addr,
void __iomem *base,
u16 reg_array[],
u32 regs)
{
u32 i;
u32 *src = *save_addr;
for (i = 0; i < regs; ++i, ++src) {
writel(*src, base + (u32)reg_array[i]);
AHCI_DBG_PRINT("restore: [0x%x]=0x%08x\n",
(base+(u32)reg_array[i]), *src);
}
*save_addr = src;
}
static void tegra_ahci_pg_save_registers(struct ata_host *host)
{
struct tegra_ahci_host_priv *tegra_hpriv;
u32 *pg_save;
u32 regs;
int i;
tegra_hpriv = (struct tegra_ahci_host_priv *)host->private_data;
pg_save = tegra_hpriv->pg_save;
/*
* Driver should save/restore the registers in the order of
* IPFS, CFG, Ext CFG, BAR5.
*/
/* save IPFS registers */
regs = ARRAY_SIZE(pg_save_ipfs_registers);
tegra_ahci_save_regs(&pg_save, tegra_hpriv->base_list[3],
pg_save_ipfs_registers, regs);
/* after the call, pg_save should point to the next address to save */
/* save CONFIG registers */
regs = ARRAY_SIZE(pg_save_config_registers);
tegra_ahci_save_regs(&pg_save, tegra_hpriv->base_list[0],
pg_save_config_registers, regs);
/* save CONFIG per port registers */
for (i = 0; i < TEGRA_AHCI_NUM_PORTS; ++i) {
scfg_writel((1 << i), T_SATA0_INDEX_OFFSET);
regs = ARRAY_SIZE(pg_save_config_port_registers);
tegra_ahci_save_regs(&pg_save, tegra_hpriv->base_list[0],
pg_save_config_port_registers, regs);
}
scfg_writel(SATA0_NONE_SELECTED, T_SATA0_INDEX_OFFSET);
/* save BAR5 registers */
regs = ARRAY_SIZE(pg_save_bar5_registers);
tegra_ahci_save_regs(&pg_save, tegra_hpriv->base_list[1],
pg_save_bar5_registers, regs);
/* save BAR5 port_registers */
regs = ARRAY_SIZE(pg_save_bar5_port_registers);
for (i = 0; i < TEGRA_AHCI_NUM_PORTS; ++i)
tegra_ahci_save_regs(&pg_save,
tegra_hpriv->base_list[1] + (0x80*i),
pg_save_bar5_port_registers, regs);
/* save bkdr registers */
regs = ARRAY_SIZE(pg_save_bar5_bkdr_registers);
tegra_ahci_save_regs(&pg_save, tegra_hpriv->base_list[1],
pg_save_bar5_bkdr_registers, regs);
/* and save bkdr per_port registers */
for (i = 0; i < TEGRA_AHCI_NUM_PORTS; ++i) {
scfg_writel((1 << i), T_SATA0_INDEX_OFFSET);
regs = ARRAY_SIZE(pg_save_bar5_bkdr_port_registers);
tegra_ahci_save_regs(&pg_save,
tegra_hpriv->base_list[1] + (0x80*i),
pg_save_bar5_bkdr_port_registers,
regs);
}
scfg_writel(SATA0_NONE_SELECTED, T_SATA0_INDEX_OFFSET);
}
static void tegra_ahci_pg_restore_registers(struct ata_host *host)
{
struct tegra_ahci_host_priv *tegra_hpriv;
void *pg_save;
u32 regs, val;
int i;
tegra_hpriv = (struct tegra_ahci_host_priv *)host->private_data;
pg_save = tegra_hpriv->pg_save;
/*
* Driver should restore the registers in the order of
* IPFS, CFG, Ext CFG, BAR5.
*/
/* restore IPFS registers */
regs = ARRAY_SIZE(pg_save_ipfs_registers);
tegra_ahci_restore_regs(&pg_save, tegra_hpriv->base_list[3],
pg_save_ipfs_registers, regs);
/* after the call, pg_save should point to the next addr to restore */
/* restore CONFIG registers */
regs = ARRAY_SIZE(pg_save_config_registers);
tegra_ahci_restore_regs(&pg_save, tegra_hpriv->base_list[0],
pg_save_config_registers, regs);
/* restore CONFIG per port registers */
for (i = 0; i < TEGRA_AHCI_NUM_PORTS; ++i) {
scfg_writel((1 << i), T_SATA0_INDEX_OFFSET);
regs = ARRAY_SIZE(pg_save_config_port_registers);
tegra_ahci_restore_regs(&pg_save, tegra_hpriv->base_list[0],
pg_save_config_port_registers,
regs);
}
scfg_writel(SATA0_NONE_SELECTED, T_SATA0_INDEX_OFFSET);
/* restore BAR5 registers */
regs = ARRAY_SIZE(pg_save_bar5_registers);
tegra_ahci_restore_regs(&pg_save, tegra_hpriv->base_list[1],
pg_save_bar5_registers, regs);
/* restore BAR5 port_registers */
regs = ARRAY_SIZE(pg_save_bar5_port_registers);
for (i = 0; i < TEGRA_AHCI_NUM_PORTS; ++i)
tegra_ahci_restore_regs(&pg_save,
tegra_hpriv->base_list[1]+(0x80*i),
pg_save_bar5_port_registers, regs);
/* restore bkdr registers */
regs = ARRAY_SIZE(pg_restore_bar5_bkdr_registers);
tegra_ahci_restore_regs(&pg_save, tegra_hpriv->base_list[0],
pg_restore_bar5_bkdr_registers, regs);
/* and restore BAR5 bkdr per_port registers */
for (i = 0; i < TEGRA_AHCI_NUM_PORTS; ++i) {
scfg_writel((1 << i), T_SATA0_INDEX_OFFSET);
regs = ARRAY_SIZE(pg_restore_bar5_bkdr_port_registers);
tegra_ahci_restore_regs(&pg_save, tegra_hpriv->base_list[0],
pg_restore_bar5_bkdr_port_registers,
regs);
}
scfg_writel(SATA0_NONE_SELECTED, T_SATA0_INDEX_OFFSET);
/* program class code and programming interface for AHCI */
val = scfg_readl(TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE);
val |= TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE_EN;
scfg_writel(val, TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE);
scfg_writel(TEGRA_PRIVATE_AHCI_CC_BKDR_PGM, TEGRA_PRIVATE_AHCI_CC_BKDR);
val &= ~TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE_EN;
scfg_writel(val, TEGRA_PRIVATE_AHCI_CC_BKDR_OVERRIDE);
}
#endif
static u32 tegra_ahci_port_error(struct ata_port *ap)
{
void __iomem *port_mmio = ahci_port_base(ap);
u32 err_status;
err_status = readl(port_mmio + PORT_IRQ_STAT);
/* excludes PhyRdy and Connect Change status */
err_status &= (PORT_IRQ_ERROR & (~(PORT_IRQ_PHYRDY|PORT_IRQ_CONNECT)));
return err_status;
}
static bool tegra_ahci_check_errors(struct ata_host *host)
{ int i;
struct ata_port *ap;
u32 err;
for (i = 0; i < host->n_ports; i++) {
ap = host->ports[i];
err = tegra_ahci_port_error(ap);
if (err) {
dev_err(host->dev,
"pg-chk-err = 0x%08x on port %d\n", err, i);
return true;
}
}
return false;
}
static void tegra_ahci_put_sata_in_iddq(struct ata_host *host)
{
struct tegra_ahci_host_priv *tegra_hpriv;
u32 val;
u32 dat;
tegra_hpriv = (struct tegra_ahci_host_priv *)host->private_data;
/*
* Hw wake up is not needed:
* Driver/RM shall place the SATA PHY and SATA PADPLL in IDDQ.
* SATA_PADPLL_RESET_SWCTL =1
* SATA_PADPLL_RESET_OVERRIDE_VALUE=1
* SATA_PADPHY_IDDQ_SWCTL=1
* SATA_PADPHY_IDDQ_OVERRIDE_VALUE=1
*/
/* Wait for time specified in SATA_LANE_IDDQ2_PADPLL_IDDQ */
val = clk_readl(CLK_RST_SATA_PLL_CFG1_REG);
dat = (val & IDDQ2LANE_IDDQ_DLY_MASK) >> IDDQ2LANE_IDDQ_DLY_SHIFT;
udelay(dat);
}
static void tegra_ahci_abort_power_gate(struct ata_host *host)
{
tegra_pmc_sata_pwrgt_update(PMC_SATA_PG_INFO_MASK,
PMC_SATA_PG_INFO_OFF);
}
static bool tegra_ahci_power_gate(struct ata_host *host)
{
u32 val;
u32 dat;
struct tegra_ahci_host_priv *tegra_hpriv;
int status;
int partition_id;
tegra_hpriv = (struct tegra_ahci_host_priv *)host->private_data;
tegra_pmc_sata_pwrgt_update(PMC_SATA_PG_INFO_MASK,
PMC_SATA_PG_INFO_ON);
#ifdef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
tegra_ahci_pg_save_registers(host);
#endif
/*
* Read SATA_AUX_MISC_CNTL_1_0 register L0_RX_IDLE_T_SAX field and
* write that value into same register L0_RX_IDLE_T_NPG field.
* And write 1 to L0_RX_IDLE_T_MUX field.
*/
val = misc_readl(SATA_AUX_MISC_CNTL_1_REG);
dat = val;
dat &= L0_RX_IDLE_T_SAX_MASK;
dat >>= L0_RX_IDLE_T_SAX_SHIFT;
dat <<= L0_RX_IDLE_T_NPG_SHIFT;
val &= ~L0_RX_IDLE_T_NPG_MASK;
val |= dat;
val |= L0_RX_IDLE_T_MUX_FROM_APB_MISC;
val |= DEVSLP_OVERRIDE;
misc_writel(val, SATA_AUX_MISC_CNTL_1_REG);
/* abort PG if there are errors occurred */
if (tegra_ahci_check_errors(host)) {
dev_err(host->dev, "** pg: errors; abort power gating **\n");
return false;
}
/* make sure all ports have no outstanding commands and are idle. */
if (!tegra_ahci_are_all_ports_idle(host)) {
dev_err(host->dev, "** pg: cmds; abort power gating **\n");
return false;
}
tegra_ahci_put_sata_in_iddq(host);
/* power off the sata */
#ifdef CONFIG_PM_GENERIC_DOMAINS_OF
partition_id = tegra_pd_get_powergate_id(tegra_sata_pd);
if (partition_id < 0)
return false;
#else
partition_id = TEGRA_POWERGATE_SATA;
#endif
tegra_first_level_clk_gate();
status = tegra_powergate_partition(partition_id);
if (status) {
dev_err(host->dev, "** failed to turn-off SATA (0x%x) **\n",
status);
return false;
}
tegra_hpriv->pg_state = SATA_OFF;
return true;
}
static bool tegra_ahci_power_un_gate(struct ata_host *host)
{
u32 val;
struct tegra_ahci_host_priv *tegra_hpriv;
int status;
int powergate_id;
tegra_hpriv = (struct tegra_ahci_host_priv *)host->private_data;
#ifdef CONFIG_PM_GENERIC_DOMAINS_OF
powergate_id = tegra_pd_get_powergate_id(tegra_sata_pd);
if (powergate_id < 0)
return false;
#else
powergate_id = TEGRA_POWERGATE_SATA;
#endif
if (tegra_first_level_clk_ungate() < 0) {
dev_err(host->dev, "%s: clk ungate failed\n", __func__);
return false;
}
status = tegra_unpowergate_partition(powergate_id);
if (status) {
dev_err(host->dev, "** failed to turn-on SATA (0x%x) **\n",
status);
return false;
}
#ifdef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
/* restore registers */
tegra_ahci_pg_restore_registers(host);
#endif
tegra_ahci_set_pad_cntrl_regs(tegra_hpriv);
/*
* During the restoration of the registers, the driver would now need to
* restore the register T_SATA0_CFG_POWER_GATE_SSTS_RESTORED after the
* ssts_det, ssts_spd are restored. This register is used to tell the
* controller whether a drive existed earlier or not and move the PHY
* state machines into either HR_slumber or not.
*/
val = scfg_readl(T_SATA0_CFG_POWER_GATE);
val &= ~POWER_GATE_SSTS_RESTORED_MASK;
val |= POWER_GATE_SSTS_RESTORED_YES;
scfg_writel(val, T_SATA0_CFG_POWER_GATE);
/*
* Driver needs to switch the rx_idle_t driven source back to from
* Sata controller after SAX is power-ungated.
*/
val = misc_readl(SATA_AUX_MISC_CNTL_1_REG);
val &= ~DEVSLP_OVERRIDE;
val &= ~L0_RX_IDLE_T_MUX_MASK;
val |= L0_RX_IDLE_T_MUX_FROM_SATA;
misc_writel(val, SATA_AUX_MISC_CNTL_1_REG);
/*
* power un-gating process is complete by clearing
* APBDEV_PMC_SATA_PWRGT_0.Pmc2sata_pg_info = 0
*/
tegra_pmc_sata_pwrgt_update(PMC_SATA_PG_INFO_MASK,
PMC_SATA_PG_INFO_OFF);
tegra_hpriv->pg_state = SATA_ON;
return true;
}
static enum port_idle_status tegra_ahci_is_port_idle(struct ata_port *ap)
{
void __iomem *port_mmio = ahci_port_base(ap);
if (readl(port_mmio + PORT_CMD_ISSUE) ||
readl(port_mmio + PORT_SCR_ACT))
return PORT_IS_NOT_IDLE;
return PORT_IS_IDLE;
}
/* check if all supported ports are idle (no outstanding commands) */
static bool tegra_ahci_are_all_ports_idle(struct ata_host *host)
{ int i;
struct ata_port *ap;
for (i = 0; i < host->n_ports; i++) {
ap = host->ports[i];
if (ap && (tegra_ahci_is_port_idle(ap) == PORT_IS_NOT_IDLE))
return false;
}
return true;
}
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
#ifndef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
static void tegra_ahci_abort_pad_suspend(struct ata_host *host)
{
/*No implementation*/
}
static bool tegra_ahci_pad_suspend(struct ata_host *host)
{
u32 val;
struct tegra_ahci_host_priv *tegra_hpriv;
tegra_hpriv = (struct tegra_ahci_host_priv *)host->private_data;
/* abort PG if there are errors occurred */
if (tegra_ahci_check_errors(host)) {
dev_err(host->dev, "** pg: errors; abort power gating **\n");
return false;
}
/* make sure all ports have no outstanding commands and are idle. */
if (!tegra_ahci_are_all_ports_idle(host)) {
dev_err(host->dev, "** pg: cmds; abort power gating **\n");
return false;
}
/* Set the bits in the CAR to allow HW based low power sequencing. */
val = clk_readl(CLK_RST_SATA_PLL_CFG0_REG);
val |= PADPLL_RESET_SWCTL_MASK;
clk_writel(val, CLK_RST_SATA_PLL_CFG0_REG);
tegra_ahci_put_sata_in_iddq(host);
val = clk_readl(CLK_RST_SATA_PLL_CFG0_REG);
val |= (SATA_SEQ_PADPLL_PD_INPUT_VALUE |
SATA_SEQ_LANE_PD_INPUT_VALUE | SATA_SEQ_RESET_INPUT_VALUE);
clk_writel(val, CLK_RST_SATA_PLL_CFG0_REG);
tegra_first_level_clk_gate();
return true;
}
static bool tegra_ahci_pad_resume(struct ata_host *host)
{
u32 val;
struct tegra_ahci_host_priv *tegra_hpriv;
tegra_hpriv = (struct tegra_ahci_host_priv *)host->private_data;
val = clk_readl(CLK_RST_SATA_PLL_CFG0_REG);
val &= ~(SATA_SEQ_PADPLL_PD_INPUT_VALUE |
SATA_SEQ_LANE_PD_INPUT_VALUE | SATA_SEQ_RESET_INPUT_VALUE);
clk_writel(val, CLK_RST_SATA_PLL_CFG0_REG);
if (tegra_first_level_clk_ungate() < 0) {
pr_err("%s: flcg ungate failed\n", __func__);
return false;
}
tegra_ahci_iddqlane_config();
/* deasset PADPLL and wait until it locks. */
val = clk_readl(CLK_RST_SATA_PLL_CFG0_REG);
val &= ~PADPLL_RESET_OVERRIDE_VALUE_MASK;
clk_writel(val, CLK_RST_SATA_PLL_CFG0_REG);
/* Set the bits in the CAR to allow HW based low power sequencing. */
val = clk_readl(CLK_RST_SATA_PLL_CFG0_REG);
val &= ~PADPLL_RESET_SWCTL_MASK;
clk_writel(val, CLK_RST_SATA_PLL_CFG0_REG);
/* Second Level Clock Gating*/
val = bar5_readl(AHCI_HBA_PLL_CTRL_0);
val |= (CLAMP_TXCLK_ON_SLUMBER | CLAMP_TXCLK_ON_DEVSLP);
val &= ~NO_CLAMP_SHUT_DOWN;
bar5_writel(val, AHCI_HBA_PLL_CTRL_0);
return true;
}
static void tegra_ahci_iddqlane_config(void)
{
u32 val;
u32 dat;
/* wait for SATA_PADPLL_IDDQ2LANE_SLUMBER_DLY = 3 microseconds. */
val = clk_readl(CLK_RST_SATA_PLL_CFG1_REG);
val &= ~IDDQ2LANE_SLUMBER_DLY_MASK;
val |= IDDQ2LANE_SLUMBER_DLY_3MS;
clk_writel(val, CLK_RST_SATA_PLL_CFG1_REG);
/* wait for delay of IDDQ2LAND_SLUMBER_DLY */
val = clk_readl(CLK_RST_SATA_PLL_CFG1_REG);
dat = (val & IDDQ2LANE_SLUMBER_DLY_MASK) >> IDDQ2LANE_SLUMBER_DLY_SHIFT;
udelay(dat);
}
#endif
#endif
#endif
static int tegra_ahci_remove_one(struct platform_device *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
struct ahci_host_priv *hpriv;
BUG_ON(host == NULL);
BUG_ON(host->iomap[AHCI_PCI_BAR] == NULL);
hpriv = host->private_data;
tegra_ahci_controller_remove(pdev);
devm_iounmap(&pdev->dev, host->iomap[AHCI_PCI_BAR]);
ata_host_detach(host);
#ifdef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
/* Free PG save/restore area */
devm_kfree(&pdev->dev, ((struct tegra_ahci_host_priv *)hpriv)->pg_save);
#endif
devm_kfree(&pdev->dev, hpriv);
return 0;
}
static void tegra_ahci_sata_clk_gate(void)
{
u32 val;
if (!tegra_platform_is_silicon())
return;
val = clk_readl(CLK_RST_CONTROLLER_RST_DEV_W_SET);
if (val & SET_CEC_RESET)
clk_writel(0x108, CLK_RST_CONTROLLER_RST_DEV_V_SET);
val = clk_readl(CLK_RST_CONTROLLER_RST_DEV_W_SET);
while (val & SET_CEC_RESET)
val = clk_readl(CLK_RST_CONTROLLER_RST_DEV_W_SET);
}
static int tegra_ahci_init_one(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
const struct of_device_id *match;
struct ata_port_info pi = ahci_port_info;
struct device *dev = &pdev->dev;
struct ahci_host_priv *hpriv = NULL;
struct tegra_ahci_host_priv *tegra_hpriv = NULL;
struct tegra_ahci_platform_data *ahci_pdata;
struct ata_host *host = NULL;
int i, rc = 0;
struct resource *res, *irq_res;
struct phy *phy = NULL;
void __iomem *mmio;
enum tegra_chipid cid;
#if defined(CONFIG_TEGRA_AHCI_CONTEXT_RESTORE)
u32 save_size;
#endif
cid = tegra_get_chipid();
VPRINTK("ENTER\n");
WARN_ON((int)ATA_MAX_QUEUE > AHCI_MAX_CMDS);
ata_print_version_once(&pdev->dev, DRV_VERSION);
/* Simple resource validation */
if (pdev->num_resources != 5) {
dev_err(dev, "invalid number of resources\n");
dev_err(dev, "not enough SATA resources\n");
return -EINVAL;
}
/* acquire bar resources */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sata-ahci");
if (res == NULL)
return -EINVAL;
/* acquire IRQ resource */
irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (irq_res == NULL)
return -EINVAL;
if (irq_res->start <= 0)
return -EINVAL;
/* allocate sizeof tegra_ahci_host_priv, which contains extra fields */
hpriv = devm_kzalloc(dev, sizeof(struct tegra_ahci_host_priv),
GFP_KERNEL);
if (!hpriv) {
rc = -ENOMEM;
goto fail;
}
hpriv->flags |= (unsigned long)pi.private_data;
tegra_hpriv = (struct tegra_ahci_host_priv *)hpriv;
tegra_hpriv->dev = dev;
if (np) {
match = of_match_device(of_match_ptr(of_ahci_tegra_match),
&pdev->dev);
if (!match)
return -ENODEV;
/*
*of_property_read_u8 does not overwrite the third argument,
*if corresponding dt node does not exist.So it is safe to
*call this function without checking presence of dt node.
*/
tegra_hpriv->dtContainsPadval = 1;
if (of_property_read_u8(np, "nvidia,gen1-amp",
&tegra_hpriv->pad_val.gen1_tx_amp) != 0)
tegra_hpriv->dtContainsPadval = 0;
if (of_property_read_u8(np, "nvidia,gen2-amp",
&tegra_hpriv->pad_val.gen2_tx_amp) != 0)
tegra_hpriv->dtContainsPadval = 0;
if (of_property_read_u8(np, "nvidia,gen1-peak",
&tegra_hpriv->pad_val.gen1_tx_peak) != 0)
tegra_hpriv->dtContainsPadval = 0;
if (of_property_read_u8(np, "nvidia,gen2-peak",
&tegra_hpriv->pad_val.gen2_tx_peak) != 0)
tegra_hpriv->dtContainsPadval = 0;
if (of_property_read_u8(np, "nvidia,l2p_fifo_depth",
&tegra_hpriv->fifo_depth) != 0){
tegra_hpriv->fifo_depth = 0x7;
}
tegra_hpriv->soc_data =
(struct tegra_sata_soc_data *)match->data;
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(64);
pdev->dev.dma_mask = &pdev->dev.coherent_dma_mask;
tegra_hpriv->pexp_gpio_high =
of_get_named_gpio(np, "nvidia,pexp-gpio", 0);
tegra_hpriv->pexp_gpio_low =
of_get_named_gpio(np, "nvidia,pexp-gpio", 1);
if (!of_property_read_bool(np, "nvidia,enable-sata-port")) {
dev_err(dev, "Not able to find enable-sata-port property\n");
tegra_ahci_sata_clk_gate();
goto fail;
}
if (of_property_read_u32(np, "nvidia,sata-connector-type",
&tegra_hpriv->sata_connector) < 0) {
tegra_hpriv->sata_connector = MINI_SATA;
}
tegra_hpriv->prod_list = devm_tegra_prod_get(dev);
if (IS_ERR(tegra_hpriv->prod_list)) {
dev_err(dev, "Prod Init failed\n");
tegra_hpriv->prod_list = NULL;
}
} else {
ahci_pdata = tegra_hpriv->dev->platform_data;
tegra_hpriv->pexp_gpio_high = ahci_pdata->pexp_gpio_high;
tegra_hpriv->pexp_gpio_low = ahci_pdata->pexp_gpio_low;
tegra_hpriv->prod_list = NULL;
}
tegra_hpriv->cid = cid;
tegra_hpriv->pdev = pdev;
g_tegra_hpriv = tegra_hpriv;
/* map clock and reset registers */
np = of_find_matching_node(NULL, car_match);
if (!np) {
pr_err("%s: cannot find matching CAR node.", __func__);
return -ENODEV;
}
tegra_hpriv->base_car = of_iomap(np, 0);
/*
* We reserve a table of 6 BARs in tegra_hpriv to store BARs.
* Save the mapped AHCI_PCI_BAR address to the table.
*/
mmio = devm_ioremap(dev, res->start, resource_size(res));
tegra_hpriv->bars_table[AHCI_PCI_BAR] = mmio;
hpriv->mmio = mmio;
tegra_hpriv->base_list[1] = mmio;
tegra_hpriv->reg_offset[1] = res->start;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sata-config");
if (res == NULL)
return -EINVAL;
tegra_hpriv->base_list[0] = devm_ioremap(dev,
res->start,
resource_size(res));
tegra_hpriv->reg_offset[0] = res->start;
/* map misc/aux registers */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sata-aux");
if (res == NULL)
return -EINVAL;
tegra_hpriv->base_list[2] = devm_ioremap(dev,
res->start,
resource_size(res));
tegra_hpriv->reg_offset[2] = res->start;
/* map sata registers */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sata-ipfs");
if (res == NULL)
return -EINVAL;
tegra_hpriv->base_list[3] = devm_ioremap(dev,
res->start,
resource_size(res));
tegra_hpriv->reg_offset[3] = res->start;
/* get phy */
if (tegra_platform_is_silicon()) {
phy = devm_phy_optional_get(dev, "sata-phy");
if (IS_ERR(phy)) {
rc = PTR_ERR(phy);
dev_err(dev, "cannot get sata-phy");
goto fail;
}
hpriv->phys = devm_kzalloc(dev, sizeof(*hpriv->phys),
GFP_KERNEL);
if (!hpriv->phys) {
rc = -ENOMEM;
goto fail;
}
hpriv->phys[0] = phy;
hpriv->nports = 1;
} else {
hpriv->nports = 1;
}
/* get regulators */
hpriv->target_pwrs = devm_kzalloc(dev, sizeof(*hpriv->target_pwrs),
GFP_KERNEL);
if (!hpriv->target_pwrs) {
rc = -ENOMEM;
goto fail;
}
hpriv->target_pwrs[0] = devm_regulator_get_optional(dev, "target-3v3");
if (IS_ERR(hpriv->target_pwrs[0])) {
rc = PTR_ERR(hpriv->target_pwrs[0]);
if (rc == -EPROBE_DEFER)
goto fail;
hpriv->target_pwrs[0] = NULL;
}
/* Call tegra init routine */
rc = tegra_hpriv->soc_data->controller_init(tegra_hpriv, 0);
if (rc != 0) {
dev_err(dev, "TEGRA SATA init failed\n");
goto fail;
}
#if defined(CONFIG_TEGRA_AHCI_CONTEXT_RESTORE)
/* Setup PG save/restore area: */
/* calculate the size */
save_size = ARRAY_SIZE(pg_save_ipfs_registers) +
ARRAY_SIZE(pg_save_config_registers) +
ARRAY_SIZE(pg_save_bar5_registers) +
ARRAY_SIZE(pg_save_bar5_bkdr_registers);
/* and add save port_registers for all the ports */
save_size += TEGRA_AHCI_NUM_PORTS *
(ARRAY_SIZE(pg_save_config_port_registers) +
ARRAY_SIZE(pg_save_bar5_port_registers) +
ARRAY_SIZE(pg_save_bar5_bkdr_port_registers));
/*
* save_size is number of registers times number of bytes per
* register to get total save size.
*/
save_size *= sizeof(u32);
tegra_hpriv->pg_save = devm_kzalloc(dev, save_size, GFP_KERNEL);
if (!tegra_hpriv->pg_save) {
rc = -ENOMEM;
goto fail;
}
#endif
/* Suspend the controller if drive is not present */
if (!tegra_ahci_get_port_status()) {
dev_dbg(dev, "Drive not present\n");
}
/* Disable DIPM */
pi.flags |= ATA_FLAG_NO_DIPM;
rc = ahci_platform_init_host(pdev, hpriv, &pi, &ahci_sht);
if (rc)
goto fail;
host = dev_get_drvdata(&pdev->dev);
tegra_hpriv->host = host;
host->iomap = tegra_hpriv->bars_table;
ahci_print_info(host, "TEGRA-SATA");
dev_dbg(dev, "controller init okay\n");
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
/* set initial link pm policy */
ap->target_lpm_policy = ATA_LPM_UNKNOWN;
/* disabled/not-implemented port */
if (!(hpriv->port_map & (1 << i)))
ap->ops = &ata_dummy_port_ops;
else
ap->target_lpm_policy = ATA_LPM_MIN_POWER;
}
#ifdef CONFIG_PM
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
rc = pm_runtime_set_active(dev);
if (rc) {
dev_dbg(dev, "unable to set runtime pm active err=%d\n", rc);
} else {
dev_dbg(dev, "Set runtime pm active err=%d\n", rc);
pm_runtime_set_autosuspend_delay(dev,
TEGRA_AHCI_DEFAULT_IDLE_TIME);
pm_runtime_use_autosuspend(dev);
pm_suspend_ignore_children(dev, true);
pm_runtime_get_noresume(&tegra_hpriv->pdev->dev);
pm_runtime_enable(dev);
}
#endif
#endif
return 0;
fail:
if (host) {
if (host->iomap[AHCI_PCI_BAR])
devm_iounmap(dev, host->iomap[AHCI_PCI_BAR]);
ata_host_detach(host);
}
if (hpriv)
devm_kfree(dev, hpriv);
return rc;
}
static void tegra_ahci_shutdown(struct platform_device *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
int i = 0;
do {
/* make sure all ports have no outstanding commands and are idle. */
if (!tegra_ahci_are_all_ports_idle(host)) {
mdelay(10);
} else
break;
} while (++i < 50);
if (i >= 50)
dev_dbg(&pdev->dev, "There are outstanding commands but going \
ahead with shutdown process\n");
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap = host->ports[i];
ahci_ops.port_stop(ap);
}
}
static int __init ahci_init(void)
{
int ret = 0;
ret = platform_driver_register(&tegra_platform_ahci_driver);
if (ret < 0)
return ret;
#ifdef CONFIG_DEBUG_FS
ret = tegra_ahci_dump_debuginit();
#endif
return ret;
}
static void __exit ahci_exit(void)
{
platform_driver_unregister(&tegra_platform_ahci_driver);
}
#ifdef CONFIG_DEBUG_FS
#include
#include
static void dbg_ahci_dump_regs(struct seq_file *s, void __iomem *ptr, u32 base,
u32 regs)
{
#define REGS_PER_LINE 4
u32 i, j;
u32 lines = regs / REGS_PER_LINE;
for (i = 0; i < lines; i++) {
seq_printf(s, "0x%08x: ", base+(i*16));
for (j = 0; j < REGS_PER_LINE; ++j) {
seq_printf(s, "0x%08x ", readl(ptr));
++ptr;
}
seq_puts(s, "\n");
}
#undef REGS_PER_LINE
}
static int dbg_ahci_dump_show(struct seq_file *s, void *unused)
{
u32 base;
void __iomem *ptr;
u32 i;
#ifndef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
int rc;
#endif
#endif
int powergate_id;
if (g_tegra_hpriv == NULL)
return 0;
#ifndef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
rc = pm_runtime_get_sync(&g_tegra_hpriv->pdev->dev);
if (rc < 0) {
dev_err(&g_tegra_hpriv->pdev->dev,
"%s(%d) Failed to resume the devcie err=%d\n",
__func__, __LINE__, rc);
}
#endif
#endif
base = g_tegra_hpriv->reg_offset[0];
ptr = g_tegra_hpriv->base_list[0];
seq_puts(s, "SATA CONFIG Registers:\n");
seq_puts(s, "----------------------\n");
dbg_ahci_dump_regs(s, ptr, base, 0x200);
base = g_tegra_hpriv->reg_offset[1];
ptr = g_tegra_hpriv->base_list[1];
seq_puts(s, "\nAHCI HBA Registers:\n");
seq_puts(s, "-------------------\n");
dbg_ahci_dump_regs(s, ptr, base, 64);
for (i = 0; i < TEGRA_AHCI_NUM_PORTS; ++i) {
base = g_tegra_hpriv->reg_offset[1] + 0x100 + (0x80*i);
ptr = g_tegra_hpriv->base_list[1] + 0x100 + (0x80*i);
seq_printf(s, "\nPort %u Registers:\n", i);
seq_puts(s, "---------------\n");
dbg_ahci_dump_regs(s, ptr, base, 20);
}
#ifdef CONFIG_PM_GENERIC_DOMAINS_OF
powergate_id = tegra_pd_get_powergate_id(tegra_sata_pd);
if (powergate_id < 0)
return -EINVAL;
#else
powergate_id = TEGRA_POWERGATE_SATA;
#endif
if (tegra_powergate_is_powered(powergate_id))
seq_puts(s, "\n=== SATA controller is powered on ===\n\n");
else
seq_puts(s, "\n=== SATA controller is powered off ===\n\n");
#ifndef CONFIG_TEGRA_AHCI_CONTEXT_RESTORE
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
pm_runtime_mark_last_busy(&g_tegra_hpriv->pdev->dev);
pm_runtime_put_sync_autosuspend(&g_tegra_hpriv->pdev->dev);
#endif
#endif
return 0;
}
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
static int dbg_ahci_rtpm_dump_show(struct seq_file *s, void *unused)
{
seq_printf(s, "\n\n device name = %s Runtime Status = %d\n"
"Usage count = %d Child_count = %d"
" ignore children = %d\n\n",
dev_name(g_tegra_hpriv->dev),
g_tegra_hpriv->dev->power.runtime_status,
atomic_read(&g_tegra_hpriv->dev->power.usage_count),
atomic_read(&g_tegra_hpriv->dev->power.child_count),
g_tegra_hpriv->dev->power.ignore_children);
seq_printf(s, "runtime_error = %d\n\n",
g_tegra_hpriv->dev->power.runtime_error);
seq_printf(s, "timer_expires = %ld\n\n",
g_tegra_hpriv->dev->power.timer_expires);
seq_printf(s, "disable_depth = %d\n\n",
g_tegra_hpriv->dev->power.disable_depth);
seq_printf(s, "idle_notification = %d\n\n",
g_tegra_hpriv->dev->power.idle_notification);
seq_printf(s, "request_pending = %d\n\n",
g_tegra_hpriv->dev->power.request_pending);
seq_printf(s, "deferred_resume = %d\n\n",
g_tegra_hpriv->dev->power.deferred_resume);
seq_printf(s, "run_wake = %d\n\n",
g_tegra_hpriv->dev->power.run_wake);
seq_printf(s, "runtime_auto = %d\n\n",
g_tegra_hpriv->dev->power.runtime_auto);
seq_printf(s, "no_callbacks = %d\n\n",
g_tegra_hpriv->dev->power.no_callbacks);
seq_printf(s, "irq_safe = %d\n\n",
g_tegra_hpriv->dev->power.irq_safe);
seq_printf(s, "timer_autosuspends = %d\n\n",
g_tegra_hpriv->dev->power.timer_autosuspends);
seq_printf(s, "last_busy = %ld\n\n",
g_tegra_hpriv->dev->power.last_busy);
return 0;
}
static int dbg_ahci_rtpm_dump_open(struct inode *inode, struct file *file)
{
return single_open(file, dbg_ahci_rtpm_dump_show, &inode->i_private);
}
static const struct file_operations debug_rtpm_fops = {
.open = dbg_ahci_rtpm_dump_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif
static int dbg_ahci_dump_open(struct inode *inode, struct file *file)
{
return single_open(file, dbg_ahci_dump_show, &inode->i_private);
}
static const struct file_operations debug_fops = {
.open = dbg_ahci_dump_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int tegra_ahci_dump_debuginit(void)
{
(void) debugfs_create_file("tegra_ahci", S_IRUGO,
NULL, NULL, &debug_fops);
#ifdef CONFIG_TEGRA_SATA_IDLE_POWERGATE
(void) debugfs_create_file("tegra_rtpm_ahci", S_IRUGO,
NULL, NULL, &debug_rtpm_fops);
#endif
return 0;
}
#endif
MODULE_AUTHOR("NVIDIA");
MODULE_DESCRIPTION("Tegra AHCI SATA low-level driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
module_init(ahci_init);
module_exit(ahci_exit);