/* * Misc utility routines for accessing chip-specific features * of the SiliconBackplane-based Broadcom chips. * * Portions of this code are copyright (c) 2017 Cypress Semiconductor Corporation * * Copyright (C) 1999-2017, Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * * <> * * $Id: aiutils.c 607900 2015-12-22 13:38:53Z $ */ #include #include #include #include #include #include #include #include #include #include "siutils_priv.h" #define BCM47162_DMP() (0) #define BCM5357_DMP() (0) #define BCM53573_DMP() (0) #define BCM4707_DMP() (0) #define PMU_DMP() (0) #define GCI_DMP() (0) #define remap_coreid(sih, coreid) (coreid) #define remap_corerev(sih, corerev) (corerev) /* EROM parsing */ static uint32 get_erom_ent(si_t *sih, uint32 **eromptr, uint32 mask, uint32 match) { uint32 ent; uint inv = 0, nom = 0; uint32 size = 0; while (TRUE) { ent = R_REG(si_osh(sih), *eromptr); (*eromptr)++; if (mask == 0) break; if ((ent & ER_VALID) == 0) { inv++; continue; } if (ent == (ER_END | ER_VALID)) break; if ((ent & mask) == match) break; /* escape condition related EROM size if it has invalid values */ size += sizeof(*eromptr); if (size >= ER_SZ_MAX) { SI_ERROR(("Failed to find end of EROM marker\n")); break; } nom++; } SI_VMSG(("%s: Returning ent 0x%08x\n", __FUNCTION__, ent)); if (inv + nom) { SI_VMSG((" after %d invalid and %d non-matching entries\n", inv, nom)); } return ent; } static uint32 get_asd(si_t *sih, uint32 **eromptr, uint sp, uint ad, uint st, uint32 *addrl, uint32 *addrh, uint32 *sizel, uint32 *sizeh) { uint32 asd, sz, szd; asd = get_erom_ent(sih, eromptr, ER_VALID, ER_VALID); if (((asd & ER_TAG1) != ER_ADD) || (((asd & AD_SP_MASK) >> AD_SP_SHIFT) != sp) || ((asd & AD_ST_MASK) != st)) { /* This is not what we want, "push" it back */ (*eromptr)--; return 0; } *addrl = asd & AD_ADDR_MASK; if (asd & AD_AG32) *addrh = get_erom_ent(sih, eromptr, 0, 0); else *addrh = 0; *sizeh = 0; sz = asd & AD_SZ_MASK; if (sz == AD_SZ_SZD) { szd = get_erom_ent(sih, eromptr, 0, 0); *sizel = szd & SD_SZ_MASK; if (szd & SD_SG32) *sizeh = get_erom_ent(sih, eromptr, 0, 0); } else *sizel = AD_SZ_BASE << (sz >> AD_SZ_SHIFT); SI_VMSG((" SP %d, ad %d: st = %d, 0x%08x_0x%08x @ 0x%08x_0x%08x\n", sp, ad, st, *sizeh, *sizel, *addrh, *addrl)); return asd; } static void ai_hwfixup(si_info_t *sii) { } /* parse the enumeration rom to identify all cores */ void ai_scan(si_t *sih, void *regs, uint devid) { si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; chipcregs_t *cc = (chipcregs_t *)regs; uint32 erombase, *eromptr, *eromlim; erombase = R_REG(sii->osh, &cc->eromptr); switch (BUSTYPE(sih->bustype)) { case SI_BUS: eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE); break; case PCI_BUS: /* Set wrappers address */ sii->curwrap = (void *)((uintptr)regs + SI_CORE_SIZE); /* Now point the window at the erom */ OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, erombase); eromptr = regs; break; #ifdef BCMSDIO case SPI_BUS: case SDIO_BUS: eromptr = (uint32 *)(uintptr)erombase; break; #endif /* BCMSDIO */ case PCMCIA_BUS: default: SI_ERROR(("Don't know how to do AXI enumertion on bus %d\n", sih->bustype)); ASSERT(0); return; } eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32)); SI_VMSG(("ai_scan: regs = 0x%p, erombase = 0x%08x, eromptr = 0x%p, eromlim = 0x%p\n", regs, erombase, eromptr, eromlim)); while (eromptr < eromlim) { uint32 cia, cib, cid, mfg, crev, nmw, nsw, nmp, nsp; uint32 mpd, asd, addrl, addrh, sizel, sizeh; uint i, j, idx; bool br; br = FALSE; /* Grok a component */ cia = get_erom_ent(sih, &eromptr, ER_TAG, ER_CI); if (cia == (ER_END | ER_VALID)) { SI_VMSG(("Found END of erom after %d cores\n", sii->numcores)); ai_hwfixup(sii); return; } cib = get_erom_ent(sih, &eromptr, 0, 0); if ((cib & ER_TAG) != ER_CI) { SI_ERROR(("CIA not followed by CIB\n")); goto error; } cid = (cia & CIA_CID_MASK) >> CIA_CID_SHIFT; mfg = (cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT; crev = (cib & CIB_REV_MASK) >> CIB_REV_SHIFT; nmw = (cib & CIB_NMW_MASK) >> CIB_NMW_SHIFT; nsw = (cib & CIB_NSW_MASK) >> CIB_NSW_SHIFT; nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT; nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT; #ifdef BCMDBG_SI SI_VMSG(("Found component 0x%04x/0x%04x rev %d at erom addr 0x%p, with nmw = %d, " "nsw = %d, nmp = %d & nsp = %d\n", mfg, cid, crev, eromptr - 1, nmw, nsw, nmp, nsp)); #else BCM_REFERENCE(crev); #endif if (((mfg == MFGID_ARM) && (cid == DEF_AI_COMP)) || (nsp == 0)) continue; if ((nmw + nsw == 0)) { /* A component which is not a core */ if (cid == OOB_ROUTER_CORE_ID) { asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); if (asd != 0) { sii->oob_router = addrl; } } if (cid != GMAC_COMMON_4706_CORE_ID && cid != NS_CCB_CORE_ID && cid != PMU_CORE_ID && cid != GCI_CORE_ID) continue; } idx = sii->numcores; cores_info->cia[idx] = cia; cores_info->cib[idx] = cib; cores_info->coreid[idx] = remap_coreid(sih, cid); for (i = 0; i < nmp; i++) { mpd = get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID); if ((mpd & ER_TAG) != ER_MP) { SI_ERROR(("Not enough MP entries for component 0x%x\n", cid)); goto error; } SI_VMSG((" Master port %d, mp: %d id: %d\n", i, (mpd & MPD_MP_MASK) >> MPD_MP_SHIFT, (mpd & MPD_MUI_MASK) >> MPD_MUI_SHIFT)); } /* First Slave Address Descriptor should be port 0: * the main register space for the core */ asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); if (asd == 0) { do { /* Try again to see if it is a bridge */ asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh, &sizel, &sizeh); if (asd != 0) br = TRUE; else { if (br == TRUE) { break; } else if ((addrh != 0) || (sizeh != 0) || (sizel != SI_CORE_SIZE)) { SI_ERROR(("addrh = 0x%x\t sizeh = 0x%x\t size1 =" "0x%x\n", addrh, sizeh, sizel)); SI_ERROR(("First Slave ASD for" "core 0x%04x malformed " "(0x%08x)\n", cid, asd)); goto error; } } } while (1); } cores_info->coresba[idx] = addrl; cores_info->coresba_size[idx] = sizel; /* Get any more ASDs in port 0 */ j = 1; do { asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); if ((asd != 0) && (j == 1) && (sizel == SI_CORE_SIZE)) { cores_info->coresba2[idx] = addrl; cores_info->coresba2_size[idx] = sizel; } j++; } while (asd != 0); /* Go through the ASDs for other slave ports */ for (i = 1; i < nsp; i++) { j = 0; do { asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); if (asd == 0) break; j++; } while (1); if (j == 0) { SI_ERROR((" SP %d has no address descriptors\n", i)); goto error; } } /* Now get master wrappers */ for (i = 0; i < nmw; i++) { asd = get_asd(sih, &eromptr, i, 0, AD_ST_MWRAP, &addrl, &addrh, &sizel, &sizeh); if (asd == 0) { SI_ERROR(("Missing descriptor for MW %d\n", i)); goto error; } if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) { SI_ERROR(("Master wrapper %d is not 4KB\n", i)); goto error; } if (i == 0) cores_info->wrapba[idx] = addrl; else if (i == 1) cores_info->wrapba2[idx] = addrl; } /* And finally slave wrappers */ for (i = 0; i < nsw; i++) { uint fwp = (nsp == 1) ? 0 : 1; asd = get_asd(sih, &eromptr, fwp + i, 0, AD_ST_SWRAP, &addrl, &addrh, &sizel, &sizeh); /* cache APB bridge wrapper address for set/clear timeout */ if ((mfg == MFGID_ARM) && (cid == APB_BRIDGE_ID)) { ASSERT(sii->num_br < SI_MAXBR); sii->br_wrapba[sii->num_br++] = addrl; } if (asd == 0) { SI_ERROR(("Missing descriptor for SW %d\n", i)); goto error; } if ((sizeh != 0) || (sizel != SI_CORE_SIZE)) { SI_ERROR(("Slave wrapper %d is not 4KB\n", i)); goto error; } if ((nmw == 0) && (i == 0)) cores_info->wrapba[idx] = addrl; else if ((nmw == 0) && (i == 1)) cores_info->wrapba2[idx] = addrl; } /* Don't record bridges */ if (br) continue; /* Done with core */ sii->numcores++; } SI_ERROR(("Reached end of erom without finding END")); error: sii->numcores = 0; return; } #define AI_SETCOREIDX_MAPSIZE(coreid) \ (((coreid) == NS_CCB_CORE_ID) ? 15 * SI_CORE_SIZE : SI_CORE_SIZE) /* This function changes the logical "focus" to the indicated core. * Return the current core's virtual address. */ static void * _ai_setcoreidx(si_t *sih, uint coreidx, uint use_wrap2) { si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; uint32 addr, wrap, wrap2; void *regs; if (coreidx >= MIN(sii->numcores, SI_MAXCORES)) return (NULL); addr = cores_info->coresba[coreidx]; wrap = cores_info->wrapba[coreidx]; wrap2 = cores_info->wrapba2[coreidx]; /* * If the user has provided an interrupt mask enabled function, * then assert interrupts are disabled before switching the core. */ ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg)); switch (BUSTYPE(sih->bustype)) { case SI_BUS: /* map new one */ if (!cores_info->regs[coreidx]) { cores_info->regs[coreidx] = REG_MAP(addr, AI_SETCOREIDX_MAPSIZE(cores_info->coreid[coreidx])); ASSERT(GOODREGS(cores_info->regs[coreidx])); } sii->curmap = regs = cores_info->regs[coreidx]; if (!cores_info->wrappers[coreidx] && (wrap != 0)) { cores_info->wrappers[coreidx] = REG_MAP(wrap, SI_CORE_SIZE); ASSERT(GOODREGS(cores_info->wrappers[coreidx])); } if (!cores_info->wrappers2[coreidx] && (wrap2 != 0)) { cores_info->wrappers2[coreidx] = REG_MAP(wrap2, SI_CORE_SIZE); ASSERT(GOODREGS(cores_info->wrappers2[coreidx])); } if (use_wrap2) sii->curwrap = cores_info->wrappers2[coreidx]; else sii->curwrap = cores_info->wrappers[coreidx]; break; case PCI_BUS: /* point bar0 window */ OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, addr); regs = sii->curmap; /* point bar0 2nd 4KB window to the primary wrapper */ if (use_wrap2) wrap = wrap2; if (PCIE_GEN2(sii)) OSL_PCI_WRITE_CONFIG(sii->osh, PCIE2_BAR0_WIN2, 4, wrap); else OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN2, 4, wrap); break; #ifdef BCMSDIO case SPI_BUS: case SDIO_BUS: sii->curmap = regs = (void *)((uintptr)addr); if (use_wrap2) sii->curwrap = (void *)((uintptr)wrap2); else sii->curwrap = (void *)((uintptr)wrap); break; #endif /* BCMSDIO */ case PCMCIA_BUS: default: ASSERT(0); regs = NULL; break; } sii->curmap = regs; sii->curidx = coreidx; return regs; } void * ai_setcoreidx(si_t *sih, uint coreidx) { return _ai_setcoreidx(sih, coreidx, 0); } void * ai_setcoreidx_2ndwrap(si_t *sih, uint coreidx) { return _ai_setcoreidx(sih, coreidx, 1); } void ai_coreaddrspaceX(si_t *sih, uint asidx, uint32 *addr, uint32 *size) { si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; chipcregs_t *cc = NULL; uint32 erombase, *eromptr, *eromlim; uint i, j, cidx; uint32 cia, cib, nmp, nsp; uint32 asd, addrl, addrh, sizel, sizeh; for (i = 0; i < sii->numcores; i++) { if (cores_info->coreid[i] == CC_CORE_ID) { cc = (chipcregs_t *)cores_info->regs[i]; break; } } if (cc == NULL) goto error; erombase = R_REG(sii->osh, &cc->eromptr); eromptr = (uint32 *)REG_MAP(erombase, SI_CORE_SIZE); eromlim = eromptr + (ER_REMAPCONTROL / sizeof(uint32)); cidx = sii->curidx; cia = cores_info->cia[cidx]; cib = cores_info->cib[cidx]; nmp = (cib & CIB_NMP_MASK) >> CIB_NMP_SHIFT; nsp = (cib & CIB_NSP_MASK) >> CIB_NSP_SHIFT; /* scan for cores */ while (eromptr < eromlim) { if ((get_erom_ent(sih, &eromptr, ER_TAG, ER_CI) == cia) && (get_erom_ent(sih, &eromptr, 0, 0) == cib)) { break; } } /* skip master ports */ for (i = 0; i < nmp; i++) get_erom_ent(sih, &eromptr, ER_VALID, ER_VALID); /* Skip ASDs in port 0 */ asd = get_asd(sih, &eromptr, 0, 0, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); if (asd == 0) { /* Try again to see if it is a bridge */ asd = get_asd(sih, &eromptr, 0, 0, AD_ST_BRIDGE, &addrl, &addrh, &sizel, &sizeh); } j = 1; do { asd = get_asd(sih, &eromptr, 0, j, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); j++; } while (asd != 0); /* Go through the ASDs for other slave ports */ for (i = 1; i < nsp; i++) { j = 0; do { asd = get_asd(sih, &eromptr, i, j, AD_ST_SLAVE, &addrl, &addrh, &sizel, &sizeh); if (asd == 0) break; if (!asidx--) { *addr = addrl; *size = sizel; return; } j++; } while (1); if (j == 0) { SI_ERROR((" SP %d has no address descriptors\n", i)); break; } } error: *size = 0; return; } /* Return the number of address spaces in current core */ int ai_numaddrspaces(si_t *sih) { return 2; } /* Return the address of the nth address space in the current core */ uint32 ai_addrspace(si_t *sih, uint asidx) { si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; uint cidx; cidx = sii->curidx; if (asidx == 0) return cores_info->coresba[cidx]; else if (asidx == 1) return cores_info->coresba2[cidx]; else { SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n", __FUNCTION__, asidx)); return 0; } } /* Return the size of the nth address space in the current core */ uint32 ai_addrspacesize(si_t *sih, uint asidx) { si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; uint cidx; cidx = sii->curidx; if (asidx == 0) return cores_info->coresba_size[cidx]; else if (asidx == 1) return cores_info->coresba2_size[cidx]; else { SI_ERROR(("%s: Need to parse the erom again to find addr space %d\n", __FUNCTION__, asidx)); return 0; } } uint ai_flag(si_t *sih) { si_info_t *sii = SI_INFO(sih); aidmp_t *ai; if (BCM47162_DMP()) { SI_ERROR(("%s: Attempting to read MIPS DMP registers on 47162a0", __FUNCTION__)); return sii->curidx; } if (BCM5357_DMP()) { SI_ERROR(("%s: Attempting to read USB20H DMP registers on 5357b0\n", __FUNCTION__)); return sii->curidx; } if (BCM4707_DMP()) { SI_ERROR(("%s: Attempting to read CHIPCOMMONB DMP registers on 4707\n", __FUNCTION__)); return sii->curidx; } if (BCM53573_DMP()) { SI_ERROR(("%s: Attempting to read DMP registers on 53573\n", __FUNCTION__)); return sii->curidx; } #ifdef REROUTE_OOBINT if (PMU_DMP()) { SI_ERROR(("%s: Attempting to read PMU DMP registers\n", __FUNCTION__)); return PMU_OOB_BIT; } #else if (PMU_DMP()) { uint idx, flag; idx = sii->curidx; ai_setcoreidx(sih, SI_CC_IDX); flag = ai_flag_alt(sih); ai_setcoreidx(sih, idx); return flag; } #endif /* REROUTE_OOBINT */ ai = sii->curwrap; ASSERT(ai != NULL); return (R_REG(sii->osh, &ai->oobselouta30) & 0x1f); } uint ai_flag_alt(si_t *sih) { si_info_t *sii = SI_INFO(sih); aidmp_t *ai; if (BCM47162_DMP()) { SI_ERROR(("%s: Attempting to read MIPS DMP registers on 47162a0", __FUNCTION__)); return sii->curidx; } if (BCM5357_DMP()) { SI_ERROR(("%s: Attempting to read USB20H DMP registers on 5357b0\n", __FUNCTION__)); return sii->curidx; } if (BCM4707_DMP()) { SI_ERROR(("%s: Attempting to read CHIPCOMMONB DMP registers on 4707\n", __FUNCTION__)); return sii->curidx; } #ifdef REROUTE_OOBINT if (PMU_DMP()) { SI_ERROR(("%s: Attempting to read PMU DMP registers\n", __FUNCTION__)); return PMU_OOB_BIT; } #endif /* REROUTE_OOBINT */ ai = sii->curwrap; return ((R_REG(sii->osh, &ai->oobselouta30) >> AI_OOBSEL_1_SHIFT) & AI_OOBSEL_MASK); } void ai_setint(si_t *sih, int siflag) { } uint ai_wrap_reg(si_t *sih, uint32 offset, uint32 mask, uint32 val) { si_info_t *sii = SI_INFO(sih); uint32 *map = (uint32 *) sii->curwrap; if (mask || val) { uint32 w = R_REG(sii->osh, map+(offset/4)); w &= ~mask; w |= val; W_REG(sii->osh, map+(offset/4), w); } return (R_REG(sii->osh, map+(offset/4))); } uint ai_corevendor(si_t *sih) { si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; uint32 cia; cia = cores_info->cia[sii->curidx]; return ((cia & CIA_MFG_MASK) >> CIA_MFG_SHIFT); } uint ai_corerev(si_t *sih) { si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; uint32 cib; cib = cores_info->cib[sii->curidx]; return remap_corerev(sih, (cib & CIB_REV_MASK) >> CIB_REV_SHIFT); } bool ai_iscoreup(si_t *sih) { si_info_t *sii = SI_INFO(sih); aidmp_t *ai; ai = sii->curwrap; return (((R_REG(sii->osh, &ai->ioctrl) & (SICF_FGC | SICF_CLOCK_EN)) == SICF_CLOCK_EN) && ((R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) == 0)); } /* * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation, * switch back to the original core, and return the new value. * * When using the silicon backplane, no fiddling with interrupts or core switches is needed. * * Also, when using pci/pcie, we can optimize away the core switching for pci registers * and (on newer pci cores) chipcommon registers. */ uint ai_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val) { uint origidx = 0; uint32 *r = NULL; uint w; uint intr_val = 0; bool fast = FALSE; si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; ASSERT(GOODIDX(coreidx)); ASSERT(regoff < SI_CORE_SIZE); ASSERT((val & ~mask) == 0); if (coreidx >= SI_MAXCORES) return 0; if (BUSTYPE(sih->bustype) == SI_BUS) { /* If internal bus, we can always get at everything */ fast = TRUE; /* map if does not exist */ if (!cores_info->regs[coreidx]) { cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx], SI_CORE_SIZE); ASSERT(GOODREGS(cores_info->regs[coreidx])); } r = (uint32 *)((uchar *)cores_info->regs[coreidx] + regoff); } else if (BUSTYPE(sih->bustype) == PCI_BUS) { /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { /* Chipc registers are mapped at 12KB */ fast = TRUE; r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); } else if (sii->pub.buscoreidx == coreidx) { /* pci registers are at either in the last 2KB of an 8KB window * or, in pcie and pci rev 13 at 8KB */ fast = TRUE; if (SI_FAST(sii)) r = (uint32 *)((char *)sii->curmap + PCI_16KB0_PCIREGS_OFFSET + regoff); else r = (uint32 *)((char *)sii->curmap + ((regoff >= SBCONFIGOFF) ? PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + regoff); } } if (!fast) { INTR_OFF(sii, intr_val); /* save current core index */ origidx = si_coreidx(&sii->pub); /* switch core */ r = (uint32*) ((uchar*) ai_setcoreidx(&sii->pub, coreidx) + regoff); } ASSERT(r != NULL); /* mask and set */ if (mask || val) { w = (R_REG(sii->osh, r) & ~mask) | val; W_REG(sii->osh, r, w); } /* readback */ w = R_REG(sii->osh, r); if (!fast) { /* restore core index */ if (origidx != coreidx) ai_setcoreidx(&sii->pub, origidx); INTR_RESTORE(sii, intr_val); } return (w); } /* * If there is no need for fiddling with interrupts or core switches (typically silicon * back plane registers, pci registers and chipcommon registers), this function * returns the register offset on this core to a mapped address. This address can * be used for W_REG/R_REG directly. * * For accessing registers that would need a core switch, this function will return * NULL. */ uint32 * ai_corereg_addr(si_t *sih, uint coreidx, uint regoff) { uint32 *r = NULL; bool fast = FALSE; si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; ASSERT(GOODIDX(coreidx)); ASSERT(regoff < SI_CORE_SIZE); if (coreidx >= SI_MAXCORES) return 0; if (BUSTYPE(sih->bustype) == SI_BUS) { /* If internal bus, we can always get at everything */ fast = TRUE; /* map if does not exist */ if (!cores_info->regs[coreidx]) { cores_info->regs[coreidx] = REG_MAP(cores_info->coresba[coreidx], SI_CORE_SIZE); ASSERT(GOODREGS(cores_info->regs[coreidx])); } r = (uint32 *)((uchar *)cores_info->regs[coreidx] + regoff); } else if (BUSTYPE(sih->bustype) == PCI_BUS) { /* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */ if ((cores_info->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) { /* Chipc registers are mapped at 12KB */ fast = TRUE; r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff); } else if (sii->pub.buscoreidx == coreidx) { /* pci registers are at either in the last 2KB of an 8KB window * or, in pcie and pci rev 13 at 8KB */ fast = TRUE; if (SI_FAST(sii)) r = (uint32 *)((char *)sii->curmap + PCI_16KB0_PCIREGS_OFFSET + regoff); else r = (uint32 *)((char *)sii->curmap + ((regoff >= SBCONFIGOFF) ? PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) + regoff); } } if (!fast) { ASSERT(sii->curidx == coreidx); r = (uint32*) ((uchar*)sii->curmap + regoff); } return (r); } void ai_core_disable(si_t *sih, uint32 bits) { si_info_t *sii = SI_INFO(sih); volatile uint32 dummy; uint32 status; aidmp_t *ai; ASSERT(GOODREGS(sii->curwrap)); ai = sii->curwrap; /* if core is already in reset, just return */ if (R_REG(sii->osh, &ai->resetctrl) & AIRC_RESET) return; /* ensure there are no pending backplane operations */ SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 300); /* if pending backplane ops still, try waiting longer */ if (status != 0) { /* 300usecs was sufficient to allow backplane ops to clear for big hammer */ /* during driver load we may need more time */ SPINWAIT(((status = R_REG(sii->osh, &ai->resetstatus)) != 0), 10000); /* if still pending ops, continue on and try disable anyway */ /* this is in big hammer path, so don't call wl_reinit in this case... */ } W_REG(sii->osh, &ai->resetctrl, AIRC_RESET); dummy = R_REG(sii->osh, &ai->resetctrl); BCM_REFERENCE(dummy); OSL_DELAY(1); W_REG(sii->osh, &ai->ioctrl, bits); dummy = R_REG(sii->osh, &ai->ioctrl); BCM_REFERENCE(dummy); OSL_DELAY(10); } /* reset and re-enable a core * inputs: * bits - core specific bits that are set during and after reset sequence * resetbits - core specific bits that are set only during reset sequence */ static void _ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits) { si_info_t *sii = SI_INFO(sih); aidmp_t *ai; volatile uint32 dummy; uint loop_counter = 10; #ifdef CUSTOMER_HW4_DEBUG printf("%s: bits: 0x%x, resetbits: 0x%x\n", __FUNCTION__, bits, resetbits); #endif ASSERT(GOODREGS(sii->curwrap)); ai = sii->curwrap; /* ensure there are no pending backplane operations */ SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300); #ifdef CUSTOMER_HW4_DEBUG printf("%s: resetstatus: %p dummy: %x\n", __FUNCTION__, &ai->resetstatus, dummy); #endif /* put core into reset state */ #ifdef CUSTOMER_HW4_DEBUG printf("%s: resetctrl: %p\n", __FUNCTION__, &ai->resetctrl); #endif W_REG(sii->osh, &ai->resetctrl, AIRC_RESET); OSL_DELAY(10); /* ensure there are no pending backplane operations */ SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300); W_REG(sii->osh, &ai->ioctrl, (bits | resetbits | SICF_FGC | SICF_CLOCK_EN)); dummy = R_REG(sii->osh, &ai->ioctrl); #ifdef CUSTOMER_HW4_DEBUG printf("%s: ioctrl: %p dummy: 0x%x\n", __FUNCTION__, &ai->ioctrl, dummy); #endif BCM_REFERENCE(dummy); /* ensure there are no pending backplane operations */ SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300); while (R_REG(sii->osh, &ai->resetctrl) != 0 && --loop_counter != 0) { /* ensure there are no pending backplane operations */ SPINWAIT(((dummy = R_REG(sii->osh, &ai->resetstatus)) != 0), 300); /* take core out of reset */ W_REG(sii->osh, &ai->resetctrl, 0); #ifdef CUSTOMER_HW4_DEBUG printf("%s: loop_counter: %d resetstatus: %p resetctrl: %p\n", __FUNCTION__, loop_counter, &ai->resetstatus, &ai->resetctrl); #endif /* ensure there are no pending backplane operations */ SPINWAIT((R_REG(sii->osh, &ai->resetstatus) != 0), 300); } W_REG(sii->osh, &ai->ioctrl, (bits | SICF_CLOCK_EN)); dummy = R_REG(sii->osh, &ai->ioctrl); #ifdef CUSTOMER_HW4_DEBUG printf("%s: ioctl: %p dummy: 0x%x\n", __FUNCTION__, &ai->ioctrl, dummy); #endif BCM_REFERENCE(dummy); OSL_DELAY(1); } void ai_core_reset(si_t *sih, uint32 bits, uint32 resetbits) { si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; uint idx = sii->curidx; if (cores_info->wrapba2[idx] != 0) { ai_setcoreidx_2ndwrap(sih, idx); _ai_core_reset(sih, bits, resetbits); ai_setcoreidx(sih, idx); } _ai_core_reset(sih, bits, resetbits); } void ai_core_cflags_wo(si_t *sih, uint32 mask, uint32 val) { si_info_t *sii = SI_INFO(sih); aidmp_t *ai; uint32 w; if (BCM47162_DMP()) { SI_ERROR(("%s: Accessing MIPS DMP register (ioctrl) on 47162a0", __FUNCTION__)); return; } if (BCM5357_DMP()) { SI_ERROR(("%s: Accessing USB20H DMP register (ioctrl) on 5357\n", __FUNCTION__)); return; } if (BCM4707_DMP()) { SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n", __FUNCTION__)); return; } if (PMU_DMP()) { SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n", __FUNCTION__)); return; } ASSERT(GOODREGS(sii->curwrap)); ai = sii->curwrap; ASSERT((val & ~mask) == 0); if (mask || val) { w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val); W_REG(sii->osh, &ai->ioctrl, w); } } uint32 ai_core_cflags(si_t *sih, uint32 mask, uint32 val) { si_info_t *sii = SI_INFO(sih); aidmp_t *ai; uint32 w; if (BCM47162_DMP()) { SI_ERROR(("%s: Accessing MIPS DMP register (ioctrl) on 47162a0", __FUNCTION__)); return 0; } if (BCM5357_DMP()) { SI_ERROR(("%s: Accessing USB20H DMP register (ioctrl) on 5357\n", __FUNCTION__)); return 0; } if (BCM4707_DMP()) { SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n", __FUNCTION__)); return 0; } if (PMU_DMP()) { SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n", __FUNCTION__)); return 0; } ASSERT(GOODREGS(sii->curwrap)); ai = sii->curwrap; ASSERT((val & ~mask) == 0); if (mask || val) { w = ((R_REG(sii->osh, &ai->ioctrl) & ~mask) | val); W_REG(sii->osh, &ai->ioctrl, w); } return R_REG(sii->osh, &ai->ioctrl); } uint32 ai_core_sflags(si_t *sih, uint32 mask, uint32 val) { si_info_t *sii = SI_INFO(sih); aidmp_t *ai; uint32 w; if (BCM47162_DMP()) { SI_ERROR(("%s: Accessing MIPS DMP register (iostatus) on 47162a0", __FUNCTION__)); return 0; } if (BCM5357_DMP()) { SI_ERROR(("%s: Accessing USB20H DMP register (iostatus) on 5357\n", __FUNCTION__)); return 0; } if (BCM4707_DMP()) { SI_ERROR(("%s: Accessing CHIPCOMMONB DMP register (ioctrl) on 4707\n", __FUNCTION__)); return 0; } if (PMU_DMP()) { SI_ERROR(("%s: Accessing PMU DMP register (ioctrl)\n", __FUNCTION__)); return 0; } ASSERT(GOODREGS(sii->curwrap)); ai = sii->curwrap; ASSERT((val & ~mask) == 0); ASSERT((mask & ~SISF_CORE_BITS) == 0); if (mask || val) { w = ((R_REG(sii->osh, &ai->iostatus) & ~mask) | val); W_REG(sii->osh, &ai->iostatus, w); } return R_REG(sii->osh, &ai->iostatus); } #if defined(BCMDBG_PHYDUMP) /* print interesting aidmp registers */ void ai_dumpregs(si_t *sih, struct bcmstrbuf *b) { si_info_t *sii = SI_INFO(sih); si_cores_info_t *cores_info = (si_cores_info_t *)sii->cores_info; osl_t *osh; aidmp_t *ai; uint i; osh = sii->osh; for (i = 0; i < sii->numcores; i++) { si_setcoreidx(&sii->pub, i); ai = sii->curwrap; bcm_bprintf(b, "core 0x%x: \n", cores_info->coreid[i]); if (BCM47162_DMP()) { bcm_bprintf(b, "Skipping mips74k in 47162a0\n"); continue; } if (BCM5357_DMP()) { bcm_bprintf(b, "Skipping usb20h in 5357\n"); continue; } if (BCM4707_DMP()) { bcm_bprintf(b, "Skipping chipcommonb in 4707\n"); continue; } if (PMU_DMP()) { bcm_bprintf(b, "Skipping pmu core\n"); continue; } bcm_bprintf(b, "ioctrlset 0x%x ioctrlclear 0x%x ioctrl 0x%x iostatus 0x%x" "ioctrlwidth 0x%x iostatuswidth 0x%x\n" "resetctrl 0x%x resetstatus 0x%x resetreadid 0x%x resetwriteid 0x%x\n" "errlogctrl 0x%x errlogdone 0x%x errlogstatus 0x%x" "errlogaddrlo 0x%x errlogaddrhi 0x%x\n" "errlogid 0x%x errloguser 0x%x errlogflags 0x%x\n" "intstatus 0x%x config 0x%x itcr 0x%x\n", R_REG(osh, &ai->ioctrlset), R_REG(osh, &ai->ioctrlclear), R_REG(osh, &ai->ioctrl), R_REG(osh, &ai->iostatus), R_REG(osh, &ai->ioctrlwidth), R_REG(osh, &ai->iostatuswidth), R_REG(osh, &ai->resetctrl), R_REG(osh, &ai->resetstatus), R_REG(osh, &ai->resetreadid), R_REG(osh, &ai->resetwriteid), R_REG(osh, &ai->errlogctrl), R_REG(osh, &ai->errlogdone), R_REG(osh, &ai->errlogstatus), R_REG(osh, &ai->errlogaddrlo), R_REG(osh, &ai->errlogaddrhi), R_REG(osh, &ai->errlogid), R_REG(osh, &ai->errloguser), R_REG(osh, &ai->errlogflags), R_REG(osh, &ai->intstatus), R_REG(osh, &ai->config), R_REG(osh, &ai->itcr)); } } #endif void ai_enable_backplane_timeouts(si_t *sih) { #ifdef AXI_TIMEOUTS si_info_t *sii = SI_INFO(sih); aidmp_t *ai; int i; for (i = 0; i < sii->num_br; ++i) { ai = (aidmp_t *) sii->br_wrapba[i]; W_REG(sii->osh, &ai->errlogctrl, (1 << AIELC_TO_ENAB_SHIFT) | ((AXI_TO_VAL << AIELC_TO_EXP_SHIFT) & AIELC_TO_EXP_MASK)); } #endif /* AXI_TIMEOUTS */ } void ai_clear_backplane_to(si_t *sih) { #ifdef AXI_TIMEOUTS si_info_t *sii = SI_INFO(sih); aidmp_t *ai; int i; uint32 errlogstatus; for (i = 0; i < sii->num_br; ++i) { ai = (aidmp_t *) sii->br_wrapba[i]; /* check for backplane timeout & clear backplane hang */ errlogstatus = R_REG(sii->osh, &ai->errlogstatus); if ((errlogstatus & AIELS_TIMEOUT_MASK) != 0) { /* set ErrDone to clear the condition */ W_REG(sii->osh, &ai->errlogdone, AIELD_ERRDONE_MASK); /* SPINWAIT on errlogstatus timeout status bits */ while (R_REG(sii->osh, &ai->errlogstatus) & AIELS_TIMEOUT_MASK) ; /* only reset APB Bridge on timeout (not slave error, or dec error) */ switch (errlogstatus & AIELS_TIMEOUT_MASK) { case 0x1: printf("AXI slave error"); break; case 0x2: /* reset APB Bridge */ OR_REG(sii->osh, &ai->resetctrl, AIRC_RESET); /* sync write */ (void)R_REG(sii->osh, &ai->resetctrl); /* clear Reset bit */ AND_REG(sii->osh, &ai->resetctrl, ~(AIRC_RESET)); /* sync write */ (void)R_REG(sii->osh, &ai->resetctrl); printf("AXI timeout"); break; case 0x3: printf("AXI decode error"); break; default: ; /* should be impossible */ } printf("; APB Bridge %d\n", i); printf("\t errlog: lo 0x%08x, hi 0x%08x, id 0x%08x, flags 0x%08x", R_REG(sii->osh, &ai->errlogaddrlo), R_REG(sii->osh, &ai->errlogaddrhi), R_REG(sii->osh, &ai->errlogid), R_REG(sii->osh, &ai->errlogflags)); printf(", status 0x%08x\n", errlogstatus); } } #endif /* AXI_TIMEOUTS */ }