tegrakernel/kernel/nvidia/drivers/net/wireless/bcmdhd/linux_osl.c

2452 lines
58 KiB
C

/*
* Linux OS Independent Layer
*
* Copyright (C) 1999-2015, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: linux_osl.c 530336 2015-01-29 22:52:35Z $
*/
#define LINUX_PORT
#include <typedefs.h>
#include <bcmendian.h>
#include <linuxver.h>
#include <bcmdefs.h>
#include <linux/random.h>
#include <osl.h>
#include <bcmutils.h>
#include <linux/delay.h>
#include <pcicfg.h>
#ifdef BCM_SECURE_DMA
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/printk.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/moduleparam.h>
#include <asm/io.h>
#include <linux/skbuff.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/dma-mapping.h>
#include <asm/memory.h>
#if defined(__ARM_ARCH_7A__)
#include <arch/arm/include/asm/tlbflush.h>
#include <arch/arm/mm/mm.h>
#endif
#include <linux/brcmstb/cma_driver.h>
#endif /* BCM_SECURE_DMA */
#include <linux/fs.h>
#include <linux/mmc/host.h>
#if defined(BCMPCIE)
#if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_FLOWRING)
#include <bcmpcie.h>
#endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_FLOWRING */
#endif /* BCMPCIE */
#define PCI_CFG_RETRY 10
#define OS_HANDLE_MAGIC 0x1234abcd /* Magic # to recognize osh */
#define BCM_MEM_FILENAME_LEN 24 /* Mem. filename length */
#define DUMPBUFSZ 1024
#ifdef CONFIG_DHD_USE_STATIC_BUF
#define DHD_SKB_HDRSIZE 336
#define DHD_SKB_1PAGE_BUFSIZE ((PAGE_SIZE*1)-DHD_SKB_HDRSIZE)
#define DHD_SKB_2PAGE_BUFSIZE ((PAGE_SIZE*2)-DHD_SKB_HDRSIZE)
#define DHD_SKB_4PAGE_BUFSIZE ((PAGE_SIZE*4)-DHD_SKB_HDRSIZE)
#define STATIC_BUF_MAX_NUM 16
#define STATIC_BUF_SIZE (PAGE_SIZE*2)
#define STATIC_BUF_TOTAL_LEN (STATIC_BUF_MAX_NUM * STATIC_BUF_SIZE)
typedef struct bcm_static_buf {
struct semaphore static_sem;
unsigned char *buf_ptr;
unsigned char buf_use[STATIC_BUF_MAX_NUM];
} bcm_static_buf_t;
static bcm_static_buf_t *bcm_static_buf = 0;
#define STATIC_PKT_MAX_NUM 8
#if defined(ENHANCED_STATIC_BUF)
#define STATIC_PKT_4PAGE_NUM 1
#define DHD_SKB_MAX_BUFSIZE DHD_SKB_4PAGE_BUFSIZE
#else
#define STATIC_PKT_4PAGE_NUM 0
#define DHD_SKB_MAX_BUFSIZE DHD_SKB_2PAGE_BUFSIZE
#endif /* ENHANCED_STATIC_BUF */
typedef struct bcm_static_pkt {
struct sk_buff *skb_4k[STATIC_PKT_MAX_NUM];
struct sk_buff *skb_8k[STATIC_PKT_MAX_NUM];
#ifdef ENHANCED_STATIC_BUF
struct sk_buff *skb_16k;
#endif
struct semaphore osl_pkt_sem;
unsigned char pkt_use[STATIC_PKT_MAX_NUM * 2 + STATIC_PKT_4PAGE_NUM];
} bcm_static_pkt_t;
static bcm_static_pkt_t *bcm_static_skb = 0;
#if defined(BCMPCIE) && defined(DHD_USE_STATIC_FLOWRING)
#define STATIC_BUF_FLOWRING_SIZE ((PAGE_SIZE)*(7))
#define STATIC_BUF_FLOWRING_NUM 42
#define RINGID_TO_FLOWID(idx) ((idx) + (BCMPCIE_H2D_COMMON_MSGRINGS) \
- (BCMPCIE_H2D_TXFLOWRINGID))
typedef struct bcm_static_flowring_buf {
spinlock_t flowring_lock;
void *buf_ptr[STATIC_BUF_FLOWRING_NUM];
unsigned char buf_use[STATIC_BUF_FLOWRING_NUM];
} bcm_static_flowring_buf_t;
bcm_static_flowring_buf_t *bcm_static_flowring = 0;
#endif /* BCMPCIE && DHD_USE_STATIC_FLOWRING */
void* wifi_platform_prealloc(void *adapter, int section, unsigned long size);
#endif /* CONFIG_DHD_USE_STATIC_BUF */
typedef struct bcm_mem_link {
struct bcm_mem_link *prev;
struct bcm_mem_link *next;
uint size;
int line;
void *osh;
char file[BCM_MEM_FILENAME_LEN];
} bcm_mem_link_t;
struct osl_cmn_info {
atomic_t malloced;
atomic_t pktalloced; /* Number of allocated packet buffers */
spinlock_t dbgmem_lock;
bcm_mem_link_t *dbgmem_list;
spinlock_t pktalloc_lock;
atomic_t refcount; /* Number of references to this shared structure. */
};
typedef struct osl_cmn_info osl_cmn_t;
struct osl_info {
osl_pubinfo_t pub;
#ifdef CTFPOOL
ctfpool_t *ctfpool;
#endif /* CTFPOOL */
uint magic;
void *pdev;
uint failed;
uint bustype;
osl_cmn_t *cmn; /* Common OSL related data shred between two OSH's */
void *bus_handle;
#ifdef BCMDBG_CTRACE
spinlock_t ctrace_lock;
struct list_head ctrace_list;
int ctrace_num;
#endif /* BCMDBG_CTRACE */
uint32 flags; /* If specific cases to be handled in the OSL */
#ifdef BCM_SECURE_DMA
struct cma_dev *cma;
struct sec_mem_elem *sec_list_512;
struct sec_mem_elem *sec_list_base_512;
struct sec_mem_elem *sec_list_2048;
struct sec_mem_elem *sec_list_base_2048;
struct sec_mem_elem *sec_list_4096;
struct sec_mem_elem *sec_list_base_4096;
phys_addr_t contig_base;
void *contig_base_va;
phys_addr_t contig_base_alloc;
void *contig_base_alloc_va;
phys_addr_t contig_base_alloc_coherent;
void *contig_base_alloc_coherent_va;
phys_addr_t contig_delta_va_pa;
struct {
phys_addr_t pa;
void *va;
bool avail;
} sec_cma_coherent[SEC_CMA_COHERENT_MAX];
#endif /* BCM_SECURE_DMA */
};
#ifdef BCM_SECURE_DMA
phys_addr_t g_contig_delta_va_pa;
static void osl_sec_dma_setup_contig_mem(osl_t *osh, unsigned long memsize, int regn);
static int osl_sec_dma_alloc_contig_mem(osl_t *osh, unsigned long memsize, int regn);
static void osl_sec_dma_free_contig_mem(osl_t *osh, u32 memsize, int regn);
static void * osl_sec_dma_ioremap(osl_t *osh, struct page *page, size_t size,
bool iscache, bool isdecr);
static void osl_sec_dma_iounmap(osl_t *osh, void *contig_base_va, size_t size);
static void osl_sec_dma_init_elem_mem_block(osl_t *osh, size_t mbsize, int max,
sec_mem_elem_t **list);
static void osl_sec_dma_deinit_elem_mem_block(osl_t *osh, size_t mbsize, int max,
void *sec_list_base);
static sec_mem_elem_t * osl_sec_dma_alloc_mem_elem(osl_t *osh, void *va, uint size,
int direction, struct sec_cma_info *ptr_cma_info, uint offset);
static void osl_sec_dma_free_mem_elem(osl_t *osh, sec_mem_elem_t *sec_mem_elem);
static void osl_sec_dma_init_consistent(osl_t *osh);
static void *osl_sec_dma_alloc_consistent(osl_t *osh, uint size, uint16 align_bits,
ulong *pap);
static void osl_sec_dma_free_consistent(osl_t *osh, void *va, uint size, dmaaddr_t pa);
#endif /* BCM_SECURE_DMA */
#define OSL_PKTTAG_CLEAR(p) \
do { \
struct sk_buff *s = (struct sk_buff *)(p); \
ASSERT(OSL_PKTTAG_SZ == 32); \
*(uint32 *)(&s->cb[0]) = 0; *(uint32 *)(&s->cb[4]) = 0; \
*(uint32 *)(&s->cb[8]) = 0; *(uint32 *)(&s->cb[12]) = 0; \
*(uint32 *)(&s->cb[16]) = 0; *(uint32 *)(&s->cb[20]) = 0; \
*(uint32 *)(&s->cb[24]) = 0; *(uint32 *)(&s->cb[28]) = 0; \
} while (0)
/* PCMCIA attribute space access macros */
/* Global ASSERT type flag */
uint32 g_assert_type = 0;
module_param(g_assert_type, int, 0);
static int16 linuxbcmerrormap[] =
{ 0, /* 0 */
-EINVAL, /* BCME_ERROR */
-EINVAL, /* BCME_BADARG */
-EINVAL, /* BCME_BADOPTION */
-EINVAL, /* BCME_NOTUP */
-EINVAL, /* BCME_NOTDOWN */
-EINVAL, /* BCME_NOTAP */
-EINVAL, /* BCME_NOTSTA */
-EINVAL, /* BCME_BADKEYIDX */
-EINVAL, /* BCME_RADIOOFF */
-EINVAL, /* BCME_NOTBANDLOCKED */
-EINVAL, /* BCME_NOCLK */
-EINVAL, /* BCME_BADRATESET */
-EINVAL, /* BCME_BADBAND */
-E2BIG, /* BCME_BUFTOOSHORT */
-E2BIG, /* BCME_BUFTOOLONG */
-EBUSY, /* BCME_BUSY */
-EINVAL, /* BCME_NOTASSOCIATED */
-EINVAL, /* BCME_BADSSIDLEN */
-EINVAL, /* BCME_OUTOFRANGECHAN */
-EINVAL, /* BCME_BADCHAN */
-EFAULT, /* BCME_BADADDR */
-ENOMEM, /* BCME_NORESOURCE */
-EOPNOTSUPP, /* BCME_UNSUPPORTED */
-EMSGSIZE, /* BCME_BADLENGTH */
-EINVAL, /* BCME_NOTREADY */
-EPERM, /* BCME_EPERM */
-ENOMEM, /* BCME_NOMEM */
-EINVAL, /* BCME_ASSOCIATED */
-ERANGE, /* BCME_RANGE */
-EINVAL, /* BCME_NOTFOUND */
-EINVAL, /* BCME_WME_NOT_ENABLED */
-EINVAL, /* BCME_TSPEC_NOTFOUND */
-EINVAL, /* BCME_ACM_NOTSUPPORTED */
-EINVAL, /* BCME_NOT_WME_ASSOCIATION */
-EIO, /* BCME_SDIO_ERROR */
-ENODEV, /* BCME_DONGLE_DOWN */
-EINVAL, /* BCME_VERSION */
-EIO, /* BCME_TXFAIL */
-EIO, /* BCME_RXFAIL */
-ENODEV, /* BCME_NODEVICE */
-EINVAL, /* BCME_NMODE_DISABLED */
-ENODATA, /* BCME_NONRESIDENT */
-EINVAL, /* BCME_SCANREJECT */
-EINVAL, /* BCME_USAGE_ERROR */
-EIO, /* BCME_IOCTL_ERROR */
-EIO, /* BCME_SERIAL_PORT_ERR */
-EOPNOTSUPP, /* BCME_DISABLED, BCME_NOTENABLED */
-EIO, /* BCME_DECERR */
-EIO, /* BCME_ENCERR */
-EIO, /* BCME_MICERR */
-ERANGE, /* BCME_REPLAY */
-EINVAL, /* BCME_IE_NOTFOUND */
/* When an new error code is added to bcmutils.h, add os
* specific error translation here as well
*/
/* check if BCME_LAST changed since the last time this function was updated */
#if BCME_LAST != -52
#error "You need to add a OS error translation in the linuxbcmerrormap \
for new error code defined in bcmutils.h"
#endif
};
uint lmtest = FALSE;
/* translate bcmerrors into linux errors */
int
osl_error(int bcmerror)
{
if (bcmerror > 0)
bcmerror = 0;
else if (bcmerror < BCME_LAST)
bcmerror = BCME_ERROR;
/* Array bounds covered by ASSERT in osl_attach */
return linuxbcmerrormap[-bcmerror];
}
#ifdef SHARED_OSL_CMN
osl_t *
osl_attach(void *pdev, uint bustype, bool pkttag, void **osl_cmn)
{
#else
osl_t *
osl_attach(void *pdev, uint bustype, bool pkttag)
{
void **osl_cmn = NULL;
#endif /* SHARED_OSL_CMN */
osl_t *osh;
gfp_t flags;
flags = CAN_SLEEP() ? GFP_KERNEL: GFP_ATOMIC;
if (!(osh = kmalloc(sizeof(osl_t), flags)))
return osh;
ASSERT(osh);
bzero(osh, sizeof(osl_t));
if (osl_cmn == NULL || *osl_cmn == NULL) {
if (!(osh->cmn = kmalloc(sizeof(osl_cmn_t), flags))) {
kfree(osh);
return NULL;
}
bzero(osh->cmn, sizeof(osl_cmn_t));
if (osl_cmn)
*osl_cmn = osh->cmn;
atomic_set(&osh->cmn->malloced, 0);
osh->cmn->dbgmem_list = NULL;
spin_lock_init(&(osh->cmn->dbgmem_lock));
spin_lock_init(&(osh->cmn->pktalloc_lock));
} else {
osh->cmn = *osl_cmn;
}
atomic_add(1, &osh->cmn->refcount);
/* Check that error map has the right number of entries in it */
ASSERT(ABS(BCME_LAST) == (ARRAYSIZE(linuxbcmerrormap) - 1));
osh->failed = 0;
osh->pdev = pdev;
osh->pub.pkttag = pkttag;
osh->bustype = bustype;
osh->magic = OS_HANDLE_MAGIC;
#ifdef BCM_SECURE_DMA
osl_sec_dma_setup_contig_mem(osh, CMA_MEMBLOCK, CONT_ARMREGION);
osh->contig_base_alloc_coherent_va = osl_sec_dma_ioremap(osh,
phys_to_page((u32)osh->contig_base_alloc),
CMA_DMA_DESC_MEMBLOCK, FALSE, TRUE);
osh->contig_base_alloc_coherent = osh->contig_base_alloc;
osl_sec_dma_init_consistent(osh);
osh->contig_base_alloc += CMA_DMA_DESC_MEMBLOCK;
osh->contig_base_alloc_va = osl_sec_dma_ioremap(osh,
phys_to_page((u32)osh->contig_base_alloc), CMA_DMA_DATA_MEMBLOCK, TRUE, FALSE);
osh->contig_base_va = osh->contig_base_alloc_va;
/*
* osl_sec_dma_init_elem_mem_block(osh, CMA_BUFSIZE_512, CMA_BUFNUM, &osh->sec_list_512);
* osh->sec_list_base_512 = osh->sec_list_512;
* osl_sec_dma_init_elem_mem_block(osh, CMA_BUFSIZE_2K, CMA_BUFNUM, &osh->sec_list_2048);
* osh->sec_list_base_2048 = osh->sec_list_2048;
*/
osl_sec_dma_init_elem_mem_block(osh, CMA_BUFSIZE_4K, CMA_BUFNUM, &osh->sec_list_4096);
osh->sec_list_base_4096 = osh->sec_list_4096;
#endif /* BCM_SECURE_DMA */
switch (bustype) {
case PCI_BUS:
case SI_BUS:
case PCMCIA_BUS:
osh->pub.mmbus = TRUE;
break;
case JTAG_BUS:
case SDIO_BUS:
case USB_BUS:
case SPI_BUS:
case RPC_BUS:
osh->pub.mmbus = FALSE;
break;
default:
ASSERT(FALSE);
break;
}
#ifdef BCMDBG_CTRACE
spin_lock_init(&osh->ctrace_lock);
INIT_LIST_HEAD(&osh->ctrace_list);
osh->ctrace_num = 0;
#endif /* BCMDBG_CTRACE */
return osh;
}
int osl_static_mem_init(osl_t *osh, void *adapter)
{
#ifdef CONFIG_DHD_USE_STATIC_BUF
if (!bcm_static_buf && adapter) {
if (!(bcm_static_buf = (bcm_static_buf_t *)wifi_platform_prealloc(adapter,
3, STATIC_BUF_SIZE + STATIC_BUF_TOTAL_LEN))) {
printk("can not alloc static buf!\n");
bcm_static_skb = NULL;
ASSERT(osh->magic == OS_HANDLE_MAGIC);
return -ENOMEM;
}
else
printk("alloc static buf at %p!\n", bcm_static_buf);
sema_init(&bcm_static_buf->static_sem, 1);
bcm_static_buf->buf_ptr = (unsigned char *)bcm_static_buf + STATIC_BUF_SIZE;
}
#ifdef BCMSDIO
if (!bcm_static_skb && adapter) {
int i;
void *skb_buff_ptr = 0;
bcm_static_skb = (bcm_static_pkt_t *)((char *)bcm_static_buf + 2048);
skb_buff_ptr = wifi_platform_prealloc(adapter, 4, 0);
if (!skb_buff_ptr) {
printk("cannot alloc static buf!\n");
bcm_static_buf = NULL;
bcm_static_skb = NULL;
ASSERT(osh->magic == OS_HANDLE_MAGIC);
return -ENOMEM;
}
bcopy(skb_buff_ptr, bcm_static_skb, sizeof(struct sk_buff *) *
(STATIC_PKT_MAX_NUM * 2 + STATIC_PKT_4PAGE_NUM));
for (i = 0; i < STATIC_PKT_MAX_NUM * 2 + STATIC_PKT_4PAGE_NUM; i++)
bcm_static_skb->pkt_use[i] = 0;
sema_init(&bcm_static_skb->osl_pkt_sem, 1);
}
#endif /* BCMSDIO */
#if defined(BCMPCIE) && defined(DHD_USE_STATIC_FLOWRING)
if (!bcm_static_flowring && adapter) {
int i;
void *flowring_ptr = 0;
bcm_static_flowring =
(bcm_static_flowring_buf_t *)((char *)bcm_static_buf + 4096);
flowring_ptr = wifi_platform_prealloc(adapter, 10, 0);
if (!flowring_ptr) {
printk("%s: flowring_ptr is NULL\n", __FUNCTION__);
bcm_static_buf = NULL;
bcm_static_skb = NULL;
bcm_static_flowring = NULL;
ASSERT(osh->magic == OS_HANDLE_MAGIC);
return -ENOMEM;
}
bcopy(flowring_ptr, bcm_static_flowring->buf_ptr,
sizeof(void *) * STATIC_BUF_FLOWRING_NUM);
for (i = 0; i < STATIC_BUF_FLOWRING_NUM; i++) {
bcm_static_flowring->buf_use[i] = 0;
}
spin_lock_init(&bcm_static_flowring->flowring_lock);
}
#endif /* BCMPCIE && DHD_USE_STATIC_FLOWRING */
#endif /* CONFIG_DHD_USE_STATIC_BUF */
return 0;
}
void osl_set_bus_handle(osl_t *osh, void *bus_handle)
{
osh->bus_handle = bus_handle;
}
void* osl_get_bus_handle(osl_t *osh)
{
return osh->bus_handle;
}
void
osl_detach(osl_t *osh)
{
if (osh == NULL)
return;
#ifdef BCM_SECURE_DMA
osl_sec_dma_free_contig_mem(osh, CMA_MEMBLOCK, CONT_ARMREGION);
osl_sec_dma_deinit_elem_mem_block(osh, CMA_BUFSIZE_512, CMA_BUFNUM, osh->sec_list_base_512);
osl_sec_dma_deinit_elem_mem_block(osh, CMA_BUFSIZE_2K, CMA_BUFNUM, osh->sec_list_base_2048);
osl_sec_dma_deinit_elem_mem_block(osh, CMA_BUFSIZE_4K, CMA_BUFNUM, osh->sec_list_base_4096);
osl_sec_dma_iounmap(osh, osh->contig_base_va, CMA_MEMBLOCK);
#endif /* BCM_SECURE_DMA */
ASSERT(osh->magic == OS_HANDLE_MAGIC);
atomic_sub(1, &osh->cmn->refcount);
if (atomic_read(&osh->cmn->refcount) == 0) {
kfree(osh->cmn);
}
kfree(osh);
}
int osl_static_mem_deinit(osl_t *osh, void *adapter)
{
#ifdef CONFIG_DHD_USE_STATIC_BUF
if (bcm_static_buf) {
bcm_static_buf = 0;
}
#ifdef BCMSDIO
if (bcm_static_skb) {
bcm_static_skb = 0;
}
#endif /* BCMSDIO */
#if defined(BCMPCIE) && defined(DHD_USE_STATIC_FLOWRING)
if (bcm_static_flowring) {
bcm_static_flowring = 0;
}
#endif /* BCMPCIE && DHD_USE_STATIC_FLOWRING */
#endif /* CONFIG_DHD_USE_STATIC_BUF */
return 0;
}
static struct sk_buff *osl_alloc_skb(osl_t *osh, unsigned int len)
{
struct sk_buff *skb;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)
gfp_t flags = (in_atomic() || irqs_disabled()) ? GFP_ATOMIC : GFP_KERNEL;
#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_ZONE_DMA)
flags |= GFP_DMA;
#endif
skb = __dev_alloc_skb(len, flags);
#else
skb = dev_alloc_skb(len);
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25) */
return skb;
}
#ifdef CTFPOOL
#ifdef CTFPOOL_SPINLOCK
#define CTFPOOL_LOCK(ctfpool, flags) spin_lock_irqsave(&(ctfpool)->lock, flags)
#define CTFPOOL_UNLOCK(ctfpool, flags) spin_unlock_irqrestore(&(ctfpool)->lock, flags)
#else
#define CTFPOOL_LOCK(ctfpool, flags) spin_lock_bh(&(ctfpool)->lock)
#define CTFPOOL_UNLOCK(ctfpool, flags) spin_unlock_bh(&(ctfpool)->lock)
#endif /* CTFPOOL_SPINLOCK */
/*
* Allocate and add an object to packet pool.
*/
void *
osl_ctfpool_add(osl_t *osh)
{
struct sk_buff *skb;
#ifdef CTFPOOL_SPINLOCK
unsigned long flags;
#endif /* CTFPOOL_SPINLOCK */
if ((osh == NULL) || (osh->ctfpool == NULL))
return NULL;
CTFPOOL_LOCK(osh->ctfpool, flags);
ASSERT(osh->ctfpool->curr_obj <= osh->ctfpool->max_obj);
/* No need to allocate more objects */
if (osh->ctfpool->curr_obj == osh->ctfpool->max_obj) {
CTFPOOL_UNLOCK(osh->ctfpool, flags);
return NULL;
}
/* Allocate a new skb and add it to the ctfpool */
skb = osl_alloc_skb(osh, osh->ctfpool->obj_size);
if (skb == NULL) {
printf("%s: skb alloc of len %d failed\n", __FUNCTION__,
osh->ctfpool->obj_size);
CTFPOOL_UNLOCK(osh->ctfpool, flags);
return NULL;
}
/* Add to ctfpool */
skb->next = (struct sk_buff *)osh->ctfpool->head;
osh->ctfpool->head = skb;
osh->ctfpool->fast_frees++;
osh->ctfpool->curr_obj++;
/* Hijack a skb member to store ptr to ctfpool */
CTFPOOLPTR(osh, skb) = (void *)osh->ctfpool;
/* Use bit flag to indicate skb from fast ctfpool */
PKTFAST(osh, skb) = FASTBUF;
CTFPOOL_UNLOCK(osh->ctfpool, flags);
return skb;
}
/*
* Add new objects to the pool.
*/
void
osl_ctfpool_replenish(osl_t *osh, uint thresh)
{
if ((osh == NULL) || (osh->ctfpool == NULL))
return;
/* Do nothing if no refills are required */
while ((osh->ctfpool->refills > 0) && (thresh--)) {
osl_ctfpool_add(osh);
osh->ctfpool->refills--;
}
}
/*
* Initialize the packet pool with specified number of objects.
*/
int32
osl_ctfpool_init(osl_t *osh, uint numobj, uint size)
{
gfp_t flags;
flags = CAN_SLEEP() ? GFP_KERNEL: GFP_ATOMIC;
osh->ctfpool = kzalloc(sizeof(ctfpool_t), flags);
ASSERT(osh->ctfpool);
osh->ctfpool->max_obj = numobj;
osh->ctfpool->obj_size = size;
spin_lock_init(&osh->ctfpool->lock);
while (numobj--) {
if (!osl_ctfpool_add(osh))
return -1;
osh->ctfpool->fast_frees--;
}
return 0;
}
/*
* Cleanup the packet pool objects.
*/
void
osl_ctfpool_cleanup(osl_t *osh)
{
struct sk_buff *skb, *nskb;
#ifdef CTFPOOL_SPINLOCK
unsigned long flags;
#endif /* CTFPOOL_SPINLOCK */
if ((osh == NULL) || (osh->ctfpool == NULL))
return;
CTFPOOL_LOCK(osh->ctfpool, flags);
skb = osh->ctfpool->head;
while (skb != NULL) {
nskb = skb->next;
dev_kfree_skb(skb);
skb = nskb;
osh->ctfpool->curr_obj--;
}
ASSERT(osh->ctfpool->curr_obj == 0);
osh->ctfpool->head = NULL;
CTFPOOL_UNLOCK(osh->ctfpool, flags);
kfree(osh->ctfpool);
osh->ctfpool = NULL;
}
void
osl_ctfpool_stats(osl_t *osh, void *b)
{
struct bcmstrbuf *bb;
if ((osh == NULL) || (osh->ctfpool == NULL))
return;
#ifdef CONFIG_DHD_USE_STATIC_BUF
if (bcm_static_buf) {
bcm_static_buf = 0;
}
#ifdef BCMSDIO
if (bcm_static_skb) {
bcm_static_skb = 0;
}
#endif /* BCMSDIO */
#if defined(BCMPCIE) && defined(DHD_USE_STATIC_FLOWRING)
if (bcm_static_flowring) {
bcm_static_flowring = 0;
}
#endif /* BCMPCIE && DHD_USE_STATIC_FLOWRING */
#endif /* CONFIG_DHD_USE_STATIC_BUF */
bb = b;
ASSERT((osh != NULL) && (bb != NULL));
bcm_bprintf(bb, "max_obj %d obj_size %d curr_obj %d refills %d\n",
osh->ctfpool->max_obj, osh->ctfpool->obj_size,
osh->ctfpool->curr_obj, osh->ctfpool->refills);
bcm_bprintf(bb, "fast_allocs %d fast_frees %d slow_allocs %d\n",
osh->ctfpool->fast_allocs, osh->ctfpool->fast_frees,
osh->ctfpool->slow_allocs);
}
static inline struct sk_buff *
osl_pktfastget(osl_t *osh, uint len)
{
struct sk_buff *skb;
#ifdef CTFPOOL_SPINLOCK
unsigned long flags;
#endif /* CTFPOOL_SPINLOCK */
/* Try to do fast allocate. Return null if ctfpool is not in use
* or if there are no items in the ctfpool.
*/
if (osh->ctfpool == NULL)
return NULL;
CTFPOOL_LOCK(osh->ctfpool, flags);
if (osh->ctfpool->head == NULL) {
ASSERT(osh->ctfpool->curr_obj == 0);
osh->ctfpool->slow_allocs++;
CTFPOOL_UNLOCK(osh->ctfpool, flags);
return NULL;
}
if (len > osh->ctfpool->obj_size) {
CTFPOOL_UNLOCK(osh->ctfpool, flags);
return NULL;
}
ASSERT(len <= osh->ctfpool->obj_size);
/* Get an object from ctfpool */
skb = (struct sk_buff *)osh->ctfpool->head;
osh->ctfpool->head = (void *)skb->next;
osh->ctfpool->fast_allocs++;
osh->ctfpool->curr_obj--;
ASSERT(CTFPOOLHEAD(osh, skb) == (struct sock *)osh->ctfpool->head);
CTFPOOL_UNLOCK(osh->ctfpool, flags);
/* Init skb struct */
skb->next = skb->prev = NULL;
#if defined(__ARM_ARCH_7A__)
skb->data = skb->head + NET_SKB_PAD;
skb->tail = skb->head + NET_SKB_PAD;
#else
skb->data = skb->head + 16;
skb->tail = skb->head + 16;
#endif /* __ARM_ARCH_7A__ */
skb->len = 0;
skb->cloned = 0;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 14)
skb->list = NULL;
#endif
atomic_set(&skb->users, 1);
PKTSETCLINK(skb, NULL);
PKTCCLRATTR(skb);
PKTFAST(osh, skb) &= ~(CTFBUF | SKIPCT | CHAINED);
return skb;
}
#endif /* CTFPOOL */
#if defined(BCM_GMAC3)
/* Account for a packet delivered to downstream forwarder.
* Decrement a GMAC forwarder interface's pktalloced count.
*/
void BCMFASTPATH
osl_pkt_tofwder(osl_t *osh, void *skbs, int skb_cnt)
{
atomic_sub(skb_cnt, &osh->cmn->pktalloced);
}
/* Account for a downstream forwarder delivered packet to a WL/DHD driver.
* Increment a GMAC forwarder interface's pktalloced count.
*/
#ifdef BCMDBG_CTRACE
void BCMFASTPATH
osl_pkt_frmfwder(osl_t *osh, void *skbs, int skb_cnt, int line, char *file)
#else
void BCMFASTPATH
osl_pkt_frmfwder(osl_t *osh, void *skbs, int skb_cnt)
#endif /* BCMDBG_CTRACE */
{
#if defined(BCMDBG_CTRACE)
int i;
struct sk_buff *skb;
#endif
#if defined(BCMDBG_CTRACE)
if (skb_cnt > 1) {
struct sk_buff **skb_array = (struct sk_buff **)skbs;
for (i = 0; i < skb_cnt; i++) {
skb = skb_array[i];
#if defined(BCMDBG_CTRACE)
ASSERT(!PKTISCHAINED(skb));
ADD_CTRACE(osh, skb, file, line);
#endif /* BCMDBG_CTRACE */
}
} else {
skb = (struct sk_buff *)skbs;
#if defined(BCMDBG_CTRACE)
ASSERT(!PKTISCHAINED(skb));
ADD_CTRACE(osh, skb, file, line);
#endif /* BCMDBG_CTRACE */
}
#endif
atomic_add(skb_cnt, &osh->cmn->pktalloced);
}
#endif /* BCM_GMAC3 */
/* Convert a driver packet to native(OS) packet
* In the process, packettag is zeroed out before sending up
* IP code depends on skb->cb to be setup correctly with various options
* In our case, that means it should be 0
*/
struct sk_buff * BCMFASTPATH
osl_pkt_tonative(osl_t *osh, void *pkt)
{
struct sk_buff *nskb;
#ifdef BCMDBG_CTRACE
struct sk_buff *nskb1, *nskb2;
#endif
if (osh->pub.pkttag)
OSL_PKTTAG_CLEAR(pkt);
/* Decrement the packet counter */
for (nskb = (struct sk_buff *)pkt; nskb; nskb = nskb->next) {
atomic_sub(PKTISCHAINED(nskb) ? PKTCCNT(nskb) : 1, &osh->cmn->pktalloced);
#ifdef BCMDBG_CTRACE
for (nskb1 = nskb; nskb1 != NULL; nskb1 = nskb2) {
if (PKTISCHAINED(nskb1)) {
nskb2 = PKTCLINK(nskb1);
}
else
nskb2 = NULL;
DEL_CTRACE(osh, nskb1);
}
#endif /* BCMDBG_CTRACE */
}
return (struct sk_buff *)pkt;
}
/* Convert a native(OS) packet to driver packet.
* In the process, native packet is destroyed, there is no copying
* Also, a packettag is zeroed out
*/
#ifdef BCMDBG_CTRACE
void * BCMFASTPATH
osl_pkt_frmnative(osl_t *osh, void *pkt, int line, char *file)
#else
void * BCMFASTPATH
osl_pkt_frmnative(osl_t *osh, void *pkt)
#endif /* BCMDBG_CTRACE */
{
struct sk_buff *nskb;
#ifdef BCMDBG_CTRACE
struct sk_buff *nskb1, *nskb2;
#endif
if (osh->pub.pkttag)
OSL_PKTTAG_CLEAR(pkt);
/* Increment the packet counter */
for (nskb = (struct sk_buff *)pkt; nskb; nskb = nskb->next) {
atomic_add(PKTISCHAINED(nskb) ? PKTCCNT(nskb) : 1, &osh->cmn->pktalloced);
#ifdef BCMDBG_CTRACE
for (nskb1 = nskb; nskb1 != NULL; nskb1 = nskb2) {
if (PKTISCHAINED(nskb1)) {
nskb2 = PKTCLINK(nskb1);
}
else
nskb2 = NULL;
ADD_CTRACE(osh, nskb1, file, line);
}
#endif /* BCMDBG_CTRACE */
}
return (void *)pkt;
}
/* Return a new packet. zero out pkttag */
#ifdef BCMDBG_CTRACE
void * BCMFASTPATH
osl_pktget(osl_t *osh, uint len, int line, char *file)
#else
void * BCMFASTPATH
osl_pktget(osl_t *osh, uint len)
#endif /* BCMDBG_CTRACE */
{
struct sk_buff *skb;
uchar num = 0;
if (lmtest != FALSE) {
get_random_bytes(&num, sizeof(uchar));
if ((num + 1) <= (256 * lmtest / 100))
return NULL;
}
#ifdef CTFPOOL
/* Allocate from local pool */
skb = osl_pktfastget(osh, len);
if ((skb != NULL) || ((skb = osl_alloc_skb(osh, len)) != NULL)) {
#else /* CTFPOOL */
if ((skb = osl_alloc_skb(osh, len))) {
#endif /* CTFPOOL */
skb->tail += len;
skb->len += len;
skb->priority = 0;
#ifdef BCMDBG_CTRACE
ADD_CTRACE(osh, skb, file, line);
#endif
atomic_inc(&osh->cmn->pktalloced);
}
return ((void*) skb);
}
#ifdef CTFPOOL
static inline void
osl_pktfastfree(osl_t *osh, struct sk_buff *skb)
{
ctfpool_t *ctfpool;
#ifdef CTFPOOL_SPINLOCK
unsigned long flags;
#endif /* CTFPOOL_SPINLOCK */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 14)
skb->tstamp.tv.sec = 0;
#else
skb->stamp.tv_sec = 0;
#endif
/* We only need to init the fields that we change */
skb->dev = NULL;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 36)
skb->dst = NULL;
#endif
OSL_PKTTAG_CLEAR(skb);
skb->ip_summed = 0;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)
skb_orphan(skb);
#else
skb->destructor = NULL;
#endif
ctfpool = (ctfpool_t *)CTFPOOLPTR(osh, skb);
ASSERT(ctfpool != NULL);
/* Add object to the ctfpool */
CTFPOOL_LOCK(ctfpool, flags);
skb->next = (struct sk_buff *)ctfpool->head;
ctfpool->head = (void *)skb;
ctfpool->fast_frees++;
ctfpool->curr_obj++;
ASSERT(ctfpool->curr_obj <= ctfpool->max_obj);
CTFPOOL_UNLOCK(ctfpool, flags);
}
#endif /* CTFPOOL */
/* Free the driver packet. Free the tag if present */
void BCMFASTPATH
osl_pktfree(osl_t *osh, void *p, bool send)
{
struct sk_buff *skb, *nskb;
if (osh == NULL)
return;
skb = (struct sk_buff*) p;
if (send && osh->pub.tx_fn)
osh->pub.tx_fn(osh->pub.tx_ctx, p, 0);
PKTDBG_TRACE(osh, (void *) skb, PKTLIST_PKTFREE);
/* perversion: we use skb->next to chain multi-skb packets */
while (skb) {
nskb = skb->next;
skb->next = NULL;
#ifdef BCMDBG_CTRACE
DEL_CTRACE(osh, skb);
#endif
#ifdef CTFPOOL
if (PKTISFAST(osh, skb)) {
if (atomic_read(&skb->users) == 1)
smp_rmb();
else if (!atomic_dec_and_test(&skb->users))
goto next_skb;
osl_pktfastfree(osh, skb);
} else
#endif
{
dev_kfree_skb_any(skb);
}
#ifdef CTFPOOL
next_skb:
#endif
atomic_dec(&osh->cmn->pktalloced);
skb = nskb;
}
}
#ifdef CONFIG_DHD_USE_STATIC_BUF
void*
osl_pktget_static(osl_t *osh, uint len)
{
int i = 0;
struct sk_buff *skb;
if (!bcm_static_skb)
return osl_pktget(osh, len);
if (len > DHD_SKB_MAX_BUFSIZE) {
printk("%s: attempt to allocate huge packet (0x%x)\n", __FUNCTION__, len);
return osl_pktget(osh, len);
}
down(&bcm_static_skb->osl_pkt_sem);
if (len <= DHD_SKB_1PAGE_BUFSIZE) {
for (i = 0; i < STATIC_PKT_MAX_NUM; i++) {
if (bcm_static_skb->pkt_use[i] == 0)
break;
}
if (i != STATIC_PKT_MAX_NUM) {
bcm_static_skb->pkt_use[i] = 1;
skb = bcm_static_skb->skb_4k[i];
#ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_set_tail_pointer(skb, len);
#else
skb->tail = skb->data + len;
#endif /* NET_SKBUFF_DATA_USES_OFFSET */
skb->len = len;
up(&bcm_static_skb->osl_pkt_sem);
return skb;
}
}
if (len <= DHD_SKB_2PAGE_BUFSIZE) {
for (i = 0; i < STATIC_PKT_MAX_NUM; i++) {
if (bcm_static_skb->pkt_use[i + STATIC_PKT_MAX_NUM]
== 0)
break;
}
if (i != STATIC_PKT_MAX_NUM) {
bcm_static_skb->pkt_use[i + STATIC_PKT_MAX_NUM] = 1;
skb = bcm_static_skb->skb_8k[i];
#ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_set_tail_pointer(skb, len);
#else
skb->tail = skb->data + len;
#endif /* NET_SKBUFF_DATA_USES_OFFSET */
skb->len = len;
up(&bcm_static_skb->osl_pkt_sem);
return skb;
}
}
#if defined(ENHANCED_STATIC_BUF)
if (bcm_static_skb->pkt_use[STATIC_PKT_MAX_NUM * 2] == 0) {
bcm_static_skb->pkt_use[STATIC_PKT_MAX_NUM * 2] = 1;
skb = bcm_static_skb->skb_16k;
#ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_set_tail_pointer(skb, len);
#else
skb->tail = skb->data + len;
#endif /* NET_SKBUFF_DATA_USES_OFFSET */
skb->len = len;
up(&bcm_static_skb->osl_pkt_sem);
return skb;
}
#endif /* ENHANCED_STATIC_BUF */
up(&bcm_static_skb->osl_pkt_sem);
printk("%s: all static pkt in use!\n", __FUNCTION__);
return osl_pktget(osh, len);
}
void
osl_pktfree_static(osl_t *osh, void *p, bool send)
{
int i;
if (!bcm_static_skb) {
osl_pktfree(osh, p, send);
return;
}
down(&bcm_static_skb->osl_pkt_sem);
for (i = 0; i < STATIC_PKT_MAX_NUM; i++) {
if (p == bcm_static_skb->skb_4k[i]) {
bcm_static_skb->pkt_use[i] = 0;
up(&bcm_static_skb->osl_pkt_sem);
return;
}
}
for (i = 0; i < STATIC_PKT_MAX_NUM; i++) {
if (p == bcm_static_skb->skb_8k[i]) {
bcm_static_skb->pkt_use[i + STATIC_PKT_MAX_NUM] = 0;
up(&bcm_static_skb->osl_pkt_sem);
return;
}
}
#ifdef ENHANCED_STATIC_BUF
if (p == bcm_static_skb->skb_16k) {
bcm_static_skb->pkt_use[STATIC_PKT_MAX_NUM * 2] = 0;
up(&bcm_static_skb->osl_pkt_sem);
return;
}
#endif
up(&bcm_static_skb->osl_pkt_sem);
osl_pktfree(osh, p, send);
}
#if defined(BCMPCIE) && defined(DHD_USE_STATIC_FLOWRING)
void*
osl_dma_alloc_consistent_static(osl_t *osh, uint size, uint16 align_bits,
uint *alloced, dmaaddr_t *pap, uint16 idx)
{
void *va = NULL;
uint16 align = (1 << align_bits);
uint16 flow_id = RINGID_TO_FLOWID(idx);
unsigned long flags;
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
if (!ISALIGNED(DMA_CONSISTENT_ALIGN, align))
size += align;
if ((flow_id < 0) || (flow_id >= STATIC_BUF_FLOWRING_NUM)) {
printk("%s: flow_id %d is wrong\n", __FUNCTION__, flow_id);
return osl_dma_alloc_consistent(osh, size, align_bits,
alloced, pap);
}
if (!bcm_static_flowring) {
printk("%s: bcm_static_flowring is not initialized\n",
__FUNCTION__);
return osl_dma_alloc_consistent(osh, size, align_bits,
alloced, pap);
}
if (size > STATIC_BUF_FLOWRING_SIZE) {
printk("%s: attempt to allocate huge packet, size=%d\n",
__FUNCTION__, size);
return osl_dma_alloc_consistent(osh, size, align_bits,
alloced, pap);
}
*alloced = size;
spin_lock_irqsave(&bcm_static_flowring->flowring_lock, flags);
if (bcm_static_flowring->buf_use[flow_id]) {
printk("%s: flowring %d is already alloced\n",
__FUNCTION__, flow_id);
spin_unlock_irqrestore(&bcm_static_flowring->flowring_lock, flags);
return NULL;
}
va = bcm_static_flowring->buf_ptr[flow_id];
if (va) {
*pap = (ulong)__virt_to_phys((ulong)va);
bcm_static_flowring->buf_use[flow_id] = 1;
}
spin_unlock_irqrestore(&bcm_static_flowring->flowring_lock, flags);
return va;
}
void
osl_dma_free_consistent_static(osl_t *osh, void *va, uint size,
dmaaddr_t pa, uint16 idx)
{
uint16 flow_id = RINGID_TO_FLOWID(idx);
unsigned long flags;
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
if ((flow_id < 0) || (flow_id >= STATIC_BUF_FLOWRING_NUM)) {
printk("%s: flow_id %d is wrong\n", __FUNCTION__, flow_id);
return osl_dma_free_consistent(osh, va, size, pa);
}
if (!bcm_static_flowring) {
printk("%s: bcm_static_flowring is not initialized\n",
__FUNCTION__);
return osl_dma_free_consistent(osh, va, size, pa);
}
spin_lock_irqsave(&bcm_static_flowring->flowring_lock, flags);
if (bcm_static_flowring->buf_use[flow_id]) {
bcm_static_flowring->buf_use[flow_id] = 0;
} else {
printk("%s: flowring %d is already freed\n",
__FUNCTION__, flow_id);
}
spin_unlock_irqrestore(&bcm_static_flowring->flowring_lock, flags);
}
#endif /* BCMPCIE && DHD_USE_STATIC_FLOWRING */
#endif /* CONFIG_DHD_USE_STATIC_BUF */
uint32
osl_pci_read_config(osl_t *osh, uint offset, uint size)
{
uint val = 0;
uint retry = PCI_CFG_RETRY;
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
/* only 4byte access supported */
ASSERT(size == 4);
do {
pci_read_config_dword(osh->pdev, offset, &val);
if (val != 0xffffffff)
break;
} while (retry--);
return (val);
}
void
osl_pci_write_config(osl_t *osh, uint offset, uint size, uint val)
{
uint retry = PCI_CFG_RETRY;
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
/* only 4byte access supported */
ASSERT(size == 4);
do {
pci_write_config_dword(osh->pdev, offset, val);
if (offset != PCI_BAR0_WIN)
break;
if (osl_pci_read_config(osh, offset, size) == val)
break;
} while (retry--);
}
/* return bus # for the pci device pointed by osh->pdev */
uint
osl_pci_bus(osl_t *osh)
{
ASSERT(osh && (osh->magic == OS_HANDLE_MAGIC) && osh->pdev);
#if defined(__ARM_ARCH_7A__) && LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 35)
return pci_domain_nr(((struct pci_dev *)osh->pdev)->bus);
#else
return ((struct pci_dev *)osh->pdev)->bus->number;
#endif
}
/* return slot # for the pci device pointed by osh->pdev */
uint
osl_pci_slot(osl_t *osh)
{
ASSERT(osh && (osh->magic == OS_HANDLE_MAGIC) && osh->pdev);
#if defined(__ARM_ARCH_7A__) && LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 35)
return PCI_SLOT(((struct pci_dev *)osh->pdev)->devfn) + 1;
#else
return PCI_SLOT(((struct pci_dev *)osh->pdev)->devfn);
#endif
}
/* return domain # for the pci device pointed by osh->pdev */
uint
osl_pcie_domain(osl_t *osh)
{
ASSERT(osh && (osh->magic == OS_HANDLE_MAGIC) && osh->pdev);
return pci_domain_nr(((struct pci_dev *)osh->pdev)->bus);
}
/* return bus # for the pci device pointed by osh->pdev */
uint
osl_pcie_bus(osl_t *osh)
{
ASSERT(osh && (osh->magic == OS_HANDLE_MAGIC) && osh->pdev);
return ((struct pci_dev *)osh->pdev)->bus->number;
}
/* return the pci device pointed by osh->pdev */
struct pci_dev *
osl_pci_device(osl_t *osh)
{
ASSERT(osh && (osh->magic == OS_HANDLE_MAGIC) && osh->pdev);
return osh->pdev;
}
static void
osl_pcmcia_attr(osl_t *osh, uint offset, char *buf, int size, bool write)
{
}
void
osl_pcmcia_read_attr(osl_t *osh, uint offset, void *buf, int size)
{
osl_pcmcia_attr(osh, offset, (char *) buf, size, FALSE);
}
void
osl_pcmcia_write_attr(osl_t *osh, uint offset, void *buf, int size)
{
osl_pcmcia_attr(osh, offset, (char *) buf, size, TRUE);
}
void *
osl_malloc(osl_t *osh, uint size)
{
void *addr;
gfp_t flags;
/* only ASSERT if osh is defined */
if (osh)
ASSERT(osh->magic == OS_HANDLE_MAGIC);
#ifdef CONFIG_DHD_USE_STATIC_BUF
if (bcm_static_buf)
{
int i = 0;
if ((size >= PAGE_SIZE)&&(size <= STATIC_BUF_SIZE))
{
down(&bcm_static_buf->static_sem);
for (i = 0; i < STATIC_BUF_MAX_NUM; i++)
{
if (bcm_static_buf->buf_use[i] == 0)
break;
}
if (i == STATIC_BUF_MAX_NUM)
{
up(&bcm_static_buf->static_sem);
printk("all static buff in use!\n");
goto original;
}
bcm_static_buf->buf_use[i] = 1;
up(&bcm_static_buf->static_sem);
bzero(bcm_static_buf->buf_ptr+STATIC_BUF_SIZE*i, size);
if (osh)
atomic_add(size, &osh->cmn->malloced);
return ((void *)(bcm_static_buf->buf_ptr+STATIC_BUF_SIZE*i));
}
}
original:
#endif /* CONFIG_DHD_USE_STATIC_BUF */
flags = CAN_SLEEP() ? GFP_KERNEL: GFP_ATOMIC;
if ((addr = kmalloc(size, flags)) == NULL) {
if (osh)
osh->failed++;
return (NULL);
}
if (osh && osh->cmn)
atomic_add(size, &osh->cmn->malloced);
return (addr);
}
void *
osl_mallocz(osl_t *osh, uint size)
{
void *ptr;
ptr = osl_malloc(osh, size);
if (ptr != NULL) {
bzero(ptr, size);
}
return ptr;
}
void
osl_mfree(osl_t *osh, void *addr, uint size)
{
#ifdef CONFIG_DHD_USE_STATIC_BUF
if (bcm_static_buf)
{
if ((addr > (void *)bcm_static_buf) && ((unsigned char *)addr
<= ((unsigned char *)bcm_static_buf + STATIC_BUF_TOTAL_LEN)))
{
int buf_idx = 0;
buf_idx = ((unsigned char *)addr - bcm_static_buf->buf_ptr)/STATIC_BUF_SIZE;
down(&bcm_static_buf->static_sem);
bcm_static_buf->buf_use[buf_idx] = 0;
up(&bcm_static_buf->static_sem);
if (osh && osh->cmn) {
ASSERT(osh->magic == OS_HANDLE_MAGIC);
atomic_sub(size, &osh->cmn->malloced);
}
return;
}
}
#endif /* CONFIG_DHD_USE_STATIC_BUF */
if (osh && osh->cmn) {
ASSERT(osh->magic == OS_HANDLE_MAGIC);
ASSERT(size <= osl_malloced(osh));
atomic_sub(size, &osh->cmn->malloced);
}
kfree(addr);
}
uint
osl_check_memleak(osl_t *osh)
{
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
if (atomic_read(&osh->cmn->refcount) == 1)
return (atomic_read(&osh->cmn->malloced));
else
return 0;
}
uint
osl_malloced(osl_t *osh)
{
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
return (atomic_read(&osh->cmn->malloced));
}
uint
osl_malloc_failed(osl_t *osh)
{
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
return (osh->failed);
}
uint
osl_dma_consistent_align(void)
{
return (PAGE_SIZE);
}
void*
osl_dma_alloc_consistent(osl_t *osh, uint size, uint16 align_bits, uint *alloced, dmaaddr_t *pap)
{
void *va;
uint16 align = (1 << align_bits);
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
if (!ISALIGNED(DMA_CONSISTENT_ALIGN, align))
size += align;
*alloced = size;
#ifndef BCM_SECURE_DMA
{
dma_addr_t pap_lin;
struct pci_dev *hwdev = osh->pdev;
#ifdef PCIE_TX_DEFERRAL
va = dma_alloc_coherent(&hwdev->dev, size, &pap_lin, GFP_KERNEL);
#else
va = dma_alloc_coherent(&hwdev->dev, size, &pap_lin, GFP_ATOMIC);
#endif
#ifdef BCMDMA64OSL
PHYSADDRPTRLOSET(pap, (uint32)(pap_lin));
PHYSADDRPTRHISET(pap, (uint32)(pap_lin >> 32));
#else
*pap = (dmaaddr_t)pap_lin;
#endif
}
#else
va = osl_sec_dma_alloc_consistent(osh, size, align_bits, pap);
#endif /* BCM_SECURE_DMA */
return va;
}
void
osl_dma_free_consistent(osl_t *osh, void *va, uint size, dmaaddr_t pa)
{
#ifndef BCM_SECURE_DMA
#ifdef BCMDMA64OSL
dma_addr_t physaddr = ((dma_addr_t)PHYSADDRHI(pa) << 32) |
((dma_addr_t)PHYSADDRLO(pa));
#endif /* BCMDMA64OSL */
struct pci_dev *hwdev = osh->pdev;
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
#ifdef BCMDMA64OSL
dma_free_coherent(&hwdev->dev, size, va, physaddr);
#else
dma_free_coherent(&hwdev->dev, size, va, (dma_addr_t)pa);
#endif /* BCMDMA64OSL */
#else
osl_sec_dma_free_consistent(osh, va, size, pa);
#endif /* BCM_SECURE_DMA */
}
dmaaddr_t BCMFASTPATH
osl_dma_map(osl_t *osh, void *va, uint size, int direction, void *p, hnddma_seg_map_t *dmah)
{
int dir;
dma_addr_t physaddr;
#ifdef BCMDMA64OSL
dmaaddr_t dmaaddr;
#endif
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
dir = (direction == DMA_TX)? PCI_DMA_TODEVICE: PCI_DMA_FROMDEVICE;
#if defined(__ARM_ARCH_7A__) && defined(BCMDMASGLISTOSL)
if (dmah != NULL) {
int32 nsegs, i, totsegs = 0, totlen = 0;
struct scatterlist *sg, _sg[MAX_DMA_SEGS * 2];
struct sk_buff *skb;
for (skb = (struct sk_buff *)p; skb != NULL; skb = PKTNEXT(osh, skb)) {
sg = &_sg[totsegs];
if (skb_is_nonlinear(skb)) {
nsegs = skb_to_sgvec(skb, sg, 0, PKTLEN(osh, skb));
ASSERT((nsegs > 0) && (totsegs + nsegs <= MAX_DMA_SEGS));
pci_map_sg(osh->pdev, sg, nsegs, dir);
} else {
nsegs = 1;
ASSERT(totsegs + nsegs <= MAX_DMA_SEGS);
sg->page_link = 0;
sg_set_buf(sg, PKTDATA(osh, skb), PKTLEN(osh, skb));
pci_map_single(osh->pdev, PKTDATA(osh, skb), PKTLEN(osh, skb), dir);
}
totsegs += nsegs;
totlen += PKTLEN(osh, skb);
}
dmah->nsegs = totsegs;
dmah->origsize = totlen;
for (i = 0, sg = _sg; i < totsegs; i++, sg++) {
dmah->segs[i].addr = sg_phys(sg);
dmah->segs[i].length = sg->length;
}
return dmah->segs[0].addr;
}
#endif /* __ARM_ARCH_7A__ && BCMDMASGLISTOSL */
physaddr = pci_map_single(osh->pdev, va, size, dir);
#ifdef BCMDMA64OSL
PHYSADDRLOSET(dmaaddr, (uint32) physaddr);
PHYSADDRHISET(dmaaddr, (uint32) (physaddr >> 32));
return dmaaddr;
#else
return physaddr;
#endif
}
void BCMFASTPATH
osl_dma_unmap(osl_t *osh, dmaaddr_t physaddr, uint size, int direction)
{
int dir;
dma_addr_t pa;
#ifdef BCMDMA64OSL
pa = ((dma_addr_t) PHYSADDRHI(physaddr)) << 32 |
(dma_addr_t)PHYSADDRLO(physaddr);
#else
pa = (dma_addr_t) physaddr;
#endif /* BCMDMA64OSL */
ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
dir = (direction == DMA_TX)? PCI_DMA_TODEVICE: PCI_DMA_FROMDEVICE;
pci_unmap_single(osh->pdev, pa, size, dir);
}
#if defined(BCMASSERT_LOG)
void
osl_assert(const char *exp, const char *file, int line)
{
char tempbuf[256];
const char *basename;
basename = strrchr(file, '/');
/* skip the '/' */
if (basename)
basename++;
if (!basename)
basename = file;
#ifdef BCMASSERT_LOG
snprintf(tempbuf, 64, "\"%s\": file \"%s\", line %d\n",
exp, basename, line);
printk("%s", tempbuf);
#endif /* BCMASSERT_LOG */
}
#endif
void
osl_delay(uint usec)
{
uint d;
while (usec > 0) {
d = MIN(usec, 1000);
udelay(d);
usec -= d;
}
}
void
osl_sleep(uint ms)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)
if (ms < 20)
usleep_range(ms*1000, ms*1000 + 1000);
else
#endif
msleep(ms);
}
/* Clone a packet.
* The pkttag contents are NOT cloned.
*/
#ifdef BCMDBG_CTRACE
void *
osl_pktdup(osl_t *osh, void *skb, int line, char *file)
#else
void *
osl_pktdup(osl_t *osh, void *skb)
#endif /* BCMDBG_CTRACE */
{
void * p;
ASSERT(!PKTISCHAINED(skb));
/* clear the CTFBUF flag if set and map the rest of the buffer
* before cloning.
*/
PKTCTFMAP(osh, skb);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36)
if ((p = pskb_copy((struct sk_buff *)skb, GFP_ATOMIC)) == NULL)
#else
if ((p = skb_clone((struct sk_buff *)skb, GFP_ATOMIC)) == NULL)
#endif
return NULL;
#ifdef CTFPOOL
if (PKTISFAST(osh, skb)) {
ctfpool_t *ctfpool;
/* if the buffer allocated from ctfpool is cloned then
* we can't be sure when it will be freed. since there
* is a chance that we will be losing a buffer
* from our pool, we increment the refill count for the
* object to be alloced later.
*/
ctfpool = (ctfpool_t *)CTFPOOLPTR(osh, skb);
ASSERT(ctfpool != NULL);
PKTCLRFAST(osh, p);
PKTCLRFAST(osh, skb);
ctfpool->refills++;
}
#endif /* CTFPOOL */
/* Clear PKTC context */
PKTSETCLINK(p, NULL);
PKTCCLRFLAGS(p);
PKTCSETCNT(p, 1);
PKTCSETLEN(p, PKTLEN(osh, skb));
/* skb_clone copies skb->cb.. we don't want that */
if (osh->pub.pkttag)
OSL_PKTTAG_CLEAR(p);
/* Increment the packet counter */
atomic_inc(&osh->cmn->pktalloced);
#ifdef BCMDBG_CTRACE
ADD_CTRACE(osh, (struct sk_buff *)p, file, line);
#endif
return (p);
}
#ifdef BCMDBG_CTRACE
int osl_pkt_is_frmnative(osl_t *osh, struct sk_buff *pkt)
{
unsigned long flags;
struct sk_buff *skb;
int ck = FALSE;
spin_lock_irqsave(&osh->ctrace_lock, flags);
list_for_each_entry(skb, &osh->ctrace_list, ctrace_list) {
if (pkt == skb) {
ck = TRUE;
break;
}
}
spin_unlock_irqrestore(&osh->ctrace_lock, flags);
return ck;
}
void osl_ctrace_dump(osl_t *osh, struct bcmstrbuf *b)
{
unsigned long flags;
struct sk_buff *skb;
int idx = 0;
int i, j;
spin_lock_irqsave(&osh->ctrace_lock, flags);
if (b != NULL)
bcm_bprintf(b, " Total %d sbk not free\n", osh->ctrace_num);
else
printk(" Total %d sbk not free\n", osh->ctrace_num);
list_for_each_entry(skb, &osh->ctrace_list, ctrace_list) {
if (b != NULL)
bcm_bprintf(b, "[%d] skb %p:\n", ++idx, skb);
else
printk("[%d] skb %p:\n", ++idx, skb);
for (i = 0; i < skb->ctrace_count; i++) {
j = (skb->ctrace_start + i) % CTRACE_NUM;
if (b != NULL)
bcm_bprintf(b, " [%s(%d)]\n", skb->func[j], skb->line[j]);
else
printk(" [%s(%d)]\n", skb->func[j], skb->line[j]);
}
if (b != NULL)
bcm_bprintf(b, "\n");
else
printk("\n");
}
spin_unlock_irqrestore(&osh->ctrace_lock, flags);
return;
}
#endif /* BCMDBG_CTRACE */
/*
* OSLREGOPS specifies the use of osl_XXX routines to be used for register access
*/
/*
* BINOSL selects the slightly slower function-call-based binary compatible osl.
*/
uint
osl_pktalloced(osl_t *osh)
{
if (atomic_read(&osh->cmn->refcount) == 1)
return (atomic_read(&osh->cmn->pktalloced));
else
return 0;
}
uint32
osl_rand(void)
{
uint32 rand;
get_random_bytes(&rand, sizeof(rand));
return rand;
}
/* Linux Kernel: File Operations: start */
void *
osl_os_open_image(char *filename)
{
struct file *fp;
fp = filp_open(filename, O_RDONLY, 0);
/*
* 2.6.11 (FC4) supports filp_open() but later revs don't?
* Alternative:
* fp = open_namei(AT_FDCWD, filename, O_RD, 0);
* ???
*/
if (IS_ERR(fp))
fp = NULL;
return fp;
}
int
osl_os_get_image_block(char *buf, int len, void *image)
{
struct file *fp = (struct file *)image;
int rdlen;
if (!image)
return 0;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(4, 13, 0))
rdlen = kernel_read(fp, buf, len, &fp->f_pos);
#else
rdlen = kernel_read(fp, fp->f_pos, buf, len);
if (rdlen > 0)
fp->f_pos += rdlen;
#endif
return rdlen;
}
void
osl_os_close_image(void *image)
{
if (image)
filp_close((struct file *)image, NULL);
}
int
osl_os_image_size(void *image)
{
int len = 0, curroffset;
if (image) {
/* store the current offset */
curroffset = generic_file_llseek(image, 0, 1);
/* goto end of file to get length */
len = generic_file_llseek(image, 0, 2);
/* restore back the offset */
generic_file_llseek(image, curroffset, 0);
}
return len;
}
/* Linux Kernel: File Operations: end */
/* APIs to set/get specific quirks in OSL layer */
void
osl_flag_set(osl_t *osh, uint32 mask)
{
osh->flags |= mask;
}
bool
osl_is_flag_set(osl_t *osh, uint32 mask)
{
return (osh->flags & mask);
}
#ifdef BCM_SECURE_DMA
static void
osl_sec_dma_setup_contig_mem(osl_t *osh, unsigned long memsize, int regn)
{
int ret;
#if defined(__ARM_ARCH_7A__)
if (regn == CONT_ARMREGION) {
ret = osl_sec_dma_alloc_contig_mem(osh, memsize, regn);
if (ret != BCME_OK)
printk("linux_osl.c: CMA memory access failed\n");
}
#endif
/* implement the MIPS Here */
}
static int
osl_sec_dma_alloc_contig_mem(osl_t *osh, unsigned long memsize, int regn)
{
u64 addr;
printk("linux_osl.c: The value of cma mem block size = %ld\n", memsize);
osh->cma = cma_dev_get_cma_dev(regn);
printk("The value of cma = %p\n", osh->cma);
if (!osh->cma) {
printk("linux_osl.c:contig_region index is invalid\n");
return BCME_ERROR;
}
if (cma_dev_get_mem(osh->cma, &addr, (u32)memsize, SEC_DMA_ALIGN) < 0) {
printk("linux_osl.c: contiguous memory block allocation failure\n");
return BCME_ERROR;
}
osh->contig_base_alloc = (phys_addr_t)addr;
osh->contig_base = (phys_addr_t)osh->contig_base_alloc;
printk("contig base alloc=%lx \n", (ulong)osh->contig_base_alloc);
return BCME_OK;
}
static void
osl_sec_dma_free_contig_mem(osl_t *osh, u32 memsize, int regn)
{
int ret;
ret = cma_dev_put_mem(osh->cma, (u64)osh->contig_base, memsize);
if (ret)
printf("%s contig base free failed\n", __FUNCTION__);
}
static void *
osl_sec_dma_ioremap(osl_t *osh, struct page *page, size_t size, bool iscache, bool isdecr)
{
struct page **map;
int order, i;
void *addr = NULL;
size = PAGE_ALIGN(size);
order = get_order(size);
map = kmalloc(sizeof(struct page *) << order, GFP_ATOMIC);
if (map == NULL)
return NULL;
for (i = 0; i < (size >> PAGE_SHIFT); i++)
map[i] = page + i;
if (iscache) {
addr = vmap(map, size >> PAGE_SHIFT, VM_MAP, __pgprot(PAGE_KERNEL));
if (isdecr) {
osh->contig_delta_va_pa = (phys_addr_t)(addr - page_to_phys(page));
g_contig_delta_va_pa = osh->contig_delta_va_pa;
}
}
else {
#if defined(__ARM_ARCH_7A__)
addr = vmap(map, size >> PAGE_SHIFT, VM_MAP,
pgprot_noncached(__pgprot(PAGE_KERNEL)));
#endif
if (isdecr) {
osh->contig_delta_va_pa = (phys_addr_t)(addr - page_to_phys(page));
g_contig_delta_va_pa = osh->contig_delta_va_pa;
}
}
kfree(map);
return (void *)addr;
}
static void
osl_sec_dma_iounmap(osl_t *osh, void *contig_base_va, size_t size)
{
vunmap(contig_base_va);
}
static void
osl_sec_dma_deinit_elem_mem_block(osl_t *osh, size_t mbsize, int max, void *sec_list_base)
{
if (sec_list_base)
kfree(sec_list_base);
}
static void
osl_sec_dma_init_elem_mem_block(osl_t *osh, size_t mbsize, int max, sec_mem_elem_t **list)
{
int i;
sec_mem_elem_t *sec_mem_elem;
if ((sec_mem_elem = kmalloc(sizeof(sec_mem_elem_t)*(max), GFP_ATOMIC)) != NULL) {
*list = sec_mem_elem;
bzero(sec_mem_elem, sizeof(sec_mem_elem_t)*(max));
for (i = 0; i < max-1; i++) {
sec_mem_elem->next = (sec_mem_elem + 1);
sec_mem_elem->size = mbsize;
sec_mem_elem->pa_cma = (u32)osh->contig_base_alloc;
sec_mem_elem->vac = osh->contig_base_alloc_va;
osh->contig_base_alloc += mbsize;
osh->contig_base_alloc_va += mbsize;
sec_mem_elem = sec_mem_elem + 1;
}
sec_mem_elem->next = NULL;
sec_mem_elem->size = mbsize;
sec_mem_elem->pa_cma = (u32)osh->contig_base_alloc;
sec_mem_elem->vac = osh->contig_base_alloc_va;
osh->contig_base_alloc += mbsize;
osh->contig_base_alloc_va += mbsize;
}
else
printf("%s sec mem elem kmalloc failed\n", __FUNCTION__);
}
static sec_mem_elem_t * BCMFASTPATH
osl_sec_dma_alloc_mem_elem(osl_t *osh, void *va, uint size, int direction,
struct sec_cma_info *ptr_cma_info, uint offset)
{
sec_mem_elem_t *sec_mem_elem = NULL;
if (size <= 512 && osh->sec_list_512) {
sec_mem_elem = osh->sec_list_512;
osh->sec_list_512 = sec_mem_elem->next;
}
else if (size <= 2048 && osh->sec_list_2048) {
sec_mem_elem = osh->sec_list_2048;
osh->sec_list_2048 = sec_mem_elem->next;
}
else if (osh->sec_list_4096) {
sec_mem_elem = osh->sec_list_4096;
osh->sec_list_4096 = sec_mem_elem->next;
} else {
printf("%s No matching Pool available size=%d \n", __FUNCTION__, size);
return NULL;
}
if (sec_mem_elem != NULL) {
sec_mem_elem->next = NULL;
if (ptr_cma_info->sec_alloc_list_tail) {
ptr_cma_info->sec_alloc_list_tail->next = sec_mem_elem;
}
ptr_cma_info->sec_alloc_list_tail = sec_mem_elem;
if (ptr_cma_info->sec_alloc_list == NULL)
ptr_cma_info->sec_alloc_list = sec_mem_elem;
}
return sec_mem_elem;
}
static void BCMFASTPATH
osl_sec_dma_free_mem_elem(osl_t *osh, sec_mem_elem_t *sec_mem_elem)
{
sec_mem_elem->dma_handle = 0x0;
sec_mem_elem->va = NULL;
if (sec_mem_elem->size == 512) {
sec_mem_elem->next = osh->sec_list_512;
osh->sec_list_512 = sec_mem_elem;
}
else if (sec_mem_elem->size == 2048) {
sec_mem_elem->next = osh->sec_list_2048;
osh->sec_list_2048 = sec_mem_elem;
}
else if (sec_mem_elem->size == 4096) {
sec_mem_elem->next = osh->sec_list_4096;
osh->sec_list_4096 = sec_mem_elem;
}
else
printf("%s free failed size=%d \n", __FUNCTION__, sec_mem_elem->size);
}
static sec_mem_elem_t * BCMFASTPATH
osl_sec_dma_find_rem_elem(osl_t *osh, struct sec_cma_info *ptr_cma_info, dma_addr_t dma_handle)
{
sec_mem_elem_t *sec_mem_elem = ptr_cma_info->sec_alloc_list;
sec_mem_elem_t *sec_prv_elem = ptr_cma_info->sec_alloc_list;
if (sec_mem_elem->dma_handle == dma_handle) {
ptr_cma_info->sec_alloc_list = sec_mem_elem->next;
if (sec_mem_elem == ptr_cma_info->sec_alloc_list_tail) {
ptr_cma_info->sec_alloc_list_tail = NULL;
ASSERT(ptr_cma_info->sec_alloc_list == NULL);
}
return sec_mem_elem;
}
while (sec_mem_elem != NULL) {
if (sec_mem_elem->dma_handle == dma_handle) {
sec_prv_elem->next = sec_mem_elem->next;
if (sec_mem_elem == ptr_cma_info->sec_alloc_list_tail)
ptr_cma_info->sec_alloc_list_tail = sec_prv_elem;
return sec_mem_elem;
}
sec_prv_elem = sec_mem_elem;
sec_mem_elem = sec_mem_elem->next;
}
return NULL;
}
static sec_mem_elem_t *
osl_sec_dma_rem_first_elem(osl_t *osh, struct sec_cma_info *ptr_cma_info)
{
sec_mem_elem_t *sec_mem_elem = ptr_cma_info->sec_alloc_list;
if (sec_mem_elem) {
ptr_cma_info->sec_alloc_list = sec_mem_elem->next;
if (ptr_cma_info->sec_alloc_list == NULL)
ptr_cma_info->sec_alloc_list_tail = NULL;
return sec_mem_elem;
} else
return NULL;
}
static void * BCMFASTPATH
osl_sec_dma_last_elem(osl_t *osh, struct sec_cma_info *ptr_cma_info)
{
return ptr_cma_info->sec_alloc_list_tail;
}
dma_addr_t BCMFASTPATH
osl_sec_dma_map_txmeta(osl_t *osh, void *va, uint size, int direction, void *p,
hnddma_seg_map_t *dmah, void *ptr_cma_info)
{
sec_mem_elem_t *sec_mem_elem;
struct page *pa_cma_page;
uint loffset;
void *vaorig = va + size;
dma_addr_t dma_handle = 0x0;
/* packet will be the one added with osl_sec_dma_map() just before this call */
sec_mem_elem = osl_sec_dma_last_elem(osh, ptr_cma_info);
if (sec_mem_elem && sec_mem_elem->va == vaorig) {
pa_cma_page = phys_to_page(sec_mem_elem->pa_cma);
loffset = sec_mem_elem->pa_cma -(sec_mem_elem->pa_cma & ~(PAGE_SIZE-1));
dma_handle = dma_map_page(osh->cma->dev, pa_cma_page, loffset, size,
(direction == DMA_TX ? DMA_TO_DEVICE:DMA_FROM_DEVICE));
} else {
printf("%s: error orig va not found va = 0x%p \n",
__FUNCTION__, vaorig);
}
return dma_handle;
}
dma_addr_t BCMFASTPATH
osl_sec_dma_map(osl_t *osh, void *va, uint size, int direction, void *p,
hnddma_seg_map_t *dmah, void *ptr_cma_info, uint offset)
{
sec_mem_elem_t *sec_mem_elem;
struct page *pa_cma_page;
void *pa_cma_kmap_va = NULL;
int *fragva;
uint buflen = 0;
struct sk_buff *skb;
dma_addr_t dma_handle = 0x0;
uint loffset;
int i = 0;
sec_mem_elem = osl_sec_dma_alloc_mem_elem(osh, va, size, direction, ptr_cma_info, offset);
if (sec_mem_elem == NULL) {
printk("linux_osl.c: osl_sec_dma_map - cma allocation failed\n");
return 0;
}
sec_mem_elem->va = va;
sec_mem_elem->direction = direction;
pa_cma_page = phys_to_page(sec_mem_elem->pa_cma);
loffset = sec_mem_elem->pa_cma -(sec_mem_elem->pa_cma & ~(PAGE_SIZE-1));
/* pa_cma_kmap_va = kmap_atomic(pa_cma_page);
* pa_cma_kmap_va += loffset;
*/
pa_cma_kmap_va = sec_mem_elem->vac;
if (direction == DMA_TX) {
if (p == NULL) {
memcpy(pa_cma_kmap_va+offset, va, size);
buflen = size;
}
else {
for (skb = (struct sk_buff *)p; skb != NULL; skb = PKTNEXT(osh, skb)) {
if (skb_is_nonlinear(skb)) {
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
fragva = kmap_atomic(skb_frag_page(f));
memcpy((pa_cma_kmap_va+offset+buflen),
(fragva + f->page_offset), skb_frag_size(f));
kunmap_atomic(fragva);
buflen += skb_frag_size(f);
}
}
else {
memcpy((pa_cma_kmap_va+offset+buflen), skb->data, skb->len);
buflen += skb->len;
}
}
}
if (dmah) {
dmah->nsegs = 1;
dmah->origsize = buflen;
}
}
else if (direction == DMA_RX)
{
buflen = size;
if ((p != NULL) && (dmah != NULL)) {
dmah->nsegs = 1;
dmah->origsize = buflen;
}
}
if (direction == DMA_RX || direction == DMA_TX) {
dma_handle = dma_map_page(osh->cma->dev, pa_cma_page, loffset+offset, buflen,
(direction == DMA_TX ? DMA_TO_DEVICE:DMA_FROM_DEVICE));
}
if (dmah) {
dmah->segs[0].addr = dma_handle;
dmah->segs[0].length = buflen;
}
sec_mem_elem->dma_handle = dma_handle;
/* kunmap_atomic(pa_cma_kmap_va-loffset); */
return dma_handle;
}
dma_addr_t BCMFASTPATH
osl_sec_dma_dd_map(osl_t *osh, void *va, uint size, int direction, void *p, hnddma_seg_map_t *map)
{
struct page *pa_cma_page;
phys_addr_t pa_cma;
dma_addr_t dma_handle = 0x0;
uint loffset;
pa_cma = (phys_addr_t)(va - osh->contig_delta_va_pa);
pa_cma_page = phys_to_page(pa_cma);
loffset = pa_cma -(pa_cma & ~(PAGE_SIZE-1));
dma_handle = dma_map_page(osh->cma->dev, pa_cma_page, loffset, size,
(direction == DMA_TX ? DMA_TO_DEVICE:DMA_FROM_DEVICE));
return dma_handle;
}
void BCMFASTPATH
osl_sec_dma_unmap(osl_t *osh, dma_addr_t dma_handle, uint size, int direction,
void *p, hnddma_seg_map_t *map, void *ptr_cma_info, uint offset)
{
sec_mem_elem_t *sec_mem_elem;
struct page *pa_cma_page;
void *pa_cma_kmap_va = NULL;
uint buflen = 0;
dma_addr_t pa_cma;
void *va;
uint loffset = 0;
int read_count = 0;
BCM_REFERENCE(buflen);
BCM_REFERENCE(read_count);
sec_mem_elem = osl_sec_dma_find_rem_elem(osh, ptr_cma_info, dma_handle);
if (sec_mem_elem == NULL) {
printf("%s sec_mem_elem is NULL and dma_handle =0x%lx and dir=%d\n",
__FUNCTION__, (ulong)dma_handle, direction);
return;
}
va = sec_mem_elem->va;
va -= offset;
pa_cma = sec_mem_elem->pa_cma;
pa_cma_page = phys_to_page(pa_cma);
loffset = sec_mem_elem->pa_cma -(sec_mem_elem->pa_cma & ~(PAGE_SIZE-1));
if (direction == DMA_RX) {
if (p == NULL) {
/* pa_cma_kmap_va = kmap_atomic(pa_cma_page);
* pa_cma_kmap_va += loffset;
*/
pa_cma_kmap_va = sec_mem_elem->vac;
dma_unmap_page(osh->cma->dev, pa_cma, size, DMA_FROM_DEVICE);
memcpy(va, pa_cma_kmap_va, size);
/* kunmap_atomic(pa_cma_kmap_va); */
}
} else {
dma_unmap_page(osh->cma->dev, pa_cma, size+offset, DMA_TO_DEVICE);
}
osl_sec_dma_free_mem_elem(osh, sec_mem_elem);
}
void
osl_sec_dma_unmap_all(osl_t *osh, void *ptr_cma_info)
{
sec_mem_elem_t *sec_mem_elem;
sec_mem_elem = osl_sec_dma_rem_first_elem(osh, ptr_cma_info);
while (sec_mem_elem != NULL) {
dma_unmap_page(osh->cma->dev, sec_mem_elem->pa_cma, sec_mem_elem->size,
sec_mem_elem->direction == DMA_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
osl_sec_dma_free_mem_elem(osh, sec_mem_elem);
sec_mem_elem = osl_sec_dma_rem_first_elem(osh, ptr_cma_info);
}
}
static void
osl_sec_dma_init_consistent(osl_t *osh)
{
int i;
void *temp_va = osh->contig_base_alloc_coherent_va;
phys_addr_t temp_pa = osh->contig_base_alloc_coherent;
for (i = 0; i < SEC_CMA_COHERENT_MAX; i++) {
osh->sec_cma_coherent[i].avail = TRUE;
osh->sec_cma_coherent[i].va = temp_va;
osh->sec_cma_coherent[i].pa = temp_pa;
temp_va += SEC_CMA_COHERENT_BLK;
temp_pa += SEC_CMA_COHERENT_BLK;
}
}
static void *
osl_sec_dma_alloc_consistent(osl_t *osh, uint size, uint16 align_bits, ulong *pap)
{
void *temp_va = NULL;
ulong temp_pa = 0;
int i;
if (size > SEC_CMA_COHERENT_BLK) {
printf("%s unsupported size\n", __FUNCTION__);
return NULL;
}
for (i = 0; i < SEC_CMA_COHERENT_MAX; i++) {
if (osh->sec_cma_coherent[i].avail == TRUE) {
temp_va = osh->sec_cma_coherent[i].va;
temp_pa = osh->sec_cma_coherent[i].pa;
osh->sec_cma_coherent[i].avail = FALSE;
break;
}
}
if (i == SEC_CMA_COHERENT_MAX)
printf("%s:No coherent mem: va = 0x%p pa = 0x%lx size = %d\n", __FUNCTION__,
temp_va, (ulong)temp_pa, size);
*pap = (unsigned long)temp_pa;
return temp_va;
}
static void
osl_sec_dma_free_consistent(osl_t *osh, void *va, uint size, dmaaddr_t pa)
{
int i = 0;
for (i = 0; i < SEC_CMA_COHERENT_MAX; i++) {
if (osh->sec_cma_coherent[i].va == va) {
osh->sec_cma_coherent[i].avail = TRUE;
break;
}
}
if (i == SEC_CMA_COHERENT_MAX)
printf("%s:Error: va = 0x%p pa = 0x%lx size = %d\n", __FUNCTION__,
va, (ulong)pa, size);
}
void
osl_sec_cma_baseaddr_memsize(osl_t *osh, dma_addr_t *cma_baseaddr, uint32 *cma_memsize)
{
*cma_baseaddr = osh->contig_base;
*cma_memsize = CMA_MEMBLOCK;
}
#endif /* BCM_SECURE_DMA */
int dhd_mmc_power_save_host(struct mmc_host *host)
{
if (!host) {
printf("%s: host is NULL\n", __FUNCTION__);
return -EINVAL;
}
if (host->ios.power_mode == MMC_POWER_OFF)
return 0;
return mmc_power_save_host(host);
}
int dhd_mmc_power_restore_host(struct mmc_host *host)
{
if (!host) {
printf("%s: host is NULL\n", __FUNCTION__);
return -EINVAL;
}
if (host->ios.power_mode == MMC_POWER_ON)
return 0;
return mmc_power_restore_host(host);
}