tegrakernel/kernel/nvidia/drivers/net/wireless/bcmdhd_pcie/dhd_linux.c

14585 lines
384 KiB
C

/*
* Broadcom Dongle Host Driver (DHD), Linux-specific network interface
* Basically selected code segments from usb-cdc.c and usb-rndis.c
*
* Portions of this code are copyright (c) 2017 Cypress Semiconductor Corporation
*
* Copyright (C) 1999-2017, Broadcom Corporation
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
*
* <<Broadcom-WL-IPTag/Open:>>
*
* $Id: dhd_linux.c 674019 2017-09-27 04:55:14Z $
*/
#include <typedefs.h>
#include <linuxver.h>
#include <osl.h>
#ifdef SHOW_LOGTRACE
#include <linux/syscalls.h>
#include <event_log.h>
#endif /* SHOW_LOGTRACE */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/rtnetlink.h>
#include <linux/etherdevice.h>
#include <linux/random.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/fcntl.h>
#include <linux/fs.h>
#include <linux/ip.h>
#include <linux/reboot.h>
#include <linux/notifier.h>
#include <net/addrconf.h>
#ifdef ENABLE_ADAPTIVE_SCHED
#include <linux/cpufreq.h>
#endif /* ENABLE_ADAPTIVE_SCHED */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0))
#include <uapi/linux/sched/types.h>
#endif
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <epivers.h>
#include <bcmutils.h>
#include <bcmendian.h>
#include <bcmdevs.h>
#include <proto/ethernet.h>
#include <proto/bcmevent.h>
#include <proto/vlan.h>
#include <proto/802.3.h>
#include <dngl_stats.h>
#include <dhd_linux_wq.h>
#include <dhd.h>
#include <dhd_linux.h>
#ifdef PCIE_FULL_DONGLE
#include <dhd_flowring.h>
#endif
#include <dhd_bus.h>
#include <dhd_proto.h>
#include <dhd_dbg.h>
#ifdef WL_CFG80211
#include <wl_cfg80211.h>
#endif
#ifdef PNO_SUPPORT
#include <dhd_pno.h>
#endif
#ifdef RTT_SUPPORT
#include <dhd_rtt.h>
#endif
#ifdef CONFIG_COMPAT
#include <linux/compat.h>
#endif
#ifdef DHD_WMF
#include <dhd_wmf_linux.h>
#endif /* DHD_WMF */
#ifdef DHD_L2_FILTER
#include <proto/bcmicmp.h>
#include <bcm_l2_filter.h>
#include <dhd_l2_filter.h>
#endif /* DHD_L2_FILTER */
#ifdef DHD_PSTA
#include <dhd_psta.h>
#endif /* DHD_PSTA */
#ifdef DHDTCPACK_SUPPRESS
#include <dhd_ip.h>
#endif /* DHDTCPACK_SUPPRESS */
#ifdef DHD_BANDSTEER
#include <dhd_bandsteer.h>
#endif /* DHD_BANDSTEER */
#ifdef DHD_DEBUG_PAGEALLOC
typedef void (*page_corrupt_cb_t)(void *handle, void *addr_corrupt, size_t len);
void dhd_page_corrupt_cb(void *handle, void *addr_corrupt, size_t len);
extern void register_page_corrupt_cb(page_corrupt_cb_t cb, void* handle);
#endif /* DHD_DEBUG_PAGEALLOC */
#if defined(DHD_LB)
/* Dynamic CPU selection for load balancing */
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/notifier.h>
#include <linux/workqueue.h>
#include <asm/atomic.h>
#if !defined(DHD_LB_PRIMARY_CPUS)
#define DHD_LB_PRIMARY_CPUS 0x0 /* Big CPU coreids mask */
#endif
#if !defined(DHD_LB_SECONDARY_CPUS)
#define DHD_LB_SECONDARY_CPUS 0xFE /* Little CPU coreids mask */
#endif
#define HIST_BIN_SIZE 8
#if defined(DHD_LB_RXP)
static void dhd_rx_napi_dispatcher_fn(struct work_struct * work);
#endif /* DHD_LB_RXP */
#endif /* DHD_LB */
#ifdef WLMEDIA_HTSF
#include <linux/time.h>
#include <htsf.h>
#define HTSF_MINLEN 200 /* min. packet length to timestamp */
#define HTSF_BUS_DELAY 150 /* assume a fix propagation in us */
#define TSMAX 1000 /* max no. of timing record kept */
#define NUMBIN 34
static uint32 tsidx = 0;
static uint32 htsf_seqnum = 0;
uint32 tsfsync;
struct timeval tsync;
static uint32 tsport = 5010;
typedef struct histo_ {
uint32 bin[NUMBIN];
} histo_t;
#if !ISPOWEROF2(DHD_SDALIGN)
#error DHD_SDALIGN is not a power of 2!
#endif
static histo_t vi_d1, vi_d2, vi_d3, vi_d4;
#endif /* WLMEDIA_HTSF */
#ifdef STBLINUX
#ifdef quote_str
#undef quote_str
#endif /* quote_str */
#ifdef to_str
#undef to_str
#endif /* quote_str */
#define to_str(s) #s
#define quote_str(s) to_str(s)
static char *driver_target = "driver_target: "quote_str(BRCM_DRIVER_TARGET);
#endif /* STBLINUX */
#if defined(SOFTAP)
extern bool ap_cfg_running;
extern bool ap_fw_loaded;
#endif
extern void dhd_dump_eapol_4way_message(char *ifname, char *dump_data, bool direction);
#ifdef FIX_CPU_MIN_CLOCK
#include <linux/pm_qos.h>
#endif /* FIX_CPU_MIN_CLOCK */
#ifdef SET_RANDOM_MAC_SOFTAP
#ifndef CONFIG_DHD_SET_RANDOM_MAC_VAL
#define CONFIG_DHD_SET_RANDOM_MAC_VAL 0x001A11
#endif
static u32 vendor_oui = CONFIG_DHD_SET_RANDOM_MAC_VAL;
#endif /* SET_RANDOM_MAC_SOFTAP */
#ifdef ENABLE_ADAPTIVE_SCHED
#define DEFAULT_CPUFREQ_THRESH 1000000 /* threshold frequency : 1000000 = 1GHz */
#ifndef CUSTOM_CPUFREQ_THRESH
#define CUSTOM_CPUFREQ_THRESH DEFAULT_CPUFREQ_THRESH
#endif /* CUSTOM_CPUFREQ_THRESH */
#endif /* ENABLE_ADAPTIVE_SCHED */
/* enable HOSTIP cache update from the host side when an eth0:N is up */
#define AOE_IP_ALIAS_SUPPORT 1
#ifdef BCM_FD_AGGR
#include <bcm_rpc.h>
#include <bcm_rpc_tp.h>
#endif
#ifdef PROP_TXSTATUS
#include <wlfc_proto.h>
#include <dhd_wlfc.h>
#endif
#include <wl_android.h>
/* Maximum STA per radio */
#define DHD_MAX_STA 32
const uint8 wme_fifo2ac[] = { 0, 1, 2, 3, 1, 1 };
const uint8 prio2fifo[8] = { 1, 0, 0, 1, 2, 2, 3, 3 };
#define WME_PRIO2AC(prio) wme_fifo2ac[prio2fifo[(prio)]]
#ifdef ARP_OFFLOAD_SUPPORT
void aoe_update_host_ipv4_table(dhd_pub_t *dhd_pub, u32 ipa, bool add, int idx);
static int dhd_inetaddr_notifier_call(struct notifier_block *this,
unsigned long event, void *ptr);
static struct notifier_block dhd_inetaddr_notifier = {
.notifier_call = dhd_inetaddr_notifier_call
};
/* to make sure we won't register the same notifier twice, otherwise a loop is likely to be
* created in kernel notifier link list (with 'next' pointing to itself)
*/
static bool dhd_inetaddr_notifier_registered = FALSE;
#endif /* ARP_OFFLOAD_SUPPORT */
#if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT)
static int dhd_inet6addr_notifier_call(struct notifier_block *this,
unsigned long event, void *ptr);
static struct notifier_block dhd_inet6addr_notifier = {
.notifier_call = dhd_inet6addr_notifier_call
};
/* to make sure we won't register the same notifier twice, otherwise a loop is likely to be
* created in kernel notifier link list (with 'next' pointing to itself)
*/
static bool dhd_inet6addr_notifier_registered = FALSE;
#endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && defined(CONFIG_PM_SLEEP)
#include <linux/suspend.h>
volatile bool dhd_mmc_suspend = FALSE;
DECLARE_WAIT_QUEUE_HEAD(dhd_dpc_wait);
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && defined(CONFIG_PM_SLEEP) */
#if defined(OOB_INTR_ONLY)
extern void dhd_enable_oob_intr(struct dhd_bus *bus, bool enable);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27))
static void dhd_hang_process(void *dhd_info, void *event_data, u8 event);
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0))
MODULE_LICENSE("GPL and additional rights");
#endif /* LinuxVer */
#include <dhd_bus.h>
#ifdef BCM_FD_AGGR
#define DBUS_RX_BUFFER_SIZE_DHD(net) (BCM_RPC_TP_DNGL_AGG_MAX_BYTE)
#else
#ifndef PROP_TXSTATUS
#define DBUS_RX_BUFFER_SIZE_DHD(net) (net->mtu + net->hard_header_len + dhd->pub.hdrlen)
#else
#define DBUS_RX_BUFFER_SIZE_DHD(net) (net->mtu + net->hard_header_len + dhd->pub.hdrlen + 128)
#endif
#endif /* BCM_FD_AGGR */
#ifdef PROP_TXSTATUS
extern bool dhd_wlfc_skip_fc(void *dhd);
extern void dhd_wlfc_plat_init(void *dhd);
extern void dhd_wlfc_plat_deinit(void *dhd);
#endif /* PROP_TXSTATUS */
#ifdef USE_DYNAMIC_F2_BLKSIZE
extern uint sd_f2_blocksize;
extern int dhdsdio_func_blocksize(dhd_pub_t *dhd, int function_num, int block_size);
#endif /* USE_DYNAMIC_F2_BLKSIZE */
#if LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 15)
const char *
print_tainted()
{
return "";
}
#endif /* LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 15) */
/* Linux wireless extension support */
#if defined(WL_WIRELESS_EXT)
#include <wl_iw.h>
extern wl_iw_extra_params_t g_wl_iw_params;
#endif /* defined(WL_WIRELESS_EXT) */
#ifdef CONFIG_PARTIALSUSPEND_SLP
#include <linux/partialsuspend_slp.h>
#define CONFIG_HAS_EARLYSUSPEND
#define DHD_USE_EARLYSUSPEND
#define register_early_suspend register_pre_suspend
#define unregister_early_suspend unregister_pre_suspend
#define early_suspend pre_suspend
#define EARLY_SUSPEND_LEVEL_BLANK_SCREEN 50
#else
#if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND)
#include <linux/earlysuspend.h>
#endif /* defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND) */
#endif /* CONFIG_PARTIALSUSPEND_SLP */
extern int dhd_get_suspend_bcn_li_dtim(dhd_pub_t *dhd);
#ifdef PKT_FILTER_SUPPORT
extern void dhd_pktfilter_offload_set(dhd_pub_t * dhd, char *arg);
extern void dhd_pktfilter_offload_enable(dhd_pub_t * dhd, char *arg, int enable, int master_mode);
extern void dhd_pktfilter_offload_delete(dhd_pub_t *dhd, int id);
#endif
#ifdef DHD_FW_COREDUMP
static void dhd_mem_dump(void *dhd_info, void *event_info, u8 event);
#endif /* DHD_FW_COREDUMP */
#ifdef DHD_LOG_DUMP
static void dhd_log_dump_init(dhd_pub_t *dhd);
static void dhd_log_dump_deinit(dhd_pub_t *dhd);
static void dhd_log_dump(void *handle, void *event_info, u8 event);
void dhd_schedule_log_dump(dhd_pub_t *dhdp);
static int do_dhd_log_dump(dhd_pub_t *dhdp);
#endif /* DHD_LOG_DUMP */
#ifdef DHD_DEBUG_UART
#include <linux/kmod.h>
#define DHD_DEBUG_UART_EXEC_PATH "/system/bin/wldu"
static void dhd_debug_uart_exec(char *cmd);
#endif
static int dhd_reboot_callback(struct notifier_block *this, unsigned long code, void *unused);
static struct notifier_block dhd_reboot_notifier = {
.notifier_call = dhd_reboot_callback,
.priority = 1,
};
#ifdef BCMPCIE
static int is_reboot = 0;
#endif /* BCMPCIE */
typedef struct dhd_if_event {
struct list_head list;
wl_event_data_if_t event;
char name[IFNAMSIZ+1];
uint8 mac[ETHER_ADDR_LEN];
} dhd_if_event_t;
/* Interface control information */
typedef struct dhd_if {
struct dhd_info *info; /* back pointer to dhd_info */
/* OS/stack specifics */
struct net_device *net;
int idx; /* iface idx in dongle */
uint subunit; /* subunit */
uint8 mac_addr[ETHER_ADDR_LEN]; /* assigned MAC address */
bool set_macaddress;
bool set_multicast;
uint8 bssidx; /* bsscfg index for the interface */
bool attached; /* Delayed attachment when unset */
bool txflowcontrol; /* Per interface flow control indicator */
char name[IFNAMSIZ+1]; /* linux interface name */
char dngl_name[IFNAMSIZ+1]; /* corresponding dongle interface name */
struct net_device_stats stats;
#ifdef DHD_WMF
dhd_wmf_t wmf; /* per bsscfg wmf setting */
#endif /* DHD_WMF */
#ifdef PCIE_FULL_DONGLE
struct list_head sta_list; /* sll of associated stations */
#if !defined(BCM_GMAC3)
spinlock_t sta_list_lock; /* lock for manipulating sll */
#endif /* ! BCM_GMAC3 */
#endif /* PCIE_FULL_DONGLE */
uint32 ap_isolate; /* ap-isolation settings */
#ifdef DHD_L2_FILTER
bool parp_enable;
bool parp_discard;
bool parp_allnode;
arp_table_t *phnd_arp_table;
/* for Per BSS modification */
bool dhcp_unicast;
bool block_ping;
bool grat_arp;
#endif /* DHD_L2_FILTER */
} dhd_if_t;
#ifdef WLMEDIA_HTSF
typedef struct {
uint32 low;
uint32 high;
} tsf_t;
typedef struct {
uint32 last_cycle;
uint32 last_sec;
uint32 last_tsf;
uint32 coef; /* scaling factor */
uint32 coefdec1; /* first decimal */
uint32 coefdec2; /* second decimal */
} htsf_t;
typedef struct {
uint32 t1;
uint32 t2;
uint32 t3;
uint32 t4;
} tstamp_t;
static tstamp_t ts[TSMAX];
static tstamp_t maxdelayts;
static uint32 maxdelay = 0, tspktcnt = 0, maxdelaypktno = 0;
#endif /* WLMEDIA_HTSF */
struct ipv6_work_info_t {
uint8 if_idx;
char ipv6_addr[16];
unsigned long event;
};
#ifdef DHD_DEBUG
typedef struct dhd_dump {
uint8 *buf;
int bufsize;
} dhd_dump_t;
#endif /* DHD_DEBUG */
/* When Perimeter locks are deployed, any blocking calls must be preceeded
* with a PERIM UNLOCK and followed by a PERIM LOCK.
* Examples of blocking calls are: schedule_timeout(), down_interruptible(),
* wait_event_timeout().
*/
/* Local private structure (extension of pub) */
typedef struct dhd_info {
#if defined(WL_WIRELESS_EXT)
wl_iw_t iw; /* wireless extensions state (must be first) */
#endif /* defined(WL_WIRELESS_EXT) */
dhd_pub_t pub;
dhd_if_t *iflist[DHD_MAX_IFS]; /* for supporting multiple interfaces */
void *adapter; /* adapter information, interrupt, fw path etc. */
char fw_path[PATH_MAX]; /* path to firmware image */
char nv_path[PATH_MAX]; /* path to nvram vars file */
/* serialize dhd iovars */
struct mutex dhd_iovar_mutex;
struct semaphore proto_sem;
#ifdef PROP_TXSTATUS
spinlock_t wlfc_spinlock;
#endif /* PROP_TXSTATUS */
#ifdef WLMEDIA_HTSF
htsf_t htsf;
#endif
wait_queue_head_t ioctl_resp_wait;
wait_queue_head_t d3ack_wait;
wait_queue_head_t dhd_bus_busy_state_wait;
uint32 default_wd_interval;
struct timer_list timer;
bool wd_timer_valid;
#ifdef DHD_PCIE_RUNTIMEPM
struct timer_list rpm_timer;
bool rpm_timer_valid;
tsk_ctl_t thr_rpm_ctl;
#endif /* DHD_PCIE_RUNTIMEPM */
struct tasklet_struct tasklet;
spinlock_t sdlock;
spinlock_t txqlock;
spinlock_t dhd_lock;
struct semaphore sdsem;
tsk_ctl_t thr_dpc_ctl;
tsk_ctl_t thr_wdt_ctl;
tsk_ctl_t thr_rxf_ctl;
spinlock_t rxf_lock;
bool rxthread_enabled;
/* Wakelocks */
#if defined(CONFIG_PM_WAKELOCKS) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27))
struct wakeup_source wl_wifi; /* Wifi wakelock */
struct wakeup_source wl_rxwake; /* Wifi rx wakelock */
struct wakeup_source wl_ctrlwake; /* Wifi ctrl wakelock */
struct wakeup_source wl_wdwake; /* Wifi wd wakelock */
struct wakeup_source wl_evtwake; /* Wifi event wakelock */
struct wakeup_source wl_pmwake; /* Wifi pm handler wakelock */
struct wakeup_source wl_txflwake; /* Wifi tx flow wakelock */
#ifdef BCMPCIE_OOB_HOST_WAKE
struct wakeup_source wl_intrwake; /* Host wakeup wakelock */
#endif /* BCMPCIE_OOB_HOST_WAKE */
#ifdef DHD_USE_SCAN_WAKELOCK
struct wakeup_source wl_scanwake; /* Wifi scan wakelock */
#endif /* DHD_USE_SCAN_WAKELOCK */
#endif /* CONFIG_PM_WAKELOCKS && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
/* net_device interface lock, prevent race conditions among net_dev interface
* calls and wifi_on or wifi_off
*/
struct mutex dhd_net_if_mutex;
struct mutex dhd_suspend_mutex;
#endif
spinlock_t wakelock_spinlock;
spinlock_t wakelock_evt_spinlock;
uint32 wakelock_counter;
int wakelock_wd_counter;
int wakelock_rx_timeout_enable;
int wakelock_ctrl_timeout_enable;
bool waive_wakelock;
uint32 wakelock_before_waive;
/* Thread to issue ioctl for multicast */
wait_queue_head_t ctrl_wait;
atomic_t pend_8021x_cnt;
dhd_attach_states_t dhd_state;
#ifdef SHOW_LOGTRACE
dhd_event_log_t event_data;
#endif /* SHOW_LOGTRACE */
#if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND)
struct early_suspend early_suspend;
#endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */
#ifdef ARP_OFFLOAD_SUPPORT
u32 pend_ipaddr;
#endif /* ARP_OFFLOAD_SUPPORT */
#ifdef BCM_FD_AGGR
void *rpc_th;
void *rpc_osh;
struct timer_list rpcth_timer;
bool rpcth_timer_active;
uint8 fdaggr;
#endif
#ifdef DHDTCPACK_SUPPRESS
spinlock_t tcpack_lock;
#endif /* DHDTCPACK_SUPPRESS */
#ifdef FIX_CPU_MIN_CLOCK
bool cpufreq_fix_status;
struct mutex cpufreq_fix;
struct pm_qos_request dhd_cpu_qos;
#ifdef FIX_BUS_MIN_CLOCK
struct pm_qos_request dhd_bus_qos;
#endif /* FIX_BUS_MIN_CLOCK */
#endif /* FIX_CPU_MIN_CLOCK */
void *dhd_deferred_wq;
#ifdef DEBUG_CPU_FREQ
struct notifier_block freq_trans;
int __percpu *new_freq;
#endif
unsigned int unit;
struct notifier_block pm_notifier;
#ifdef DHD_PSTA
uint32 psta_mode; /* PSTA or PSR */
#endif /* DHD_PSTA */
#ifdef DHD_DEBUG
dhd_dump_t *dump;
struct timer_list join_timer;
u32 join_timeout_val;
bool join_timer_active;
uint scan_time_count;
struct timer_list scan_timer;
bool scan_timer_active;
#endif
#if defined(DHD_LB)
/* CPU Load Balance dynamic CPU selection */
/* Variable that tracks the currect CPUs available for candidacy */
cpumask_var_t cpumask_curr_avail;
/* Primary and secondary CPU mask */
cpumask_var_t cpumask_primary, cpumask_secondary; /* configuration */
cpumask_var_t cpumask_primary_new, cpumask_secondary_new; /* temp */
struct notifier_block cpu_notifier;
/* Tasklet to handle Tx Completion packet freeing */
struct tasklet_struct tx_compl_tasklet;
atomic_t tx_compl_cpu;
/* Tasklet to handle RxBuf Post during Rx completion */
struct tasklet_struct rx_compl_tasklet;
atomic_t rx_compl_cpu;
/* Napi struct for handling rx packet sendup. Packets are removed from
* H2D RxCompl ring and placed into rx_pend_queue. rx_pend_queue is then
* appended to rx_napi_queue (w/ lock) and the rx_napi_struct is scheduled
* to run to rx_napi_cpu.
*/
struct sk_buff_head rx_pend_queue ____cacheline_aligned;
struct sk_buff_head rx_napi_queue ____cacheline_aligned;
struct napi_struct rx_napi_struct ____cacheline_aligned;
atomic_t rx_napi_cpu; /* cpu on which the napi is dispatched */
struct net_device *rx_napi_netdev; /* netdev of primary interface */
struct work_struct rx_napi_dispatcher_work;
struct work_struct tx_compl_dispatcher_work;
struct work_struct rx_compl_dispatcher_work;
/* Number of times DPC Tasklet ran */
uint32 dhd_dpc_cnt;
/* Number of times NAPI processing got scheduled */
uint32 napi_sched_cnt;
/* Number of times NAPI processing ran on each available core */
uint32 napi_percpu_run_cnt[NR_CPUS];
/* Number of times RX Completions got scheduled */
uint32 rxc_sched_cnt;
/* Number of times RX Completion ran on each available core */
uint32 rxc_percpu_run_cnt[NR_CPUS];
/* Number of times TX Completions got scheduled */
uint32 txc_sched_cnt;
/* Number of times TX Completions ran on each available core */
uint32 txc_percpu_run_cnt[NR_CPUS];
/* CPU status */
/* Number of times each CPU came online */
uint32 cpu_online_cnt[NR_CPUS];
/* Number of times each CPU went offline */
uint32 cpu_offline_cnt[NR_CPUS];
/*
* Consumer Histogram - NAPI RX Packet processing
* -----------------------------------------------
* On Each CPU, when the NAPI RX Packet processing call back was invoked
* how many packets were processed is captured in this data structure.
* Now its difficult to capture the "exact" number of packets processed.
* So considering the packet counter to be a 32 bit one, we have a
* bucket with 8 bins (2^1, 2^2 ... 2^8). The "number" of packets
* processed is rounded off to the next power of 2 and put in the
* approriate "bin" the value in the bin gets incremented.
* For example, assume that in CPU 1 if NAPI Rx runs 3 times
* and the packet count processed is as follows (assume the bin counters are 0)
* iteration 1 - 10 (the bin counter 2^4 increments to 1)
* iteration 2 - 30 (the bin counter 2^5 increments to 1)
* iteration 3 - 15 (the bin counter 2^4 increments by 1 to become 2)
*/
uint32 napi_rx_hist[NR_CPUS][HIST_BIN_SIZE];
uint32 txc_hist[NR_CPUS][HIST_BIN_SIZE];
uint32 rxc_hist[NR_CPUS][HIST_BIN_SIZE];
#endif /* DHD_LB */
#if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW)
#endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */
struct kobject dhd_kobj;
uint32 shub_enable;
struct delayed_work dhd_memdump_work;
} dhd_info_t;
#define DHDIF_FWDER(dhdif) FALSE
/* Flag to indicate if we should download firmware on driver load */
#ifdef ENABLE_INSMOD_NO_FW_LOAD
uint dhd_download_fw_on_driverload = FALSE;
#else
uint dhd_download_fw_on_driverload = TRUE;
#endif /* ENABLE_INSMOD_NO_FW_LOAD */
/* Flag to indicate if driver is initialized */
uint dhd_driver_init_done = FALSE;
/* Definitions to provide path to the firmware and nvram
* example nvram_path[MOD_PARAM_PATHLEN]="/projects/wlan/nvram.txt"
*/
char firmware_path[MOD_PARAM_PATHLEN];
char nvram_path[MOD_PARAM_PATHLEN];
char clm_path[MOD_PARAM_PATHLEN];
module_param_string(clm_path, clm_path, MOD_PARAM_PATHLEN, 0660);
/* backup buffer for firmware and nvram path */
char fw_bak_path[MOD_PARAM_PATHLEN];
char nv_bak_path[MOD_PARAM_PATHLEN];
/* information string to keep firmware, chio, cheip version info visiable from log */
char info_string[MOD_PARAM_INFOLEN];
module_param_string(info_string, info_string, MOD_PARAM_INFOLEN, 0444);
int op_mode = 0;
int disable_proptx = 0;
module_param(op_mode, int, 0644);
#if defined(DHD_LB_RXP)
static int dhd_napi_weight = 32;
module_param(dhd_napi_weight, int, 0644);
#endif /* DHD_LB_RXP */
extern int wl_control_wl_start(struct net_device *dev);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && defined(BCMLXSDMMC)
struct semaphore dhd_registration_sem;
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) */
/* deferred handlers */
static void dhd_ifadd_event_handler(void *handle, void *event_info, u8 event);
static void dhd_ifdel_event_handler(void *handle, void *event_info, u8 event);
static void dhd_set_mac_addr_handler(void *handle, void *event_info, u8 event);
static void dhd_set_mcast_list_handler(void *handle, void *event_info, u8 event);
#if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT)
static void dhd_inet6_work_handler(void *dhd_info, void *event_data, u8 event);
#endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */
#ifdef WL_CFG80211
extern void dhd_netdev_free(struct net_device *ndev);
#endif /* WL_CFG80211 */
/* Error bits */
module_param(dhd_msg_level, int, 0);
#ifdef ARP_OFFLOAD_SUPPORT
/* ARP offload enable */
uint dhd_arp_enable = TRUE;
module_param(dhd_arp_enable, uint, 0);
/* ARP offload agent mode : Enable ARP Host Auto-Reply and ARP Peer Auto-Reply */
#ifdef ENABLE_ARP_SNOOP_MODE
uint dhd_arp_mode = ARP_OL_AGENT | ARP_OL_PEER_AUTO_REPLY | ARP_OL_SNOOP;
#else
uint dhd_arp_mode = ARP_OL_AGENT | ARP_OL_PEER_AUTO_REPLY;
#endif /* ENABLE_ARP_SNOOP_MODE */
module_param(dhd_arp_mode, uint, 0);
#endif /* ARP_OFFLOAD_SUPPORT */
/* Disable Prop tx */
module_param(disable_proptx, int, 0644);
/* load firmware and/or nvram values from the filesystem */
module_param_string(firmware_path, firmware_path, MOD_PARAM_PATHLEN, 0660);
module_param_string(nvram_path, nvram_path, MOD_PARAM_PATHLEN, 0660);
/* Watchdog interval */
/* extend watchdog expiration to 2 seconds when DPC is running */
#define WATCHDOG_EXTEND_INTERVAL (2000)
uint dhd_watchdog_ms = CUSTOM_DHD_WATCHDOG_MS;
module_param(dhd_watchdog_ms, uint, 0);
#ifdef DHD_PCIE_RUNTIMEPM
uint dhd_runtimepm_ms = CUSTOM_DHD_RUNTIME_MS;
#endif /* DHD_PCIE_RUNTIMEPMT */
#if defined(DHD_DEBUG)
/* Console poll interval */
uint dhd_console_ms = 0;
module_param(dhd_console_ms, uint, 0644);
#endif /* defined(DHD_DEBUG) */
uint dhd_slpauto = TRUE;
module_param(dhd_slpauto, uint, 0);
#ifdef PKT_FILTER_SUPPORT
/* Global Pkt filter enable control */
uint dhd_pkt_filter_enable = TRUE;
module_param(dhd_pkt_filter_enable, uint, 0);
#endif
/* Pkt filter init setup */
uint dhd_pkt_filter_init = 0;
module_param(dhd_pkt_filter_init, uint, 0);
/* Pkt filter mode control */
#ifdef GAN_LITE_NAT_KEEPALIVE_FILTER
uint dhd_master_mode = FALSE;
#else
uint dhd_master_mode = TRUE;
#endif /* GAN_LITE_NAT_KEEPALIVE_FILTER */
module_param(dhd_master_mode, uint, 0);
int dhd_watchdog_prio = 0;
module_param(dhd_watchdog_prio, int, 0);
/* DPC thread priority */
int dhd_dpc_prio = CUSTOM_DPC_PRIO_SETTING;
module_param(dhd_dpc_prio, int, 0);
/* RX frame thread priority */
int dhd_rxf_prio = CUSTOM_RXF_PRIO_SETTING;
module_param(dhd_rxf_prio, int, 0);
int passive_channel_skip = 0;
module_param(passive_channel_skip, int, (S_IRUSR|S_IWUSR));
#if !defined(BCMDHDUSB)
extern int dhd_dongle_ramsize;
module_param(dhd_dongle_ramsize, int, 0);
#endif /* BCMDHDUSB */
/* Keep track of number of instances */
static int dhd_found = 0;
static int instance_base = 0; /* Starting instance number */
module_param(instance_base, int, 0644);
/* Takes value of LL of OTP param customvar2=0xKKLLMMNN.
* LL is module variant
*/
uint32 hw_module_variant = 0;
module_param(hw_module_variant, uint, 0644);
/* Functions to manage sysfs interface for dhd */
static int dhd_sysfs_init(dhd_info_t *dhd);
static void dhd_sysfs_exit(dhd_info_t *dhd);
#if defined(DHD_LB)
static void
dhd_lb_set_default_cpus(dhd_info_t *dhd)
{
/* Default CPU allocation for the jobs */
atomic_set(&dhd->rx_napi_cpu, 1);
atomic_set(&dhd->rx_compl_cpu, 2);
atomic_set(&dhd->tx_compl_cpu, 2);
}
static void
dhd_cpumasks_deinit(dhd_info_t *dhd)
{
free_cpumask_var(dhd->cpumask_curr_avail);
free_cpumask_var(dhd->cpumask_primary);
free_cpumask_var(dhd->cpumask_primary_new);
free_cpumask_var(dhd->cpumask_secondary);
free_cpumask_var(dhd->cpumask_secondary_new);
}
static int
dhd_cpumasks_init(dhd_info_t *dhd)
{
int id;
uint32 cpus;
int ret = 0;
if (!alloc_cpumask_var(&dhd->cpumask_curr_avail, GFP_KERNEL) ||
!alloc_cpumask_var(&dhd->cpumask_primary, GFP_KERNEL) ||
!alloc_cpumask_var(&dhd->cpumask_primary_new, GFP_KERNEL) ||
!alloc_cpumask_var(&dhd->cpumask_secondary, GFP_KERNEL) ||
!alloc_cpumask_var(&dhd->cpumask_secondary_new, GFP_KERNEL)) {
DHD_ERROR(("%s Failed to init cpumasks\n", __FUNCTION__));
ret = -ENOMEM;
goto fail;
}
cpumask_copy(dhd->cpumask_curr_avail, cpu_online_mask);
cpumask_clear(dhd->cpumask_primary);
cpumask_clear(dhd->cpumask_secondary);
cpus = DHD_LB_PRIMARY_CPUS;
for (id = 0; id < num_possible_cpus(); id++) {
if (isset(&cpus, id))
cpumask_set_cpu(id, dhd->cpumask_primary);
}
cpus = DHD_LB_SECONDARY_CPUS;
for (id = 0; id < num_possible_cpus(); id++) {
if (isset(&cpus, id))
cpumask_set_cpu(id, dhd->cpumask_secondary);
}
return ret;
fail:
dhd_cpumasks_deinit(dhd);
return ret;
}
/*
* The CPU Candidacy Algorithm
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~
* The available CPUs for selection are divided into two groups
* Primary Set - A CPU mask that carries the First Choice CPUs
* Secondary Set - A CPU mask that carries the Second Choice CPUs.
*
* There are two types of Job, that needs to be assigned to
* the CPUs, from one of the above mentioned CPU group. The Jobs are
* 1) Rx Packet Processing - napi_cpu
* 2) Completion Processiong (Tx, RX) - compl_cpu
*
* To begin with both napi_cpu and compl_cpu are on CPU0. Whenever a CPU goes
* on-line/off-line the CPU candidacy algorithm is triggerd. The candidacy
* algo tries to pickup the first available non boot CPU (CPU0) for napi_cpu.
* If there are more processors free, it assigns one to compl_cpu.
* It also tries to ensure that both napi_cpu and compl_cpu are not on the same
* CPU, as much as possible.
*
* By design, both Tx and Rx completion jobs are run on the same CPU core, as it
* would allow Tx completion skb's to be released into a local free pool from
* which the rx buffer posts could have been serviced. it is important to note
* that a Tx packet may not have a large enough buffer for rx posting.
*/
void dhd_select_cpu_candidacy(dhd_info_t *dhd)
{
uint32 primary_available_cpus; /* count of primary available cpus */
uint32 secondary_available_cpus; /* count of secondary available cpus */
uint32 napi_cpu = 0; /* cpu selected for napi rx processing */
uint32 compl_cpu = 0; /* cpu selected for completion jobs */
cpumask_clear(dhd->cpumask_primary_new);
cpumask_clear(dhd->cpumask_secondary_new);
/*
* Now select from the primary mask. Even if a Job is
* already running on a CPU in secondary group, we still move
* to primary CPU. So no conditional checks.
*/
cpumask_and(dhd->cpumask_primary_new, dhd->cpumask_primary,
dhd->cpumask_curr_avail);
cpumask_and(dhd->cpumask_secondary_new, dhd->cpumask_secondary,
dhd->cpumask_curr_avail);
primary_available_cpus = cpumask_weight(dhd->cpumask_primary_new);
if (primary_available_cpus > 0) {
napi_cpu = cpumask_first(dhd->cpumask_primary_new);
/* If no further CPU is available,
* cpumask_next returns >= nr_cpu_ids
*/
compl_cpu = cpumask_next(napi_cpu, dhd->cpumask_primary_new);
if (compl_cpu >= nr_cpu_ids)
compl_cpu = 0;
}
DHD_INFO(("%s After primary CPU check napi_cpu %d compl_cpu %d\n",
__FUNCTION__, napi_cpu, compl_cpu));
/* -- Now check for the CPUs from the secondary mask -- */
secondary_available_cpus = cpumask_weight(dhd->cpumask_secondary_new);
DHD_INFO(("%s Available secondary cpus %d nr_cpu_ids %d\n",
__FUNCTION__, secondary_available_cpus, nr_cpu_ids));
if (secondary_available_cpus > 0) {
/* At this point if napi_cpu is unassigned it means no CPU
* is online from Primary Group
*/
if (napi_cpu == 0) {
napi_cpu = cpumask_first(dhd->cpumask_secondary_new);
compl_cpu = cpumask_next(napi_cpu, dhd->cpumask_secondary_new);
} else if (compl_cpu == 0) {
compl_cpu = cpumask_first(dhd->cpumask_secondary_new);
}
/* If no CPU was available for completion, choose CPU 0 */
if (compl_cpu >= nr_cpu_ids)
compl_cpu = 0;
}
if ((primary_available_cpus == 0) &&
(secondary_available_cpus == 0)) {
/* No CPUs available from primary or secondary mask */
napi_cpu = 0;
compl_cpu = 0;
}
DHD_INFO(("%s After secondary CPU check napi_cpu %d compl_cpu %d\n",
__FUNCTION__, napi_cpu, compl_cpu));
ASSERT(napi_cpu < nr_cpu_ids);
ASSERT(compl_cpu < nr_cpu_ids);
atomic_set(&dhd->rx_napi_cpu, napi_cpu);
atomic_set(&dhd->tx_compl_cpu, compl_cpu);
atomic_set(&dhd->rx_compl_cpu, compl_cpu);
return;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0))
/*
* Function to handle CPU Hotplug notifications.
* One of the task it does is to trigger the CPU Candidacy algorithm
* for load balancing.
*/
int
dhd_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned int)(long)hcpu;
dhd_info_t *dhd = container_of(nfb, dhd_info_t, cpu_notifier);
switch (action)
{
case CPU_ONLINE:
DHD_LB_STATS_INCR(dhd->cpu_online_cnt[cpu]);
cpumask_set_cpu(cpu, dhd->cpumask_curr_avail);
dhd_select_cpu_candidacy(dhd);
break;
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
DHD_LB_STATS_INCR(dhd->cpu_offline_cnt[cpu]);
cpumask_clear_cpu(cpu, dhd->cpumask_curr_avail);
dhd_select_cpu_candidacy(dhd);
break;
default:
break;
}
return NOTIFY_OK;
}
#endif
#if defined(DHD_LB_STATS)
void dhd_lb_stats_init(dhd_pub_t *dhdp)
{
dhd_info_t *dhd;
int i, j;
if (dhdp == NULL) {
DHD_ERROR(("%s(): Invalid argument dhdp is NULL \n",
__FUNCTION__));
return;
}
dhd = dhdp->info;
if (dhd == NULL) {
DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__));
return;
}
DHD_LB_STATS_CLR(dhd->dhd_dpc_cnt);
DHD_LB_STATS_CLR(dhd->napi_sched_cnt);
DHD_LB_STATS_CLR(dhd->rxc_sched_cnt);
DHD_LB_STATS_CLR(dhd->txc_sched_cnt);
for (i = 0; i < NR_CPUS; i++) {
DHD_LB_STATS_CLR(dhd->napi_percpu_run_cnt[i]);
DHD_LB_STATS_CLR(dhd->rxc_percpu_run_cnt[i]);
DHD_LB_STATS_CLR(dhd->txc_percpu_run_cnt[i]);
DHD_LB_STATS_CLR(dhd->cpu_online_cnt[i]);
DHD_LB_STATS_CLR(dhd->cpu_offline_cnt[i]);
}
for (i = 0; i < NR_CPUS; i++) {
for (j = 0; j < HIST_BIN_SIZE; j++) {
DHD_LB_STATS_CLR(dhd->napi_rx_hist[i][j]);
DHD_LB_STATS_CLR(dhd->txc_hist[i][j]);
DHD_LB_STATS_CLR(dhd->rxc_hist[i][j]);
}
}
return;
}
static void dhd_lb_stats_dump_histo(
struct bcmstrbuf *strbuf, uint32 (*hist)[HIST_BIN_SIZE])
{
int i, j;
uint32 per_cpu_total[NR_CPUS] = {0};
uint32 total = 0;
bcm_bprintf(strbuf, "CPU: \t\t");
for (i = 0; i < num_possible_cpus(); i++)
bcm_bprintf(strbuf, "%d\t", i);
bcm_bprintf(strbuf, "\nBin\n");
for (i = 0; i < HIST_BIN_SIZE; i++) {
bcm_bprintf(strbuf, "%d:\t\t", 1<<(i+1));
for (j = 0; j < num_possible_cpus(); j++) {
bcm_bprintf(strbuf, "%d\t", hist[j][i]);
}
bcm_bprintf(strbuf, "\n");
}
bcm_bprintf(strbuf, "Per CPU Total \t");
total = 0;
for (i = 0; i < num_possible_cpus(); i++) {
for (j = 0; j < HIST_BIN_SIZE; j++) {
per_cpu_total[i] += (hist[i][j] * (1<<(j+1)));
}
bcm_bprintf(strbuf, "%d\t", per_cpu_total[i]);
total += per_cpu_total[i];
}
bcm_bprintf(strbuf, "\nTotal\t\t%d \n", total);
return;
}
static inline void dhd_lb_stats_dump_cpu_array(struct bcmstrbuf *strbuf, uint32 *p)
{
int i;
bcm_bprintf(strbuf, "CPU: \t");
for (i = 0; i < num_possible_cpus(); i++)
bcm_bprintf(strbuf, "%d\t", i);
bcm_bprintf(strbuf, "\n");
bcm_bprintf(strbuf, "Val: \t");
for (i = 0; i < num_possible_cpus(); i++)
bcm_bprintf(strbuf, "%u\t", *(p+i));
bcm_bprintf(strbuf, "\n");
return;
}
void dhd_lb_stats_dump(dhd_pub_t *dhdp, struct bcmstrbuf *strbuf)
{
dhd_info_t *dhd;
if (dhdp == NULL || strbuf == NULL) {
DHD_ERROR(("%s(): Invalid argument dhdp %p strbuf %p \n",
__FUNCTION__, dhdp, strbuf));
return;
}
dhd = dhdp->info;
if (dhd == NULL) {
DHD_ERROR(("%s(): DHD pointer is NULL \n", __FUNCTION__));
return;
}
bcm_bprintf(strbuf, "\ncpu_online_cnt:\n");
dhd_lb_stats_dump_cpu_array(strbuf, dhd->cpu_online_cnt);
bcm_bprintf(strbuf, "cpu_offline_cnt:\n");
dhd_lb_stats_dump_cpu_array(strbuf, dhd->cpu_offline_cnt);
bcm_bprintf(strbuf, "\nsched_cnt: dhd_dpc %u napi %u rxc %u txc %u\n",
dhd->dhd_dpc_cnt, dhd->napi_sched_cnt, dhd->rxc_sched_cnt,
dhd->txc_sched_cnt);
#ifdef DHD_LB_RXP
bcm_bprintf(strbuf, "napi_percpu_run_cnt:\n");
dhd_lb_stats_dump_cpu_array(strbuf, dhd->napi_percpu_run_cnt);
bcm_bprintf(strbuf, "\nNAPI Packets Received Histogram:\n");
dhd_lb_stats_dump_histo(strbuf, dhd->napi_rx_hist);
#endif /* DHD_LB_RXP */
#ifdef DHD_LB_RXC
bcm_bprintf(strbuf, "rxc_percpu_run_cnt:\n");
dhd_lb_stats_dump_cpu_array(strbuf, dhd->rxc_percpu_run_cnt);
bcm_bprintf(strbuf, "\nRX Completions (Buffer Post) Histogram:\n");
dhd_lb_stats_dump_histo(strbuf, dhd->rxc_hist);
#endif /* DHD_LB_RXC */
#ifdef DHD_LB_TXC
bcm_bprintf(strbuf, "txc_percpu_run_cnt:\n");
dhd_lb_stats_dump_cpu_array(strbuf, dhd->txc_percpu_run_cnt);
bcm_bprintf(strbuf, "\nTX Completions (Buffer Free) Histogram:\n");
dhd_lb_stats_dump_histo(strbuf, dhd->txc_hist);
#endif /* DHD_LB_TXC */
}
static void dhd_lb_stats_update_histo(uint32 *bin, uint32 count)
{
uint32 bin_power;
uint32 *p = NULL;
bin_power = next_larger_power2(count);
switch (bin_power) {
case 0: break;
case 1: /* Fall through intentionally */
case 2: p = bin + 0; break;
case 4: p = bin + 1; break;
case 8: p = bin + 2; break;
case 16: p = bin + 3; break;
case 32: p = bin + 4; break;
case 64: p = bin + 5; break;
case 128: p = bin + 6; break;
default : p = bin + 7; break;
}
if (p)
*p = *p + 1;
return;
}
extern void dhd_lb_stats_update_napi_histo(dhd_pub_t *dhdp, uint32 count)
{
int cpu;
dhd_info_t *dhd = dhdp->info;
cpu = get_cpu();
put_cpu();
dhd_lb_stats_update_histo(&dhd->napi_rx_hist[cpu][0], count);
return;
}
extern void dhd_lb_stats_update_txc_histo(dhd_pub_t *dhdp, uint32 count)
{
int cpu;
dhd_info_t *dhd = dhdp->info;
cpu = get_cpu();
put_cpu();
dhd_lb_stats_update_histo(&dhd->txc_hist[cpu][0], count);
return;
}
extern void dhd_lb_stats_update_rxc_histo(dhd_pub_t *dhdp, uint32 count)
{
int cpu;
dhd_info_t *dhd = dhdp->info;
cpu = get_cpu();
put_cpu();
dhd_lb_stats_update_histo(&dhd->rxc_hist[cpu][0], count);
return;
}
extern void dhd_lb_stats_txc_percpu_cnt_incr(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
DHD_LB_STATS_PERCPU_ARR_INCR(dhd->txc_percpu_run_cnt);
}
extern void dhd_lb_stats_rxc_percpu_cnt_incr(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
DHD_LB_STATS_PERCPU_ARR_INCR(dhd->rxc_percpu_run_cnt);
}
#endif /* DHD_LB_STATS */
#endif /* DHD_LB */
#if defined(DISABLE_FRAMEBURST_VSDB) && defined(USE_WFA_CERT_CONF)
int g_frameburst = 1;
#endif /* DISABLE_FRAMEBURST_VSDB && USE_WFA_CERT_CONF */
static int dhd_get_pend_8021x_cnt(dhd_info_t *dhd);
/* DHD Perimiter lock only used in router with bypass forwarding. */
#define DHD_PERIM_RADIO_INIT() do { /* noop */ } while (0)
#define DHD_PERIM_LOCK_TRY(unit, flag) do { /* noop */ } while (0)
#define DHD_PERIM_UNLOCK_TRY(unit, flag) do { /* noop */ } while (0)
#ifdef PCIE_FULL_DONGLE
#if defined(BCM_GMAC3)
#define DHD_IF_STA_LIST_LOCK_INIT(ifp) do { /* noop */ } while (0)
#define DHD_IF_STA_LIST_LOCK(ifp, flags) ({ BCM_REFERENCE(flags); })
#define DHD_IF_STA_LIST_UNLOCK(ifp, flags) ({ BCM_REFERENCE(flags); })
#if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP)
#define DHD_IF_WMF_UCFORWARD_LOCK(dhd, ifp, slist) ({ BCM_REFERENCE(slist); &(ifp)->sta_list; })
#define DHD_IF_WMF_UCFORWARD_UNLOCK(dhd, slist) ({ BCM_REFERENCE(slist); })
#endif /* DHD_IGMP_UCQUERY || DHD_UCAST_UPNP */
#else /* ! BCM_GMAC3 */
#define DHD_IF_STA_LIST_LOCK_INIT(ifp) spin_lock_init(&(ifp)->sta_list_lock)
#define DHD_IF_STA_LIST_LOCK(ifp, flags) \
spin_lock_irqsave(&(ifp)->sta_list_lock, (flags))
#define DHD_IF_STA_LIST_UNLOCK(ifp, flags) \
spin_unlock_irqrestore(&(ifp)->sta_list_lock, (flags))
#if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP)
static struct list_head * dhd_sta_list_snapshot(dhd_info_t *dhd, dhd_if_t *ifp,
struct list_head *snapshot_list);
static void dhd_sta_list_snapshot_free(dhd_info_t *dhd, struct list_head *snapshot_list);
#define DHD_IF_WMF_UCFORWARD_LOCK(dhd, ifp, slist) ({ dhd_sta_list_snapshot(dhd, ifp, slist); })
#define DHD_IF_WMF_UCFORWARD_UNLOCK(dhd, slist) ({ dhd_sta_list_snapshot_free(dhd, slist); })
#endif /* DHD_IGMP_UCQUERY || DHD_UCAST_UPNP */
#endif /* ! BCM_GMAC3 */
#endif /* PCIE_FULL_DONGLE */
/* Control fw roaming */
uint dhd_roam_disable = 0;
#ifdef BCMDBGFS
extern int dhd_dbg_init(dhd_pub_t *dhdp);
extern void dhd_dbg_remove(void);
#endif
/* Control radio state */
uint dhd_radio_up = 1;
/* Network inteface name */
char iface_name[IFNAMSIZ] = {'\0'};
module_param_string(iface_name, iface_name, IFNAMSIZ, 0);
/* The following are specific to the SDIO dongle */
/* IOCTL response timeout */
int dhd_ioctl_timeout_msec = IOCTL_RESP_TIMEOUT;
/* Idle timeout for backplane clock */
int dhd_idletime = DHD_IDLETIME_TICKS;
module_param(dhd_idletime, int, 0);
/* Use polling */
uint dhd_poll = FALSE;
module_param(dhd_poll, uint, 0);
/* Use interrupts */
uint dhd_intr = TRUE;
module_param(dhd_intr, uint, 0);
/* SDIO Drive Strength (in milliamps) */
uint dhd_sdiod_drive_strength = 6;
module_param(dhd_sdiod_drive_strength, uint, 0);
#ifdef BCMSDIO
/* Tx/Rx bounds */
extern uint dhd_txbound;
extern uint dhd_rxbound;
module_param(dhd_txbound, uint, 0);
module_param(dhd_rxbound, uint, 0);
/* Deferred transmits */
extern uint dhd_deferred_tx;
module_param(dhd_deferred_tx, uint, 0);
#endif /* BCMSDIO */
#ifdef SDTEST
/* Echo packet generator (pkts/s) */
uint dhd_pktgen = 0;
module_param(dhd_pktgen, uint, 0);
/* Echo packet len (0 => sawtooth, max 2040) */
uint dhd_pktgen_len = 0;
module_param(dhd_pktgen_len, uint, 0);
#endif /* SDTEST */
/* Allow delayed firmware download for debug purpose */
int allow_delay_fwdl = FALSE;
module_param(allow_delay_fwdl, int, 0);
extern char dhd_version[];
extern char fw_version[];
extern char clm_version[];
int dhd_net_bus_devreset(struct net_device *dev, uint8 flag);
static void dhd_net_if_lock_local(dhd_info_t *dhd);
static void dhd_net_if_unlock_local(dhd_info_t *dhd);
static void dhd_suspend_lock(dhd_pub_t *dhdp);
static void dhd_suspend_unlock(dhd_pub_t *dhdp);
#ifdef WLMEDIA_HTSF
void htsf_update(dhd_info_t *dhd, void *data);
tsf_t prev_tsf, cur_tsf;
uint32 dhd_get_htsf(dhd_info_t *dhd, int ifidx);
static int dhd_ioctl_htsf_get(dhd_info_t *dhd, int ifidx);
static void dhd_dump_latency(void);
static void dhd_htsf_addtxts(dhd_pub_t *dhdp, void *pktbuf);
static void dhd_htsf_addrxts(dhd_pub_t *dhdp, void *pktbuf);
static void dhd_dump_htsfhisto(histo_t *his, char *s);
#endif /* WLMEDIA_HTSF */
/* Monitor interface */
int dhd_monitor_init(void *dhd_pub);
int dhd_monitor_uninit(void);
#if defined(WL_WIRELESS_EXT)
struct iw_statistics *dhd_get_wireless_stats(struct net_device *dev);
#endif /* defined(WL_WIRELESS_EXT) */
static void dhd_dpc(ulong data);
/* forward decl */
extern int dhd_wait_pend8021x(struct net_device *dev);
void dhd_os_wd_timer_extend(void *bus, bool extend);
#ifdef TOE
#ifndef BDC
#error TOE requires BDC
#endif /* !BDC */
static int dhd_toe_get(dhd_info_t *dhd, int idx, uint32 *toe_ol);
static int dhd_toe_set(dhd_info_t *dhd, int idx, uint32 toe_ol);
#endif /* TOE */
static int dhd_wl_host_event(dhd_info_t *dhd, int *ifidx, void *pktdata, size_t pktlen,
wl_event_msg_t *event_ptr, void **data_ptr);
#if defined(CONFIG_PM_SLEEP)
static int dhd_pm_callback(struct notifier_block *nfb, unsigned long action, void *ignored)
{
int ret = NOTIFY_DONE;
bool suspend = FALSE;
dhd_info_t *dhdinfo = (dhd_info_t*)container_of(nfb, struct dhd_info, pm_notifier);
BCM_REFERENCE(dhdinfo);
BCM_REFERENCE(suspend);
switch (action) {
case PM_HIBERNATION_PREPARE:
case PM_SUSPEND_PREPARE:
suspend = TRUE;
break;
case PM_POST_HIBERNATION:
case PM_POST_SUSPEND:
suspend = FALSE;
break;
}
#if defined(SUPPORT_P2P_GO_PS) && defined(PROP_TXSTATUS)
if (suspend) {
DHD_OS_WAKE_LOCK_WAIVE(&dhdinfo->pub);
dhd_wlfc_suspend(&dhdinfo->pub);
DHD_OS_WAKE_LOCK_RESTORE(&dhdinfo->pub);
} else {
dhd_wlfc_resume(&dhdinfo->pub);
}
#endif /* defined(SUPPORT_P2P_GO_PS) && defined(PROP_TXSTATUS) */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) && (LINUX_VERSION_CODE <= \
KERNEL_VERSION(2, 6, 39))
dhd_mmc_suspend = suspend;
smp_mb();
#endif
return ret;
}
/* to make sure we won't register the same notifier twice, otherwise a loop is likely to be
* created in kernel notifier link list (with 'next' pointing to itself)
*/
static bool dhd_pm_notifier_registered = FALSE;
extern int register_pm_notifier(struct notifier_block *nb);
extern int unregister_pm_notifier(struct notifier_block *nb);
#endif /* CONFIG_PM_SLEEP */
/* Request scheduling of the bus rx frame */
static void dhd_sched_rxf(dhd_pub_t *dhdp, void *skb);
static void dhd_os_rxflock(dhd_pub_t *pub);
static void dhd_os_rxfunlock(dhd_pub_t *pub);
/** priv_link is the link between netdev and the dhdif and dhd_info structs. */
typedef struct dhd_dev_priv {
dhd_info_t * dhd; /* cached pointer to dhd_info in netdevice priv */
dhd_if_t * ifp; /* cached pointer to dhd_if in netdevice priv */
int ifidx; /* interface index */
} dhd_dev_priv_t;
#define DHD_DEV_PRIV_SIZE (sizeof(dhd_dev_priv_t))
#define DHD_DEV_PRIV(dev) ((dhd_dev_priv_t *)DEV_PRIV(dev))
#define DHD_DEV_INFO(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->dhd)
#define DHD_DEV_IFP(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->ifp)
#define DHD_DEV_IFIDX(dev) (((dhd_dev_priv_t *)DEV_PRIV(dev))->ifidx)
/** Clear the dhd net_device's private structure. */
static inline void
dhd_dev_priv_clear(struct net_device * dev)
{
dhd_dev_priv_t * dev_priv;
ASSERT(dev != (struct net_device *)NULL);
dev_priv = DHD_DEV_PRIV(dev);
dev_priv->dhd = (dhd_info_t *)NULL;
dev_priv->ifp = (dhd_if_t *)NULL;
dev_priv->ifidx = DHD_BAD_IF;
}
/** Setup the dhd net_device's private structure. */
static inline void
dhd_dev_priv_save(struct net_device * dev, dhd_info_t * dhd, dhd_if_t * ifp,
int ifidx)
{
dhd_dev_priv_t * dev_priv;
ASSERT(dev != (struct net_device *)NULL);
dev_priv = DHD_DEV_PRIV(dev);
dev_priv->dhd = dhd;
dev_priv->ifp = ifp;
dev_priv->ifidx = ifidx;
}
#ifdef PCIE_FULL_DONGLE
/** Dummy objects are defined with state representing bad|down.
* Performance gains from reducing branch conditionals, instruction parallelism,
* dual issue, reducing load shadows, avail of larger pipelines.
* Use DHD_XXX_NULL instead of (dhd_xxx_t *)NULL, whenever an object pointer
* is accessed via the dhd_sta_t.
*/
/* Dummy dhd_info object */
dhd_info_t dhd_info_null = {
#if defined(BCM_GMAC3)
.fwdh = FWDER_NULL,
#endif
.pub = {
.info = &dhd_info_null,
#ifdef DHDTCPACK_SUPPRESS
.tcpack_sup_mode = TCPACK_SUP_REPLACE,
#endif /* DHDTCPACK_SUPPRESS */
.up = FALSE,
.busstate = DHD_BUS_DOWN
}
};
#define DHD_INFO_NULL (&dhd_info_null)
#define DHD_PUB_NULL (&dhd_info_null.pub)
/* Dummy netdevice object */
struct net_device dhd_net_dev_null = {
.reg_state = NETREG_UNREGISTERED
};
#define DHD_NET_DEV_NULL (&dhd_net_dev_null)
/* Dummy dhd_if object */
dhd_if_t dhd_if_null = {
#if defined(BCM_GMAC3)
.fwdh = FWDER_NULL,
#endif
#ifdef WMF
.wmf = { .wmf_enable = TRUE },
#endif
.info = DHD_INFO_NULL,
.net = DHD_NET_DEV_NULL,
.idx = DHD_BAD_IF
};
#define DHD_IF_NULL (&dhd_if_null)
#define DHD_STA_NULL ((dhd_sta_t *)NULL)
/** Interface STA list management. */
/** Fetch the dhd_if object, given the interface index in the dhd. */
static inline dhd_if_t *dhd_get_ifp(dhd_pub_t *dhdp, uint32 ifidx);
/** Alloc/Free a dhd_sta object from the dhd instances' sta_pool. */
static void dhd_sta_free(dhd_pub_t *pub, dhd_sta_t *sta);
static dhd_sta_t * dhd_sta_alloc(dhd_pub_t * dhdp);
/* Delete a dhd_sta or flush all dhd_sta in an interface's sta_list. */
static void dhd_if_del_sta_list(dhd_if_t * ifp);
static void dhd_if_flush_sta(dhd_if_t * ifp);
/* Construct/Destruct a sta pool. */
static int dhd_sta_pool_init(dhd_pub_t *dhdp, int max_sta);
static void dhd_sta_pool_fini(dhd_pub_t *dhdp, int max_sta);
/* Clear the pool of dhd_sta_t objects for built-in type driver */
static void dhd_sta_pool_clear(dhd_pub_t *dhdp, int max_sta);
/* Return interface pointer */
static inline dhd_if_t *dhd_get_ifp(dhd_pub_t *dhdp, uint32 ifidx)
{
ASSERT(ifidx < DHD_MAX_IFS);
if (ifidx >= DHD_MAX_IFS)
return NULL;
return dhdp->info->iflist[ifidx];
}
/** Reset a dhd_sta object and free into the dhd pool. */
static void
dhd_sta_free(dhd_pub_t * dhdp, dhd_sta_t * sta)
{
int prio;
ASSERT((sta != DHD_STA_NULL) && (sta->idx != ID16_INVALID));
ASSERT((dhdp->staid_allocator != NULL) && (dhdp->sta_pool != NULL));
/*
* Flush and free all packets in all flowring's queues belonging to sta.
* Packets in flow ring will be flushed later.
*/
for (prio = 0; prio < (int)NUMPRIO; prio++) {
uint16 flowid = sta->flowid[prio];
if (flowid != FLOWID_INVALID) {
unsigned long flags;
flow_queue_t * queue = dhd_flow_queue(dhdp, flowid);
flow_ring_node_t * flow_ring_node;
#ifdef DHDTCPACK_SUPPRESS
/* Clean tcp_ack_info_tbl in order to prevent access to flushed pkt,
* when there is a newly coming packet from network stack.
*/
dhd_tcpack_info_tbl_clean(dhdp);
#endif /* DHDTCPACK_SUPPRESS */
flow_ring_node = dhd_flow_ring_node(dhdp, flowid);
DHD_FLOWRING_LOCK(flow_ring_node->lock, flags);
flow_ring_node->status = FLOW_RING_STATUS_STA_FREEING;
if (!DHD_FLOW_QUEUE_EMPTY(queue)) {
void * pkt;
while ((pkt = dhd_flow_queue_dequeue(dhdp, queue)) != NULL) {
PKTFREE(dhdp->osh, pkt, TRUE);
}
}
DHD_FLOWRING_UNLOCK(flow_ring_node->lock, flags);
ASSERT(DHD_FLOW_QUEUE_EMPTY(queue));
}
sta->flowid[prio] = FLOWID_INVALID;
}
id16_map_free(dhdp->staid_allocator, sta->idx);
DHD_CUMM_CTR_INIT(&sta->cumm_ctr);
sta->ifp = DHD_IF_NULL; /* dummy dhd_if object */
sta->ifidx = DHD_BAD_IF;
bzero(sta->ea.octet, ETHER_ADDR_LEN);
INIT_LIST_HEAD(&sta->list);
sta->idx = ID16_INVALID; /* implying free */
}
/** Allocate a dhd_sta object from the dhd pool. */
static dhd_sta_t *
dhd_sta_alloc(dhd_pub_t * dhdp)
{
uint16 idx;
dhd_sta_t * sta;
dhd_sta_pool_t * sta_pool;
ASSERT((dhdp->staid_allocator != NULL) && (dhdp->sta_pool != NULL));
idx = id16_map_alloc(dhdp->staid_allocator);
if (idx == ID16_INVALID) {
DHD_ERROR(("%s: cannot get free staid\n", __FUNCTION__));
return DHD_STA_NULL;
}
sta_pool = (dhd_sta_pool_t *)(dhdp->sta_pool);
sta = &sta_pool[idx];
ASSERT((sta->idx == ID16_INVALID) &&
(sta->ifp == DHD_IF_NULL) && (sta->ifidx == DHD_BAD_IF));
DHD_CUMM_CTR_INIT(&sta->cumm_ctr);
sta->idx = idx; /* implying allocated */
return sta;
}
/** Delete all STAs in an interface's STA list. */
static void
dhd_if_del_sta_list(dhd_if_t *ifp)
{
dhd_sta_t *sta, *next;
unsigned long flags;
DHD_IF_STA_LIST_LOCK(ifp, flags);
list_for_each_entry_safe(sta, next, &ifp->sta_list, list) {
#if defined(BCM_GMAC3)
if (ifp->fwdh) {
/* Remove sta from WOFA forwarder. */
fwder_deassoc(ifp->fwdh, (uint16 *)(sta->ea.octet), (wofa_t)sta);
}
#endif /* BCM_GMAC3 */
list_del(&sta->list);
dhd_sta_free(&ifp->info->pub, sta);
}
DHD_IF_STA_LIST_UNLOCK(ifp, flags);
return;
}
/** Router/GMAC3: Flush all station entries in the forwarder's WOFA database. */
static void
dhd_if_flush_sta(dhd_if_t * ifp)
{
#if defined(BCM_GMAC3)
if (ifp && (ifp->fwdh != FWDER_NULL)) {
dhd_sta_t *sta, *next;
unsigned long flags;
DHD_IF_STA_LIST_LOCK(ifp, flags);
list_for_each_entry_safe(sta, next, &ifp->sta_list, list) {
/* Remove any sta entry from WOFA forwarder. */
fwder_flush(ifp->fwdh, (wofa_t)sta);
}
DHD_IF_STA_LIST_UNLOCK(ifp, flags);
}
#endif /* BCM_GMAC3 */
}
/** Construct a pool of dhd_sta_t objects to be used by interfaces. */
static int
dhd_sta_pool_init(dhd_pub_t *dhdp, int max_sta)
{
int idx, prio, sta_pool_memsz;
dhd_sta_t * sta;
dhd_sta_pool_t * sta_pool;
void * staid_allocator;
ASSERT(dhdp != (dhd_pub_t *)NULL);
ASSERT((dhdp->staid_allocator == NULL) && (dhdp->sta_pool == NULL));
/* dhd_sta objects per radio are managed in a table. id#0 reserved. */
staid_allocator = id16_map_init(dhdp->osh, max_sta, 1);
if (staid_allocator == NULL) {
DHD_ERROR(("%s: sta id allocator init failure\n", __FUNCTION__));
return BCME_ERROR;
}
/* Pre allocate a pool of dhd_sta objects (one extra). */
sta_pool_memsz = ((max_sta + 1) * sizeof(dhd_sta_t)); /* skip idx 0 */
sta_pool = (dhd_sta_pool_t *)MALLOC(dhdp->osh, sta_pool_memsz);
if (sta_pool == NULL) {
DHD_ERROR(("%s: sta table alloc failure\n", __FUNCTION__));
id16_map_fini(dhdp->osh, staid_allocator);
return BCME_ERROR;
}
dhdp->sta_pool = sta_pool;
dhdp->staid_allocator = staid_allocator;
/* Initialize all sta(s) for the pre-allocated free pool. */
bzero((uchar *)sta_pool, sta_pool_memsz);
for (idx = max_sta; idx >= 1; idx--) { /* skip sta_pool[0] */
sta = &sta_pool[idx];
sta->idx = id16_map_alloc(staid_allocator);
ASSERT(sta->idx <= max_sta);
}
/* Now place them into the pre-allocated free pool. */
for (idx = 1; idx <= max_sta; idx++) {
sta = &sta_pool[idx];
for (prio = 0; prio < (int)NUMPRIO; prio++) {
sta->flowid[prio] = FLOWID_INVALID; /* Flow rings do not exist */
}
dhd_sta_free(dhdp, sta);
}
return BCME_OK;
}
/** Destruct the pool of dhd_sta_t objects.
* Caller must ensure that no STA objects are currently associated with an if.
*/
static void
dhd_sta_pool_fini(dhd_pub_t *dhdp, int max_sta)
{
dhd_sta_pool_t * sta_pool = (dhd_sta_pool_t *)dhdp->sta_pool;
if (sta_pool) {
int idx;
int sta_pool_memsz = ((max_sta + 1) * sizeof(dhd_sta_t));
for (idx = 1; idx <= max_sta; idx++) {
ASSERT(sta_pool[idx].ifp == DHD_IF_NULL);
ASSERT(sta_pool[idx].idx == ID16_INVALID);
}
MFREE(dhdp->osh, dhdp->sta_pool, sta_pool_memsz);
dhdp->sta_pool = NULL;
}
id16_map_fini(dhdp->osh, dhdp->staid_allocator);
dhdp->staid_allocator = NULL;
}
/* Clear the pool of dhd_sta_t objects for built-in type driver */
static void
dhd_sta_pool_clear(dhd_pub_t *dhdp, int max_sta)
{
int idx, prio, sta_pool_memsz;
dhd_sta_t * sta;
dhd_sta_pool_t * sta_pool;
void *staid_allocator;
if (!dhdp) {
DHD_ERROR(("%s: dhdp is NULL\n", __FUNCTION__));
return;
}
sta_pool = (dhd_sta_pool_t *)dhdp->sta_pool;
staid_allocator = dhdp->staid_allocator;
if (!sta_pool) {
DHD_ERROR(("%s: sta_pool is NULL\n", __FUNCTION__));
return;
}
if (!staid_allocator) {
DHD_ERROR(("%s: staid_allocator is NULL\n", __FUNCTION__));
return;
}
/* clear free pool */
sta_pool_memsz = ((max_sta + 1) * sizeof(dhd_sta_t));
bzero((uchar *)sta_pool, sta_pool_memsz);
/* dhd_sta objects per radio are managed in a table. id#0 reserved. */
id16_map_clear(staid_allocator, max_sta, 1);
/* Initialize all sta(s) for the pre-allocated free pool. */
for (idx = max_sta; idx >= 1; idx--) { /* skip sta_pool[0] */
sta = &sta_pool[idx];
sta->idx = id16_map_alloc(staid_allocator);
ASSERT(sta->idx <= max_sta);
}
/* Now place them into the pre-allocated free pool. */
for (idx = 1; idx <= max_sta; idx++) {
sta = &sta_pool[idx];
for (prio = 0; prio < (int)NUMPRIO; prio++) {
sta->flowid[prio] = FLOWID_INVALID; /* Flow rings do not exist */
}
dhd_sta_free(dhdp, sta);
}
}
/** Find STA with MAC address ea in an interface's STA list. */
dhd_sta_t *
dhd_find_sta(void *pub, int ifidx, void *ea)
{
dhd_sta_t *sta;
dhd_if_t *ifp;
unsigned long flags;
ASSERT(ea != NULL);
ifp = dhd_get_ifp((dhd_pub_t *)pub, ifidx);
if (ifp == NULL)
return DHD_STA_NULL;
DHD_IF_STA_LIST_LOCK(ifp, flags);
list_for_each_entry(sta, &ifp->sta_list, list) {
if (!memcmp(sta->ea.octet, ea, ETHER_ADDR_LEN)) {
DHD_IF_STA_LIST_UNLOCK(ifp, flags);
return sta;
}
}
DHD_IF_STA_LIST_UNLOCK(ifp, flags);
return DHD_STA_NULL;
}
/** Add STA into the interface's STA list. */
dhd_sta_t *
dhd_add_sta(void *pub, int ifidx, void *ea)
{
dhd_sta_t *sta;
dhd_if_t *ifp;
unsigned long flags;
ASSERT(ea != NULL);
ifp = dhd_get_ifp((dhd_pub_t *)pub, ifidx);
if (ifp == NULL)
return DHD_STA_NULL;
sta = dhd_sta_alloc((dhd_pub_t *)pub);
if (sta == DHD_STA_NULL) {
DHD_ERROR(("%s: Alloc failed\n", __FUNCTION__));
return DHD_STA_NULL;
}
memcpy(sta->ea.octet, ea, ETHER_ADDR_LEN);
/* link the sta and the dhd interface */
sta->ifp = ifp;
sta->ifidx = ifidx;
INIT_LIST_HEAD(&sta->list);
DHD_IF_STA_LIST_LOCK(ifp, flags);
list_add_tail(&sta->list, &ifp->sta_list);
#if defined(BCM_GMAC3)
if (ifp->fwdh) {
ASSERT(ISALIGNED(ea, 2));
/* Add sta to WOFA forwarder. */
fwder_reassoc(ifp->fwdh, (uint16 *)ea, (wofa_t)sta);
}
#endif /* BCM_GMAC3 */
DHD_IF_STA_LIST_UNLOCK(ifp, flags);
return sta;
}
/** Delete STA from the interface's STA list. */
void
dhd_del_sta(void *pub, int ifidx, void *ea)
{
dhd_sta_t *sta, *next;
dhd_if_t *ifp;
unsigned long flags;
ASSERT(ea != NULL);
ifp = dhd_get_ifp((dhd_pub_t *)pub, ifidx);
if (ifp == NULL)
return;
DHD_IF_STA_LIST_LOCK(ifp, flags);
list_for_each_entry_safe(sta, next, &ifp->sta_list, list) {
if (!memcmp(sta->ea.octet, ea, ETHER_ADDR_LEN)) {
#if defined(BCM_GMAC3)
if (ifp->fwdh) { /* Found a sta, remove from WOFA forwarder. */
ASSERT(ISALIGNED(ea, 2));
fwder_deassoc(ifp->fwdh, (uint16 *)ea, (wofa_t)sta);
}
#endif /* BCM_GMAC3 */
list_del(&sta->list);
dhd_sta_free(&ifp->info->pub, sta);
}
}
DHD_IF_STA_LIST_UNLOCK(ifp, flags);
#ifdef DHD_L2_FILTER
if (ifp->parp_enable) {
/* clear Proxy ARP cache of specific Ethernet Address */
bcm_l2_filter_arp_table_update(((dhd_pub_t*)pub)->osh, ifp->phnd_arp_table, FALSE,
ea, FALSE, ((dhd_pub_t*)pub)->tickcnt);
}
#endif /* DHD_L2_FILTER */
return;
}
/** Add STA if it doesn't exist. Not reentrant. */
dhd_sta_t*
dhd_findadd_sta(void *pub, int ifidx, void *ea)
{
dhd_sta_t *sta;
sta = dhd_find_sta(pub, ifidx, ea);
if (!sta) {
/* Add entry */
sta = dhd_add_sta(pub, ifidx, ea);
}
return sta;
}
#if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP)
#if !defined(BCM_GMAC3)
static struct list_head *
dhd_sta_list_snapshot(dhd_info_t *dhd, dhd_if_t *ifp, struct list_head *snapshot_list)
{
unsigned long flags;
dhd_sta_t *sta, *snapshot;
INIT_LIST_HEAD(snapshot_list);
DHD_IF_STA_LIST_LOCK(ifp, flags);
list_for_each_entry(sta, &ifp->sta_list, list) {
/* allocate one and add to snapshot */
snapshot = (dhd_sta_t *)MALLOC(dhd->pub.osh, sizeof(dhd_sta_t));
if (snapshot == NULL) {
DHD_ERROR(("%s: Cannot allocate memory\n", __FUNCTION__));
continue;
}
memcpy(snapshot->ea.octet, sta->ea.octet, ETHER_ADDR_LEN);
INIT_LIST_HEAD(&snapshot->list);
list_add_tail(&snapshot->list, snapshot_list);
}
DHD_IF_STA_LIST_UNLOCK(ifp, flags);
return snapshot_list;
}
static void
dhd_sta_list_snapshot_free(dhd_info_t *dhd, struct list_head *snapshot_list)
{
dhd_sta_t *sta, *next;
list_for_each_entry_safe(sta, next, snapshot_list, list) {
list_del(&sta->list);
MFREE(dhd->pub.osh, sta, sizeof(dhd_sta_t));
}
}
#endif /* !BCM_GMAC3 */
#endif /* DHD_IGMP_UCQUERY || DHD_UCAST_UPNP */
#else
static inline void dhd_if_flush_sta(dhd_if_t * ifp) { }
static inline void dhd_if_del_sta_list(dhd_if_t *ifp) {}
static inline int dhd_sta_pool_init(dhd_pub_t *dhdp, int max_sta) { return BCME_OK; }
static inline void dhd_sta_pool_fini(dhd_pub_t *dhdp, int max_sta) {}
static inline void dhd_sta_pool_clear(dhd_pub_t *dhdp, int max_sta) {}
dhd_sta_t *dhd_findadd_sta(void *pub, int ifidx, void *ea) { return NULL; }
void dhd_del_sta(void *pub, int ifidx, void *ea) {}
#endif /* PCIE_FULL_DONGLE */
#if defined(DHD_LB)
#if defined(DHD_LB_TXC) || defined(DHD_LB_RXC)
/**
* dhd_tasklet_schedule - Function that runs in IPI context of the destination
* CPU and schedules a tasklet.
* @tasklet: opaque pointer to the tasklet
*/
static INLINE void
dhd_tasklet_schedule(void *tasklet)
{
tasklet_schedule((struct tasklet_struct *)tasklet);
}
/**
* dhd_tasklet_schedule_on - Executes the passed takslet in a given CPU
* @tasklet: tasklet to be scheduled
* @on_cpu: cpu core id
*
* If the requested cpu is online, then an IPI is sent to this cpu via the
* smp_call_function_single with no wait and the tasklet_schedule function
* will be invoked to schedule the specified tasklet on the requested CPU.
*/
static void
dhd_tasklet_schedule_on(struct tasklet_struct *tasklet, int on_cpu)
{
const int wait = 0;
smp_call_function_single(on_cpu,
dhd_tasklet_schedule, (void *)tasklet, wait);
}
#endif /* DHD_LB_TXC || DHD_LB_RXC */
#if defined(DHD_LB_TXC)
/**
* dhd_lb_tx_compl_dispatch - load balance by dispatching the tx_compl_tasklet
* on another cpu. The tx_compl_tasklet will take care of DMA unmapping and
* freeing the packets placed in the tx_compl workq
*/
void
dhd_lb_tx_compl_dispatch(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
int curr_cpu, on_cpu;
if (dhd->rx_napi_netdev == NULL) {
DHD_ERROR(("%s: dhd->rx_napi_netdev is NULL\n", __FUNCTION__));
return;
}
DHD_LB_STATS_INCR(dhd->txc_sched_cnt);
/*
* If the destination CPU is NOT online or is same as current CPU
* no need to schedule the work
*/
curr_cpu = get_cpu();
put_cpu();
on_cpu = atomic_read(&dhd->tx_compl_cpu);
if ((on_cpu == curr_cpu) || (!cpu_online(on_cpu))) {
dhd_tasklet_schedule(&dhd->tx_compl_tasklet);
} else {
schedule_work(&dhd->tx_compl_dispatcher_work);
}
}
static void dhd_tx_compl_dispatcher_fn(struct work_struct * work)
{
struct dhd_info *dhd =
container_of(work, struct dhd_info, tx_compl_dispatcher_work);
int cpu;
get_online_cpus();
cpu = atomic_read(&dhd->tx_compl_cpu);
if (!cpu_online(cpu))
dhd_tasklet_schedule(&dhd->tx_compl_tasklet);
else
dhd_tasklet_schedule_on(&dhd->tx_compl_tasklet, cpu);
put_online_cpus();
}
#endif /* DHD_LB_TXC */
#if defined(DHD_LB_RXC)
/**
* dhd_lb_rx_compl_dispatch - load balance by dispatching the rx_compl_tasklet
* on another cpu. The rx_compl_tasklet will take care of reposting rx buffers
* in the H2D RxBuffer Post common ring, by using the recycled pktids that were
* placed in the rx_compl workq.
*
* @dhdp: pointer to dhd_pub object
*/
void
dhd_lb_rx_compl_dispatch(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
int curr_cpu, on_cpu;
if (dhd->rx_napi_netdev == NULL) {
DHD_ERROR(("%s: dhd->rx_napi_netdev is NULL\n", __FUNCTION__));
return;
}
DHD_LB_STATS_INCR(dhd->rxc_sched_cnt);
/*
* If the destination CPU is NOT online or is same as current CPU
* no need to schedule the work
*/
curr_cpu = get_cpu();
put_cpu();
on_cpu = atomic_read(&dhd->rx_compl_cpu);
if ((on_cpu == curr_cpu) || (!cpu_online(on_cpu))) {
dhd_tasklet_schedule(&dhd->rx_compl_tasklet);
} else {
schedule_work(&dhd->rx_compl_dispatcher_work);
}
}
static void dhd_rx_compl_dispatcher_fn(struct work_struct * work)
{
struct dhd_info *dhd =
container_of(work, struct dhd_info, rx_compl_dispatcher_work);
int cpu;
get_online_cpus();
cpu = atomic_read(&dhd->tx_compl_cpu);
if (!cpu_online(cpu))
dhd_tasklet_schedule(&dhd->rx_compl_tasklet);
else
dhd_tasklet_schedule_on(&dhd->rx_compl_tasklet, cpu);
put_online_cpus();
}
#endif /* DHD_LB_RXC */
#if defined(DHD_LB_RXP)
/**
* dhd_napi_poll - Load balance napi poll function to process received
* packets and send up the network stack using netif_receive_skb()
*
* @napi: napi object in which context this poll function is invoked
* @budget: number of packets to be processed.
*
* Fetch the dhd_info given the rx_napi_struct. Move all packets from the
* rx_napi_queue into a local rx_process_queue (lock and queue move and unlock).
* Dequeue each packet from head of rx_process_queue, fetch the ifid from the
* packet tag and sendup.
*/
static int
dhd_napi_poll(struct napi_struct *napi, int budget)
{
int ifid;
const int pkt_count = 1;
const int chan = 0;
struct sk_buff * skb;
unsigned long flags;
struct dhd_info *dhd;
int processed = 0;
struct sk_buff_head rx_process_queue;
dhd = container_of(napi, struct dhd_info, rx_napi_struct);
DHD_INFO(("%s napi_queue<%d> budget<%d>\n",
__FUNCTION__, skb_queue_len(&dhd->rx_napi_queue), budget));
__skb_queue_head_init(&rx_process_queue);
/* extract the entire rx_napi_queue into local rx_process_queue */
spin_lock_irqsave(&dhd->rx_napi_queue.lock, flags);
skb_queue_splice_tail_init(&dhd->rx_napi_queue, &rx_process_queue);
spin_unlock_irqrestore(&dhd->rx_napi_queue.lock, flags);
while ((skb = __skb_dequeue(&rx_process_queue)) != NULL) {
OSL_PREFETCH(skb->data);
ifid = DHD_PKTTAG_IFID((dhd_pkttag_fr_t *)PKTTAG(skb));
DHD_INFO(("%s dhd_rx_frame pkt<%p> ifid<%d>\n",
__FUNCTION__, skb, ifid));
dhd_rx_frame(&dhd->pub, ifid, skb, pkt_count, chan);
processed++;
}
DHD_LB_STATS_UPDATE_NAPI_HISTO(&dhd->pub, processed);
DHD_INFO(("%s processed %d\n", __FUNCTION__, processed));
napi_complete(napi);
return budget - 1;
}
/**
* dhd_napi_schedule - Place the napi struct into the current cpus softnet napi
* poll list. This function may be invoked via the smp_call_function_single
* from a remote CPU.
*
* This function will essentially invoke __raise_softirq_irqoff(NET_RX_SOFTIRQ)
* after the napi_struct is added to the softnet data's poll_list
*
* @info: pointer to a dhd_info struct
*/
static void
dhd_napi_schedule(void *info)
{
dhd_info_t *dhd = (dhd_info_t *)info;
DHD_INFO(("%s rx_napi_struct<%p> on cpu<%d>\n",
__FUNCTION__, &dhd->rx_napi_struct, atomic_read(&dhd->rx_napi_cpu)));
/* add napi_struct to softnet data poll list and raise NET_RX_SOFTIRQ */
if (napi_schedule_prep(&dhd->rx_napi_struct)) {
__napi_schedule(&dhd->rx_napi_struct);
DHD_LB_STATS_PERCPU_ARR_INCR(dhd->napi_percpu_run_cnt);
}
/*
* If the rx_napi_struct was already running, then we let it complete
* processing all its packets. The rx_napi_struct may only run on one
* core at a time, to avoid out-of-order handling.
*/
}
/**
* dhd_napi_schedule_on - API to schedule on a desired CPU core a NET_RX_SOFTIRQ
* action after placing the dhd's rx_process napi object in the the remote CPU's
* softnet data's poll_list.
*
* @dhd: dhd_info which has the rx_process napi object
* @on_cpu: desired remote CPU id
*/
static INLINE int
dhd_napi_schedule_on(dhd_info_t *dhd, int on_cpu)
{
int wait = 0; /* asynchronous IPI */
DHD_INFO(("%s dhd<%p> napi<%p> on_cpu<%d>\n",
__FUNCTION__, dhd, &dhd->rx_napi_struct, on_cpu));
if (smp_call_function_single(on_cpu, dhd_napi_schedule, dhd, wait)) {
DHD_ERROR(("%s smp_call_function_single on_cpu<%d> failed\n",
__FUNCTION__, on_cpu));
}
DHD_LB_STATS_INCR(dhd->napi_sched_cnt);
return 0;
}
/*
* Call get_online_cpus/put_online_cpus around dhd_napi_schedule_on
* Why should we do this?
* The candidacy algorithm is run from the call back function
* registered to CPU hotplug notifier. This call back happens from Worker
* context. The dhd_napi_schedule_on is also from worker context.
* Note that both of this can run on two different CPUs at the same time.
* So we can possibly have a window where a given CPUn is being brought
* down from CPUm while we try to run a function on CPUn.
* To prevent this its better have the whole code to execute an SMP
* function under get_online_cpus.
* This function call ensures that hotplug mechanism does not kick-in
* until we are done dealing with online CPUs
* If the hotplug worker is already running, no worries because the
* candidacy algo would then reflect the same in dhd->rx_napi_cpu.
*
* The below mentioned code structure is proposed in
* https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
* for the question
* Q: I need to ensure that a particular cpu is not removed when there is some
* work specific to this cpu is in progress
*
* According to the documentation calling get_online_cpus is NOT required, if
* we are running from tasklet context. Since dhd_rx_napi_dispatcher_fn can
* run from Work Queue context we have to call these functions
*/
static void dhd_rx_napi_dispatcher_fn(struct work_struct * work)
{
struct dhd_info *dhd =
container_of(work, struct dhd_info, rx_napi_dispatcher_work);
int cpu;
get_online_cpus();
cpu = atomic_read(&dhd->rx_napi_cpu);
if (!cpu_online(cpu))
dhd_napi_schedule(dhd);
else
dhd_napi_schedule_on(dhd, cpu);
put_online_cpus();
}
/**
* dhd_lb_rx_napi_dispatch - load balance by dispatching the rx_napi_struct
* to run on another CPU. The rx_napi_struct's poll function will retrieve all
* the packets enqueued into the rx_napi_queue and sendup.
* The producer's rx packet queue is appended to the rx_napi_queue before
* dispatching the rx_napi_struct.
*/
void
dhd_lb_rx_napi_dispatch(dhd_pub_t *dhdp)
{
unsigned long flags;
dhd_info_t *dhd = dhdp->info;
int curr_cpu;
int on_cpu;
if (dhd->rx_napi_netdev == NULL) {
DHD_ERROR(("%s: dhd->rx_napi_netdev is NULL\n", __FUNCTION__));
return;
}
DHD_INFO(("%s append napi_queue<%d> pend_queue<%d>\n", __FUNCTION__,
skb_queue_len(&dhd->rx_napi_queue), skb_queue_len(&dhd->rx_pend_queue)));
/* append the producer's queue of packets to the napi's rx process queue */
spin_lock_irqsave(&dhd->rx_napi_queue.lock, flags);
skb_queue_splice_tail_init(&dhd->rx_pend_queue, &dhd->rx_napi_queue);
spin_unlock_irqrestore(&dhd->rx_napi_queue.lock, flags);
/*
* If the destination CPU is NOT online or is same as current CPU
* no need to schedule the work
*/
curr_cpu = get_cpu();
put_cpu();
on_cpu = atomic_read(&dhd->rx_napi_cpu);
if ((on_cpu == curr_cpu) || (!cpu_online(on_cpu))) {
dhd_napi_schedule(dhd);
} else {
schedule_work(&dhd->rx_napi_dispatcher_work);
}
}
/**
* dhd_lb_rx_pkt_enqueue - Enqueue the packet into the producer's queue
*/
void
dhd_lb_rx_pkt_enqueue(dhd_pub_t *dhdp, void *pkt, int ifidx)
{
dhd_info_t *dhd = dhdp->info;
DHD_INFO(("%s enqueue pkt<%p> ifidx<%d> pend_queue<%d>\n", __FUNCTION__,
pkt, ifidx, skb_queue_len(&dhd->rx_pend_queue)));
DHD_PKTTAG_SET_IFID((dhd_pkttag_fr_t *)PKTTAG(pkt), ifidx);
__skb_queue_tail(&dhd->rx_pend_queue, pkt);
}
#endif /* DHD_LB_RXP */
#endif /* DHD_LB */
static void dhd_memdump_work_handler(struct work_struct * work)
{
struct dhd_info *dhd =
container_of(work, struct dhd_info, dhd_memdump_work.work);
BCM_REFERENCE(dhd);
#ifdef BCMPCIE
dhd_prot_collect_memdump(&dhd->pub);
#endif
}
/** Returns dhd iflist index corresponding the the bssidx provided by apps */
int dhd_bssidx2idx(dhd_pub_t *dhdp, uint32 bssidx)
{
dhd_if_t *ifp;
dhd_info_t *dhd = dhdp->info;
int i;
ASSERT(bssidx < DHD_MAX_IFS);
ASSERT(dhdp);
for (i = 0; i < DHD_MAX_IFS; i++) {
ifp = dhd->iflist[i];
if (ifp && (ifp->bssidx == bssidx)) {
DHD_TRACE(("Index manipulated for %s from %d to %d\n",
ifp->name, bssidx, i));
break;
}
}
return i;
}
static inline int dhd_rxf_enqueue(dhd_pub_t *dhdp, void* skb)
{
uint32 store_idx;
uint32 sent_idx;
if (!skb) {
DHD_ERROR(("dhd_rxf_enqueue: NULL skb!!!\n"));
return BCME_ERROR;
}
dhd_os_rxflock(dhdp);
store_idx = dhdp->store_idx;
sent_idx = dhdp->sent_idx;
if (dhdp->skbbuf[store_idx] != NULL) {
/* Make sure the previous packets are processed */
dhd_os_rxfunlock(dhdp);
#ifdef RXF_DEQUEUE_ON_BUSY
DHD_TRACE(("dhd_rxf_enqueue: pktbuf not consumed %p, store idx %d sent idx %d\n",
skb, store_idx, sent_idx));
return BCME_BUSY;
#else /* RXF_DEQUEUE_ON_BUSY */
DHD_ERROR(("dhd_rxf_enqueue: pktbuf not consumed %p, store idx %d sent idx %d\n",
skb, store_idx, sent_idx));
/* removed msleep here, should use wait_event_timeout if we
* want to give rx frame thread a chance to run
*/
#if defined(WAIT_DEQUEUE)
OSL_SLEEP(1);
#endif
return BCME_ERROR;
#endif /* RXF_DEQUEUE_ON_BUSY */
}
DHD_TRACE(("dhd_rxf_enqueue: Store SKB %p. idx %d -> %d\n",
skb, store_idx, (store_idx + 1) & (MAXSKBPEND - 1)));
dhdp->skbbuf[store_idx] = skb;
dhdp->store_idx = (store_idx + 1) & (MAXSKBPEND - 1);
dhd_os_rxfunlock(dhdp);
return BCME_OK;
}
static inline void* dhd_rxf_dequeue(dhd_pub_t *dhdp)
{
uint32 store_idx;
uint32 sent_idx;
void *skb;
dhd_os_rxflock(dhdp);
store_idx = dhdp->store_idx;
sent_idx = dhdp->sent_idx;
skb = dhdp->skbbuf[sent_idx];
if (skb == NULL) {
dhd_os_rxfunlock(dhdp);
DHD_ERROR(("dhd_rxf_dequeue: Dequeued packet is NULL, store idx %d sent idx %d\n",
store_idx, sent_idx));
return NULL;
}
dhdp->skbbuf[sent_idx] = NULL;
dhdp->sent_idx = (sent_idx + 1) & (MAXSKBPEND - 1);
DHD_TRACE(("dhd_rxf_dequeue: netif_rx_ni(%p), sent idx %d\n",
skb, sent_idx));
dhd_os_rxfunlock(dhdp);
return skb;
}
int dhd_process_cid_mac(dhd_pub_t *dhdp, bool prepost)
{
if (prepost) { /* pre process */
dhd_read_cis(dhdp);
dhd_check_module_cid(dhdp);
dhd_check_module_mac(dhdp);
dhd_set_macaddr_from_file(dhdp);
} else { /* post process */
dhd_write_macaddr(&dhdp->mac);
dhd_clear_cis(dhdp);
}
return 0;
}
#ifdef PKT_FILTER_SUPPORT
#ifndef GAN_LITE_NAT_KEEPALIVE_FILTER
static bool
_turn_on_arp_filter(dhd_pub_t *dhd, int op_mode)
{
bool _apply = FALSE;
/* In case of IBSS mode, apply arp pkt filter */
if (op_mode & DHD_FLAG_IBSS_MODE) {
_apply = TRUE;
goto exit;
}
/* In case of P2P GO or GC, apply pkt filter to pass arp pkt to host */
if ((op_mode & (DHD_FLAG_P2P_GC_MODE | DHD_FLAG_P2P_GO_MODE))) {
_apply = TRUE;
goto exit;
}
exit:
return _apply;
}
#endif /* !GAN_LITE_NAT_KEEPALIVE_FILTER */
void
dhd_set_packet_filter(dhd_pub_t *dhd)
{
int i;
DHD_TRACE(("%s: enter\n", __FUNCTION__));
if (dhd_pkt_filter_enable) {
for (i = 0; i < dhd->pktfilter_count; i++) {
dhd_pktfilter_offload_set(dhd, dhd->pktfilter[i]);
}
}
}
void
dhd_enable_packet_filter(int value, dhd_pub_t *dhd)
{
int i;
DHD_ERROR(("%s: enter, value = %d\n", __FUNCTION__, value));
if ((dhd->op_mode & DHD_FLAG_HOSTAP_MODE) && value) {
DHD_ERROR(("%s: DHD_FLAG_HOSTAP_MODE\n", __FUNCTION__));
return;
}
/* 1 - Enable packet filter, only allow unicast packet to send up */
/* 0 - Disable packet filter */
if (dhd_pkt_filter_enable && (!value ||
(dhd_support_sta_mode(dhd) && !dhd->dhcp_in_progress)))
{
for (i = 0; i < dhd->pktfilter_count; i++) {
#ifndef GAN_LITE_NAT_KEEPALIVE_FILTER
if (value && (i == DHD_ARP_FILTER_NUM) &&
!_turn_on_arp_filter(dhd, dhd->op_mode)) {
DHD_TRACE(("Do not turn on ARP white list pkt filter:"
"val %d, cnt %d, op_mode 0x%x\n",
value, i, dhd->op_mode));
continue;
}
#endif /* !GAN_LITE_NAT_KEEPALIVE_FILTER */
dhd_pktfilter_offload_enable(dhd, dhd->pktfilter[i],
value, dhd_master_mode);
}
}
}
int
dhd_packet_filter_add_remove(dhd_pub_t *dhdp, int add_remove, int num)
{
char *filterp = NULL;
int filter_id = 0;
switch (num) {
case DHD_BROADCAST_FILTER_NUM:
filterp = "101 0 0 0 0xFFFFFFFFFFFF 0xFFFFFFFFFFFF";
filter_id = 101;
break;
case DHD_MULTICAST4_FILTER_NUM:
filter_id = 102;
if (FW_SUPPORTED(dhdp, pf6)) {
if (dhdp->pktfilter[num] != NULL) {
dhd_pktfilter_offload_delete(dhdp, filter_id);
dhdp->pktfilter[num] = NULL;
}
if (!add_remove) {
filterp = DISCARD_IPV4_MCAST;
add_remove = 1;
break;
}
}
filterp = "102 0 0 0 0xFFFFFF 0x01005E";
break;
case DHD_MULTICAST6_FILTER_NUM:
filter_id = 103;
if (FW_SUPPORTED(dhdp, pf6)) {
if (dhdp->pktfilter[num] != NULL) {
dhd_pktfilter_offload_delete(dhdp, filter_id);
dhdp->pktfilter[num] = NULL;
}
if (!add_remove) {
filterp = DISCARD_IPV6_MCAST;
add_remove = 1;
break;
}
}
filterp = "103 0 0 0 0xFFFF 0x3333";
break;
case DHD_MDNS_FILTER_NUM:
filterp = "104 0 0 0 0xFFFFFFFFFFFF 0x01005E0000FB";
filter_id = 104;
break;
case DHD_ARP_FILTER_NUM:
filterp = "105 0 0 12 0xFFFF 0x0806";
filter_id = 105;
break;
case DHD_BROADCAST_ARP_FILTER_NUM:
filterp = "106 0 0 0 0xFFFFFFFFFFFF0000000000000806"
" 0xFFFFFFFFFFFF0000000000000806";
filter_id = 106;
break;
default:
return -EINVAL;
}
/* Add filter */
if (add_remove) {
dhdp->pktfilter[num] = filterp;
dhd_pktfilter_offload_set(dhdp, dhdp->pktfilter[num]);
} else { /* Delete filter */
if (dhdp->pktfilter[num]) {
dhd_pktfilter_offload_delete(dhdp, filter_id);
dhdp->pktfilter[num] = NULL;
}
}
return 0;
}
#endif /* PKT_FILTER_SUPPORT */
static int dhd_set_suspend(int value, dhd_pub_t *dhd)
{
#ifndef SUPPORT_PM2_ONLY
int power_mode = PM_MAX;
#endif /* SUPPORT_PM2_ONLY */
#ifdef SUPPORT_SENSORHUB
shub_control_t shub_ctl;
#endif /* SUPPORT_SENSORHUB */
/* wl_pkt_filter_enable_t enable_parm; */
char iovbuf[32];
int bcn_li_dtim = 0; /* Default bcn_li_dtim in resume mode is 0 */
#ifdef DHD_USE_EARLYSUSPEND
#ifdef CUSTOM_BCN_TIMEOUT_IN_SUSPEND
int bcn_timeout = 0;
#endif /* CUSTOM_BCN_TIMEOUT_IN_SUSPEND */
#ifdef CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND
int roam_time_thresh = 0; /* (ms) */
#endif /* CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND */
#ifndef ENABLE_FW_ROAM_SUSPEND
uint roamvar = 1;
#endif /* ENABLE_FW_ROAM_SUSPEND */
#ifdef ENABLE_BCN_LI_BCN_WAKEUP
int bcn_li_bcn;
#endif /* ENABLE_BCN_LI_BCN_WAKEUP */
uint nd_ra_filter = 0;
int ret = 0;
#endif /* DHD_USE_EARLYSUSPEND */
#ifdef PASS_ALL_MCAST_PKTS
struct dhd_info *dhdinfo;
uint32 allmulti;
uint i;
#endif /* PASS_ALL_MCAST_PKTS */
#ifdef DYNAMIC_SWOOB_DURATION
#ifndef CUSTOM_INTR_WIDTH
#define CUSTOM_INTR_WIDTH 100
int intr_width = 0;
#endif /* CUSTOM_INTR_WIDTH */
#endif /* DYNAMIC_SWOOB_DURATION */
if (!dhd)
return -ENODEV;
#ifdef PASS_ALL_MCAST_PKTS
dhdinfo = dhd->info;
#endif /* PASS_ALL_MCAST_PKTS */
DHD_TRACE(("%s: enter, value = %d in_suspend=%d\n",
__FUNCTION__, value, dhd->in_suspend));
dhd_suspend_lock(dhd);
#ifdef CUSTOM_SET_CPUCORE
DHD_TRACE(("%s set cpucore(suspend%d)\n", __FUNCTION__, value));
/* set specific cpucore */
dhd_set_cpucore(dhd, TRUE);
#endif /* CUSTOM_SET_CPUCORE */
if (dhd->up) {
if (value && dhd->in_suspend) {
#ifdef PKT_FILTER_SUPPORT
dhd->early_suspended = 1;
#endif
/* Kernel suspended */
DHD_ERROR(("%s: force extra Suspend setting \n", __FUNCTION__));
#ifdef SUPPORT_SENSORHUB
shub_ctl.enable = 1;
shub_ctl.cmd = 0x000;
shub_ctl.op_mode = 1;
shub_ctl.interval = 0;
if (dhd->info->shub_enable == 1) {
bcm_mkiovar("shub_msreq", (char *)&shub_ctl,
sizeof(shub_ctl), iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s SensorHub MS start: failed %d\n",
__FUNCTION__, ret));
}
}
#endif /* SUPPORT_SENSORHUB */
#ifndef SUPPORT_PM2_ONLY
dhd_wl_ioctl_cmd(dhd, WLC_SET_PM, (char *)&power_mode,
sizeof(power_mode), TRUE, 0);
#endif /* SUPPORT_PM2_ONLY */
#ifdef PKT_FILTER_SUPPORT
/* Enable packet filter,
* only allow unicast packet to send up
*/
dhd_enable_packet_filter(1, dhd);
#endif /* PKT_FILTER_SUPPORT */
#ifdef PASS_ALL_MCAST_PKTS
allmulti = 0;
bcm_mkiovar("allmulti", (char *)&allmulti, 4,
iovbuf, sizeof(iovbuf));
for (i = 0; i < DHD_MAX_IFS; i++) {
if (dhdinfo->iflist[i] && dhdinfo->iflist[i]->net)
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, i);
}
#endif /* PASS_ALL_MCAST_PKTS */
/* If DTIM skip is set up as default, force it to wake
* each third DTIM for better power savings. Note that
* one side effect is a chance to miss BC/MC packet.
*/
#ifdef WLTDLS
/* Do not set bcn_li_ditm on WFD mode */
if (dhd->tdls_mode) {
bcn_li_dtim = 0;
} else
#endif /* WLTDLS */
bcn_li_dtim = dhd_get_suspend_bcn_li_dtim(dhd);
bcm_mkiovar("bcn_li_dtim", (char *)&bcn_li_dtim,
4, iovbuf, sizeof(iovbuf));
if (dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf),
TRUE, 0) < 0)
DHD_ERROR(("%s: set dtim failed\n", __FUNCTION__));
#ifdef DHD_USE_EARLYSUSPEND
#ifdef CUSTOM_BCN_TIMEOUT_IN_SUSPEND
bcn_timeout = CUSTOM_BCN_TIMEOUT_IN_SUSPEND;
bcm_mkiovar("bcn_timeout", (char *)&bcn_timeout,
4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* CUSTOM_BCN_TIMEOUT_IN_SUSPEND */
#ifdef CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND
roam_time_thresh = CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND;
bcm_mkiovar("roam_time_thresh", (char *)&roam_time_thresh,
4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND */
#ifndef ENABLE_FW_ROAM_SUSPEND
/* Disable firmware roaming during suspend */
bcm_mkiovar("roam_off", (char *)&roamvar, 4,
iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* ENABLE_FW_ROAM_SUSPEND */
#ifdef ENABLE_BCN_LI_BCN_WAKEUP
bcn_li_bcn = 0;
bcm_mkiovar("bcn_li_bcn", (char *)&bcn_li_bcn,
4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* ENABLE_BCN_LI_BCN_WAKEUP */
if (FW_SUPPORTED(dhd, ndoe)) {
/* enable IPv6 RA filter in firmware during suspend */
nd_ra_filter = 1;
bcm_mkiovar("nd_ra_filter_enable", (char *)&nd_ra_filter, 4,
iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0)
DHD_ERROR(("failed to set nd_ra_filter (%d)\n",
ret));
}
#ifdef DYNAMIC_SWOOB_DURATION
intr_width = CUSTOM_INTR_WIDTH;
bcm_mkiovar("bus:intr_width", (char *)&intr_width, 4,
iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("failed to set intr_width (%d)\n", ret));
}
#endif /* DYNAMIC_SWOOB_DURATION */
#endif /* DHD_USE_EARLYSUSPEND */
} else {
#ifdef PKT_FILTER_SUPPORT
dhd->early_suspended = 0;
#endif
/* Kernel resumed */
DHD_ERROR(("%s: Remove extra suspend setting \n", __FUNCTION__));
#ifdef SUPPORT_SENSORHUB
shub_ctl.enable = 1;
shub_ctl.cmd = 0x000;
shub_ctl.op_mode = 0;
shub_ctl.interval = 0;
if (dhd->info->shub_enable == 1) {
bcm_mkiovar("shub_msreq", (char *)&shub_ctl,
sizeof(shub_ctl), iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s SensorHub MS stop: failed %d\n",
__FUNCTION__, ret));
}
}
#endif /* SUPPORT_SENSORHUB */
#ifdef DYNAMIC_SWOOB_DURATION
intr_width = 0;
bcm_mkiovar("bus:intr_width", (char *)&intr_width, 4,
iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("failed to set intr_width (%d)\n", ret));
}
#endif /* DYNAMIC_SWOOB_DURATION */
#ifndef SUPPORT_PM2_ONLY
power_mode = PM_FAST;
dhd_wl_ioctl_cmd(dhd, WLC_SET_PM, (char *)&power_mode,
sizeof(power_mode), TRUE, 0);
#endif /* SUPPORT_PM2_ONLY */
#ifdef PKT_FILTER_SUPPORT
/* disable pkt filter */
dhd_enable_packet_filter(0, dhd);
#endif /* PKT_FILTER_SUPPORT */
#ifdef PASS_ALL_MCAST_PKTS
allmulti = 1;
bcm_mkiovar("allmulti", (char *)&allmulti, 4,
iovbuf, sizeof(iovbuf));
for (i = 0; i < DHD_MAX_IFS; i++) {
if (dhdinfo->iflist[i] && dhdinfo->iflist[i]->net)
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, i);
}
#endif /* PASS_ALL_MCAST_PKTS */
/* restore pre-suspend setting for dtim_skip */
bcm_mkiovar("bcn_li_dtim", (char *)&bcn_li_dtim,
4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#ifdef DHD_USE_EARLYSUSPEND
#ifdef CUSTOM_BCN_TIMEOUT_IN_SUSPEND
bcn_timeout = CUSTOM_BCN_TIMEOUT;
bcm_mkiovar("bcn_timeout", (char *)&bcn_timeout,
4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* CUSTOM_BCN_TIMEOUT_IN_SUSPEND */
#ifdef CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND
roam_time_thresh = 2000;
bcm_mkiovar("roam_time_thresh", (char *)&roam_time_thresh,
4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* CUSTOM_ROAM_TIME_THRESH_IN_SUSPEND */
#ifndef ENABLE_FW_ROAM_SUSPEND
roamvar = dhd_roam_disable;
bcm_mkiovar("roam_off", (char *)&roamvar, 4, iovbuf,
sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* ENABLE_FW_ROAM_SUSPEND */
#ifdef ENABLE_BCN_LI_BCN_WAKEUP
bcn_li_bcn = 1;
bcm_mkiovar("bcn_li_bcn", (char *)&bcn_li_bcn,
4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* ENABLE_BCN_LI_BCN_WAKEUP */
if (FW_SUPPORTED(dhd, ndoe)) {
/* disable IPv6 RA filter in firmware during suspend */
nd_ra_filter = 0;
bcm_mkiovar("nd_ra_filter_enable", (char *)&nd_ra_filter, 4,
iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0)
DHD_ERROR(("failed to set nd_ra_filter (%d)\n",
ret));
}
#endif /* DHD_USE_EARLYSUSPEND */
}
}
dhd_suspend_unlock(dhd);
return 0;
}
static int dhd_suspend_resume_helper(struct dhd_info *dhd, int val, int force)
{
dhd_pub_t *dhdp = &dhd->pub;
int ret = 0;
DHD_OS_WAKE_LOCK(dhdp);
DHD_PERIM_LOCK(dhdp);
/* Set flag when early suspend was called */
dhdp->in_suspend = val;
if ((force || !dhdp->suspend_disable_flag) &&
dhd_support_sta_mode(dhdp))
{
ret = dhd_set_suspend(val, dhdp);
}
DHD_PERIM_UNLOCK(dhdp);
DHD_OS_WAKE_UNLOCK(dhdp);
return ret;
}
#if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND)
static void dhd_early_suspend(struct early_suspend *h)
{
struct dhd_info *dhd = container_of(h, struct dhd_info, early_suspend);
DHD_TRACE_HW4(("%s: enter\n", __FUNCTION__));
if (dhd)
dhd_suspend_resume_helper(dhd, 1, 0);
}
static void dhd_late_resume(struct early_suspend *h)
{
struct dhd_info *dhd = container_of(h, struct dhd_info, early_suspend);
DHD_TRACE_HW4(("%s: enter\n", __FUNCTION__));
if (dhd)
dhd_suspend_resume_helper(dhd, 0, 0);
}
#endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */
/*
* Generalized timeout mechanism. Uses spin sleep with exponential back-off until
* the sleep time reaches one jiffy, then switches over to task delay. Usage:
*
* dhd_timeout_start(&tmo, usec);
* while (!dhd_timeout_expired(&tmo))
* if (poll_something())
* break;
* if (dhd_timeout_expired(&tmo))
* fatal();
*/
void
dhd_timeout_start(dhd_timeout_t *tmo, uint usec)
{
tmo->limit = usec;
tmo->increment = 0;
tmo->elapsed = 0;
tmo->tick = jiffies_to_usecs(1);
}
int
dhd_timeout_expired(dhd_timeout_t *tmo)
{
/* Does nothing the first call */
if (tmo->increment == 0) {
tmo->increment = 1;
return 0;
}
if (tmo->elapsed >= tmo->limit)
return 1;
/* Add the delay that's about to take place */
tmo->elapsed += tmo->increment;
if ((!CAN_SLEEP()) || tmo->increment < tmo->tick) {
OSL_DELAY(tmo->increment);
tmo->increment *= 2;
if (tmo->increment > tmo->tick)
tmo->increment = tmo->tick;
} else {
wait_queue_head_t delay_wait;
DECLARE_WAITQUEUE(wait, current);
init_waitqueue_head(&delay_wait);
add_wait_queue(&delay_wait, &wait);
set_current_state(TASK_INTERRUPTIBLE);
(void)schedule_timeout(1);
remove_wait_queue(&delay_wait, &wait);
set_current_state(TASK_RUNNING);
}
return 0;
}
int
dhd_net2idx(dhd_info_t *dhd, struct net_device *net)
{
int i = 0;
if (!dhd) {
DHD_ERROR(("%s : DHD_BAD_IF return\n", __FUNCTION__));
return DHD_BAD_IF;
}
while (i < DHD_MAX_IFS) {
if (dhd->iflist[i] && dhd->iflist[i]->net && (dhd->iflist[i]->net == net))
return i;
i++;
}
return DHD_BAD_IF;
}
struct net_device * dhd_idx2net(void *pub, int ifidx)
{
struct dhd_pub *dhd_pub = (struct dhd_pub *)pub;
struct dhd_info *dhd_info;
if (!dhd_pub || ifidx < 0 || ifidx >= DHD_MAX_IFS)
return NULL;
dhd_info = dhd_pub->info;
if (dhd_info && dhd_info->iflist[ifidx])
return dhd_info->iflist[ifidx]->net;
return NULL;
}
int
dhd_ifname2idx(dhd_info_t *dhd, char *name)
{
int i = DHD_MAX_IFS;
ASSERT(dhd);
if (name == NULL || *name == '\0')
return 0;
while (--i > 0)
if (dhd->iflist[i] && !strncmp(dhd->iflist[i]->dngl_name, name, IFNAMSIZ))
break;
DHD_TRACE(("%s: return idx %d for \"%s\"\n", __FUNCTION__, i, name));
return i; /* default - the primary interface */
}
char *
dhd_ifname(dhd_pub_t *dhdp, int ifidx)
{
dhd_info_t *dhd = (dhd_info_t *)dhdp->info;
ASSERT(dhd);
if (ifidx < 0 || ifidx >= DHD_MAX_IFS) {
DHD_ERROR(("%s: ifidx %d out of range\n", __FUNCTION__, ifidx));
return "<if_bad>";
}
if (dhd->iflist[ifidx] == NULL) {
DHD_ERROR(("%s: null i/f %d\n", __FUNCTION__, ifidx));
return "<if_null>";
}
if (dhd->iflist[ifidx]->net)
return dhd->iflist[ifidx]->net->name;
return "<if_none>";
}
uint8 *
dhd_bssidx2bssid(dhd_pub_t *dhdp, int idx)
{
int i;
dhd_info_t *dhd = (dhd_info_t *)dhdp;
ASSERT(dhd);
for (i = 0; i < DHD_MAX_IFS; i++)
if (dhd->iflist[i] && dhd->iflist[i]->bssidx == idx)
return dhd->iflist[i]->mac_addr;
return NULL;
}
static void
_dhd_set_multicast_list(dhd_info_t *dhd, int ifidx)
{
struct net_device *dev;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)
struct netdev_hw_addr *ha;
#else
struct dev_mc_list *mclist;
#endif
uint32 allmulti, cnt;
wl_ioctl_t ioc;
char *buf, *bufp;
uint buflen;
int ret;
if (!dhd->iflist[ifidx]) {
DHD_ERROR(("%s : dhd->iflist[%d] was NULL\n", __FUNCTION__, ifidx));
return;
}
dev = dhd->iflist[ifidx]->net;
if (!dev)
return;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)
netif_addr_lock_bh(dev);
#endif /* LINUX >= 2.6.27 */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)
cnt = netdev_mc_count(dev);
#else
cnt = dev->mc_count;
#endif /* LINUX >= 2.6.35 */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)
netif_addr_unlock_bh(dev);
#endif /* LINUX >= 2.6.27 */
/* Determine initial value of allmulti flag */
allmulti = (dev->flags & IFF_ALLMULTI) ? TRUE : FALSE;
#ifdef PASS_ALL_MCAST_PKTS
#ifdef PKT_FILTER_SUPPORT
if (!dhd->pub.early_suspended)
#endif /* PKT_FILTER_SUPPORT */
allmulti = TRUE;
#endif /* PASS_ALL_MCAST_PKTS */
/* Send down the multicast list first. */
buflen = sizeof("mcast_list") + sizeof(cnt) + (cnt * ETHER_ADDR_LEN);
if (!(bufp = buf = MALLOC(dhd->pub.osh, buflen))) {
DHD_ERROR(("%s: out of memory for mcast_list, cnt %d\n",
dhd_ifname(&dhd->pub, ifidx), cnt));
return;
}
strncpy(bufp, "mcast_list", buflen - 1);
bufp[buflen - 1] = '\0';
bufp += strlen("mcast_list") + 1;
cnt = htol32(cnt);
memcpy(bufp, &cnt, sizeof(cnt));
bufp += sizeof(cnt);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)
netif_addr_lock_bh(dev);
#endif /* LINUX >= 2.6.27 */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35)
netdev_for_each_mc_addr(ha, dev) {
if (!cnt)
break;
memcpy(bufp, ha->addr, ETHER_ADDR_LEN);
bufp += ETHER_ADDR_LEN;
cnt--;
}
#else /* LINUX < 2.6.35 */
for (mclist = dev->mc_list; (mclist && (cnt > 0));
cnt--, mclist = mclist->next) {
memcpy(bufp, (void *)mclist->dmi_addr, ETHER_ADDR_LEN);
bufp += ETHER_ADDR_LEN;
}
#endif /* LINUX >= 2.6.35 */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)
netif_addr_unlock_bh(dev);
#endif /* LINUX >= 2.6.27 */
memset(&ioc, 0, sizeof(ioc));
ioc.cmd = WLC_SET_VAR;
ioc.buf = buf;
ioc.len = buflen;
ioc.set = TRUE;
ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len);
if (ret < 0) {
DHD_ERROR(("%s: set mcast_list failed, cnt %d\n",
dhd_ifname(&dhd->pub, ifidx), cnt));
allmulti = cnt ? TRUE : allmulti;
}
MFREE(dhd->pub.osh, buf, buflen);
/* Now send the allmulti setting. This is based on the setting in the
* net_device flags, but might be modified above to be turned on if we
* were trying to set some addresses and dongle rejected it...
*/
buflen = sizeof("allmulti") + sizeof(allmulti);
if (!(buf = MALLOC(dhd->pub.osh, buflen))) {
DHD_ERROR(("%s: out of memory for allmulti\n", dhd_ifname(&dhd->pub, ifidx)));
return;
}
allmulti = htol32(allmulti);
if (!bcm_mkiovar("allmulti", (void*)&allmulti, sizeof(allmulti), buf, buflen)) {
DHD_ERROR(("%s: mkiovar failed for allmulti, datalen %d buflen %u\n",
dhd_ifname(&dhd->pub, ifidx), (int)sizeof(allmulti), buflen));
MFREE(dhd->pub.osh, buf, buflen);
return;
}
memset(&ioc, 0, sizeof(ioc));
ioc.cmd = WLC_SET_VAR;
ioc.buf = buf;
ioc.len = buflen;
ioc.set = TRUE;
ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len);
if (ret < 0) {
DHD_ERROR(("%s: set allmulti %d failed\n",
dhd_ifname(&dhd->pub, ifidx), ltoh32(allmulti)));
}
MFREE(dhd->pub.osh, buf, buflen);
/* Finally, pick up the PROMISC flag as well, like the NIC driver does */
allmulti = (dev->flags & IFF_PROMISC) ? TRUE : FALSE;
allmulti = htol32(allmulti);
memset(&ioc, 0, sizeof(ioc));
ioc.cmd = WLC_SET_PROMISC;
ioc.buf = &allmulti;
ioc.len = sizeof(allmulti);
ioc.set = TRUE;
ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len);
if (ret < 0) {
DHD_ERROR(("%s: set promisc %d failed\n",
dhd_ifname(&dhd->pub, ifidx), ltoh32(allmulti)));
}
}
int
_dhd_set_mac_address(dhd_info_t *dhd, int ifidx, uint8 *addr)
{
char buf[32];
wl_ioctl_t ioc;
int ret;
if (!bcm_mkiovar("cur_etheraddr", (char*)addr, ETHER_ADDR_LEN, buf, 32)) {
DHD_ERROR(("%s: mkiovar failed for cur_etheraddr\n", dhd_ifname(&dhd->pub, ifidx)));
return -1;
}
memset(&ioc, 0, sizeof(ioc));
ioc.cmd = WLC_SET_VAR;
ioc.buf = buf;
ioc.len = 32;
ioc.set = TRUE;
ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len);
if (ret < 0) {
DHD_ERROR(("%s: set cur_etheraddr failed\n", dhd_ifname(&dhd->pub, ifidx)));
} else {
memcpy(dhd->iflist[ifidx]->net->dev_addr, addr, ETHER_ADDR_LEN);
if (ifidx == 0)
memcpy(dhd->pub.mac.octet, addr, ETHER_ADDR_LEN);
}
return ret;
}
#ifdef SOFTAP
extern struct net_device *ap_net_dev;
extern tsk_ctl_t ap_eth_ctl; /* ap netdev heper thread ctl */
#endif
#ifdef DHD_PSTA
/* Get psta/psr configuration configuration */
int dhd_get_psta_mode(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
return (int)dhd->psta_mode;
}
/* Set psta/psr configuration configuration */
int dhd_set_psta_mode(dhd_pub_t *dhdp, uint32 val)
{
dhd_info_t *dhd = dhdp->info;
dhd->psta_mode = val;
return 0;
}
#endif /* DHD_PSTA */
static void
dhd_ifadd_event_handler(void *handle, void *event_info, u8 event)
{
dhd_info_t *dhd = handle;
dhd_if_event_t *if_event = event_info;
struct net_device *ndev;
int ifidx, bssidx;
int ret;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
struct wireless_dev *vwdev, *primary_wdev;
struct net_device *primary_ndev;
#endif /* OEM_ANDROID && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0)) */
if (event != DHD_WQ_WORK_IF_ADD) {
DHD_ERROR(("%s: unexpected event \n", __FUNCTION__));
return;
}
if (!dhd) {
DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__));
return;
}
if (!if_event) {
DHD_ERROR(("%s: event data is null \n", __FUNCTION__));
return;
}
dhd_net_if_lock_local(dhd);
DHD_OS_WAKE_LOCK(&dhd->pub);
DHD_PERIM_LOCK(&dhd->pub);
ifidx = if_event->event.ifidx;
bssidx = if_event->event.bssidx;
DHD_TRACE(("%s: registering if with ifidx %d\n", __FUNCTION__, ifidx));
/* This path is for non-android case */
/* The interface name in host and in event msg are same */
/* if name in event msg is used to create dongle if list on host */
ndev = dhd_allocate_if(&dhd->pub, ifidx, if_event->name,
if_event->mac, bssidx, TRUE, if_event->name);
if (!ndev) {
DHD_ERROR(("%s: net device alloc failed \n", __FUNCTION__));
goto done;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0))
vwdev = kzalloc(sizeof(*vwdev), GFP_KERNEL);
if (unlikely(!vwdev)) {
DHD_ERROR(("Could not allocate wireless device\n"));
goto done;
}
primary_ndev = dhd->pub.info->iflist[0]->net;
primary_wdev = ndev_to_wdev(primary_ndev);
vwdev->wiphy = primary_wdev->wiphy;
vwdev->iftype = if_event->event.role;
vwdev->netdev = ndev;
ndev->ieee80211_ptr = vwdev;
SET_NETDEV_DEV(ndev, wiphy_dev(vwdev->wiphy));
DHD_ERROR(("virtual interface(%s) is created\n", if_event->name));
#endif /* OEM_ANDROID && (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 11, 0)) */
DHD_PERIM_UNLOCK(&dhd->pub);
ret = dhd_register_if(&dhd->pub, ifidx, TRUE);
DHD_PERIM_LOCK(&dhd->pub);
if (ret != BCME_OK) {
DHD_ERROR(("%s: dhd_register_if failed\n", __FUNCTION__));
dhd_remove_if(&dhd->pub, ifidx, TRUE);
goto done;
}
#ifdef PCIE_FULL_DONGLE
/* Turn on AP isolation in the firmware for interfaces operating in AP mode */
if (FW_SUPPORTED((&dhd->pub), ap) && (if_event->event.role != WLC_E_IF_ROLE_STA)) {
char iovbuf[WLC_IOCTL_SMLEN];
uint32 var_int = 1;
memset(iovbuf, 0, sizeof(iovbuf));
bcm_mkiovar("ap_isolate", (char *)&var_int, 4, iovbuf, sizeof(iovbuf));
ret = dhd_wl_ioctl_cmd(&dhd->pub, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, ifidx);
if (ret != BCME_OK) {
DHD_ERROR(("%s: Failed to set ap_isolate to dongle\n", __FUNCTION__));
dhd_remove_if(&dhd->pub, ifidx, TRUE);
}
}
#endif /* PCIE_FULL_DONGLE */
done:
MFREE(dhd->pub.osh, if_event, sizeof(dhd_if_event_t));
DHD_PERIM_UNLOCK(&dhd->pub);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
dhd_net_if_unlock_local(dhd);
}
static void
dhd_ifdel_event_handler(void *handle, void *event_info, u8 event)
{
dhd_info_t *dhd = handle;
int ifidx;
dhd_if_event_t *if_event = event_info;
if (event != DHD_WQ_WORK_IF_DEL) {
DHD_ERROR(("%s: unexpected event \n", __FUNCTION__));
return;
}
if (!dhd) {
DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__));
return;
}
if (!if_event) {
DHD_ERROR(("%s: event data is null \n", __FUNCTION__));
return;
}
dhd_net_if_lock_local(dhd);
DHD_OS_WAKE_LOCK(&dhd->pub);
DHD_PERIM_LOCK(&dhd->pub);
ifidx = if_event->event.ifidx;
DHD_TRACE(("Removing interface with idx %d\n", ifidx));
DHD_PERIM_UNLOCK(&dhd->pub);
dhd_remove_if(&dhd->pub, ifidx, TRUE);
DHD_PERIM_LOCK(&dhd->pub);
MFREE(dhd->pub.osh, if_event, sizeof(dhd_if_event_t));
DHD_PERIM_UNLOCK(&dhd->pub);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
dhd_net_if_unlock_local(dhd);
}
static void
dhd_set_mac_addr_handler(void *handle, void *event_info, u8 event)
{
dhd_info_t *dhd = handle;
dhd_if_t *ifp = NULL;
int ifidx = (int)((long int)event_info);
if (event != DHD_WQ_WORK_SET_MAC) {
DHD_ERROR(("%s: unexpected event \n", __FUNCTION__));
}
if (!dhd) {
DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__));
return;
}
dhd_net_if_lock_local(dhd);
DHD_OS_WAKE_LOCK(&dhd->pub);
DHD_PERIM_LOCK(&dhd->pub);
ifp = dhd->iflist[ifidx];
if (ifp == NULL || !dhd->pub.up) {
DHD_ERROR(("%s: interface info not available/down \n", __FUNCTION__));
goto done;
}
#if defined(SOFTAP) && defined(USE_IW)
{
unsigned long flags;
DHD_GENERAL_LOCK(&dhd->pub, flags);
if (ap_net_dev != NULL) {
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
DHD_ERROR(("attempt to set MAC for %s in AP Mode, blocked. \n",
ifp->net->name));
goto done;
}
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
}
#endif /* SOFTAP && USE_IW */
DHD_ERROR(("%s: MACID is overwritten\n", __FUNCTION__));
ifp->set_macaddress = FALSE;
if (_dhd_set_mac_address(dhd, ifp->idx, ifp->mac_addr) == 0)
DHD_INFO(("%s: MACID is overwritten\n", __FUNCTION__));
else
DHD_ERROR(("%s: _dhd_set_mac_address() failed\n", __FUNCTION__));
done:
DHD_PERIM_UNLOCK(&dhd->pub);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
dhd_net_if_unlock_local(dhd);
}
static void
dhd_set_mcast_list_handler(void *handle, void *event_info, u8 event)
{
dhd_info_t *dhd = handle;
dhd_if_t *ifp = NULL;
int ifidx = (int)((long int)event_info);
if (event != DHD_WQ_WORK_SET_MCAST_LIST) {
DHD_ERROR(("%s: unexpected event \n", __FUNCTION__));
return;
}
if (!dhd) {
DHD_ERROR(("%s: dhd info not available \n", __FUNCTION__));
return;
}
dhd_net_if_lock_local(dhd);
DHD_OS_WAKE_LOCK(&dhd->pub);
DHD_PERIM_LOCK(&dhd->pub);
ifp = dhd->iflist[ifidx];
if (ifp == NULL || !dhd->pub.up) {
DHD_ERROR(("%s: interface info not available/down \n", __FUNCTION__));
goto done;
}
#if defined(SOFTAP) && defined(USE_IW)
{
unsigned long flags;
DHD_GENERAL_LOCK(&dhd->pub, flags);
if (ap_net_dev != NULL) {
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
DHD_ERROR(("set MULTICAST list for %s in AP Mode, blocked. \n",
ifp->net->name));
ifp->set_multicast = FALSE;
goto done;
}
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
}
#endif /* SOFTAP && USE_IW */
_dhd_set_multicast_list(dhd, ifidx);
DHD_INFO(("%s: set multicast list for if %d\n", __FUNCTION__, ifidx));
done:
DHD_PERIM_UNLOCK(&dhd->pub);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
dhd_net_if_unlock_local(dhd);
}
static int
dhd_set_mac_address(struct net_device *dev, void *addr)
{
int ret = 0;
dhd_info_t *dhd = DHD_DEV_INFO(dev);
struct sockaddr *sa = (struct sockaddr *)addr;
int ifidx;
dhd_if_t *dhdif;
ifidx = dhd_net2idx(dhd, dev);
if (ifidx == DHD_BAD_IF)
return -1;
dhdif = dhd->iflist[ifidx];
dhd_net_if_lock_local(dhd);
memcpy(dhdif->mac_addr, sa->sa_data, ETHER_ADDR_LEN);
dhdif->set_macaddress = TRUE;
dhd_net_if_unlock_local(dhd);
dhd_deferred_schedule_work(dhd->dhd_deferred_wq, (void *)((long int)ifidx),
DHD_WQ_WORK_SET_MAC, dhd_set_mac_addr_handler, DHD_WORK_PRIORITY_LOW);
return ret;
}
static void
dhd_set_multicast_list(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ifidx;
ifidx = dhd_net2idx(dhd, dev);
if (ifidx == DHD_BAD_IF)
return;
dhd->iflist[ifidx]->set_multicast = TRUE;
dhd_deferred_schedule_work(dhd->dhd_deferred_wq, (void *)((long int)ifidx),
DHD_WQ_WORK_SET_MCAST_LIST, dhd_set_mcast_list_handler, DHD_WORK_PRIORITY_LOW);
}
#ifdef PROP_TXSTATUS
int
dhd_os_wlfc_block(dhd_pub_t *pub)
{
dhd_info_t *di = (dhd_info_t *)(pub->info);
ASSERT(di != NULL);
spin_lock_bh(&di->wlfc_spinlock);
return 1;
}
int
dhd_os_wlfc_unblock(dhd_pub_t *pub)
{
dhd_info_t *di = (dhd_info_t *)(pub->info);
ASSERT(di != NULL);
spin_unlock_bh(&di->wlfc_spinlock);
return 1;
}
#endif /* PROP_TXSTATUS */
#if defined(DHD_8021X_DUMP)
void
dhd_tx_dump(struct net_device *ndev, osl_t *osh, void *pkt)
{
uint8 *dump_data;
uint16 protocol;
char *ifname;
dump_data = PKTDATA(osh, pkt);
protocol = (dump_data[12] << 8) | dump_data[13];
ifname = ndev ? ndev->name : "N/A";
if (protocol == ETHER_TYPE_802_1X) {
dhd_dump_eapol_4way_message(ifname, dump_data, TRUE);
}
}
#endif /* DHD_8021X_DUMP */
/* This routine do not support Packet chain feature, Currently tested for
* proxy arp feature
*/
int dhd_sendup(dhd_pub_t *dhdp, int ifidx, void *p)
{
struct sk_buff *skb;
void *skbhead = NULL;
void *skbprev = NULL;
dhd_if_t *ifp;
ASSERT(!PKTISCHAINED(p));
skb = PKTTONATIVE(dhdp->osh, p);
ifp = dhdp->info->iflist[ifidx];
skb->dev = ifp->net;
#if defined(BCM_GMAC3)
/* Forwarder capable interfaces use WOFA based forwarding */
if (ifp->fwdh) {
struct ether_header *eh = (struct ether_header *)PKTDATA(dhdp->osh, p);
uint16 * da = (uint16 *)(eh->ether_dhost);
wofa_t wofa;
ASSERT(ISALIGNED(da, 2));
wofa = fwder_lookup(ifp->fwdh->mate, da, ifp->idx);
if (wofa == FWDER_WOFA_INVALID) { /* Unknown MAC address */
if (fwder_transmit(ifp->fwdh, skb, 1, skb->dev) == FWDER_SUCCESS) {
return BCME_OK;
}
}
PKTFRMNATIVE(dhdp->osh, p);
PKTFREE(dhdp->osh, p, FALSE);
return BCME_OK;
}
#endif /* BCM_GMAC3 */
skb->protocol = eth_type_trans(skb, skb->dev);
if (in_interrupt()) {
bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE,
__FUNCTION__, __LINE__);
netif_rx(skb);
} else {
if (dhdp->info->rxthread_enabled) {
if (!skbhead) {
skbhead = skb;
} else {
PKTSETNEXT(dhdp->osh, skbprev, skb);
}
skbprev = skb;
} else {
/* If the receive is not processed inside an ISR,
* the softirqd must be woken explicitly to service
* the NET_RX_SOFTIRQ. In 2.6 kernels, this is handled
* by netif_rx_ni(), but in earlier kernels, we need
* to do it manually.
*/
bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE,
__FUNCTION__, __LINE__);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
netif_rx_ni(skb);
#else
ulong flags;
netif_rx(skb);
local_irq_save(flags);
RAISE_RX_SOFTIRQ();
local_irq_restore(flags);
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */
}
}
if (dhdp->info->rxthread_enabled && skbhead)
dhd_sched_rxf(dhdp, skbhead);
return BCME_OK;
}
int BCMFASTPATH
__dhd_sendpkt(dhd_pub_t *dhdp, int ifidx, void *pktbuf)
{
int ret = BCME_OK;
dhd_info_t *dhd = (dhd_info_t *)(dhdp->info);
struct ether_header *eh = NULL;
#ifdef DHD_L2_FILTER
dhd_if_t *ifp = dhd_get_ifp(dhdp, ifidx);
#endif
#ifdef DHD_8021X_DUMP
struct net_device *ndev;
#endif /* DHD_8021X_DUMP */
/* Reject if down */
if (!dhdp->up || (dhdp->busstate == DHD_BUS_DOWN)) {
/* free the packet here since the caller won't */
PKTCFREE(dhdp->osh, pktbuf, TRUE);
return -ENODEV;
}
#ifdef PCIE_FULL_DONGLE
if (dhdp->busstate == DHD_BUS_SUSPEND) {
DHD_ERROR(("%s : pcie is still in suspend state!!\n", __FUNCTION__));
PKTFREE(dhdp->osh, pktbuf, TRUE);
return -EBUSY;
}
#endif /* PCIE_FULL_DONGLE */
#ifdef DHD_L2_FILTER
/* if dhcp_unicast is enabled, we need to convert the */
/* broadcast DHCP ACK/REPLY packets to Unicast. */
if (ifp->dhcp_unicast) {
uint8* mac_addr;
uint8* ehptr = NULL;
int ret;
ret = bcm_l2_filter_get_mac_addr_dhcp_pkt(dhdp->osh, pktbuf, ifidx, &mac_addr);
if (ret == BCME_OK) {
/* if given mac address having valid entry in sta list
* copy the given mac address, and return with BCME_OK
*/
if (dhd_find_sta(dhdp, ifidx, mac_addr)) {
ehptr = PKTDATA(dhdp->osh, pktbuf);
bcopy(mac_addr, ehptr + ETHER_DEST_OFFSET, ETHER_ADDR_LEN);
}
}
}
if (ifp->grat_arp && DHD_IF_ROLE_AP(dhdp, ifidx)) {
if (bcm_l2_filter_gratuitous_arp(dhdp->osh, pktbuf) == BCME_OK) {
PKTCFREE(dhdp->osh, pktbuf, TRUE);
return BCME_ERROR;
}
}
if (ifp->parp_enable && DHD_IF_ROLE_AP(dhdp, ifidx)) {
ret = dhd_l2_filter_pkt_handle(dhdp, ifidx, pktbuf, TRUE);
/* Drop the packets if l2 filter has processed it already
* otherwise continue with the normal path
*/
if (ret == BCME_OK) {
PKTCFREE(dhdp->osh, pktbuf, TRUE);
return BCME_ERROR;
}
}
#endif /* DHD_L2_FILTER */
/* Update multicast statistic */
if (PKTLEN(dhdp->osh, pktbuf) >= ETHER_HDR_LEN) {
uint8 *pktdata = (uint8 *)PKTDATA(dhdp->osh, pktbuf);
eh = (struct ether_header *)pktdata;
if (ETHER_ISMULTI(eh->ether_dhost))
dhdp->tx_multicast++;
if (ntoh16(eh->ether_type) == ETHER_TYPE_802_1X) {
#ifdef DHD_LOSSLESS_ROAMING
uint8 prio = (uint8)PKTPRIO(pktbuf);
/* back up 802.1x's priority */
dhdp->prio_8021x = prio;
#endif /* DHD_LOSSLESS_ROAMING */
atomic_inc(&dhd->pend_8021x_cnt);
}
#ifdef DHD_DHCP_DUMP
if (ntoh16(eh->ether_type) == ETHER_TYPE_IP) {
uint16 dump_hex;
uint16 source_port;
uint16 dest_port;
uint16 udp_port_pos;
uint8 *ptr8 = (uint8 *)&pktdata[ETHER_HDR_LEN];
uint8 ip_header_len = (*ptr8 & 0x0f)<<2;
struct net_device *net;
char *ifname;
net = dhd_idx2net(dhdp, ifidx);
ifname = net ? net->name : "N/A";
udp_port_pos = ETHER_HDR_LEN + ip_header_len;
source_port = (pktdata[udp_port_pos] << 8) | pktdata[udp_port_pos+1];
dest_port = (pktdata[udp_port_pos+2] << 8) | pktdata[udp_port_pos+3];
if (source_port == 0x0044 || dest_port == 0x0044) {
dump_hex = (pktdata[udp_port_pos+249] << 8) |
pktdata[udp_port_pos+250];
if (dump_hex == 0x0101) {
DHD_ERROR(("DHCP[%s] - DISCOVER [TX]", ifname));
} else if (dump_hex == 0x0102) {
DHD_ERROR(("DHCP[%s] - OFFER [TX]", ifname));
} else if (dump_hex == 0x0103) {
DHD_ERROR(("DHCP[%s] - REQUEST [TX]", ifname));
} else if (dump_hex == 0x0105) {
DHD_ERROR(("DHCP[%s] - ACK [TX]", ifname));
} else {
DHD_ERROR(("DHCP[%s] - 0x%X [TX]", ifname, dump_hex));
}
#ifdef DHD_LOSSLESS_ROAMING
if (dhdp->dequeue_prec_map != (uint8)ALLPRIO) {
DHD_ERROR(("/%d", dhdp->dequeue_prec_map));
}
#endif /* DHD_LOSSLESS_ROAMING */
DHD_ERROR(("\n"));
} else if (source_port == 0x0043 || dest_port == 0x0043) {
DHD_ERROR(("DHCP[%s] - BOOTP [RX]\n", ifname));
}
}
#endif /* DHD_DHCP_DUMP */
} else {
PKTCFREE(dhdp->osh, pktbuf, TRUE);
return BCME_ERROR;
}
/* Look into the packet and update the packet priority */
#ifndef PKTPRIO_OVERRIDE
if (PKTPRIO(pktbuf) == 0)
#endif /* !PKTPRIO_OVERRIDE */
{
#ifdef QOS_MAP_SET
pktsetprio_qms(pktbuf, wl_get_up_table(DHD_GET_CFG80211_PRIV(dhdp)), FALSE);
#else
pktsetprio(pktbuf, FALSE);
#endif /* QOS_MAP_SET */
}
#ifdef PCIE_FULL_DONGLE
/*
* Lkup the per interface hash table, for a matching flowring. If one is not
* available, allocate a unique flowid and add a flowring entry.
* The found or newly created flowid is placed into the pktbuf's tag.
*/
ret = dhd_flowid_update(dhdp, ifidx, dhdp->flow_prio_map[(PKTPRIO(pktbuf))], pktbuf);
if (ret != BCME_OK) {
PKTCFREE(dhd->pub.osh, pktbuf, TRUE);
return ret;
}
#endif
#ifdef PROP_TXSTATUS
if (dhd_wlfc_is_supported(dhdp)) {
/* store the interface ID */
DHD_PKTTAG_SETIF(PKTTAG(pktbuf), ifidx);
/* store destination MAC in the tag as well */
DHD_PKTTAG_SETDSTN(PKTTAG(pktbuf), eh->ether_dhost);
/* decide which FIFO this packet belongs to */
if (ETHER_ISMULTI(eh->ether_dhost))
/* one additional queue index (highest AC + 1) is used for bc/mc queue */
DHD_PKTTAG_SETFIFO(PKTTAG(pktbuf), AC_COUNT);
else
DHD_PKTTAG_SETFIFO(PKTTAG(pktbuf), WME_PRIO2AC(PKTPRIO(pktbuf)));
} else
#endif /* PROP_TXSTATUS */
{
/* If the protocol uses a data header, apply it */
dhd_prot_hdrpush(dhdp, ifidx, pktbuf);
}
/* Use bus module to send data frame */
#ifdef WLMEDIA_HTSF
dhd_htsf_addtxts(dhdp, pktbuf);
#endif
#if defined(DHD_8021X_DUMP)
ndev = dhd_idx2net(dhdp, ifidx);
dhd_tx_dump(ndev, dhdp->osh, pktbuf);
#endif
#ifdef PROP_TXSTATUS
{
if (dhd_wlfc_commit_packets(dhdp, (f_commitpkt_t)dhd_bus_txdata,
dhdp->bus, pktbuf, TRUE) == WLFC_UNSUPPORTED) {
/* non-proptxstatus way */
#ifdef BCMPCIE
ret = dhd_bus_txdata(dhdp->bus, pktbuf, (uint8)ifidx);
#else
ret = dhd_bus_txdata(dhdp->bus, pktbuf);
#endif /* BCMPCIE */
}
}
#else
#ifdef BCMPCIE
ret = dhd_bus_txdata(dhdp->bus, pktbuf, (uint8)ifidx);
#else
ret = dhd_bus_txdata(dhdp->bus, pktbuf);
#endif /* BCMPCIE */
#endif /* PROP_TXSTATUS */
return ret;
}
int BCMFASTPATH
dhd_sendpkt(dhd_pub_t *dhdp, int ifidx, void *pktbuf)
{
int ret = 0;
unsigned long flags;
DHD_GENERAL_LOCK(dhdp, flags);
if (dhdp->busstate == DHD_BUS_DOWN ||
dhdp->busstate == DHD_BUS_DOWN_IN_PROGRESS) {
DHD_ERROR(("%s: returning as busstate=%d\n",
__FUNCTION__, dhdp->busstate));
DHD_GENERAL_UNLOCK(dhdp, flags);
PKTCFREE(dhdp->osh, pktbuf, TRUE);
return -ENODEV;
}
dhdp->dhd_bus_busy_state |= DHD_BUS_BUSY_IN_SEND_PKT;
DHD_GENERAL_UNLOCK(dhdp, flags);
#ifdef DHD_PCIE_RUNTIMEPM
if (dhdpcie_runtime_bus_wake(dhdp, FALSE, __builtin_return_address(0))) {
DHD_ERROR(("%s : pcie is still in suspend state!!\n", __FUNCTION__));
PKTCFREE(dhdp->osh, pktbuf, TRUE);
ret = -EBUSY;
goto exit;
}
#endif /* DHD_PCIE_RUNTIMEPM */
ret = __dhd_sendpkt(dhdp, ifidx, pktbuf);
#ifdef DHD_PCIE_RUNTIMEPM
exit:
#endif
DHD_GENERAL_LOCK(dhdp, flags);
dhdp->dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_SEND_PKT;
DHD_GENERAL_UNLOCK(dhdp, flags);
return ret;
}
int BCMFASTPATH
dhd_start_xmit(struct sk_buff *skb, struct net_device *net)
{
int ret;
uint datalen;
void *pktbuf;
dhd_info_t *dhd = DHD_DEV_INFO(net);
dhd_if_t *ifp = NULL;
int ifidx;
unsigned long flags;
#ifdef WLMEDIA_HTSF
uint8 htsfdlystat_sz = dhd->pub.htsfdlystat_sz;
#else
uint8 htsfdlystat_sz = 0;
#endif
#ifdef DHD_WMF
struct ether_header *eh;
uint8 *iph;
#endif /* DHD_WMF */
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (dhd_query_bus_erros(&dhd->pub)) {
return -ENODEV;
}
#ifdef PCIE_FULL_DONGLE
DHD_GENERAL_LOCK(&dhd->pub, flags);
dhd->pub.dhd_bus_busy_state |= DHD_BUS_BUSY_IN_TX;
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
#endif /* PCIE_FULL_DONGLE */
#ifdef DHD_PCIE_RUNTIMEPM
if (dhdpcie_runtime_bus_wake(&dhd->pub, FALSE, dhd_start_xmit)) {
/* In order to avoid pkt loss. Return NETDEV_TX_BUSY until run-time resumed. */
/* stop the network queue temporarily until resume done */
DHD_GENERAL_LOCK(&dhd->pub, flags);
if (!dhdpcie_is_resume_done(&dhd->pub)) {
dhd_bus_stop_queue(dhd->pub.bus);
}
dhd->pub.dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_TX;
dhd_os_busbusy_wake(&dhd->pub);
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20))
return -ENODEV;
#else
return NETDEV_TX_BUSY;
#endif
}
#endif /* DHD_PCIE_RUNTIMEPM */
DHD_GENERAL_LOCK(&dhd->pub, flags);
#ifdef PCIE_FULL_DONGLE
if (dhd->pub.busstate == DHD_BUS_SUSPEND) {
dhd->pub.dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_TX;
dhd_os_busbusy_wake(&dhd->pub);
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20))
return -ENODEV;
#else
return NETDEV_TX_BUSY;
#endif
}
#endif /* PCIE_FULL_DONGLE */
DHD_OS_WAKE_LOCK(&dhd->pub);
DHD_PERIM_LOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken);
/* Reject if down */
if (dhd->pub.hang_was_sent || dhd->pub.busstate == DHD_BUS_DOWN ||
dhd->pub.busstate == DHD_BUS_DOWN_IN_PROGRESS) {
DHD_ERROR(("%s: xmit rejected pub.up=%d busstate=%d \n",
__FUNCTION__, dhd->pub.up, dhd->pub.busstate));
netif_stop_queue(net);
/* Send Event when bus down detected during data session */
if (dhd->pub.up && !dhd->pub.hang_was_sent) {
DHD_ERROR(("%s: Event HANG sent up\n", __FUNCTION__));
dhd->pub.hang_reason = HANG_REASON_BUS_DOWN;
net_os_send_hang_message(net);
}
#ifdef PCIE_FULL_DONGLE
dhd->pub.dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_TX;
dhd_os_busbusy_wake(&dhd->pub);
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
#endif /* PCIE_FULL_DONGLE */
DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20))
return -ENODEV;
#else
return NETDEV_TX_BUSY;
#endif
}
ifp = DHD_DEV_IFP(net);
ifidx = DHD_DEV_IFIDX(net);
BUZZZ_LOG(START_XMIT_BGN, 2, (uint32)ifidx, (uintptr)skb);
if (ifidx == DHD_BAD_IF) {
DHD_ERROR(("%s: bad ifidx %d\n", __FUNCTION__, ifidx));
netif_stop_queue(net);
#ifdef PCIE_FULL_DONGLE
dhd->pub.dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_TX;
dhd_os_busbusy_wake(&dhd->pub);
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
#endif /* PCIE_FULL_DONGLE */
DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20))
return -ENODEV;
#else
return NETDEV_TX_BUSY;
#endif
}
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
ASSERT(ifidx == dhd_net2idx(dhd, net));
ASSERT((ifp != NULL) && ((ifidx < DHD_MAX_IFS) && (ifp == dhd->iflist[ifidx])));
bcm_object_trace_opr(skb, BCM_OBJDBG_ADD_PKT, __FUNCTION__, __LINE__);
/* re-align socket buffer if "skb->data" is odd address */
if (((unsigned long)(skb->data)) & 0x1) {
unsigned char *data = skb->data;
uint32 length = skb->len;
PKTPUSH(dhd->pub.osh, skb, 1);
memmove(skb->data, data, length);
PKTSETLEN(dhd->pub.osh, skb, length);
}
datalen = PKTLEN(dhd->pub.osh, skb);
/* Make sure there's enough room for any header */
if (skb_headroom(skb) < dhd->pub.hdrlen + htsfdlystat_sz) {
struct sk_buff *skb2;
DHD_INFO(("%s: insufficient headroom\n",
dhd_ifname(&dhd->pub, ifidx)));
dhd->pub.tx_realloc++;
bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__);
skb2 = skb_realloc_headroom(skb, dhd->pub.hdrlen + htsfdlystat_sz);
dev_kfree_skb(skb);
if ((skb = skb2) == NULL) {
DHD_ERROR(("%s: skb_realloc_headroom failed\n",
dhd_ifname(&dhd->pub, ifidx)));
ret = -ENOMEM;
goto done;
}
bcm_object_trace_opr(skb, BCM_OBJDBG_ADD_PKT, __FUNCTION__, __LINE__);
}
/* Convert to packet */
if (!(pktbuf = PKTFRMNATIVE(dhd->pub.osh, skb))) {
DHD_ERROR(("%s: PKTFRMNATIVE failed\n",
dhd_ifname(&dhd->pub, ifidx)));
bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE, __FUNCTION__, __LINE__);
dev_kfree_skb_any(skb);
ret = -ENOMEM;
goto done;
}
#if defined(WLMEDIA_HTSF)
if (htsfdlystat_sz && PKTLEN(dhd->pub.osh, pktbuf) >= ETHER_ADDR_LEN) {
uint8 *pktdata = (uint8 *)PKTDATA(dhd->pub.osh, pktbuf);
struct ether_header *eh = (struct ether_header *)pktdata;
if (!ETHER_ISMULTI(eh->ether_dhost) &&
(ntoh16(eh->ether_type) == ETHER_TYPE_IP)) {
eh->ether_type = hton16(ETHER_TYPE_BRCM_PKTDLYSTATS);
}
}
#endif
#ifdef DHD_WMF
eh = (struct ether_header *)PKTDATA(dhd->pub.osh, pktbuf);
iph = (uint8 *)eh + ETHER_HDR_LEN;
/* WMF processing for multicast packets
* Only IPv4 packets are handled
*/
if (ifp->wmf.wmf_enable && (ntoh16(eh->ether_type) == ETHER_TYPE_IP) &&
(IP_VER(iph) == IP_VER_4) && (ETHER_ISMULTI(eh->ether_dhost) ||
((IPV4_PROT(iph) == IP_PROT_IGMP) && dhd->pub.wmf_ucast_igmp))) {
#if defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP)
void *sdu_clone;
bool ucast_convert = FALSE;
#ifdef DHD_UCAST_UPNP
uint32 dest_ip;
dest_ip = ntoh32(*((uint32 *)(iph + IPV4_DEST_IP_OFFSET)));
ucast_convert = dhd->pub.wmf_ucast_upnp && MCAST_ADDR_UPNP_SSDP(dest_ip);
#endif /* DHD_UCAST_UPNP */
#ifdef DHD_IGMP_UCQUERY
ucast_convert |= dhd->pub.wmf_ucast_igmp_query &&
(IPV4_PROT(iph) == IP_PROT_IGMP) &&
(*(iph + IPV4_HLEN(iph)) == IGMPV2_HOST_MEMBERSHIP_QUERY);
#endif /* DHD_IGMP_UCQUERY */
if (ucast_convert) {
dhd_sta_t *sta;
#ifdef PCIE_FULL_DONGLE
unsigned long flags;
#endif
struct list_head snapshot_list;
struct list_head *wmf_ucforward_list;
ret = NETDEV_TX_OK;
/* For non BCM_GMAC3 platform we need a snapshot sta_list to
* resolve double DHD_IF_STA_LIST_LOCK call deadlock issue.
*/
wmf_ucforward_list = DHD_IF_WMF_UCFORWARD_LOCK(dhd, ifp, &snapshot_list);
/* Convert upnp/igmp query to unicast for each assoc STA */
list_for_each_entry(sta, wmf_ucforward_list, list) {
if ((sdu_clone = PKTDUP(dhd->pub.osh, pktbuf)) == NULL) {
ret = WMF_NOP;
break;
}
dhd_wmf_forward(ifp->wmf.wmfh, sdu_clone, 0, sta, 1);
}
DHD_IF_WMF_UCFORWARD_UNLOCK(dhd, wmf_ucforward_list);
#ifdef PCIE_FULL_DONGLE
DHD_GENERAL_LOCK(&dhd->pub, flags);
dhd->pub.dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_TX;
dhd_os_busbusy_wake(&dhd->pub);
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
#endif /* PCIE_FULL_DONGLE */
DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
if (ret == NETDEV_TX_OK)
PKTFREE(dhd->pub.osh, pktbuf, TRUE);
return ret;
} else
#endif /* defined(DHD_IGMP_UCQUERY) || defined(DHD_UCAST_UPNP) */
{
/* There will be no STA info if the packet is coming from LAN host
* Pass as NULL
*/
ret = dhd_wmf_packets_handle(&dhd->pub, pktbuf, NULL, ifidx, 0);
switch (ret) {
case WMF_TAKEN:
case WMF_DROP:
/* Either taken by WMF or we should drop it.
* Exiting send path
*/
#ifdef PCIE_FULL_DONGLE
DHD_GENERAL_LOCK(&dhd->pub, flags);
dhd->pub.dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_TX;
dhd_os_busbusy_wake(&dhd->pub);
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
#endif /* PCIE_FULL_DONGLE */
DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
return NETDEV_TX_OK;
default:
/* Continue the transmit path */
break;
}
}
}
#endif /* DHD_WMF */
#ifdef DHD_PSTA
/* PSR related packet proto manipulation should be done in DHD
* since dongle doesn't have complete payload
*/
if (PSR_ENABLED(&dhd->pub) && (dhd_psta_proc(&dhd->pub,
ifidx, &pktbuf, TRUE) < 0)) {
DHD_ERROR(("%s:%s: psta send proc failed\n", __FUNCTION__,
dhd_ifname(&dhd->pub, ifidx)));
}
#endif /* DHD_PSTA */
#ifdef DHDTCPACK_SUPPRESS
if (dhd->pub.tcpack_sup_mode == TCPACK_SUP_HOLD) {
/* If this packet has been hold or got freed, just return */
if (dhd_tcpack_hold(&dhd->pub, pktbuf, ifidx)) {
ret = 0;
goto done;
}
} else {
/* If this packet has replaced another packet and got freed, just return */
if (dhd_tcpack_suppress(&dhd->pub, pktbuf)) {
ret = 0;
goto done;
}
}
#endif /* DHDTCPACK_SUPPRESS */
ret = __dhd_sendpkt(&dhd->pub, ifidx, pktbuf);
done:
if (ret) {
ifp->stats.tx_dropped++;
dhd->pub.tx_dropped++;
} else {
#ifdef PROP_TXSTATUS
/* tx_packets counter can counted only when wlfc is disabled */
if (!dhd_wlfc_is_supported(&dhd->pub))
#endif
{
dhd->pub.tx_packets++;
ifp->stats.tx_packets++;
ifp->stats.tx_bytes += datalen;
}
}
#ifdef PCIE_FULL_DONGLE
DHD_GENERAL_LOCK(&dhd->pub, flags);
dhd->pub.dhd_bus_busy_state &= ~DHD_BUS_BUSY_IN_TX;
dhd_os_busbusy_wake(&dhd->pub);
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
#endif /* PCIE_FULL_DONGLE */
DHD_PERIM_UNLOCK_TRY(DHD_FWDER_UNIT(dhd), lock_taken);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
BUZZZ_LOG(START_XMIT_END, 0);
/* Return ok: we always eat the packet */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 20))
return 0;
#else
return NETDEV_TX_OK;
#endif
}
void
dhd_txflowcontrol(dhd_pub_t *dhdp, int ifidx, bool state)
{
struct net_device *net;
dhd_info_t *dhd = dhdp->info;
int i;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
ASSERT(dhd);
#ifdef DHD_LOSSLESS_ROAMING
/* block flowcontrol during roaming */
if ((dhdp->dequeue_prec_map == 1 << PRIO_8021D_NC) && state == ON) {
return;
}
#endif
if (ifidx == ALL_INTERFACES) {
/* Flow control on all active interfaces */
dhdp->txoff = state;
for (i = 0; i < DHD_MAX_IFS; i++) {
if (dhd->iflist[i]) {
net = dhd->iflist[i]->net;
if (state == ON)
netif_stop_queue(net);
else
netif_wake_queue(net);
}
}
} else {
if (dhd->iflist[ifidx]) {
net = dhd->iflist[ifidx]->net;
if (state == ON)
netif_stop_queue(net);
else
netif_wake_queue(net);
}
}
}
#ifdef DHD_RX_DUMP
typedef struct {
uint16 type;
const char *str;
} PKTTYPE_INFO;
static const PKTTYPE_INFO packet_type_info[] =
{
{ ETHER_TYPE_IP, "IP" },
{ ETHER_TYPE_ARP, "ARP" },
{ ETHER_TYPE_BRCM, "BRCM" },
{ ETHER_TYPE_802_1X, "802.1X" },
#ifdef BCMWAPI_WAI
{ ETHER_TYPE_WAI, "WAPI" },
#endif /* BCMWAPI_WAI */
{ 0, ""}
};
static const char *_get_packet_type_str(uint16 type)
{
int i;
int n = sizeof(packet_type_info)/sizeof(packet_type_info[1]) - 1;
for (i = 0; i < n; i++) {
if (packet_type_info[i].type == type)
return packet_type_info[i].str;
}
return packet_type_info[n].str;
}
#endif /* DHD_RX_DUMP */
#ifdef DHD_WMF
bool
dhd_is_rxthread_enabled(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = dhdp->info;
return dhd->rxthread_enabled;
}
#endif /* DHD_WMF */
/** Called when a frame is received by the dongle on interface 'ifidx' */
void
dhd_rx_frame(dhd_pub_t *dhdp, int ifidx, void *pktbuf, int numpkt, uint8 chan)
{
dhd_info_t *dhd = (dhd_info_t *)dhdp->info;
struct sk_buff *skb;
uchar *eth;
uint len;
void *data, *pnext = NULL;
int i;
dhd_if_t *ifp;
wl_event_msg_t event;
int tout_rx = 0;
int tout_ctrl = 0;
void *skbhead = NULL;
void *skbprev = NULL;
#if defined(DHD_RX_DUMP) || defined(DHD_8021X_DUMP) || defined(DHD_DHCP_DUMP)
char *dump_data;
uint16 protocol;
char *ifname;
#endif /* DHD_RX_DUMP || DHD_8021X_DUMP || DHD_DHCP_DUMP */
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
for (i = 0; pktbuf && i < numpkt; i++, pktbuf = pnext) {
struct ether_header *eh;
pnext = PKTNEXT(dhdp->osh, pktbuf);
PKTSETNEXT(dhdp->osh, pktbuf, NULL);
ifp = dhd->iflist[ifidx];
if (ifp == NULL) {
DHD_ERROR(("%s: ifp is NULL. drop packet\n",
__FUNCTION__));
PKTCFREE(dhdp->osh, pktbuf, FALSE);
continue;
}
eh = (struct ether_header *)PKTDATA(dhdp->osh, pktbuf);
/* Dropping only data packets before registering net device to avoid kernel panic */
#ifndef PROP_TXSTATUS_VSDB
if ((!ifp->net || ifp->net->reg_state != NETREG_REGISTERED) &&
(ntoh16(eh->ether_type) != ETHER_TYPE_BRCM)) {
#else
if ((!ifp->net || ifp->net->reg_state != NETREG_REGISTERED || !dhd->pub.up) &&
(ntoh16(eh->ether_type) != ETHER_TYPE_BRCM)) {
#endif /* PROP_TXSTATUS_VSDB */
DHD_ERROR(("%s: net device is NOT registered yet. drop packet\n",
__FUNCTION__));
PKTCFREE(dhdp->osh, pktbuf, FALSE);
continue;
}
#ifdef PROP_TXSTATUS
if (dhd_wlfc_is_header_only_pkt(dhdp, pktbuf)) {
/* WLFC may send header only packet when
there is an urgent message but no packet to
piggy-back on
*/
PKTCFREE(dhdp->osh, pktbuf, FALSE);
continue;
}
#endif
#ifdef DHD_L2_FILTER
/* If block_ping is enabled drop the ping packet */
if (ifp->block_ping) {
if (bcm_l2_filter_block_ping(dhdp->osh, pktbuf) == BCME_OK) {
PKTCFREE(dhdp->osh, pktbuf, FALSE);
continue;
}
}
if (ifp->grat_arp && DHD_IF_ROLE_STA(dhdp, ifidx)) {
if (bcm_l2_filter_gratuitous_arp(dhdp->osh, pktbuf) == BCME_OK) {
PKTCFREE(dhdp->osh, pktbuf, FALSE);
continue;
}
}
if (ifp->parp_enable && DHD_IF_ROLE_AP(dhdp, ifidx)) {
int ret = dhd_l2_filter_pkt_handle(dhdp, ifidx, pktbuf, FALSE);
/* Drop the packets if l2 filter has processed it already
* otherwise continue with the normal path
*/
if (ret == BCME_OK) {
PKTCFREE(dhdp->osh, pktbuf, TRUE);
continue;
}
}
#endif /* DHD_L2_FILTER */
#ifdef DHD_WMF
/* WMF processing for multicast packets */
if (ifp->wmf.wmf_enable && (ETHER_ISMULTI(eh->ether_dhost))) {
dhd_sta_t *sta;
int ret;
sta = dhd_find_sta(dhdp, ifidx, (void *)eh->ether_shost);
ret = dhd_wmf_packets_handle(dhdp, pktbuf, sta, ifidx, 1);
switch (ret) {
case WMF_TAKEN:
/* The packet is taken by WMF. Continue to next iteration */
continue;
case WMF_DROP:
/* Packet DROP decision by WMF. Toss it */
DHD_ERROR(("%s: WMF decides to drop packet\n",
__FUNCTION__));
PKTCFREE(dhdp->osh, pktbuf, FALSE);
continue;
default:
/* Continue the transmit path */
break;
}
}
#endif /* DHD_WMF */
#ifdef DHDTCPACK_SUPPRESS
dhd_tcpdata_info_get(dhdp, pktbuf);
#endif
skb = PKTTONATIVE(dhdp->osh, pktbuf);
ASSERT(ifp);
skb->dev = ifp->net;
#ifdef DHD_PSTA
if (PSR_ENABLED(dhdp) && (dhd_psta_proc(dhdp, ifidx, &pktbuf, FALSE) < 0)) {
DHD_ERROR(("%s:%s: psta recv proc failed\n", __FUNCTION__,
dhd_ifname(dhdp, ifidx)));
}
#endif /* DHD_PSTA */
#ifdef PCIE_FULL_DONGLE
if ((DHD_IF_ROLE_AP(dhdp, ifidx) || DHD_IF_ROLE_P2PGO(dhdp, ifidx)) &&
(!ifp->ap_isolate)) {
eh = (struct ether_header *)PKTDATA(dhdp->osh, pktbuf);
if (ETHER_ISUCAST(eh->ether_dhost)) {
if (dhd_find_sta(dhdp, ifidx, (void *)eh->ether_dhost)) {
dhd_sendpkt(dhdp, ifidx, pktbuf);
continue;
}
} else {
void *npktbuf = PKTDUP(dhdp->osh, pktbuf);
if (npktbuf)
dhd_sendpkt(dhdp, ifidx, npktbuf);
}
}
#endif /* PCIE_FULL_DONGLE */
/* Get the protocol, maintain skb around eth_type_trans()
* The main reason for this hack is for the limitation of
* Linux 2.4 where 'eth_type_trans' uses the 'net->hard_header_len'
* to perform skb_pull inside vs ETH_HLEN. Since to avoid
* coping of the packet coming from the network stack to add
* BDC, Hardware header etc, during network interface registration
* we set the 'net->hard_header_len' to ETH_HLEN + extra space required
* for BDC, Hardware header etc. and not just the ETH_HLEN
*/
eth = skb->data;
len = skb->len;
#if defined(DHD_RX_DUMP) || defined(DHD_8021X_DUMP) || defined(DHD_DHCP_DUMP)
dump_data = skb->data;
protocol = (dump_data[12] << 8) | dump_data[13];
ifname = skb->dev ? skb->dev->name : "N/A";
#endif /* DHD_RX_DUMP || DHD_8021X_DUMP || DHD_DHCP_DUMP */
#ifdef DHD_8021X_DUMP
if (protocol == ETHER_TYPE_802_1X) {
dhd_dump_eapol_4way_message(ifname, dump_data, FALSE);
}
#endif /* DHD_8021X_DUMP */
#ifdef DHD_DHCP_DUMP
if (protocol != ETHER_TYPE_BRCM && protocol == ETHER_TYPE_IP) {
uint16 dump_hex;
uint16 source_port;
uint16 dest_port;
uint16 udp_port_pos;
uint8 *ptr8 = (uint8 *)&dump_data[ETHER_HDR_LEN];
uint8 ip_header_len = (*ptr8 & 0x0f)<<2;
udp_port_pos = ETHER_HDR_LEN + ip_header_len;
source_port = (dump_data[udp_port_pos] << 8) | dump_data[udp_port_pos+1];
dest_port = (dump_data[udp_port_pos+2] << 8) | dump_data[udp_port_pos+3];
if (source_port == 0x0044 || dest_port == 0x0044) {
dump_hex = (dump_data[udp_port_pos+249] << 8) |
dump_data[udp_port_pos+250];
if (dump_hex == 0x0101) {
DHD_ERROR(("DHCP[%s] - DISCOVER [RX]\n", ifname));
} else if (dump_hex == 0x0102) {
DHD_ERROR(("DHCP[%s] - OFFER [RX]\n", ifname));
} else if (dump_hex == 0x0103) {
DHD_ERROR(("DHCP[%s] - REQUEST [RX]\n", ifname));
} else if (dump_hex == 0x0105) {
DHD_ERROR(("DHCP[%s] - ACK [RX]\n", ifname));
} else {
DHD_ERROR(("DHCP[%s] - 0x%X [RX]\n", ifname, dump_hex));
}
} else if (source_port == 0x0043 || dest_port == 0x0043) {
DHD_ERROR(("DHCP[%s] - BOOTP [RX]\n", ifname));
}
}
#endif /* DHD_DHCP_DUMP */
#if defined(DHD_RX_DUMP)
DHD_ERROR(("RX DUMP[%s] - %s\n", ifname, _get_packet_type_str(protocol)));
if (protocol != ETHER_TYPE_BRCM) {
if (dump_data[0] == 0xFF) {
DHD_ERROR(("%s: BROADCAST\n", __FUNCTION__));
if ((dump_data[12] == 8) &&
(dump_data[13] == 6)) {
DHD_ERROR(("%s: ARP %d\n",
__FUNCTION__, dump_data[0x15]));
}
} else if (dump_data[0] & 1) {
DHD_ERROR(("%s: MULTICAST: " MACDBG "\n",
__FUNCTION__, MAC2STRDBG(dump_data)));
}
#ifdef DHD_RX_FULL_DUMP
{
int k;
for (k = 0; k < skb->len; k++) {
DHD_ERROR(("%02X ", dump_data[k]));
if ((k & 15) == 15)
DHD_ERROR(("\n"));
}
DHD_ERROR(("\n"));
}
#endif /* DHD_RX_FULL_DUMP */
}
#endif /* DHD_RX_DUMP */
skb->protocol = eth_type_trans(skb, skb->dev);
if (skb->pkt_type == PACKET_MULTICAST) {
dhd->pub.rx_multicast++;
ifp->stats.multicast++;
}
skb->data = eth;
skb->len = len;
#ifdef WLMEDIA_HTSF
dhd_htsf_addrxts(dhdp, pktbuf);
#endif
/* Strip header, count, deliver upward */
skb_pull(skb, ETH_HLEN);
/* Process special event packets and then discard them */
memset(&event, 0, sizeof(event));
if (ntoh16(skb->protocol) == ETHER_TYPE_BRCM) {
dhd_wl_host_event(dhd, &ifidx,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
skb_mac_header(skb),
#else
skb->mac.raw,
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22) */
len > ETHER_TYPE_LEN ? len - ETHER_TYPE_LEN : 0,
&event,
&data);
wl_event_to_host_order(&event);
if (!tout_ctrl)
tout_ctrl = DHD_PACKET_TIMEOUT_MS;
#if defined(PNO_SUPPORT)
if (event.event_type == WLC_E_PFN_NET_FOUND) {
/* enforce custom wake lock to garantee that Kernel not suspended */
tout_ctrl = CUSTOM_PNO_EVENT_LOCK_xTIME * DHD_PACKET_TIMEOUT_MS;
}
#endif /* PNO_SUPPORT */
#ifdef DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT
#ifdef DHD_USE_STATIC_CTRLBUF
PKTFREE_STATIC(dhdp->osh, pktbuf, FALSE);
#else
PKTFREE(dhdp->osh, pktbuf, FALSE);
#endif /* DHD_USE_STATIC_CTRLBUF */
continue;
#endif /* DHD_DONOT_FORWARD_BCMEVENT_AS_NETWORK_PKT */
} else {
tout_rx = DHD_PACKET_TIMEOUT_MS;
#ifdef PROP_TXSTATUS
dhd_wlfc_save_rxpath_ac_time(dhdp, (uint8)PKTPRIO(skb));
#endif /* PROP_TXSTATUS */
}
ASSERT(ifidx < DHD_MAX_IFS && dhd->iflist[ifidx]);
ifp = dhd->iflist[ifidx];
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0)
if (ifp->net)
ifp->net->last_rx = jiffies;
#endif
if (ntoh16(skb->protocol) != ETHER_TYPE_BRCM) {
dhdp->dstats.rx_bytes += skb->len;
dhdp->rx_packets++; /* Local count */
ifp->stats.rx_bytes += skb->len;
ifp->stats.rx_packets++;
}
if (in_interrupt()) {
bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE,
__FUNCTION__, __LINE__);
DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT));
#if defined(DHD_LB) && defined(DHD_LB_RXP)
netif_receive_skb(skb);
#else
netif_rx(skb);
#endif /* !defined(DHD_LB) && !defined(DHD_LB_RXP) */
DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT));
} else {
if (dhd->rxthread_enabled) {
if (!skbhead)
skbhead = skb;
else
PKTSETNEXT(dhdp->osh, skbprev, skb);
skbprev = skb;
} else {
/* If the receive is not processed inside an ISR,
* the softirqd must be woken explicitly to service
* the NET_RX_SOFTIRQ. In 2.6 kernels, this is handled
* by netif_rx_ni(), but in earlier kernels, we need
* to do it manually.
*/
bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE,
__FUNCTION__, __LINE__);
#if defined(DHD_LB) && defined(DHD_LB_RXP)
DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT));
netif_receive_skb(skb);
DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT));
#else
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT));
netif_rx_ni(skb);
DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT));
#else
ulong flags;
DHD_PERIM_UNLOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT));
netif_rx(skb);
DHD_PERIM_LOCK_ALL((dhd->fwder_unit % FWDER_MAX_UNIT));
local_irq_save(flags);
RAISE_RX_SOFTIRQ();
local_irq_restore(flags);
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */
#endif /* !defined(DHD_LB) && !defined(DHD_LB_RXP) */
}
}
}
if (dhd->rxthread_enabled && skbhead)
dhd_sched_rxf(dhdp, skbhead);
DHD_OS_WAKE_LOCK_RX_TIMEOUT_ENABLE(dhdp, tout_rx);
DHD_OS_WAKE_LOCK_CTRL_TIMEOUT_ENABLE(dhdp, tout_ctrl);
DHD_OS_WAKE_LOCK_TIMEOUT(dhdp);
}
void
dhd_event(struct dhd_info *dhd, char *evpkt, uint evlen, int ifidx)
{
/* Linux version has nothing to do */
return;
}
void
dhd_txcomplete(dhd_pub_t *dhdp, void *txp, bool success)
{
dhd_info_t *dhd = (dhd_info_t *)(dhdp->info);
struct ether_header *eh;
uint16 type;
dhd_prot_hdrpull(dhdp, NULL, txp, NULL, NULL);
eh = (struct ether_header *)PKTDATA(dhdp->osh, txp);
type = ntoh16(eh->ether_type);
if ((type == ETHER_TYPE_802_1X) && (dhd_get_pend_8021x_cnt(dhd) > 0))
atomic_dec(&dhd->pend_8021x_cnt);
#ifdef PROP_TXSTATUS
if (dhdp->wlfc_state && (dhdp->proptxstatus_mode != WLFC_FCMODE_NONE)) {
dhd_if_t *ifp = dhd->iflist[DHD_PKTTAG_IF(PKTTAG(txp))];
uint datalen = PKTLEN(dhd->pub.osh, txp);
if (ifp != NULL) {
if (success) {
dhd->pub.tx_packets++;
ifp->stats.tx_packets++;
ifp->stats.tx_bytes += datalen;
} else {
ifp->stats.tx_dropped++;
}
}
}
#endif
}
static struct net_device_stats *
dhd_get_stats(struct net_device *net)
{
dhd_info_t *dhd = DHD_DEV_INFO(net);
dhd_if_t *ifp;
int ifidx;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
ifidx = dhd_net2idx(dhd, net);
if (ifidx == DHD_BAD_IF) {
DHD_ERROR(("%s: BAD_IF\n", __FUNCTION__));
memset(&net->stats, 0, sizeof(net->stats));
return &net->stats;
}
ifp = dhd->iflist[ifidx];
ASSERT(dhd && ifp);
if (dhd->pub.up) {
/* Use the protocol to get dongle stats */
dhd_prot_dstats(&dhd->pub);
}
return &ifp->stats;
}
static int
dhd_watchdog_thread(void *data)
{
tsk_ctl_t *tsk = (tsk_ctl_t *)data;
dhd_info_t *dhd = (dhd_info_t *)tsk->parent;
/* This thread doesn't need any user-level access,
* so get rid of all our resources
*/
if (dhd_watchdog_prio > 0) {
struct sched_param param;
param.sched_priority = (dhd_watchdog_prio < MAX_RT_PRIO)?
dhd_watchdog_prio:(MAX_RT_PRIO-1);
setScheduler(current, SCHED_FIFO, &param);
}
while (1) {
if (down_interruptible (&tsk->sema) == 0) {
unsigned long flags;
unsigned long jiffies_at_start = jiffies;
unsigned long time_lapse;
DHD_OS_WD_WAKE_LOCK(&dhd->pub);
SMP_RD_BARRIER_DEPENDS();
if (tsk->terminated) {
DHD_OS_WD_WAKE_UNLOCK(&dhd->pub);
break;
}
if (dhd->pub.dongle_reset == FALSE) {
DHD_TIMER(("%s:\n", __FUNCTION__));
dhd_bus_watchdog(&dhd->pub);
DHD_GENERAL_LOCK(&dhd->pub, flags);
/* Count the tick for reference */
dhd->pub.tickcnt++;
#ifdef DHD_L2_FILTER
dhd_l2_filter_watchdog(&dhd->pub);
#endif /* DHD_L2_FILTER */
time_lapse = jiffies - jiffies_at_start;
/* Reschedule the watchdog */
if (dhd->wd_timer_valid) {
mod_timer(&dhd->timer,
jiffies +
msecs_to_jiffies(dhd_watchdog_ms) -
min(msecs_to_jiffies(dhd_watchdog_ms), time_lapse));
}
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
}
DHD_OS_WD_WAKE_UNLOCK(&dhd->pub);
} else {
break;
}
}
complete_and_exit(&tsk->completed, 0);
}
static void dhd_watchdog(ulong data)
{
dhd_info_t *dhd = (dhd_info_t *)data;
unsigned long flags;
if (dhd->pub.dongle_reset) {
return;
}
if (dhd->pub.busstate == DHD_BUS_SUSPEND) {
DHD_ERROR(("%s wd while suspend in progress \n", __FUNCTION__));
return;
}
if (dhd->thr_wdt_ctl.thr_pid >= 0) {
up(&dhd->thr_wdt_ctl.sema);
return;
}
DHD_OS_WD_WAKE_LOCK(&dhd->pub);
/* Call the bus module watchdog */
dhd_bus_watchdog(&dhd->pub);
DHD_GENERAL_LOCK(&dhd->pub, flags);
/* Count the tick for reference */
dhd->pub.tickcnt++;
#ifdef DHD_L2_FILTER
dhd_l2_filter_watchdog(&dhd->pub);
#endif /* DHD_L2_FILTER */
/* Reschedule the watchdog */
if (dhd->wd_timer_valid)
mod_timer(&dhd->timer, jiffies + msecs_to_jiffies(dhd_watchdog_ms));
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
DHD_OS_WD_WAKE_UNLOCK(&dhd->pub);
}
#ifdef DHD_PCIE_RUNTIMEPM
static int
dhd_rpm_state_thread(void *data)
{
tsk_ctl_t *tsk = (tsk_ctl_t *)data;
dhd_info_t *dhd = (dhd_info_t *)tsk->parent;
while (1) {
if (down_interruptible (&tsk->sema) == 0) {
unsigned long flags;
unsigned long jiffies_at_start = jiffies;
unsigned long time_lapse;
SMP_RD_BARRIER_DEPENDS();
if (tsk->terminated) {
break;
}
if (dhd->pub.dongle_reset == FALSE) {
DHD_TIMER(("%s:\n", __FUNCTION__));
if (dhd->pub.up) {
dhd_runtimepm_state(&dhd->pub);
}
DHD_GENERAL_LOCK(&dhd->pub, flags);
time_lapse = jiffies - jiffies_at_start;
/* Reschedule the watchdog */
if (dhd->rpm_timer_valid) {
mod_timer(&dhd->rpm_timer,
jiffies +
msecs_to_jiffies(dhd_runtimepm_ms) -
min(msecs_to_jiffies(dhd_runtimepm_ms),
time_lapse));
}
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
}
} else {
break;
}
}
complete_and_exit(&tsk->completed, 0);
}
static void dhd_runtimepm(ulong data)
{
dhd_info_t *dhd = (dhd_info_t *)data;
if (dhd->pub.dongle_reset) {
return;
}
if (dhd->thr_rpm_ctl.thr_pid >= 0) {
up(&dhd->thr_rpm_ctl.sema);
return;
}
}
void dhd_runtime_pm_disable(dhd_pub_t *dhdp)
{
dhd_os_runtimepm_timer(dhdp, 0);
dhdpcie_runtime_bus_wake(dhdp, TRUE, __builtin_return_address(0));
DHD_ERROR(("DHD Runtime PM Disabled \n"));
}
void dhd_runtime_pm_enable(dhd_pub_t *dhdp)
{
dhd_os_runtimepm_timer(dhdp, dhd_runtimepm_ms);
DHD_ERROR(("DHD Runtime PM Enabled \n"));
}
#endif /* DHD_PCIE_RUNTIMEPM */
#ifdef ENABLE_ADAPTIVE_SCHED
static void
dhd_sched_policy(int prio)
{
struct sched_param param;
if (cpufreq_quick_get(0) <= CUSTOM_CPUFREQ_THRESH) {
param.sched_priority = 0;
setScheduler(current, SCHED_NORMAL, &param);
} else {
if (get_scheduler_policy(current) != SCHED_FIFO) {
param.sched_priority = (prio < MAX_RT_PRIO)? prio : (MAX_RT_PRIO-1);
setScheduler(current, SCHED_FIFO, &param);
}
}
}
#endif /* ENABLE_ADAPTIVE_SCHED */
#ifdef DEBUG_CPU_FREQ
static int dhd_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
{
dhd_info_t *dhd = container_of(nb, struct dhd_info, freq_trans);
struct cpufreq_freqs *freq = data;
if (dhd) {
if (!dhd->new_freq)
goto exit;
if (val == CPUFREQ_POSTCHANGE) {
DHD_ERROR(("cpu freq is changed to %u kHZ on CPU %d\n",
freq->new, freq->cpu));
*per_cpu_ptr(dhd->new_freq, freq->cpu) = freq->new;
}
}
exit:
return 0;
}
#endif /* DEBUG_CPU_FREQ */
static int
dhd_dpc_thread(void *data)
{
tsk_ctl_t *tsk = (tsk_ctl_t *)data;
dhd_info_t *dhd = (dhd_info_t *)tsk->parent;
/* This thread doesn't need any user-level access,
* so get rid of all our resources
*/
if (dhd_dpc_prio > 0)
{
struct sched_param param;
param.sched_priority = (dhd_dpc_prio < MAX_RT_PRIO)?dhd_dpc_prio:(MAX_RT_PRIO-1);
setScheduler(current, SCHED_FIFO, &param);
}
#ifdef CUSTOM_DPC_CPUCORE
set_cpus_allowed_ptr(current, cpumask_of(CUSTOM_DPC_CPUCORE));
#endif
#ifdef CUSTOM_SET_CPUCORE
dhd->pub.current_dpc = current;
#endif /* CUSTOM_SET_CPUCORE */
/* Run until signal received */
while (1) {
if (!binary_sema_down(tsk)) {
#ifdef ENABLE_ADAPTIVE_SCHED
dhd_sched_policy(dhd_dpc_prio);
#endif /* ENABLE_ADAPTIVE_SCHED */
SMP_RD_BARRIER_DEPENDS();
if (tsk->terminated) {
break;
}
/* Call bus dpc unless it indicated down (then clean stop) */
if (dhd->pub.busstate != DHD_BUS_DOWN) {
#ifdef DEBUG_DPC_THREAD_WATCHDOG
int resched_cnt = 0;
#endif /* DEBUG_DPC_THREAD_WATCHDOG */
dhd_os_wd_timer_extend(&dhd->pub, TRUE);
while (dhd_bus_dpc(dhd->pub.bus)) {
/* process all data */
#ifdef DEBUG_DPC_THREAD_WATCHDOG
resched_cnt++;
if (resched_cnt > MAX_RESCHED_CNT) {
DHD_INFO(("%s Calling msleep to"
"let other processes run. \n",
__FUNCTION__));
dhd->pub.dhd_bug_on = true;
resched_cnt = 0;
OSL_SLEEP(1);
}
#endif /* DEBUG_DPC_THREAD_WATCHDOG */
}
dhd_os_wd_timer_extend(&dhd->pub, FALSE);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
} else {
if (dhd->pub.up)
dhd_bus_stop(dhd->pub.bus, TRUE);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
}
} else {
break;
}
}
complete_and_exit(&tsk->completed, 0);
}
static int
dhd_rxf_thread(void *data)
{
tsk_ctl_t *tsk = (tsk_ctl_t *)data;
dhd_info_t *dhd = (dhd_info_t *)tsk->parent;
#if defined(WAIT_DEQUEUE)
#define RXF_WATCHDOG_TIME 250 /* BARK_TIME(1000) / */
ulong watchdogTime = OSL_SYSUPTIME(); /* msec */
#endif
dhd_pub_t *pub = &dhd->pub;
/* This thread doesn't need any user-level access,
* so get rid of all our resources
*/
if (dhd_rxf_prio > 0)
{
struct sched_param param;
param.sched_priority = (dhd_rxf_prio < MAX_RT_PRIO)?dhd_rxf_prio:(MAX_RT_PRIO-1);
setScheduler(current, SCHED_FIFO, &param);
}
DAEMONIZE("dhd_rxf");
/* DHD_OS_WAKE_LOCK is called in dhd_sched_dpc[dhd_linux.c] down below */
/* signal: thread has started */
complete(&tsk->completed);
#ifdef CUSTOM_SET_CPUCORE
dhd->pub.current_rxf = current;
#endif /* CUSTOM_SET_CPUCORE */
/* Run until signal received */
while (1) {
if (down_interruptible(&tsk->sema) == 0) {
void *skb;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0)
ulong flags;
#endif
#ifdef ENABLE_ADAPTIVE_SCHED
dhd_sched_policy(dhd_rxf_prio);
#endif /* ENABLE_ADAPTIVE_SCHED */
SMP_RD_BARRIER_DEPENDS();
if (tsk->terminated) {
break;
}
skb = dhd_rxf_dequeue(pub);
if (skb == NULL) {
continue;
}
while (skb) {
void *skbnext = PKTNEXT(pub->osh, skb);
PKTSETNEXT(pub->osh, skb, NULL);
bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE,
__FUNCTION__, __LINE__);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
netif_rx_ni(skb);
#else
netif_rx(skb);
local_irq_save(flags);
RAISE_RX_SOFTIRQ();
local_irq_restore(flags);
#endif
skb = skbnext;
}
#if defined(WAIT_DEQUEUE)
if (OSL_SYSUPTIME() - watchdogTime > RXF_WATCHDOG_TIME) {
OSL_SLEEP(1);
watchdogTime = OSL_SYSUPTIME();
}
#endif
DHD_OS_WAKE_UNLOCK(pub);
} else {
break;
}
}
complete_and_exit(&tsk->completed, 0);
}
#ifdef BCMPCIE
void dhd_dpc_enable(dhd_pub_t *dhdp)
{
dhd_info_t *dhd;
if (!dhdp || !dhdp->info)
return;
dhd = dhdp->info;
#ifdef DHD_LB
#ifdef DHD_LB_RXP
__skb_queue_head_init(&dhd->rx_pend_queue);
#endif /* DHD_LB_RXP */
#ifdef DHD_LB_TXC
if (atomic_read(&dhd->tx_compl_tasklet.count) == 1)
tasklet_enable(&dhd->tx_compl_tasklet);
#endif /* DHD_LB_TXC */
#ifdef DHD_LB_RXC
if (atomic_read(&dhd->rx_compl_tasklet.count) == 1)
tasklet_enable(&dhd->rx_compl_tasklet);
#endif /* DHD_LB_RXC */
#endif /* DHD_LB */
if (atomic_read(&dhd->tasklet.count) == 1)
tasklet_enable(&dhd->tasklet);
}
#endif /* BCMPCIE */
#ifdef BCMPCIE
void
dhd_dpc_kill(dhd_pub_t *dhdp)
{
dhd_info_t *dhd;
if (!dhdp) {
return;
}
dhd = dhdp->info;
if (!dhd) {
return;
}
if (dhd->thr_dpc_ctl.thr_pid < 0) {
tasklet_disable(&dhd->tasklet);
tasklet_kill(&dhd->tasklet);
DHD_INFO(("%s: tasklet disabled\n", __FUNCTION__));
}
#if defined(DHD_LB)
#ifdef DHD_LB_RXP
__skb_queue_purge(&dhd->rx_pend_queue);
#endif /* DHD_LB_RXP */
/* Kill the Load Balancing Tasklets */
#if defined(DHD_LB_TXC)
tasklet_disable(&dhd->tx_compl_tasklet);
tasklet_kill(&dhd->tx_compl_tasklet);
#endif /* DHD_LB_TXC */
#if defined(DHD_LB_RXC)
tasklet_disable(&dhd->rx_compl_tasklet);
tasklet_kill(&dhd->rx_compl_tasklet);
#endif /* DHD_LB_RXC */
#endif /* DHD_LB */
}
void
dhd_dpc_tasklet_kill(dhd_pub_t *dhdp)
{
dhd_info_t *dhd;
if (!dhdp) {
return;
}
dhd = dhdp->info;
if (!dhd) {
return;
}
if (dhd->thr_dpc_ctl.thr_pid < 0) {
tasklet_kill(&dhd->tasklet);
}
}
#endif /* BCMPCIE */
static void
dhd_dpc(ulong data)
{
dhd_info_t *dhd;
dhd = (dhd_info_t *)data;
/* this (tasklet) can be scheduled in dhd_sched_dpc[dhd_linux.c]
* down below , wake lock is set,
* the tasklet is initialized in dhd_attach()
*/
/* Call bus dpc unless it indicated down (then clean stop) */
if (dhd->pub.busstate != DHD_BUS_DOWN) {
if (dhd_bus_dpc(dhd->pub.bus)) {
DHD_LB_STATS_INCR(dhd->dhd_dpc_cnt);
tasklet_schedule(&dhd->tasklet);
}
} else {
dhd_bus_stop(dhd->pub.bus, TRUE);
}
}
void
dhd_sched_dpc(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = (dhd_info_t *)dhdp->info;
if (dhd->thr_dpc_ctl.thr_pid >= 0) {
DHD_OS_WAKE_LOCK(dhdp);
/* If the semaphore does not get up,
* wake unlock should be done here
*/
if (!binary_sema_up(&dhd->thr_dpc_ctl)) {
DHD_OS_WAKE_UNLOCK(dhdp);
}
return;
} else {
tasklet_schedule(&dhd->tasklet);
}
}
static void
dhd_sched_rxf(dhd_pub_t *dhdp, void *skb)
{
dhd_info_t *dhd = (dhd_info_t *)dhdp->info;
#ifdef RXF_DEQUEUE_ON_BUSY
int ret = BCME_OK;
int retry = 2;
#endif /* RXF_DEQUEUE_ON_BUSY */
DHD_OS_WAKE_LOCK(dhdp);
DHD_TRACE(("dhd_sched_rxf: Enter\n"));
#ifdef RXF_DEQUEUE_ON_BUSY
do {
ret = dhd_rxf_enqueue(dhdp, skb);
if (ret == BCME_OK || ret == BCME_ERROR)
break;
else
OSL_SLEEP(50); /* waiting for dequeueing */
} while (retry-- > 0);
if (retry <= 0 && ret == BCME_BUSY) {
void *skbp = skb;
while (skbp) {
void *skbnext = PKTNEXT(dhdp->osh, skbp);
PKTSETNEXT(dhdp->osh, skbp, NULL);
bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE,
__FUNCTION__, __LINE__);
netif_rx_ni(skbp);
skbp = skbnext;
}
DHD_ERROR(("send skb to kernel backlog without rxf_thread\n"));
} else {
if (dhd->thr_rxf_ctl.thr_pid >= 0) {
up(&dhd->thr_rxf_ctl.sema);
}
}
#else /* RXF_DEQUEUE_ON_BUSY */
do {
if (dhd_rxf_enqueue(dhdp, skb) == BCME_OK)
break;
} while (1);
if (dhd->thr_rxf_ctl.thr_pid >= 0) {
up(&dhd->thr_rxf_ctl.sema);
}
return;
#endif /* RXF_DEQUEUE_ON_BUSY */
}
#if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW)
#endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */
#ifdef TOE
/* Retrieve current toe component enables, which are kept as a bitmap in toe_ol iovar */
static int
dhd_toe_get(dhd_info_t *dhd, int ifidx, uint32 *toe_ol)
{
wl_ioctl_t ioc;
char buf[32];
int ret;
memset(&ioc, 0, sizeof(ioc));
ioc.cmd = WLC_GET_VAR;
ioc.buf = buf;
ioc.len = (uint)sizeof(buf);
ioc.set = FALSE;
strncpy(buf, "toe_ol", sizeof(buf) - 1);
buf[sizeof(buf) - 1] = '\0';
if ((ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len)) < 0) {
/* Check for older dongle image that doesn't support toe_ol */
if (ret == -EIO) {
DHD_ERROR(("%s: toe not supported by device\n",
dhd_ifname(&dhd->pub, ifidx)));
return -EOPNOTSUPP;
}
DHD_INFO(("%s: could not get toe_ol: ret=%d\n", dhd_ifname(&dhd->pub, ifidx), ret));
return ret;
}
memcpy(toe_ol, buf, sizeof(uint32));
return 0;
}
/* Set current toe component enables in toe_ol iovar, and set toe global enable iovar */
static int
dhd_toe_set(dhd_info_t *dhd, int ifidx, uint32 toe_ol)
{
wl_ioctl_t ioc;
char buf[32];
int toe, ret;
memset(&ioc, 0, sizeof(ioc));
ioc.cmd = WLC_SET_VAR;
ioc.buf = buf;
ioc.len = (uint)sizeof(buf);
ioc.set = TRUE;
/* Set toe_ol as requested */
strncpy(buf, "toe_ol", sizeof(buf) - 1);
buf[sizeof(buf) - 1] = '\0';
memcpy(&buf[sizeof("toe_ol")], &toe_ol, sizeof(uint32));
if ((ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len)) < 0) {
DHD_ERROR(("%s: could not set toe_ol: ret=%d\n",
dhd_ifname(&dhd->pub, ifidx), ret));
return ret;
}
/* Enable toe globally only if any components are enabled. */
toe = (toe_ol != 0);
strcpy(buf, "toe");
memcpy(&buf[sizeof("toe")], &toe, sizeof(uint32));
if ((ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len)) < 0) {
DHD_ERROR(("%s: could not set toe: ret=%d\n", dhd_ifname(&dhd->pub, ifidx), ret));
return ret;
}
return 0;
}
#endif /* TOE */
#if defined(WL_CFG80211) && defined(NUM_SCB_MAX_PROBE)
void dhd_set_scb_probe(dhd_pub_t *dhd)
{
int ret = 0;
wl_scb_probe_t scb_probe;
char iovbuf[WL_EVENTING_MASK_LEN + sizeof(wl_scb_probe_t)];
memset(&scb_probe, 0, sizeof(wl_scb_probe_t));
if (dhd->op_mode & DHD_FLAG_HOSTAP_MODE) {
return;
}
bcm_mkiovar("scb_probe", NULL, 0, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR, iovbuf, sizeof(iovbuf), FALSE, 0)) < 0) {
DHD_ERROR(("%s: GET max_scb_probe failed\n", __FUNCTION__));
}
memcpy(&scb_probe, iovbuf, sizeof(wl_scb_probe_t));
scb_probe.scb_max_probe = NUM_SCB_MAX_PROBE;
bcm_mkiovar("scb_probe", (char *)&scb_probe,
sizeof(wl_scb_probe_t), iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s: max_scb_probe setting failed\n", __FUNCTION__));
return;
}
}
#endif /* WL_CFG80211 && NUM_SCB_MAX_PROBE */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24)
static void
dhd_ethtool_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info)
{
dhd_info_t *dhd = DHD_DEV_INFO(net);
snprintf(info->driver, sizeof(info->driver), "wl");
snprintf(info->version, sizeof(info->version), "%lu", dhd->pub.drv_version);
}
struct ethtool_ops dhd_ethtool_ops = {
.get_drvinfo = dhd_ethtool_get_drvinfo
};
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2)
static int
dhd_ethtool(dhd_info_t *dhd, void *uaddr)
{
struct ethtool_drvinfo info;
char drvname[sizeof(info.driver)];
uint32 cmd;
#ifdef TOE
struct ethtool_value edata;
uint32 toe_cmpnt, csum_dir;
int ret;
#endif
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
/* all ethtool calls start with a cmd word */
if (copy_from_user(&cmd, uaddr, sizeof (uint32)))
return -EFAULT;
switch (cmd) {
case ETHTOOL_GDRVINFO:
/* Copy out any request driver name */
if (copy_from_user(&info, uaddr, sizeof(info)))
return -EFAULT;
strncpy(drvname, info.driver, sizeof(info.driver));
drvname[sizeof(info.driver)-1] = '\0';
/* clear struct for return */
memset(&info, 0, sizeof(info));
info.cmd = cmd;
/* if dhd requested, identify ourselves */
if (strcmp(drvname, "?dhd") == 0) {
snprintf(info.driver, sizeof(info.driver), "dhd");
strncpy(info.version, EPI_VERSION_STR, sizeof(info.version) - 1);
info.version[sizeof(info.version) - 1] = '\0';
}
/* otherwise, require dongle to be up */
else if (!dhd->pub.up) {
DHD_ERROR(("%s: dongle is not up\n", __FUNCTION__));
return -ENODEV;
}
/* finally, report dongle driver type */
else if (dhd->pub.iswl)
snprintf(info.driver, sizeof(info.driver), "wl");
else
snprintf(info.driver, sizeof(info.driver), "xx");
snprintf(info.version, sizeof(info.version), "%lu", dhd->pub.drv_version);
if (copy_to_user(uaddr, &info, sizeof(info)))
return -EFAULT;
DHD_CTL(("%s: given %*s, returning %s\n", __FUNCTION__,
(int)sizeof(drvname), drvname, info.driver));
break;
#ifdef TOE
/* Get toe offload components from dongle */
case ETHTOOL_GRXCSUM:
case ETHTOOL_GTXCSUM:
if ((ret = dhd_toe_get(dhd, 0, &toe_cmpnt)) < 0)
return ret;
csum_dir = (cmd == ETHTOOL_GTXCSUM) ? TOE_TX_CSUM_OL : TOE_RX_CSUM_OL;
edata.cmd = cmd;
edata.data = (toe_cmpnt & csum_dir) ? 1 : 0;
if (copy_to_user(uaddr, &edata, sizeof(edata)))
return -EFAULT;
break;
/* Set toe offload components in dongle */
case ETHTOOL_SRXCSUM:
case ETHTOOL_STXCSUM:
if (copy_from_user(&edata, uaddr, sizeof(edata)))
return -EFAULT;
/* Read the current settings, update and write back */
if ((ret = dhd_toe_get(dhd, 0, &toe_cmpnt)) < 0)
return ret;
csum_dir = (cmd == ETHTOOL_STXCSUM) ? TOE_TX_CSUM_OL : TOE_RX_CSUM_OL;
if (edata.data != 0)
toe_cmpnt |= csum_dir;
else
toe_cmpnt &= ~csum_dir;
if ((ret = dhd_toe_set(dhd, 0, toe_cmpnt)) < 0)
return ret;
/* If setting TX checksum mode, tell Linux the new mode */
if (cmd == ETHTOOL_STXCSUM) {
if (edata.data)
dhd->iflist[0]->net->features |= NETIF_F_IP_CSUM;
else
dhd->iflist[0]->net->features &= ~NETIF_F_IP_CSUM;
}
break;
#endif /* TOE */
default:
return -EOPNOTSUPP;
}
return 0;
}
#endif /* LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2) */
static bool dhd_check_hang(struct net_device *net, dhd_pub_t *dhdp, int error)
{
if (!dhdp) {
DHD_ERROR(("%s: dhdp is NULL\n", __FUNCTION__));
return FALSE;
}
if (!dhdp->up)
return FALSE;
#if !defined(BCMPCIE)
if (dhdp->info->thr_dpc_ctl.thr_pid < 0) {
DHD_ERROR(("%s : skipped due to negative pid - unloading?\n", __FUNCTION__));
return FALSE;
}
#endif
if ((error == -ETIMEDOUT) || (error == -EREMOTEIO) ||
((dhdp->busstate == DHD_BUS_DOWN) && (!dhdp->dongle_reset))) {
#ifdef BCMPCIE
DHD_ERROR(("%s: Event HANG send up due to re=%d te=%d d3acke=%d e=%d s=%d\n",
__FUNCTION__, dhdp->rxcnt_timeout, dhdp->txcnt_timeout,
dhdp->d3ackcnt_timeout, error, dhdp->busstate));
#else
DHD_ERROR(("%s: Event HANG send up due to re=%d te=%d e=%d s=%d\n", __FUNCTION__,
dhdp->rxcnt_timeout, dhdp->txcnt_timeout, error, dhdp->busstate));
#endif /* BCMPCIE */
if (dhdp->hang_reason == 0) {
if (dhdp->dongle_trap_occured) {
dhdp->hang_reason = HANG_REASON_DONGLE_TRAP;
#ifdef BCMPCIE
} else if (dhdp->d3ackcnt_timeout) {
dhdp->hang_reason = HANG_REASON_D3_ACK_TIMEOUT;
#endif /* BCMPCIE */
} else {
dhdp->hang_reason = HANG_REASON_IOCTL_RESP_TIMEOUT;
}
}
net_os_send_hang_message(net);
return TRUE;
}
return FALSE;
}
int dhd_ioctl_process(dhd_pub_t *pub, int ifidx, dhd_ioctl_t *ioc, void *data_buf)
{
int bcmerror = BCME_OK;
int buflen = 0;
struct net_device *net;
net = dhd_idx2net(pub, ifidx);
if (!net) {
bcmerror = BCME_BADARG;
goto done;
}
if (data_buf)
buflen = MIN(ioc->len, DHD_IOCTL_MAXLEN);
/* check for local dhd ioctl and handle it */
if (ioc->driver == DHD_IOCTL_MAGIC) {
bcmerror = dhd_ioctl((void *)pub, ioc, data_buf, buflen);
if (bcmerror)
pub->bcmerror = bcmerror;
goto done;
}
/* send to dongle (must be up, and wl). */
if (pub->busstate == DHD_BUS_DOWN || pub->busstate == DHD_BUS_LOAD) {
if (allow_delay_fwdl) {
int ret = dhd_bus_start(pub);
if (ret != 0) {
DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret));
bcmerror = BCME_DONGLE_DOWN;
goto done;
}
} else {
bcmerror = BCME_DONGLE_DOWN;
goto done;
}
}
if (!pub->iswl) {
bcmerror = BCME_DONGLE_DOWN;
goto done;
}
/*
* Flush the TX queue if required for proper message serialization:
* Intercept WLC_SET_KEY IOCTL - serialize M4 send and set key IOCTL to
* prevent M4 encryption and
* intercept WLC_DISASSOC IOCTL - serialize WPS-DONE and WLC_DISASSOC IOCTL to
* prevent disassoc frame being sent before WPS-DONE frame.
*/
if (ioc->cmd == WLC_SET_KEY ||
(ioc->cmd == WLC_SET_VAR && data_buf != NULL &&
strncmp("wsec_key", data_buf, 9) == 0) ||
(ioc->cmd == WLC_SET_VAR && data_buf != NULL &&
strncmp("bsscfg:wsec_key", data_buf, 15) == 0) ||
ioc->cmd == WLC_DISASSOC)
dhd_wait_pend8021x(net);
#ifdef WLMEDIA_HTSF
if (data_buf) {
/* short cut wl ioctl calls here */
if (strcmp("htsf", data_buf) == 0) {
dhd_ioctl_htsf_get(dhd, 0);
return BCME_OK;
}
if (strcmp("htsflate", data_buf) == 0) {
if (ioc->set) {
memset(ts, 0, sizeof(tstamp_t)*TSMAX);
memset(&maxdelayts, 0, sizeof(tstamp_t));
maxdelay = 0;
tspktcnt = 0;
maxdelaypktno = 0;
memset(&vi_d1.bin, 0, sizeof(uint32)*NUMBIN);
memset(&vi_d2.bin, 0, sizeof(uint32)*NUMBIN);
memset(&vi_d3.bin, 0, sizeof(uint32)*NUMBIN);
memset(&vi_d4.bin, 0, sizeof(uint32)*NUMBIN);
} else {
dhd_dump_latency();
}
return BCME_OK;
}
if (strcmp("htsfclear", data_buf) == 0) {
memset(&vi_d1.bin, 0, sizeof(uint32)*NUMBIN);
memset(&vi_d2.bin, 0, sizeof(uint32)*NUMBIN);
memset(&vi_d3.bin, 0, sizeof(uint32)*NUMBIN);
memset(&vi_d4.bin, 0, sizeof(uint32)*NUMBIN);
htsf_seqnum = 0;
return BCME_OK;
}
if (strcmp("htsfhis", data_buf) == 0) {
dhd_dump_htsfhisto(&vi_d1, "H to D");
dhd_dump_htsfhisto(&vi_d2, "D to D");
dhd_dump_htsfhisto(&vi_d3, "D to H");
dhd_dump_htsfhisto(&vi_d4, "H to H");
return BCME_OK;
}
if (strcmp("tsport", data_buf) == 0) {
if (ioc->set) {
memcpy(&tsport, data_buf + 7, 4);
} else {
DHD_ERROR(("current timestamp port: %d \n", tsport));
}
return BCME_OK;
}
}
#endif /* WLMEDIA_HTSF */
if ((ioc->cmd == WLC_SET_VAR || ioc->cmd == WLC_GET_VAR) &&
data_buf != NULL && strncmp("rpc_", data_buf, 4) == 0) {
#ifdef BCM_FD_AGGR
bcmerror = dhd_fdaggr_ioctl(pub, ifidx, (wl_ioctl_t *)ioc, data_buf, buflen);
#else
bcmerror = BCME_UNSUPPORTED;
#endif
goto done;
}
#ifdef DHD_DEBUG
if (ioc->cmd != WLC_GET_MAGIC && ioc->cmd != WLC_GET_VERSION) {
if (ioc->cmd == WLC_SET_VAR || ioc->cmd == WLC_GET_VAR) {
/* Print IOVAR Information */
DHD_IOV_INFO(("%s: IOVAR_INFO name = %s set = %d\n",
__FUNCTION__, (char *)data_buf, ioc->set));
if ((dhd_msg_level & DHD_IOV_INFO_VAL) && ioc->set && data_buf) {
prhex(NULL, data_buf + strlen(data_buf) + 1,
buflen - strlen(data_buf) - 1);
}
} else {
/* Print IOCTL Information */
DHD_IOV_INFO(("%s: IOCTL_INFO cmd = %d set = %d\n",
__FUNCTION__, ioc->cmd, ioc->set));
if ((dhd_msg_level & DHD_IOV_INFO_VAL) && ioc->set && data_buf) {
prhex(NULL, data_buf, buflen);
}
}
}
#endif /* DHD_DEBUG */
bcmerror = dhd_wl_ioctl(pub, ifidx, (wl_ioctl_t *)ioc, data_buf, buflen);
done:
dhd_check_hang(net, pub, bcmerror);
return bcmerror;
}
static int
dhd_ioctl_entry(struct net_device *net, struct ifreq *ifr, int cmd)
{
dhd_info_t *dhd = DHD_DEV_INFO(net);
dhd_ioctl_t ioc;
int ifidx;
int ret;
void *local_buf = NULL;
u16 buflen = 0;
#ifdef ENABLE_INSMOD_NO_FW_LOAD
allow_delay_fwdl = 1;
#endif
DHD_OS_WAKE_LOCK(&dhd->pub);
DHD_PERIM_LOCK(&dhd->pub);
#ifndef ENABLE_INSMOD_NO_FW_LOAD
/* Interface up check for built-in type */
if (!dhd_download_fw_on_driverload && dhd->pub.up == FALSE) {
DHD_TRACE(("%s: Interface is down \n", __FUNCTION__));
ret = BCME_NOTUP;
goto exit;
}
#endif
/* send to dongle only if we are not waiting for reload already */
if (dhd->pub.hang_was_sent) {
DHD_TRACE(("%s: HANG was sent up earlier\n", __FUNCTION__));
DHD_OS_WAKE_LOCK_CTRL_TIMEOUT_ENABLE(&dhd->pub, DHD_EVENT_TIMEOUT_MS);
ret = BCME_DONGLE_DOWN;
goto exit;
}
ifidx = dhd_net2idx(dhd, net);
DHD_TRACE(("%s: ifidx %d, cmd 0x%04x\n", __FUNCTION__, ifidx, cmd));
if (ifidx == DHD_BAD_IF) {
DHD_ERROR(("%s: BAD IF\n", __FUNCTION__));
ret = -1;
goto exit;
}
#if defined(WL_WIRELESS_EXT)
/* linux wireless extensions */
if ((cmd >= SIOCIWFIRST) && (cmd <= SIOCIWLAST)) {
/* may recurse, do NOT lock */
ret = wl_iw_ioctl(net, ifr, cmd);
goto exit;
}
#endif /* defined(WL_WIRELESS_EXT) */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2)
if (cmd == SIOCETHTOOL) {
ret = dhd_ethtool(dhd, (void*)ifr->ifr_data);
goto exit;
}
#endif /* LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 2) */
if (cmd == SIOCDEVPRIVATE+1) {
ret = wl_android_priv_cmd(net, ifr, cmd);
dhd_check_hang(net, &dhd->pub, ret);
goto exit;
}
if (cmd != SIOCDEVPRIVATE) {
ret = -EOPNOTSUPP;
goto exit;
}
memset(&ioc, 0, sizeof(ioc));
#ifdef CONFIG_COMPAT
#if ((LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0)) || ((LINUX_VERSION_CODE >= \
KERNEL_VERSION(4, 6, 0)) && !defined(__X86)))
if (is_compat_task()) {
compat_wl_ioctl_t compat_ioc;
if (copy_from_user(&compat_ioc, ifr->ifr_data, sizeof(compat_wl_ioctl_t))) {
ret = BCME_BADADDR;
goto done;
}
ioc.cmd = compat_ioc.cmd;
ioc.buf = compat_ptr(compat_ioc.buf);
ioc.len = compat_ioc.len;
ioc.set = compat_ioc.set;
ioc.used = compat_ioc.used;
ioc.needed = compat_ioc.needed;
/* To differentiate between wl and dhd read 4 more byes */
if ((copy_from_user(&ioc.driver, (char *)ifr->ifr_data + sizeof(compat_wl_ioctl_t),
sizeof(uint)) != 0)) {
ret = BCME_BADADDR;
goto done;
}
} else
#endif /* LINUX_VER < 4.6 || (LINUX_VER >= 4.6 && !defined(__X86)) */
#endif /* CONFIG_COMPAT */
{
/* Copy the ioc control structure part of ioctl request */
if (copy_from_user(&ioc, ifr->ifr_data, sizeof(wl_ioctl_t))) {
ret = BCME_BADADDR;
goto done;
}
/* To differentiate between wl and dhd read 4 more byes */
if ((copy_from_user(&ioc.driver, (char *)ifr->ifr_data + sizeof(wl_ioctl_t),
sizeof(uint)) != 0)) {
ret = BCME_BADADDR;
goto done;
}
}
if (!capable(CAP_NET_ADMIN)) {
ret = BCME_EPERM;
goto done;
}
if (ioc.len > 0) {
buflen = MIN(ioc.len, DHD_IOCTL_MAXLEN);
if (!(local_buf = MALLOC(dhd->pub.osh, buflen+1))) {
ret = BCME_NOMEM;
goto done;
}
DHD_PERIM_UNLOCK(&dhd->pub);
if (copy_from_user(local_buf, ioc.buf, buflen)) {
DHD_PERIM_LOCK(&dhd->pub);
ret = BCME_BADADDR;
goto done;
}
DHD_PERIM_LOCK(&dhd->pub);
*(char *)(local_buf + buflen) = '\0';
}
ret = dhd_ioctl_process(&dhd->pub, ifidx, &ioc, local_buf);
if (!ret && buflen && local_buf && ioc.buf) {
DHD_PERIM_UNLOCK(&dhd->pub);
if (copy_to_user(ioc.buf, local_buf, buflen))
ret = -EFAULT;
DHD_PERIM_LOCK(&dhd->pub);
}
done:
if (local_buf)
MFREE(dhd->pub.osh, local_buf, buflen+1);
exit:
DHD_PERIM_UNLOCK(&dhd->pub);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
return OSL_ERROR(ret);
}
#ifdef FIX_CPU_MIN_CLOCK
static int dhd_init_cpufreq_fix(dhd_info_t *dhd)
{
if (dhd) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
mutex_init(&dhd->cpufreq_fix);
#endif
dhd->cpufreq_fix_status = FALSE;
}
return 0;
}
static void dhd_fix_cpu_freq(dhd_info_t *dhd)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
mutex_lock(&dhd->cpufreq_fix);
#endif
if (dhd && !dhd->cpufreq_fix_status) {
pm_qos_add_request(&dhd->dhd_cpu_qos, PM_QOS_CPU_FREQ_MIN, 300000);
#ifdef FIX_BUS_MIN_CLOCK
pm_qos_add_request(&dhd->dhd_bus_qos, PM_QOS_BUS_THROUGHPUT, 400000);
#endif /* FIX_BUS_MIN_CLOCK */
DHD_ERROR(("pm_qos_add_requests called\n"));
dhd->cpufreq_fix_status = TRUE;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
mutex_unlock(&dhd->cpufreq_fix);
#endif
}
static void dhd_rollback_cpu_freq(dhd_info_t *dhd)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
mutex_lock(&dhd ->cpufreq_fix);
#endif
if (dhd && dhd->cpufreq_fix_status != TRUE) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
mutex_unlock(&dhd->cpufreq_fix);
#endif
return;
}
pm_qos_remove_request(&dhd->dhd_cpu_qos);
#ifdef FIX_BUS_MIN_CLOCK
pm_qos_remove_request(&dhd->dhd_bus_qos);
#endif /* FIX_BUS_MIN_CLOCK */
DHD_ERROR(("pm_qos_add_requests called\n"));
dhd->cpufreq_fix_status = FALSE;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
mutex_unlock(&dhd->cpufreq_fix);
#endif
}
#endif /* FIX_CPU_MIN_CLOCK */
static int
dhd_stop(struct net_device *net)
{
int ifidx = 0;
dhd_info_t *dhd = DHD_DEV_INFO(net);
DHD_OS_WAKE_LOCK(&dhd->pub);
DHD_PERIM_LOCK(&dhd->pub);
DHD_TRACE(("%s: Enter %p\n", __FUNCTION__, net));
dhd->pub.rxcnt_timeout = 0;
dhd->pub.txcnt_timeout = 0;
#ifdef BCMPCIE
dhd->pub.d3ackcnt_timeout = 0;
#endif /* BCMPCIE */
if (dhd->pub.up == 0) {
goto exit;
}
dhd_if_flush_sta(DHD_DEV_IFP(net));
/* Disable Runtime PM before interface down */
DHD_DISABLE_RUNTIME_PM(&dhd->pub);
#ifdef FIX_CPU_MIN_CLOCK
if (dhd_get_fw_mode(dhd) == DHD_FLAG_HOSTAP_MODE)
dhd_rollback_cpu_freq(dhd);
#endif /* FIX_CPU_MIN_CLOCK */
ifidx = dhd_net2idx(dhd, net);
BCM_REFERENCE(ifidx);
/* Set state and stop OS transmissions */
netif_stop_queue(net);
dhd->pub.up = 0;
#ifdef WL_CFG80211
if (ifidx == 0) {
dhd_if_t *ifp;
wl_cfg80211_down(DHD_GET_CFG80211_PRIV(&dhd->pub));
ifp = dhd->iflist[0];
ASSERT(ifp && ifp->net);
/*
* For CFG80211: Clean up all the left over virtual interfaces
* when the primary Interface is brought down. [ifconfig wlan0 down]
*/
if (!dhd_download_fw_on_driverload) {
if ((dhd->dhd_state & DHD_ATTACH_STATE_ADD_IF) &&
(dhd->dhd_state & DHD_ATTACH_STATE_CFG80211)) {
int i;
#ifdef WL_CFG80211_P2P_DEV_IF
wl_cfg80211_del_p2p_wdev(DHD_GET_CFG80211_PRIV(&dhd->pub));
#endif /* WL_CFG80211_P2P_DEV_IF */
dhd_net_if_lock_local(dhd);
for (i = 1; i < DHD_MAX_IFS; i++)
dhd_remove_if(&dhd->pub, i, FALSE);
if (ifp && ifp->net) {
dhd_if_del_sta_list(ifp);
}
#ifdef ARP_OFFLOAD_SUPPORT
if (dhd_inetaddr_notifier_registered) {
dhd_inetaddr_notifier_registered = FALSE;
unregister_inetaddr_notifier(&dhd_inetaddr_notifier);
}
#endif /* ARP_OFFLOAD_SUPPORT */
#if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT)
if (dhd_inet6addr_notifier_registered) {
dhd_inet6addr_notifier_registered = FALSE;
unregister_inet6addr_notifier(&dhd_inet6addr_notifier);
}
#endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */
dhd_net_if_unlock_local(dhd);
}
cancel_work_sync(dhd->dhd_deferred_wq);
#if defined(DHD_LB) && defined(DHD_LB_RXP)
__skb_queue_purge(&dhd->rx_pend_queue);
#endif /* DHD_LB && DHD_LB_RXP */
}
#if defined(BCMPCIE) && defined(DHDTCPACK_SUPPRESS)
dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_OFF);
#endif /* BCMPCIE && DHDTCPACK_SUPPRESS */
#if defined(DHD_LB) && defined(DHD_LB_RXP)
if (ifp->net == dhd->rx_napi_netdev) {
DHD_INFO(("%s napi<%p> disabled ifp->net<%p,%s>\n",
__FUNCTION__, &dhd->rx_napi_struct, net, net->name));
skb_queue_purge(&dhd->rx_napi_queue);
napi_disable(&dhd->rx_napi_struct);
netif_napi_del(&dhd->rx_napi_struct);
dhd->rx_napi_netdev = NULL;
}
#endif /* DHD_LB && DHD_LB_RXP */
}
#endif /* WL_CFG80211 */
#ifdef PROP_TXSTATUS
dhd_wlfc_cleanup(&dhd->pub, NULL, 0);
#endif
/* Stop the protocol module */
dhd_prot_stop(&dhd->pub);
OLD_MOD_DEC_USE_COUNT;
exit:
#if defined(WL_CFG80211)
if (ifidx == 0 && !dhd_download_fw_on_driverload)
wl_android_wifi_off(net, TRUE);
#endif
dhd->pub.hang_was_sent = 0;
/* Clear country spec for for built-in type driver */
if (!dhd_download_fw_on_driverload) {
dhd->pub.dhd_cspec.country_abbrev[0] = 0x00;
dhd->pub.dhd_cspec.rev = 0;
dhd->pub.dhd_cspec.ccode[0] = 0x00;
}
#ifdef BCMDBGFS
dhd_dbg_remove();
#endif
DHD_PERIM_UNLOCK(&dhd->pub);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
/* Destroy wakelock */
if (!dhd_download_fw_on_driverload &&
(dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) {
DHD_OS_WAKE_LOCK_DESTROY(dhd);
dhd->dhd_state &= ~DHD_ATTACH_STATE_WAKELOCKS_INIT;
}
return 0;
}
#if defined(WL_CFG80211) && defined(USE_INITIAL_SHORT_DWELL_TIME)
extern bool g_first_broadcast_scan;
#endif
#ifdef WL11U
static int dhd_interworking_enable(dhd_pub_t *dhd)
{
char iovbuf[WLC_IOCTL_SMLEN];
uint32 enable = true;
int ret = BCME_OK;
bcm_mkiovar("interworking", (char *)&enable, sizeof(enable), iovbuf, sizeof(iovbuf));
ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
if (ret < 0) {
DHD_INFO(("%s: enableing interworking failed, ret=%d\n", __FUNCTION__, ret));
}
if (ret == BCME_OK) {
/* basic capabilities for HS20 REL2 */
uint32 cap = WL_WNM_BSSTRANS | WL_WNM_NOTIF;
bcm_mkiovar("wnm", (char *)&cap, sizeof(cap), iovbuf, sizeof(iovbuf));
ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
if (ret < 0) {
DHD_INFO(("%s: set wnm returned (%d)\n", __FUNCTION__, ret));
}
}
return ret;
}
#endif /* WL11u */
static int
dhd_open(struct net_device *net)
{
dhd_info_t *dhd = DHD_DEV_INFO(net);
#ifdef TOE
uint32 toe_ol;
#endif
#ifdef BCM_FD_AGGR
char iovbuf[WLC_IOCTL_SMLEN];
dbus_config_t config;
uint32 agglimit = 0;
uint32 rpc_agg = BCM_RPC_TP_DNGL_AGG_DPC; /* host aggr not enabled yet */
#endif /* BCM_FD_AGGR */
int ifidx;
int32 ret = 0;
if (!dhd_download_fw_on_driverload && !dhd_driver_init_done) {
DHD_ERROR(("%s: WLAN driver is not initialized\n", __FUNCTION__));
return -1;
}
/* Init wakelock */
if (!dhd_download_fw_on_driverload &&
!(dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT)) {
DHD_OS_WAKE_LOCK_INIT(dhd);
dhd->dhd_state |= DHD_ATTACH_STATE_WAKELOCKS_INIT;
}
#ifdef PREVENT_REOPEN_DURING_HANG
/* WAR : to prevent calling dhd_open abnormally in quick succession after hang event */
if (dhd->pub.hang_was_sent == 1) {
DHD_ERROR(("%s: HANG was sent up earlier\n", __FUNCTION__));
/* Force to bring down WLAN interface in case dhd_stop() is not called
* from the upper layer when HANG event is triggered.
*/
if (!dhd_download_fw_on_driverload && dhd->pub.up == 1) {
DHD_ERROR(("%s: WLAN interface is not brought down\n", __FUNCTION__));
dhd_stop(net);
} else {
return -1;
}
}
#endif /* PREVENT_REOPEN_DURING_HANG */
DHD_OS_WAKE_LOCK(&dhd->pub);
DHD_PERIM_LOCK(&dhd->pub);
dhd->pub.dongle_trap_occured = 0;
dhd->pub.hang_was_sent = 0;
dhd->pub.hang_reason = 0;
dhd->pub.iovar_timeout_occured = 0;
#ifdef PCIE_FULL_DONGLE
dhd->pub.d3ack_timeout_occured = 0;
#endif /* PCIE_FULL_DONGLE */
#ifdef DHD_LOSSLESS_ROAMING
dhd->pub.dequeue_prec_map = ALLPRIO;
#endif
#if !defined(WL_CFG80211)
/*
* Force start if ifconfig_up gets called before START command
* We keep WEXT's wl_control_wl_start to provide backward compatibility
* This should be removed in the future
*/
ret = wl_control_wl_start(net);
if (ret != 0) {
DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret));
ret = -1;
goto exit;
}
#endif
ifidx = dhd_net2idx(dhd, net);
DHD_TRACE(("%s: ifidx %d\n", __FUNCTION__, ifidx));
if (ifidx < 0) {
DHD_ERROR(("%s: Error: called with invalid IF\n", __FUNCTION__));
ret = -1;
goto exit;
}
if (!dhd->iflist[ifidx]) {
DHD_ERROR(("%s: Error: called when IF already deleted\n", __FUNCTION__));
ret = -1;
goto exit;
}
if (ifidx == 0) {
atomic_set(&dhd->pend_8021x_cnt, 0);
#if defined(WL_CFG80211)
if (!dhd_download_fw_on_driverload) {
pr_info("\n%s\n", dhd_version);
#if defined(USE_INITIAL_SHORT_DWELL_TIME)
g_first_broadcast_scan = TRUE;
#endif
ret = wl_android_wifi_on(net);
if (ret != 0) {
DHD_ERROR(("%s : wl_android_wifi_on failed (%d)\n",
__FUNCTION__, ret));
ret = -1;
goto exit;
}
}
#ifdef FIX_CPU_MIN_CLOCK
if (dhd_get_fw_mode(dhd) == DHD_FLAG_HOSTAP_MODE) {
dhd_init_cpufreq_fix(dhd);
dhd_fix_cpu_freq(dhd);
}
#endif /* FIX_CPU_MIN_CLOCK */
#endif
if (dhd->pub.busstate != DHD_BUS_DATA) {
/* try to bring up bus */
DHD_PERIM_UNLOCK(&dhd->pub);
ret = dhd_bus_start(&dhd->pub);
DHD_PERIM_LOCK(&dhd->pub);
if (ret) {
DHD_ERROR(("%s: failed with code %d\n", __FUNCTION__, ret));
ret = -1;
goto exit;
}
}
#ifdef BCM_FD_AGGR
config.config_id = DBUS_CONFIG_ID_AGGR_LIMIT;
memset(iovbuf, 0, sizeof(iovbuf));
bcm_mkiovar("rpc_dngl_agglimit", (char *)&agglimit, 4,
iovbuf, sizeof(iovbuf));
if (!dhd_wl_ioctl_cmd(&dhd->pub, WLC_GET_VAR, iovbuf, sizeof(iovbuf), FALSE, 0)) {
agglimit = *(uint32 *)iovbuf;
config.aggr_param.maxrxsf = agglimit >> BCM_RPC_TP_AGG_SF_SHIFT;
config.aggr_param.maxrxsize = agglimit & BCM_RPC_TP_AGG_BYTES_MASK;
DHD_ERROR(("rpc_dngl_agglimit %x : sf_limit %d bytes_limit %d\n",
agglimit, config.aggr_param.maxrxsf, config.aggr_param.maxrxsize));
if (bcm_rpc_tp_set_config(dhd->pub.info->rpc_th, &config)) {
DHD_ERROR(("set tx/rx queue size and buffersize failed\n"));
}
} else {
DHD_ERROR(("get rpc_dngl_agglimit failed\n"));
rpc_agg &= ~BCM_RPC_TP_DNGL_AGG_DPC;
}
/* Set aggregation for TX */
bcm_rpc_tp_agg_set(dhd->pub.info->rpc_th, BCM_RPC_TP_HOST_AGG_MASK,
rpc_agg & BCM_RPC_TP_HOST_AGG_MASK);
/* Set aggregation for RX */
memset(iovbuf, 0, sizeof(iovbuf));
bcm_mkiovar("rpc_agg", (char *)&rpc_agg, sizeof(rpc_agg), iovbuf, sizeof(iovbuf));
if (!dhd_wl_ioctl_cmd(&dhd->pub, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) {
dhd->pub.info->fdaggr = 0;
if (rpc_agg & BCM_RPC_TP_HOST_AGG_MASK)
dhd->pub.info->fdaggr |= BCM_FDAGGR_H2D_ENABLED;
if (rpc_agg & BCM_RPC_TP_DNGL_AGG_MASK)
dhd->pub.info->fdaggr |= BCM_FDAGGR_D2H_ENABLED;
} else {
DHD_ERROR(("%s(): Setting RX aggregation failed %d\n", __FUNCTION__, ret));
}
#endif /* BCM_FD_AGGR */
/* dhd_sync_with_dongle has been called in dhd_bus_start or wl_android_wifi_on */
memcpy(net->dev_addr, dhd->pub.mac.octet, ETHER_ADDR_LEN);
#ifdef TOE
/* Get current TOE mode from dongle */
if (dhd_toe_get(dhd, ifidx, &toe_ol) >= 0 && (toe_ol & TOE_TX_CSUM_OL) != 0) {
dhd->iflist[ifidx]->net->features |= NETIF_F_IP_CSUM;
} else {
dhd->iflist[ifidx]->net->features &= ~NETIF_F_IP_CSUM;
}
#endif /* TOE */
#if defined(WL_CFG80211)
if (unlikely(wl_cfg80211_up(DHD_GET_CFG80211_PRIV(&dhd->pub)))) {
DHD_ERROR(("%s: failed to bring up cfg80211\n", __FUNCTION__));
ret = -1;
goto exit;
}
if (!dhd_download_fw_on_driverload) {
#ifdef ARP_OFFLOAD_SUPPORT
dhd->pend_ipaddr = 0;
if (!dhd_inetaddr_notifier_registered) {
dhd_inetaddr_notifier_registered = TRUE;
register_inetaddr_notifier(&dhd_inetaddr_notifier);
}
#endif /* ARP_OFFLOAD_SUPPORT */
#if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT)
if (!dhd_inet6addr_notifier_registered) {
dhd_inet6addr_notifier_registered = TRUE;
register_inet6addr_notifier(&dhd_inet6addr_notifier);
}
#endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */
#ifdef DHD_LB
DHD_LB_STATS_INIT(&dhd->pub);
#ifdef DHD_LB_RXP
__skb_queue_head_init(&dhd->rx_pend_queue);
#endif /* DHD_LB_RXP */
#endif /* DHD_LB */
}
#if defined(BCMPCIE) && defined(DHDTCPACK_SUPPRESS)
#if defined(SET_RPS_CPUS)
dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_OFF);
#else
dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_HOLD);
#endif
#endif /* BCMPCIE && DHDTCPACK_SUPPRESS */
#if defined(DHD_LB) && defined(DHD_LB_RXP)
if (dhd->rx_napi_netdev == NULL) {
dhd->rx_napi_netdev = dhd->iflist[ifidx]->net;
memset(&dhd->rx_napi_struct, 0, sizeof(struct napi_struct));
netif_napi_add(dhd->rx_napi_netdev, &dhd->rx_napi_struct,
dhd_napi_poll, dhd_napi_weight);
DHD_INFO(("%s napi<%p> enabled ifp->net<%p,%s>\n",
__FUNCTION__, &dhd->rx_napi_struct, net, net->name));
napi_enable(&dhd->rx_napi_struct);
DHD_INFO(("%s load balance init rx_napi_struct\n", __FUNCTION__));
skb_queue_head_init(&dhd->rx_napi_queue);
}
#endif /* DHD_LB && DHD_LB_RXP */
#if defined(NUM_SCB_MAX_PROBE)
dhd_set_scb_probe(&dhd->pub);
#endif /* NUM_SCB_MAX_PROBE */
#endif /* WL_CFG80211 */
}
/* Allow transmit calls */
netif_start_queue(net);
dhd->pub.up = 1;
OLD_MOD_INC_USE_COUNT;
#ifdef BCMDBGFS
dhd_dbg_init(&dhd->pub);
#endif
exit:
if (ret) {
dhd_stop(net);
}
DHD_PERIM_UNLOCK(&dhd->pub);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
return ret;
}
int dhd_do_driver_init(struct net_device *net)
{
dhd_info_t *dhd = NULL;
if (!net) {
DHD_ERROR(("Primary Interface not initialized \n"));
return -EINVAL;
}
/* && defined(OEM_ANDROID) && defined(BCMSDIO) */
dhd = DHD_DEV_INFO(net);
/* If driver is already initialized, do nothing
*/
if (dhd->pub.busstate == DHD_BUS_DATA) {
DHD_TRACE(("Driver already Inititalized. Nothing to do"));
return 0;
}
if (dhd_open(net) < 0) {
DHD_ERROR(("Driver Init Failed \n"));
return -1;
}
return 0;
}
int
dhd_event_ifadd(dhd_info_t *dhdinfo, wl_event_data_if_t *ifevent, char *name, uint8 *mac)
{
#ifdef WL_CFG80211
if (wl_cfg80211_notify_ifadd(DHD_GET_CFG80211_PRIV(&dhdinfo->pub),
ifevent->ifidx, name, mac, ifevent->bssidx) == BCME_OK)
return BCME_OK;
#endif
/* handle IF event caused by wl commands, SoftAP, WEXT and
* anything else. This has to be done asynchronously otherwise
* DPC will be blocked (and iovars will timeout as DPC has no chance
* to read the response back)
*/
if (ifevent->ifidx > 0) {
dhd_if_event_t *if_event = MALLOC(dhdinfo->pub.osh, sizeof(dhd_if_event_t));
if (if_event == NULL) {
DHD_ERROR(("dhd_event_ifadd: Failed MALLOC, malloced %d bytes",
MALLOCED(dhdinfo->pub.osh)));
return BCME_NOMEM;
}
memcpy(&if_event->event, ifevent, sizeof(if_event->event));
memcpy(if_event->mac, mac, ETHER_ADDR_LEN);
strncpy(if_event->name, name, IFNAMSIZ);
if_event->name[IFNAMSIZ - 1] = '\0';
dhd_deferred_schedule_work(dhdinfo->dhd_deferred_wq, (void *)if_event,
DHD_WQ_WORK_IF_ADD, dhd_ifadd_event_handler, DHD_WORK_PRIORITY_LOW);
}
return BCME_OK;
}
int
dhd_event_ifdel(dhd_info_t *dhdinfo, wl_event_data_if_t *ifevent, char *name, uint8 *mac)
{
dhd_if_event_t *if_event;
#ifdef WL_CFG80211
if (wl_cfg80211_notify_ifdel(DHD_GET_CFG80211_PRIV(&dhdinfo->pub),
ifevent->ifidx, name, mac, ifevent->bssidx) == BCME_OK)
return BCME_OK;
#endif /* WL_CFG80211 */
/* handle IF event caused by wl commands, SoftAP, WEXT and
* anything else
*/
if_event = MALLOC(dhdinfo->pub.osh, sizeof(dhd_if_event_t));
if (if_event == NULL) {
DHD_ERROR(("dhd_event_ifdel: malloc failed for if_event, malloced %d bytes",
MALLOCED(dhdinfo->pub.osh)));
return BCME_NOMEM;
}
memcpy(&if_event->event, ifevent, sizeof(if_event->event));
memcpy(if_event->mac, mac, ETHER_ADDR_LEN);
strncpy(if_event->name, name, IFNAMSIZ);
if_event->name[IFNAMSIZ - 1] = '\0';
dhd_deferred_schedule_work(dhdinfo->dhd_deferred_wq, (void *)if_event, DHD_WQ_WORK_IF_DEL,
dhd_ifdel_event_handler, DHD_WORK_PRIORITY_LOW);
return BCME_OK;
}
/* unregister and free the existing net_device interface (if any) in iflist and
* allocate a new one. the slot is reused. this function does NOT register the
* new interface to linux kernel. dhd_register_if does the job
*/
struct net_device*
dhd_allocate_if(dhd_pub_t *dhdpub, int ifidx, char *name,
uint8 *mac, uint8 bssidx, bool need_rtnl_lock, char *dngl_name)
{
dhd_info_t *dhdinfo = (dhd_info_t *)dhdpub->info;
dhd_if_t *ifp;
ASSERT(dhdinfo && (ifidx < DHD_MAX_IFS));
ifp = dhdinfo->iflist[ifidx];
if (ifp != NULL) {
if (ifp->net != NULL) {
DHD_ERROR(("%s: free existing IF %s\n", __FUNCTION__, ifp->net->name));
dhd_dev_priv_clear(ifp->net); /* clear net_device private */
/* in unregister_netdev case, the interface gets freed by net->destructor
* (which is set to free_netdev)
*/
if (ifp->net->reg_state == NETREG_UNINITIALIZED) {
free_netdev(ifp->net);
} else {
netif_stop_queue(ifp->net);
if (need_rtnl_lock)
unregister_netdev(ifp->net);
else
unregister_netdevice(ifp->net);
}
ifp->net = NULL;
}
} else {
ifp = MALLOC(dhdinfo->pub.osh, sizeof(dhd_if_t));
if (ifp == NULL) {
DHD_ERROR(("%s: OOM - dhd_if_t(%zu)\n", __FUNCTION__, sizeof(dhd_if_t)));
return NULL;
}
}
memset(ifp, 0, sizeof(dhd_if_t));
ifp->info = dhdinfo;
ifp->idx = ifidx;
ifp->bssidx = bssidx;
if (mac != NULL)
memcpy(&ifp->mac_addr, mac, ETHER_ADDR_LEN);
/* Allocate etherdev, including space for private structure */
ifp->net = alloc_etherdev(DHD_DEV_PRIV_SIZE);
if (ifp->net == NULL) {
DHD_ERROR(("%s: OOM - alloc_etherdev(%zu)\n", __FUNCTION__, sizeof(dhdinfo)));
goto fail;
}
/* Setup the dhd interface's netdevice private structure. */
dhd_dev_priv_save(ifp->net, dhdinfo, ifp, ifidx);
if (name && name[0]) {
strlcpy(ifp->net->name, name, IFNAMSIZ);
}
#ifdef WL_CFG80211
if (ifidx == 0)
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0))
ifp->net->priv_destructor = free_netdev;
#else
ifp->net->destructor = free_netdev;
#endif
else
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0))
ifp->net->priv_destructor = dhd_netdev_free;
#else
ifp->net->destructor = dhd_netdev_free;
#endif
#else
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0))
ifp->net->priv_destructor = free_netdev;
#else
ifp->net->destructor = free_netdev;
#endif
#endif /* WL_CFG80211 */
strncpy(ifp->name, ifp->net->name, IFNAMSIZ);
ifp->name[IFNAMSIZ - 1] = '\0';
dhdinfo->iflist[ifidx] = ifp;
/* initialize the dongle provided if name */
if (dngl_name)
strncpy(ifp->dngl_name, dngl_name, IFNAMSIZ);
else
strncpy(ifp->dngl_name, name, IFNAMSIZ);
#ifdef PCIE_FULL_DONGLE
/* Initialize STA info list */
INIT_LIST_HEAD(&ifp->sta_list);
DHD_IF_STA_LIST_LOCK_INIT(ifp);
#endif /* PCIE_FULL_DONGLE */
#ifdef DHD_L2_FILTER
ifp->phnd_arp_table = init_l2_filter_arp_table(dhdpub->osh);
ifp->parp_allnode = TRUE;
#endif
return ifp->net;
fail:
if (ifp != NULL) {
if (ifp->net != NULL) {
dhd_dev_priv_clear(ifp->net);
free_netdev(ifp->net);
ifp->net = NULL;
}
MFREE(dhdinfo->pub.osh, ifp, sizeof(*ifp));
ifp = NULL;
}
dhdinfo->iflist[ifidx] = NULL;
return NULL;
}
/* unregister and free the the net_device interface associated with the indexed
* slot, also free the slot memory and set the slot pointer to NULL
*/
int
dhd_remove_if(dhd_pub_t *dhdpub, int ifidx, bool need_rtnl_lock)
{
dhd_info_t *dhdinfo = (dhd_info_t *)dhdpub->info;
dhd_if_t *ifp;
ifp = dhdinfo->iflist[ifidx];
if (ifp != NULL) {
if (ifp->net != NULL) {
DHD_ERROR(("deleting interface '%s' idx %d\n", ifp->net->name, ifp->idx));
/* in unregister_netdev case, the interface gets freed by net->destructor
* (which is set to free_netdev)
*/
if (ifp->net->reg_state == NETREG_UNINITIALIZED) {
free_netdev(ifp->net);
} else {
netif_tx_disable(ifp->net);
#if defined(SET_RPS_CPUS)
custom_rps_map_clear(ifp->net->_rx);
#endif /* SET_RPS_CPUS */
#if defined(SET_RPS_CPUS)
#if (defined(DHDTCPACK_SUPPRESS) && defined(BCMPCIE))
dhd_tcpack_suppress_set(dhdpub, TCPACK_SUP_OFF);
#endif /* DHDTCPACK_SUPPRESS && BCMPCIE */
#endif
if (need_rtnl_lock)
unregister_netdev(ifp->net);
else
unregister_netdevice(ifp->net);
}
ifp->net = NULL;
dhdinfo->iflist[ifidx] = NULL;
}
#ifdef DHD_WMF
dhd_wmf_cleanup(dhdpub, ifidx);
#endif /* DHD_WMF */
#ifdef DHD_L2_FILTER
bcm_l2_filter_arp_table_update(dhdpub->osh, ifp->phnd_arp_table, TRUE,
NULL, FALSE, dhdpub->tickcnt);
deinit_l2_filter_arp_table(dhdpub->osh, ifp->phnd_arp_table);
ifp->phnd_arp_table = NULL;
#endif /* DHD_L2_FILTER */
dhd_if_del_sta_list(ifp);
MFREE(dhdinfo->pub.osh, ifp, sizeof(*ifp));
ifp = NULL;
}
return BCME_OK;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31))
static struct net_device_ops dhd_ops_pri = {
.ndo_open = dhd_open,
.ndo_stop = dhd_stop,
.ndo_get_stats = dhd_get_stats,
.ndo_do_ioctl = dhd_ioctl_entry,
.ndo_start_xmit = dhd_start_xmit,
.ndo_set_mac_address = dhd_set_mac_address,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
.ndo_set_rx_mode = dhd_set_multicast_list,
#else
.ndo_set_multicast_list = dhd_set_multicast_list,
#endif
};
static struct net_device_ops dhd_ops_virt = {
.ndo_get_stats = dhd_get_stats,
.ndo_do_ioctl = dhd_ioctl_entry,
.ndo_start_xmit = dhd_start_xmit,
.ndo_set_mac_address = dhd_set_mac_address,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 2, 0))
.ndo_set_rx_mode = dhd_set_multicast_list,
#else
.ndo_set_multicast_list = dhd_set_multicast_list,
#endif
};
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31)) */
#ifdef DEBUGGER
extern void debugger_init(void *bus_handle);
#endif
#ifdef SHOW_LOGTRACE
static char *logstrs_path = "/root/logstrs.bin";
static char *st_str_file_path = "/root/rtecdc.bin";
static char *map_file_path = "/root/rtecdc.map";
static char *rom_st_str_file_path = "/root/roml.bin";
static char *rom_map_file_path = "/root/roml.map";
#define BYTES_AHEAD_NUM 11 /* address in map file is before these many bytes */
#define READ_NUM_BYTES 1000 /* read map file each time this No. of bytes */
#define GO_BACK_FILE_POS_NUM_BYTES 100 /* set file pos back to cur pos */
static char *ramstart_str = "text_start"; /* string in mapfile has addr ramstart */
static char *rodata_start_str = "rodata_start"; /* string in mapfile has addr rodata start */
static char *rodata_end_str = "rodata_end"; /* string in mapfile has addr rodata end */
static char *ram_file_str = "rtecdc";
static char *rom_file_str = "roml";
#define RAMSTART_BIT 0x01
#define RDSTART_BIT 0x02
#define RDEND_BIT 0x04
#define ALL_MAP_VAL (RAMSTART_BIT | RDSTART_BIT | RDEND_BIT)
module_param(logstrs_path, charp, S_IRUGO);
module_param(st_str_file_path, charp, S_IRUGO);
module_param(map_file_path, charp, S_IRUGO);
module_param(rom_st_str_file_path, charp, S_IRUGO);
module_param(rom_map_file_path, charp, S_IRUGO);
static void
dhd_init_logstrs_array(dhd_event_log_t *temp)
{
struct file *filep = NULL;
struct kstat stat;
mm_segment_t fs;
char *raw_fmts = NULL;
int logstrs_size = 0;
logstr_header_t *hdr = NULL;
uint32 *lognums = NULL;
char *logstrs = NULL;
int ram_index = 0;
char **fmts;
int num_fmts = 0;
uint32 i = 0;
int error = 0;
fs = get_fs();
set_fs(KERNEL_DS);
filep = filp_open(logstrs_path, O_RDONLY, 0);
if (IS_ERR(filep)) {
DHD_ERROR(("%s: Failed to open the file %s \n", __FUNCTION__, logstrs_path));
goto fail;
}
error = vfs_stat(logstrs_path, &stat);
if (error) {
DHD_ERROR(("%s: Failed to stat file %s \n", __FUNCTION__, logstrs_path));
goto fail;
}
logstrs_size = (int) stat.size;
raw_fmts = kmalloc(logstrs_size, GFP_KERNEL);
if (raw_fmts == NULL) {
DHD_ERROR(("%s: Failed to allocate memory \n", __FUNCTION__));
goto fail;
}
if (vfs_read(filep, raw_fmts, logstrs_size, &filep->f_pos) != logstrs_size) {
DHD_ERROR(("%s: Failed to read file %s", __FUNCTION__, logstrs_path));
goto fail;
}
/* Remember header from the logstrs.bin file */
hdr = (logstr_header_t *) (raw_fmts + logstrs_size -
sizeof(logstr_header_t));
if (hdr->log_magic == LOGSTRS_MAGIC) {
/*
* logstrs.bin start with header.
*/
num_fmts = hdr->rom_logstrs_offset / sizeof(uint32);
ram_index = (hdr->ram_lognums_offset -
hdr->rom_lognums_offset) / sizeof(uint32);
lognums = (uint32 *) &raw_fmts[hdr->rom_lognums_offset];
logstrs = (char *) &raw_fmts[hdr->rom_logstrs_offset];
} else {
/*
* Legacy logstrs.bin format without header.
*/
num_fmts = *((uint32 *) (raw_fmts)) / sizeof(uint32);
if (num_fmts == 0) {
/* Legacy ROM/RAM logstrs.bin format:
* - ROM 'lognums' section
* - RAM 'lognums' section
* - ROM 'logstrs' section.
* - RAM 'logstrs' section.
*
* 'lognums' is an array of indexes for the strings in the
* 'logstrs' section. The first uint32 is 0 (index of first
* string in ROM 'logstrs' section).
*
* The 4324b5 is the only ROM that uses this legacy format. Use the
* fixed number of ROM fmtnums to find the start of the RAM
* 'lognums' section. Use the fixed first ROM string ("Con\n") to
* find the ROM 'logstrs' section.
*/
#define NUM_4324B5_ROM_FMTS 186
#define FIRST_4324B5_ROM_LOGSTR "Con\n"
ram_index = NUM_4324B5_ROM_FMTS;
lognums = (uint32 *) raw_fmts;
num_fmts = ram_index;
logstrs = (char *) &raw_fmts[num_fmts << 2];
while (strncmp(FIRST_4324B5_ROM_LOGSTR, logstrs, 4)) {
num_fmts++;
logstrs = (char *) &raw_fmts[num_fmts << 2];
}
} else {
/* Legacy RAM-only logstrs.bin format:
* - RAM 'lognums' section
* - RAM 'logstrs' section.
*
* 'lognums' is an array of indexes for the strings in the
* 'logstrs' section. The first uint32 is an index to the
* start of 'logstrs'. Therefore, if this index is divided
* by 'sizeof(uint32)' it provides the number of logstr
* entries.
*/
ram_index = 0;
lognums = (uint32 *) raw_fmts;
logstrs = (char *) &raw_fmts[num_fmts << 2];
}
}
fmts = kmalloc(num_fmts * sizeof(char *), GFP_KERNEL);
if (fmts == NULL) {
DHD_ERROR(("Failed to allocate fmts memory"));
goto fail;
}
for (i = 0; i < num_fmts; i++) {
/* ROM lognums index into logstrs using 'rom_logstrs_offset' as a base
* (they are 0-indexed relative to 'rom_logstrs_offset').
*
* RAM lognums are already indexed to point to the correct RAM logstrs (they
* are 0-indexed relative to the start of the logstrs.bin file).
*/
if (i == ram_index) {
logstrs = raw_fmts;
}
fmts[i] = &logstrs[lognums[i]];
}
temp->fmts = fmts;
temp->raw_fmts = raw_fmts;
temp->num_fmts = num_fmts;
filp_close(filep, NULL);
set_fs(fs);
return;
fail:
if (raw_fmts) {
kfree(raw_fmts);
raw_fmts = NULL;
}
if (!IS_ERR(filep))
filp_close(filep, NULL);
set_fs(fs);
temp->fmts = NULL;
return;
}
static int
dhd_read_map(char *fname, uint32 *ramstart, uint32 *rodata_start,
uint32 *rodata_end)
{
struct file *filep = NULL;
mm_segment_t fs;
char *raw_fmts = NULL;
uint32 read_size = READ_NUM_BYTES;
int error = 0;
char * cptr = NULL;
char c;
uint8 count = 0;
*ramstart = 0;
*rodata_start = 0;
*rodata_end = 0;
if (fname == NULL) {
DHD_ERROR(("%s: ERROR fname is NULL \n", __FUNCTION__));
return BCME_ERROR;
}
fs = get_fs();
set_fs(KERNEL_DS);
filep = filp_open(fname, O_RDONLY, 0);
if (IS_ERR(filep)) {
DHD_ERROR(("%s: Failed to open %s \n", __FUNCTION__, fname));
goto fail;
}
/* Allocate 1 byte more than read_size to terminate it with NULL */
raw_fmts = kmalloc(read_size + 1, GFP_KERNEL);
if (raw_fmts == NULL) {
DHD_ERROR(("%s: Failed to allocate raw_fmts memory \n", __FUNCTION__));
goto fail;
}
/* read ram start, rodata_start and rodata_end values from map file */
while (count != ALL_MAP_VAL)
{
error = vfs_read(filep, raw_fmts, read_size, (&filep->f_pos));
if (error < 0) {
DHD_ERROR(("%s: read failed %s err:%d \n", __FUNCTION__,
map_file_path, error));
goto fail;
}
if (error < read_size) {
/*
* since we reset file pos back to earlier pos by
* GO_BACK_FILE_POS_NUM_BYTES bytes we won't reach EOF.
* So if ret value is less than read_size, reached EOF don't read further
*/
break;
}
/* End raw_fmts with NULL as strstr expects NULL terminated strings */
raw_fmts[read_size] = '\0';
/* Get ramstart address */
if ((cptr = strstr(raw_fmts, ramstart_str))) {
cptr = cptr - BYTES_AHEAD_NUM;
sscanf(cptr, "%x %c text_start", ramstart, &c);
count |= RAMSTART_BIT;
}
/* Get ram rodata start address */
if ((cptr = strstr(raw_fmts, rodata_start_str))) {
cptr = cptr - BYTES_AHEAD_NUM;
sscanf(cptr, "%x %c rodata_start", rodata_start, &c);
count |= RDSTART_BIT;
}
/* Get ram rodata end address */
if ((cptr = strstr(raw_fmts, rodata_end_str))) {
cptr = cptr - BYTES_AHEAD_NUM;
sscanf(cptr, "%x %c rodata_end", rodata_end, &c);
count |= RDEND_BIT;
}
memset(raw_fmts, 0, read_size);
/*
* go back to predefined NUM of bytes so that we won't miss
* the string and addr even if it comes as splited in next read.
*/
filep->f_pos = filep->f_pos - GO_BACK_FILE_POS_NUM_BYTES;
}
DHD_ERROR(("---ramstart: 0x%x, rodata_start: 0x%x, rodata_end:0x%x\n",
*ramstart, *rodata_start, *rodata_end));
DHD_ERROR(("readmap over \n"));
fail:
if (raw_fmts) {
kfree(raw_fmts);
raw_fmts = NULL;
}
if (!IS_ERR(filep))
filp_close(filep, NULL);
set_fs(fs);
if (count == ALL_MAP_VAL) {
return BCME_OK;
}
DHD_ERROR(("readmap error 0X%x \n", count));
return BCME_ERROR;
}
static void
dhd_init_static_strs_array(dhd_event_log_t *temp, char *str_file, char *map_file)
{
struct file *filep = NULL;
mm_segment_t fs;
char *raw_fmts = NULL;
uint32 logstrs_size = 0;
int error = 0;
uint32 ramstart = 0;
uint32 rodata_start = 0;
uint32 rodata_end = 0;
uint32 logfilebase = 0;
error = dhd_read_map(map_file, &ramstart, &rodata_start, &rodata_end);
if (error == BCME_ERROR) {
DHD_ERROR(("readmap Error!! \n"));
/* don't do event log parsing in actual case */
if (strstr(str_file, ram_file_str) != NULL) {
temp->raw_sstr = NULL;
} else if (strstr(str_file, rom_file_str) != NULL) {
temp->rom_raw_sstr = NULL;
}
return;
}
DHD_ERROR(("ramstart: 0x%x, rodata_start: 0x%x, rodata_end:0x%x\n",
ramstart, rodata_start, rodata_end));
fs = get_fs();
set_fs(KERNEL_DS);
filep = filp_open(str_file, O_RDONLY, 0);
if (IS_ERR(filep)) {
DHD_ERROR(("%s: Failed to open the file %s \n", __FUNCTION__, str_file));
goto fail;
}
/* Full file size is huge. Just read required part */
logstrs_size = rodata_end - rodata_start;
raw_fmts = kmalloc(logstrs_size, GFP_KERNEL);
if (raw_fmts == NULL) {
DHD_ERROR(("%s: Failed to allocate raw_fmts memory \n", __FUNCTION__));
goto fail;
}
logfilebase = rodata_start - ramstart;
error = generic_file_llseek(filep, logfilebase, SEEK_SET);
if (error < 0) {
DHD_ERROR(("%s: %s llseek failed %d \n", __FUNCTION__, str_file, error));
goto fail;
}
error = vfs_read(filep, raw_fmts, logstrs_size, (&filep->f_pos));
if (error != logstrs_size) {
DHD_ERROR(("%s: %s read failed %d \n", __FUNCTION__, str_file, error));
goto fail;
}
if (strstr(str_file, ram_file_str) != NULL) {
temp->raw_sstr = raw_fmts;
temp->ramstart = ramstart;
temp->rodata_start = rodata_start;
temp->rodata_end = rodata_end;
} else if (strstr(str_file, rom_file_str) != NULL) {
temp->rom_raw_sstr = raw_fmts;
temp->rom_ramstart = ramstart;
temp->rom_rodata_start = rodata_start;
temp->rom_rodata_end = rodata_end;
}
filp_close(filep, NULL);
set_fs(fs);
return;
fail:
if (raw_fmts) {
kfree(raw_fmts);
raw_fmts = NULL;
}
if (!IS_ERR(filep))
filp_close(filep, NULL);
set_fs(fs);
if (strstr(str_file, ram_file_str) != NULL) {
temp->raw_sstr = NULL;
} else if (strstr(str_file, rom_file_str) != NULL) {
temp->rom_raw_sstr = NULL;
}
return;
}
#endif /* SHOW_LOGTRACE */
dhd_pub_t *
dhd_attach(osl_t *osh, struct dhd_bus *bus, uint bus_hdrlen)
{
dhd_info_t *dhd = NULL;
struct net_device *net = NULL;
char if_name[IFNAMSIZ] = {'\0'};
uint32 bus_type = -1;
uint32 bus_num = -1;
uint32 slot_num = -1;
wifi_adapter_info_t *adapter = NULL;
dhd_attach_states_t dhd_state = DHD_ATTACH_STATE_INIT;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
#ifdef STBLINUX
DHD_ERROR(("%s\n", driver_target));
#endif /* STBLINUX */
/* will implement get_ids for DBUS later */
#if defined(BCMSDIO)
dhd_bus_get_ids(bus, &bus_type, &bus_num, &slot_num);
#endif
adapter = dhd_wifi_platform_get_adapter(bus_type, bus_num, slot_num);
/* Allocate primary dhd_info */
dhd = wifi_platform_prealloc(adapter, DHD_PREALLOC_DHD_INFO, sizeof(dhd_info_t));
if (dhd == NULL) {
dhd = MALLOC(osh, sizeof(dhd_info_t));
if (dhd == NULL) {
DHD_ERROR(("%s: OOM - alloc dhd_info\n", __FUNCTION__));
goto fail;
}
}
memset(dhd, 0, sizeof(dhd_info_t));
dhd_state |= DHD_ATTACH_STATE_DHD_ALLOC;
dhd->unit = dhd_found + instance_base; /* do not increment dhd_found, yet */
dhd->pub.osh = osh;
dhd->adapter = adapter;
#ifdef OOB_PARAM
dhd->pub.oob_disable = adapter->oob_disable;
#endif /* OOB_PARAM */
#ifdef GET_CUSTOM_MAC_ENABLE
wifi_platform_get_mac_addr(dhd->adapter, dhd->pub.mac.octet);
#endif /* GET_CUSTOM_MAC_ENABLE */
#ifdef CUSTOM_FORCE_NODFS_FLAG
dhd->pub.dhd_cflags |= WLAN_PLAT_NODFS_FLAG;
dhd->pub.force_country_change = TRUE;
#endif /* CUSTOM_FORCE_NODFS_FLAG */
#ifdef CUSTOM_COUNTRY_CODE
get_customized_country_code(dhd->adapter,
dhd->pub.dhd_cspec.country_abbrev, &dhd->pub.dhd_cspec,
dhd->pub.dhd_cflags);
#endif /* CUSTOM_COUNTRY_CODE */
dhd->thr_dpc_ctl.thr_pid = DHD_PID_KT_TL_INVALID;
dhd->thr_wdt_ctl.thr_pid = DHD_PID_KT_INVALID;
/* Initialize thread based operation and lock */
sema_init(&dhd->sdsem, 1);
/* Some DHD modules (e.g. cfg80211) configures operation mode based on firmware name.
* This is indeed a hack but we have to make it work properly before we have a better
* solution
*/
dhd_update_fw_nv_path(dhd);
/* Link to info module */
dhd->pub.info = dhd;
/* Link to bus module */
dhd->pub.bus = bus;
dhd->pub.hdrlen = bus_hdrlen;
/* Set network interface name if it was provided as module parameter */
if (iface_name[0]) {
int len;
char ch;
strncpy(if_name, iface_name, IFNAMSIZ);
if_name[IFNAMSIZ - 1] = 0;
len = strlen(if_name);
ch = if_name[len - 1];
if ((ch > '9' || ch < '0') && (len < IFNAMSIZ - 2))
strcat(if_name, "%d");
}
/* Passing NULL to dngl_name to ensure host gets if_name in dngl_name member */
net = dhd_allocate_if(&dhd->pub, 0, if_name, NULL, 0, TRUE, NULL);
if (net == NULL) {
goto fail;
}
dhd_state |= DHD_ATTACH_STATE_ADD_IF;
#ifdef DHD_L2_FILTER
/* initialize the l2_filter_cnt */
dhd->pub.l2_filter_cnt = 0;
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31))
net->open = NULL;
#else
net->netdev_ops = NULL;
#endif
mutex_init(&dhd->dhd_iovar_mutex);
sema_init(&dhd->proto_sem, 1);
#ifdef PROP_TXSTATUS
spin_lock_init(&dhd->wlfc_spinlock);
dhd->pub.skip_fc = dhd_wlfc_skip_fc;
dhd->pub.plat_init = dhd_wlfc_plat_init;
dhd->pub.plat_deinit = dhd_wlfc_plat_deinit;
#ifdef DHD_WLFC_THREAD
init_waitqueue_head(&dhd->pub.wlfc_wqhead);
dhd->pub.wlfc_thread = kthread_create(dhd_wlfc_transfer_packets, &dhd->pub, "wlfc-thread");
if (IS_ERR(dhd->pub.wlfc_thread)) {
DHD_ERROR(("create wlfc thread failed\n"));
goto fail;
} else {
wake_up_process(dhd->pub.wlfc_thread);
}
#endif /* DHD_WLFC_THREAD */
#endif /* PROP_TXSTATUS */
/* Initialize other structure content */
init_waitqueue_head(&dhd->ioctl_resp_wait);
init_waitqueue_head(&dhd->d3ack_wait);
init_waitqueue_head(&dhd->ctrl_wait);
init_waitqueue_head(&dhd->dhd_bus_busy_state_wait);
dhd->pub.dhd_bus_busy_state = 0;
/* Initialize the spinlocks */
spin_lock_init(&dhd->sdlock);
spin_lock_init(&dhd->txqlock);
spin_lock_init(&dhd->dhd_lock);
spin_lock_init(&dhd->rxf_lock);
#if defined(RXFRAME_THREAD)
dhd->rxthread_enabled = TRUE;
#endif /* defined(RXFRAME_THREAD) */
#ifdef DHDTCPACK_SUPPRESS
spin_lock_init(&dhd->tcpack_lock);
#endif /* DHDTCPACK_SUPPRESS */
/* Initialize Wakelock stuff */
spin_lock_init(&dhd->wakelock_spinlock);
spin_lock_init(&dhd->wakelock_evt_spinlock);
DHD_OS_WAKE_LOCK_INIT(dhd);
dhd->wakelock_wd_counter = 0;
#ifdef CONFIG_PM_WAKELOCKS
wakeup_source_init(&dhd->wl_wdwake, "wlan_wd_wake");
#endif /* CONFIG_PM_WAKELOCKS */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
mutex_init(&dhd->dhd_net_if_mutex);
mutex_init(&dhd->dhd_suspend_mutex);
#endif
dhd_state |= DHD_ATTACH_STATE_WAKELOCKS_INIT;
/* Attach and link in the protocol */
if (dhd_prot_attach(&dhd->pub) != 0) {
DHD_ERROR(("dhd_prot_attach failed\n"));
goto fail;
}
dhd_state |= DHD_ATTACH_STATE_PROT_ATTACH;
#ifdef WL_CFG80211
/* Attach and link in the cfg80211 */
dhd->pub.cfg80211_priv = wl_cfg80211_attach(net, &dhd->pub);
if (dhd->pub.cfg80211_priv == NULL) {
DHD_ERROR(("wl_cfg80211_attach failed\n"));
goto fail;
}
dhd_monitor_init(&dhd->pub);
dhd_state |= DHD_ATTACH_STATE_CFG80211;
#endif
#ifdef DHD_LOG_DUMP
dhd_log_dump_init(&dhd->pub);
#endif /* DHD_LOG_DUMP */
#if defined(WL_WIRELESS_EXT)
/* Attach and link in the iw */
if (!(dhd_state & DHD_ATTACH_STATE_CFG80211)) {
if (wl_iw_attach(net, (void *)&dhd->pub) != 0) {
DHD_ERROR(("wl_iw_attach failed\n"));
goto fail;
}
dhd_state |= DHD_ATTACH_STATE_WL_ATTACH;
}
#endif /* defined(WL_WIRELESS_EXT) */
#ifdef SHOW_LOGTRACE
dhd_init_logstrs_array(&dhd->event_data);
dhd_init_static_strs_array(&dhd->event_data, st_str_file_path, map_file_path);
dhd_init_static_strs_array(&dhd->event_data, rom_st_str_file_path, rom_map_file_path);
#endif /* SHOW_LOGTRACE */
if (dhd_sta_pool_init(&dhd->pub, DHD_MAX_STA) != BCME_OK) {
DHD_ERROR(("%s: Initializing %u sta\n", __FUNCTION__, DHD_MAX_STA));
goto fail;
}
/* Set up the watchdog timer */
init_timer(&dhd->timer);
dhd->timer.data = (ulong)dhd;
dhd->timer.function = dhd_watchdog;
dhd->default_wd_interval = dhd_watchdog_ms;
if (dhd_watchdog_prio >= 0) {
/* Initialize watchdog thread */
PROC_START(dhd_watchdog_thread, dhd, &dhd->thr_wdt_ctl, 0, "dhd_watchdog_thread");
if (dhd->thr_wdt_ctl.thr_pid < 0) {
goto fail;
}
} else {
dhd->thr_wdt_ctl.thr_pid = -1;
}
#ifdef DHD_PCIE_RUNTIMEPM
/* Setup up the runtime PM Idlecount timer */
init_timer(&dhd->rpm_timer);
dhd->rpm_timer.data = (ulong)dhd;
dhd->rpm_timer.function = dhd_runtimepm;
dhd->rpm_timer_valid = FALSE;
dhd->thr_rpm_ctl.thr_pid = DHD_PID_KT_INVALID;
PROC_START(dhd_rpm_state_thread, dhd, &dhd->thr_rpm_ctl, 0, "dhd_rpm_state_thread");
if (dhd->thr_rpm_ctl.thr_pid < 0) {
goto fail;
}
#endif /* DHD_PCIE_RUNTIMEPM */
#ifdef DEBUGGER
debugger_init((void *) bus);
#endif
/* Set up the bottom half handler */
if (dhd_dpc_prio >= 0) {
/* Initialize DPC thread */
PROC_START(dhd_dpc_thread, dhd, &dhd->thr_dpc_ctl, 0, "dhd_dpc");
if (dhd->thr_dpc_ctl.thr_pid < 0) {
goto fail;
}
} else {
/* use tasklet for dpc */
tasklet_init(&dhd->tasklet, dhd_dpc, (ulong)dhd);
dhd->thr_dpc_ctl.thr_pid = -1;
}
if (dhd->rxthread_enabled) {
bzero(&dhd->pub.skbbuf[0], sizeof(void *) * MAXSKBPEND);
/* Initialize RXF thread */
PROC_START(dhd_rxf_thread, dhd, &dhd->thr_rxf_ctl, 0, "dhd_rxf");
if (dhd->thr_rxf_ctl.thr_pid < 0) {
goto fail;
}
}
dhd_state |= DHD_ATTACH_STATE_THREADS_CREATED;
#if defined(CONFIG_PM_SLEEP)
if (!dhd_pm_notifier_registered) {
dhd_pm_notifier_registered = TRUE;
dhd->pm_notifier.notifier_call = dhd_pm_callback;
dhd->pm_notifier.priority = 10;
register_pm_notifier(&dhd->pm_notifier);
}
#endif /* CONFIG_PM_SLEEP */
#if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND)
dhd->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 20;
dhd->early_suspend.suspend = dhd_early_suspend;
dhd->early_suspend.resume = dhd_late_resume;
register_early_suspend(&dhd->early_suspend);
dhd_state |= DHD_ATTACH_STATE_EARLYSUSPEND_DONE;
#endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */
#ifdef ARP_OFFLOAD_SUPPORT
dhd->pend_ipaddr = 0;
if (!dhd_inetaddr_notifier_registered) {
dhd_inetaddr_notifier_registered = TRUE;
register_inetaddr_notifier(&dhd_inetaddr_notifier);
}
#endif /* ARP_OFFLOAD_SUPPORT */
#if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT)
if (!dhd_inet6addr_notifier_registered) {
dhd_inet6addr_notifier_registered = TRUE;
register_inet6addr_notifier(&dhd_inet6addr_notifier);
}
#endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */
dhd->dhd_deferred_wq = dhd_deferred_work_init((void *)dhd);
#ifdef DEBUG_CPU_FREQ
dhd->new_freq = alloc_percpu(int);
dhd->freq_trans.notifier_call = dhd_cpufreq_notifier;
cpufreq_register_notifier(&dhd->freq_trans, CPUFREQ_TRANSITION_NOTIFIER);
#endif
#ifdef DHDTCPACK_SUPPRESS
#ifdef BCMSDIO
dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_DELAYTX);
#elif defined(BCMPCIE)
dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_HOLD);
#else
dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_OFF);
#endif /* BCMSDIO */
#endif /* DHDTCPACK_SUPPRESS */
#if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW)
#endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */
dhd_state |= DHD_ATTACH_STATE_DONE;
dhd->dhd_state = dhd_state;
dhd_found++;
#ifdef DHD_DEBUG_PAGEALLOC
register_page_corrupt_cb(dhd_page_corrupt_cb, &dhd->pub);
#endif /* DHD_DEBUG_PAGEALLOC */
#if defined(DHD_LB)
DHD_INFO(("DHD LOAD BALANCING Enabled\n"));
dhd_lb_set_default_cpus(dhd);
/* Initialize the CPU Masks */
if (dhd_cpumasks_init(dhd) == 0) {
/* Now we have the current CPU maps, run through candidacy */
dhd_select_cpu_candidacy(dhd);
/*
* If we are able to initialize CPU masks, lets register to the
* CPU Hotplug framework to change the CPU for each job dynamically
* using candidacy algorithm.
*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0))
dhd->cpu_notifier.notifier_call = dhd_cpu_callback;
register_cpu_notifier(&dhd->cpu_notifier); /* Register a callback */
#endif
} else {
/*
* We are unable to initialize CPU masks, so candidacy algorithm
* won't run, but still Load Balancing will be honoured based
* on the CPUs allocated for a given job statically during init
*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0))
dhd->cpu_notifier.notifier_call = NULL;
#endif
DHD_ERROR(("%s(): dhd_cpumasks_init failed CPUs for JOB would be static\n",
__FUNCTION__));
}
DHD_LB_STATS_INIT(&dhd->pub);
/* Initialize the Load Balancing Tasklets and Napi object */
#if defined(DHD_LB_TXC)
tasklet_init(&dhd->tx_compl_tasklet,
dhd_lb_tx_compl_handler, (ulong)(&dhd->pub));
INIT_WORK(&dhd->tx_compl_dispatcher_work, dhd_tx_compl_dispatcher_fn);
DHD_INFO(("%s load balance init tx_compl_tasklet\n", __FUNCTION__));
#endif /* DHD_LB_TXC */
#if defined(DHD_LB_RXC)
tasklet_init(&dhd->rx_compl_tasklet,
dhd_lb_rx_compl_handler, (ulong)(&dhd->pub));
INIT_WORK(&dhd->rx_compl_dispatcher_work, dhd_rx_compl_dispatcher_fn);
DHD_INFO(("%s load balance init rx_compl_tasklet\n", __FUNCTION__));
#endif /* DHD_LB_RXC */
#if defined(DHD_LB_RXP)
__skb_queue_head_init(&dhd->rx_pend_queue);
skb_queue_head_init(&dhd->rx_napi_queue);
/* Initialize the work that dispatches NAPI job to a given core */
INIT_WORK(&dhd->rx_napi_dispatcher_work, dhd_rx_napi_dispatcher_fn);
DHD_INFO(("%s load balance init rx_napi_queue\n", __FUNCTION__));
#endif /* DHD_LB_RXP */
#endif /* DHD_LB */
INIT_DELAYED_WORK(&dhd->dhd_memdump_work, dhd_memdump_work_handler);
(void)dhd_sysfs_init(dhd);
return &dhd->pub;
fail:
if (dhd_state >= DHD_ATTACH_STATE_DHD_ALLOC) {
DHD_TRACE(("%s: Calling dhd_detach dhd_state 0x%x &dhd->pub %p\n",
__FUNCTION__, dhd_state, &dhd->pub));
dhd->dhd_state = dhd_state;
dhd_detach(&dhd->pub);
dhd_free(&dhd->pub);
}
return NULL;
}
#include <linux/delay.h>
void dhd_memdump_work_schedule(dhd_pub_t *dhdp, unsigned long msecs)
{
dhd_info_t *dhd = (dhd_info_t*)dhdp->info;
schedule_delayed_work(&dhd->dhd_memdump_work, msecs_to_jiffies(msecs));
}
int dhd_get_fw_mode(dhd_info_t *dhdinfo)
{
if (strstr(dhdinfo->fw_path, "_apsta") != NULL)
return DHD_FLAG_HOSTAP_MODE;
if (strstr(dhdinfo->fw_path, "_p2p") != NULL)
return DHD_FLAG_P2P_MODE;
if (strstr(dhdinfo->fw_path, "_ibss") != NULL)
return DHD_FLAG_IBSS_MODE;
if (strstr(dhdinfo->fw_path, "_mfg") != NULL)
return DHD_FLAG_MFG_MODE;
return DHD_FLAG_STA_MODE;
}
static inline bool is_file_valid(const char *file)
{
struct file *fp;
mm_segment_t old_fs = get_fs();
if (!file)
return false;
set_fs(KERNEL_DS);
fp = filp_open(file, O_RDONLY, 0);
if (IS_ERR_OR_NULL(fp)) {
set_fs(old_fs);
return false;
}
filp_close(fp, NULL);
set_fs(old_fs);
return true;
}
bool dhd_update_fw_nv_path(dhd_info_t *dhdinfo)
{
int fw_len;
int nv_len;
const char *fw = NULL;
const char *nv = NULL;
wifi_adapter_info_t *adapter = dhdinfo->adapter;
/* Update firmware and nvram path. The path may be from adapter info or module parameter
* The path from adapter info is used for initialization only (as it won't change).
*
* The firmware_path/nvram_path module parameter may be changed by the system at run
* time. When it changes we need to copy it to dhdinfo->fw_path. Also Android private
* command may change dhdinfo->fw_path. As such we need to clear the path info in
* module parameter after it is copied. We won't update the path until the module parameter
* is changed again (first character is not '\0')
*/
/* set default firmware and nvram path for built-in type driver */
if (!dhd_download_fw_on_driverload) {
#ifdef CONFIG_BCMDHD_PCIE_FW_PATH
if (is_file_valid(CONFIG_BCMDHD_PCIE_FW_PATH))
fw = CONFIG_BCMDHD_PCIE_FW_PATH;
#endif /* CONFIG_BCMDHD_PCIE_FW_PATH */
#ifdef CONFIG_BCMDHD_PCIE_NVRAM_PATH
if (is_file_valid(CONFIG_BCMDHD_PCIE_NVRAM_PATH))
nv = CONFIG_BCMDHD_PCIE_NVRAM_PATH;
#endif /* CONFIG_BCMDHD_PCIE_NVRAM_PATH */
#ifdef CONFIG_BCMDHD_PCIE_ES4_NVRAM_PATH
if (is_es4_module()) {
if (is_file_valid(CONFIG_BCMDHD_PCIE_ES4_NVRAM_PATH)) {
nv = CONFIG_BCMDHD_PCIE_ES4_NVRAM_PATH;
DHD_INFO(("ES4 module detected, Nvram \
path updated to %s\n", nv));
}
}
#endif
}
/* check if we need to initialize the path */
if (adapter && adapter->fw_path && adapter->fw_path[0] != '\0') {
if (is_file_valid(adapter->fw_path))
fw = adapter->fw_path;
}
if (adapter && adapter->nv_path && adapter->nv_path[0] != '\0') {
if (is_file_valid(adapter->nv_path))
nv = adapter->nv_path;
}
/* Use module parameter if it is valid, EVEN IF the path has not been initialized
*
* TODO: need a solution for multi-chip, can't use the same firmware for all chips
*/
if (firmware_path[0] != '\0') {
if (is_file_valid(firmware_path))
fw = firmware_path;
}
if (nvram_path[0] != '\0') {
if (is_file_valid(nvram_path))
nv = nvram_path;
}
if (fw && fw[0] != '\0') {
fw_len = strlen(fw);
if (fw_len >= sizeof(dhdinfo->fw_path)) {
DHD_ERROR(("fw path len exceeds max len of dhdinfo->fw_path\n"));
return FALSE;
}
strncpy(dhdinfo->fw_path, fw, sizeof(dhdinfo->fw_path));
if (dhdinfo->fw_path[fw_len-1] == '\n')
dhdinfo->fw_path[fw_len-1] = '\0';
}
if (nv && nv[0] != '\0') {
nv_len = strlen(nv);
if (nv_len >= sizeof(dhdinfo->nv_path)) {
DHD_ERROR(("nvram path len exceeds max len of dhdinfo->nv_path\n"));
return FALSE;
}
strncpy(dhdinfo->nv_path, nv, sizeof(dhdinfo->nv_path));
if (dhdinfo->nv_path[nv_len-1] == '\n')
dhdinfo->nv_path[nv_len-1] = '\0';
}
/* clear the path in module parameter */
if (dhd_download_fw_on_driverload) {
firmware_path[0] = '\0';
nvram_path[0] = '\0';
}
#ifndef BCMEMBEDIMAGE
/* fw_path and nv_path are not mandatory for BCMEMBEDIMAGE */
if (dhdinfo->fw_path[0] == '\0') {
DHD_ERROR(("firmware path not found\n"));
return FALSE;
}
if (dhdinfo->nv_path[0] == '\0') {
DHD_ERROR(("nvram path not found\n"));
return FALSE;
}
#endif /* BCMEMBEDIMAGE */
return TRUE;
}
#ifdef CUSTOMER_HW4_DEBUG
bool dhd_validate_chipid(dhd_pub_t *dhdp)
{
uint chipid = dhd_bus_chip_id(dhdp);
uint config_chipid;
#ifdef BCM4359_CHIP
config_chipid = BCM4359_CHIP_ID;
#elif defined(BCM4358_CHIP)
config_chipid = BCM4358_CHIP_ID;
#elif defined(BCM4354_CHIP)
config_chipid = BCM4354_CHIP_ID;
#elif defined(BCM4356_CHIP)
config_chipid = BCM4356_CHIP_ID;
#elif defined(BCM4339_CHIP)
config_chipid = BCM4339_CHIP_ID;
#elif defined(BCM43349_CHIP)
config_chipid = BCM43349_CHIP_ID;
#elif defined(BCM4335_CHIP)
config_chipid = BCM4335_CHIP_ID;
#elif defined(BCM43241_CHIP)
config_chipid = BCM4324_CHIP_ID;
#elif defined(BCM4330_CHIP)
config_chipid = BCM4330_CHIP_ID;
#elif defined(BCM43430_CHIP)
config_chipid = BCM43430_CHIP_ID;
#elif defined(BCM4334W_CHIP)
config_chipid = BCM43342_CHIP_ID;
#elif defined(BCM43455_CHIP)
config_chipid = BCM4345_CHIP_ID;
#else
DHD_ERROR(("%s: Unknown chip id, if you use new chipset,"
" please add CONFIG_BCMXXXX into the Kernel and"
" BCMXXXX_CHIP definition into the DHD driver\n",
__FUNCTION__));
config_chipid = 0;
return FALSE;
#endif /* BCM4354_CHIP */
#if defined(BCM4359_CHIP)
if (chipid == BCM4355_CHIP_ID && config_chipid == BCM4359_CHIP_ID) {
return TRUE;
}
#endif /* BCM4359_CHIP */
return config_chipid == chipid;
}
#endif /* CUSTOMER_HW4_DEBUG */
int
dhd_bus_start(dhd_pub_t *dhdp)
{
int ret = -1;
dhd_info_t *dhd = (dhd_info_t*)dhdp->info;
unsigned long flags;
ASSERT(dhd);
DHD_TRACE(("Enter %s:\n", __FUNCTION__));
DHD_PERIM_LOCK(dhdp);
/* try to download image and nvram to the dongle */
if (dhd->pub.busstate == DHD_BUS_DOWN && dhd_update_fw_nv_path(dhd)) {
/* Indicate FW Download has not yet done */
dhd->pub.is_fw_download_done = FALSE;
DHD_INFO(("%s download fw %s, nv %s\n", __FUNCTION__, dhd->fw_path, dhd->nv_path));
ret = dhd_bus_download_firmware(dhd->pub.bus, dhd->pub.osh,
dhd->fw_path, dhd->nv_path);
if (ret < 0) {
DHD_ERROR(("%s: failed to download firmware %s\n",
__FUNCTION__, dhd->fw_path));
DHD_PERIM_UNLOCK(dhdp);
return ret;
}
/* Indicate FW Download has succeeded */
dhd->pub.is_fw_download_done = TRUE;
}
if (dhd->pub.busstate != DHD_BUS_LOAD) {
DHD_PERIM_UNLOCK(dhdp);
return -ENETDOWN;
}
dhd_os_sdlock(dhdp);
/* Start the watchdog timer */
dhd->pub.tickcnt = 0;
dhd_os_wd_timer(&dhd->pub, dhd_watchdog_ms);
DHD_ENABLE_RUNTIME_PM(&dhd->pub);
/* Bring up the bus */
if ((ret = dhd_bus_init(&dhd->pub, FALSE)) != 0) {
DHD_ERROR(("%s, dhd_bus_init failed %d\n", __FUNCTION__, ret));
dhd_os_sdunlock(dhdp);
DHD_PERIM_UNLOCK(dhdp);
return ret;
}
#if defined(OOB_INTR_ONLY) || defined(BCMPCIE_OOB_HOST_WAKE)
OOB_PARAM_IF(!(dhd->pub.oob_disable)) {
#if defined(BCMPCIE_OOB_HOST_WAKE)
dhd_os_sdunlock(dhdp);
#endif /* BCMPCIE_OOB_HOST_WAKE */
/* Host registration for OOB interrupt */
if (dhd_bus_oob_intr_register(dhdp)) {
/* deactivate timer and wait for the handler to finish */
#if !defined(BCMPCIE_OOB_HOST_WAKE)
DHD_GENERAL_LOCK(&dhd->pub, flags);
dhd->wd_timer_valid = FALSE;
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
del_timer_sync(&dhd->timer);
dhd_os_sdunlock(dhdp);
#endif /* !BCMPCIE_OOB_HOST_WAKE */
DHD_DISABLE_RUNTIME_PM(&dhd->pub);
DHD_PERIM_UNLOCK(dhdp);
DHD_OS_WD_WAKE_UNLOCK(&dhd->pub);
DHD_ERROR(("%s Host failed to register for OOB\n", __FUNCTION__));
return -ENODEV;
}
#if defined(BCMPCIE_OOB_HOST_WAKE)
dhd_os_sdlock(dhdp);
dhd_bus_oob_intr_set(dhdp, TRUE);
#else
/* Enable oob at firmware */
dhd_enable_oob_intr(dhd->pub.bus, TRUE);
#endif /* BCMPCIE_OOB_HOST_WAKE */
}
#endif
#ifdef PCIE_FULL_DONGLE
{
/* max_h2d_rings includes H2D common rings */
uint32 max_h2d_rings = dhd_bus_max_h2d_queues(dhd->pub.bus);
DHD_INFO(("%s: Initializing %u h2drings\n", __FUNCTION__,
max_h2d_rings));
if ((ret = dhd_flow_rings_init(&dhd->pub, max_h2d_rings)) != BCME_OK) {
dhd_os_sdunlock(dhdp);
DHD_PERIM_UNLOCK(dhdp);
return ret;
}
}
#endif /* PCIE_FULL_DONGLE */
/* Do protocol initialization necessary for IOCTL/IOVAR */
#ifdef PCIE_FULL_DONGLE
dhd_os_sdunlock(dhdp);
#endif /* PCIE_FULL_DONGLE */
ret = dhd_prot_init(&dhd->pub);
if (unlikely(ret) != BCME_OK) {
DHD_PERIM_UNLOCK(dhdp);
DHD_OS_WD_WAKE_UNLOCK(&dhd->pub);
return ret;
}
#ifdef PCIE_FULL_DONGLE
dhd_os_sdlock(dhdp);
#endif /* PCIE_FULL_DONGLE */
/* If bus is not ready, can't come up */
if (dhd->pub.busstate != DHD_BUS_DATA) {
DHD_GENERAL_LOCK(&dhd->pub, flags);
dhd->wd_timer_valid = FALSE;
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
del_timer_sync(&dhd->timer);
DHD_ERROR(("%s failed bus is not ready\n", __FUNCTION__));
DHD_DISABLE_RUNTIME_PM(&dhd->pub);
dhd_os_sdunlock(dhdp);
DHD_PERIM_UNLOCK(dhdp);
DHD_OS_WD_WAKE_UNLOCK(&dhd->pub);
return -ENODEV;
}
dhd_os_sdunlock(dhdp);
/* Bus is ready, query any dongle information */
if ((ret = dhd_sync_with_dongle(&dhd->pub)) < 0) {
DHD_GENERAL_LOCK(&dhd->pub, flags);
dhd->wd_timer_valid = FALSE;
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
del_timer_sync(&dhd->timer);
DHD_ERROR(("%s failed to sync with dongle\n", __FUNCTION__));
DHD_DISABLE_RUNTIME_PM(&dhd->pub);
DHD_OS_WD_WAKE_UNLOCK(&dhd->pub);
DHD_PERIM_UNLOCK(dhdp);
return ret;
}
#ifdef ARP_OFFLOAD_SUPPORT
if (dhd->pend_ipaddr) {
#ifdef AOE_IP_ALIAS_SUPPORT
aoe_update_host_ipv4_table(&dhd->pub, dhd->pend_ipaddr, TRUE, 0);
#endif /* AOE_IP_ALIAS_SUPPORT */
dhd->pend_ipaddr = 0;
}
#endif /* ARP_OFFLOAD_SUPPORT */
DHD_PERIM_UNLOCK(dhdp);
return 0;
}
#ifdef WLTDLS
int _dhd_tdls_enable(dhd_pub_t *dhd, bool tdls_on, bool auto_on, struct ether_addr *mac)
{
char iovbuf[WLC_IOCTL_SMLEN];
uint32 tdls = tdls_on;
int ret = 0;
uint32 tdls_auto_op = 0;
uint32 tdls_idle_time = CUSTOM_TDLS_IDLE_MODE_SETTING;
int32 tdls_rssi_high = CUSTOM_TDLS_RSSI_THRESHOLD_HIGH;
int32 tdls_rssi_low = CUSTOM_TDLS_RSSI_THRESHOLD_LOW;
BCM_REFERENCE(mac);
if (!FW_SUPPORTED(dhd, tdls))
return BCME_ERROR;
if (dhd->tdls_enable == tdls_on)
goto auto_mode;
bcm_mkiovar("tdls_enable", (char *)&tdls, sizeof(tdls), iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s: tdls %d failed %d\n", __FUNCTION__, tdls, ret));
goto exit;
}
dhd->tdls_enable = tdls_on;
auto_mode:
tdls_auto_op = auto_on;
bcm_mkiovar("tdls_auto_op", (char *)&tdls_auto_op, sizeof(tdls_auto_op),
iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s: tdls_auto_op failed %d\n", __FUNCTION__, ret));
goto exit;
}
if (tdls_auto_op) {
bcm_mkiovar("tdls_idle_time", (char *)&tdls_idle_time,
sizeof(tdls_idle_time), iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s: tdls_idle_time failed %d\n", __FUNCTION__, ret));
goto exit;
}
bcm_mkiovar("tdls_rssi_high", (char *)&tdls_rssi_high, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s: tdls_rssi_high failed %d\n", __FUNCTION__, ret));
goto exit;
}
bcm_mkiovar("tdls_rssi_low", (char *)&tdls_rssi_low, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s: tdls_rssi_low failed %d\n", __FUNCTION__, ret));
goto exit;
}
}
exit:
return ret;
}
int dhd_tdls_enable(struct net_device *dev, bool tdls_on, bool auto_on, struct ether_addr *mac)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ret = 0;
if (dhd)
ret = _dhd_tdls_enable(&dhd->pub, tdls_on, auto_on, mac);
else
ret = BCME_ERROR;
return ret;
}
int
dhd_tdls_set_mode(dhd_pub_t *dhd, bool wfd_mode)
{
char iovbuf[WLC_IOCTL_SMLEN];
int ret = 0;
bool auto_on = false;
uint32 mode = wfd_mode;
#ifdef ENABLE_TDLS_AUTO_MODE
if (wfd_mode) {
auto_on = false;
} else {
auto_on = true;
}
#else
auto_on = false;
#endif /* ENABLE_TDLS_AUTO_MODE */
ret = _dhd_tdls_enable(dhd, false, auto_on, NULL);
if (ret < 0) {
DHD_ERROR(("Disable tdls_auto_op failed. %d\n", ret));
return ret;
}
bcm_mkiovar("tdls_wfd_mode", (char *)&mode, sizeof(mode),
iovbuf, sizeof(iovbuf));
if (((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) &&
(ret != BCME_UNSUPPORTED)) {
DHD_ERROR(("%s: tdls_wfd_mode faile_wfd_mode %d\n", __FUNCTION__, ret));
return ret;
}
ret = _dhd_tdls_enable(dhd, true, auto_on, NULL);
if (ret < 0) {
DHD_ERROR(("enable tdls_auto_op failed. %d\n", ret));
return ret;
}
dhd->tdls_mode = mode;
return ret;
}
#ifdef PCIE_FULL_DONGLE
void dhd_tdls_update_peer_info(struct net_device *dev, bool connect, uint8 *da)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
dhd_pub_t *dhdp = (dhd_pub_t *)&dhd->pub;
tdls_peer_node_t *cur = dhdp->peer_tbl.node;
tdls_peer_node_t *new = NULL, *prev = NULL;
dhd_if_t *dhdif;
uint8 sa[ETHER_ADDR_LEN];
int ifidx = dhd_net2idx(dhd, dev);
if (ifidx == DHD_BAD_IF)
return;
dhdif = dhd->iflist[ifidx];
memcpy(sa, dhdif->mac_addr, ETHER_ADDR_LEN);
if (connect) {
while (cur != NULL) {
if (!memcmp(da, cur->addr, ETHER_ADDR_LEN)) {
DHD_ERROR(("%s: TDLS Peer exist already %d\n",
__FUNCTION__, __LINE__));
return;
}
cur = cur->next;
}
new = MALLOC(dhdp->osh, sizeof(tdls_peer_node_t));
if (new == NULL) {
DHD_ERROR(("%s: Failed to allocate memory\n", __FUNCTION__));
return;
}
memcpy(new->addr, da, ETHER_ADDR_LEN);
new->next = dhdp->peer_tbl.node;
dhdp->peer_tbl.node = new;
dhdp->peer_tbl.tdls_peer_count++;
} else {
while (cur != NULL) {
if (!memcmp(da, cur->addr, ETHER_ADDR_LEN)) {
dhd_flow_rings_delete_for_peer(dhdp, ifidx, da);
if (prev)
prev->next = cur->next;
else
dhdp->peer_tbl.node = cur->next;
MFREE(dhdp->osh, cur, sizeof(tdls_peer_node_t));
dhdp->peer_tbl.tdls_peer_count--;
return;
}
prev = cur;
cur = cur->next;
}
DHD_ERROR(("%s: TDLS Peer Entry Not found\n", __FUNCTION__));
}
}
#endif /* PCIE_FULL_DONGLE */
#endif
bool dhd_is_concurrent_mode(dhd_pub_t *dhd)
{
if (!dhd)
return FALSE;
if (dhd->op_mode & DHD_FLAG_CONCURR_MULTI_CHAN_MODE)
return TRUE;
else if ((dhd->op_mode & DHD_FLAG_CONCURR_SINGLE_CHAN_MODE) ==
DHD_FLAG_CONCURR_SINGLE_CHAN_MODE)
return TRUE;
else
return FALSE;
}
#if !defined(AP) && defined(WLP2P)
/* From Android JerryBean release, the concurrent mode is enabled by default and the firmware
* name would be fw_bcmdhd.bin. So we need to determine whether P2P is enabled in the STA
* firmware and accordingly enable concurrent mode (Apply P2P settings). SoftAP firmware
* would still be named as fw_bcmdhd_apsta.
*/
uint32
dhd_get_concurrent_capabilites(dhd_pub_t *dhd)
{
int32 ret = 0;
char buf[WLC_IOCTL_SMLEN];
bool mchan_supported = FALSE;
/* if dhd->op_mode is already set for HOSTAP and Manufacturing
* test mode, that means we only will use the mode as it is
*/
if (dhd->op_mode & (DHD_FLAG_HOSTAP_MODE | DHD_FLAG_MFG_MODE))
return 0;
if (FW_SUPPORTED(dhd, vsdb)) {
mchan_supported = TRUE;
}
if (!FW_SUPPORTED(dhd, p2p)) {
DHD_TRACE(("Chip does not support p2p\n"));
return 0;
} else {
/* Chip supports p2p but ensure that p2p is really implemented in firmware or not */
memset(buf, 0, sizeof(buf));
bcm_mkiovar("p2p", 0, 0, buf, sizeof(buf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR, buf, sizeof(buf),
FALSE, 0)) < 0) {
DHD_ERROR(("%s: Get P2P failed (error=%d)\n", __FUNCTION__, ret));
return 0;
} else {
if (buf[0] == 1) {
/* By default, chip supports single chan concurrency,
* now lets check for mchan
*/
ret = DHD_FLAG_CONCURR_SINGLE_CHAN_MODE;
if (mchan_supported)
ret |= DHD_FLAG_CONCURR_MULTI_CHAN_MODE;
if (FW_SUPPORTED(dhd, rsdb)) {
ret |= DHD_FLAG_RSDB_MODE;
ret |= DHD_FLAG_MP2P_MODE;
/* @TODO Need to refine the usage of this flag
* based on firmware limitation of MP2P
*/
}
if (FW_SUPPORTED(dhd, mp2p)) {
ret |= DHD_FLAG_MP2P_MODE;
}
#if defined(WL_ENABLE_P2P_IF) || defined(WL_CFG80211_P2P_DEV_IF)
return ret;
#else
return 0;
#endif /* WL_ENABLE_P2P_IF || WL_CFG80211_P2P_DEV_IF */
}
}
}
return 0;
}
#endif
#ifdef SUPPORT_AP_POWERSAVE
#define RXCHAIN_PWRSAVE_PPS 10
#define RXCHAIN_PWRSAVE_QUIET_TIME 10
#define RXCHAIN_PWRSAVE_STAS_ASSOC_CHECK 0
int dhd_set_ap_powersave(dhd_pub_t *dhdp, int ifidx, int enable)
{
char iovbuf[128];
int32 pps = RXCHAIN_PWRSAVE_PPS;
int32 quiet_time = RXCHAIN_PWRSAVE_QUIET_TIME;
int32 stas_assoc_check = RXCHAIN_PWRSAVE_STAS_ASSOC_CHECK;
if (enable) {
bcm_mkiovar("rxchain_pwrsave_enable", (char *)&enable, 4, iovbuf, sizeof(iovbuf));
if (dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0) != BCME_OK) {
DHD_ERROR(("Failed to enable AP power save"));
}
bcm_mkiovar("rxchain_pwrsave_pps", (char *)&pps, 4, iovbuf, sizeof(iovbuf));
if (dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0) != BCME_OK) {
DHD_ERROR(("Failed to set pps"));
}
bcm_mkiovar("rxchain_pwrsave_quiet_time", (char *)&quiet_time,
4, iovbuf, sizeof(iovbuf));
if (dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0) != BCME_OK) {
DHD_ERROR(("Failed to set quiet time"));
}
bcm_mkiovar("rxchain_pwrsave_stas_assoc_check", (char *)&stas_assoc_check,
4, iovbuf, sizeof(iovbuf));
if (dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0) != BCME_OK) {
DHD_ERROR(("Failed to set stas assoc check"));
}
} else {
bcm_mkiovar("rxchain_pwrsave_enable", (char *)&enable, 4, iovbuf, sizeof(iovbuf));
if (dhd_wl_ioctl_cmd(dhdp, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0) != BCME_OK) {
DHD_ERROR(("Failed to disable AP power save"));
}
}
return 0;
}
#endif /* SUPPORT_AP_POWERSAVE */
int
dhd_preinit_ioctls(dhd_pub_t *dhd)
{
int ret = 0;
char eventmask[WL_EVENTING_MASK_LEN];
char iovbuf[WL_EVENTING_MASK_LEN + 12]; /* Room for "event_msgs" + '\0' + bitvec */
uint32 buf_key_b4_m4 = 1;
uint8 msglen;
eventmsgs_ext_t *eventmask_msg = NULL;
char* iov_buf = NULL;
int ret2 = 0;
#if defined(CUSTOM_AMPDU_BA_WSIZE)
uint32 ampdu_ba_wsize = 0;
#endif
#if defined(CUSTOM_AMPDU_MPDU)
int32 ampdu_mpdu = 0;
#endif
#if defined(CUSTOM_AMPDU_RELEASE)
int32 ampdu_release = 0;
#endif
#if defined(CUSTOM_AMSDU_AGGSF)
int32 amsdu_aggsf = 0;
#endif
shub_control_t shub_ctl;
#if defined(BCMSDIO)
#ifdef PROP_TXSTATUS
int wlfc_enable = TRUE;
#ifndef DISABLE_11N
uint32 hostreorder = 1;
#endif /* DISABLE_11N */
#endif /* PROP_TXSTATUS */
#endif
#ifdef PCIE_FULL_DONGLE
uint32 wl_ap_isolate;
#endif /* PCIE_FULL_DONGLE */
#if defined(BCMSDIO)
/* by default frame burst is enabled for PCIe and disabled for SDIO dongles */
uint32 frameburst = 0;
#else
uint32 frameburst = 1;
#endif /* BCMSDIO */
uint8 csa_count = 2;
#ifdef DHD_ENABLE_LPC
uint32 lpc = 1;
#endif /* DHD_ENABLE_LPC */
uint power_mode = PM_FAST;
#if defined(BCMSDIO)
uint32 dongle_align = DHD_SDALIGN;
uint32 glom = CUSTOM_GLOM_SETTING;
#endif /* defined(BCMSDIO) */
#if defined(CUSTOMER_HW2) && defined(USE_WL_CREDALL)
uint32 credall = 1;
#endif
#if defined(VSDB) || defined(ROAM_ENABLE)
uint bcn_timeout = CUSTOM_BCN_TIMEOUT;
#else
uint bcn_timeout = 4;
#endif /* VSDB || ROAM_ENABLE */
#ifdef ENABLE_BCN_LI_BCN_WAKEUP
uint32 bcn_li_bcn = 1;
#endif /* ENABLE_BCN_LI_BCN_WAKEUP */
uint retry_max = CUSTOM_ASSOC_RETRY_MAX;
#if defined(ARP_OFFLOAD_SUPPORT)
int arpoe = 1;
#endif
int scan_assoc_time = DHD_SCAN_ASSOC_ACTIVE_TIME;
int scan_unassoc_time = DHD_SCAN_UNASSOC_ACTIVE_TIME;
int scan_passive_time = DHD_SCAN_PASSIVE_TIME;
char buf[WLC_IOCTL_SMLEN];
char *ptr;
uint32 listen_interval = CUSTOM_LISTEN_INTERVAL; /* Default Listen Interval in Beacons */
#ifdef ROAM_ENABLE
uint roamvar = 0;
int roam_trigger[2] = {CUSTOM_ROAM_TRIGGER_SETTING, WLC_BAND_ALL};
int roam_scan_period[2] = {10, WLC_BAND_ALL};
int roam_delta[2] = {CUSTOM_ROAM_DELTA_SETTING, WLC_BAND_ALL};
#ifdef FULL_ROAMING_SCAN_PERIOD_60_SEC
int roam_fullscan_period = 60;
#else /* FULL_ROAMING_SCAN_PERIOD_60_SEC */
int roam_fullscan_period = 120;
#endif /* FULL_ROAMING_SCAN_PERIOD_60_SEC */
#else
#ifdef DISABLE_BUILTIN_ROAM
uint roamvar = 1;
#endif /* DISABLE_BUILTIN_ROAM */
#endif /* ROAM_ENABLE */
#if defined(SOFTAP)
uint dtim = 1;
#endif
#if (defined(AP) && !defined(WLP2P)) || (!defined(AP) && defined(WL_CFG80211))
uint32 mpc = 0; /* Turn MPC off for AP/APSTA mode */
struct ether_addr p2p_ea;
#endif
#ifdef SOFTAP_UAPSD_OFF
uint32 wme_apsd = 0;
#endif /* SOFTAP_UAPSD_OFF */
#if (defined(AP) || defined(WLP2P)) && !defined(SOFTAP_AND_GC)
uint32 apsta = 1; /* Enable APSTA mode */
#elif defined(SOFTAP_AND_GC)
uint32 apsta = 0;
int ap_mode = 1;
#endif /* (defined(AP) || defined(WLP2P)) && !defined(SOFTAP_AND_GC) */
#ifdef GET_CUSTOM_MAC_ENABLE
struct ether_addr ea_addr;
#endif /* GET_CUSTOM_MAC_ENABLE */
#ifdef DISABLE_11N
uint32 nmode = 0;
#endif /* DISABLE_11N */
#if defined(DISABLE_11AC)
uint32 vhtmode = 0;
#endif /* DISABLE_11AC */
#ifdef USE_WL_TXBF
uint32 txbf = 1;
#endif /* USE_WL_TXBF */
#if defined(PROP_TXSTATUS)
#ifdef USE_WFA_CERT_CONF
uint32 proptx = 0;
#endif /* USE_WFA_CERT_CONF */
#endif /* PROP_TXSTATUS */
#ifdef CUSTOM_PSPRETEND_THR
uint32 pspretend_thr = CUSTOM_PSPRETEND_THR;
#endif
uint32 rsdb_mode = 0;
#ifdef ENABLE_TEMP_THROTTLING
wl_temp_control_t temp_control;
#endif /* ENABLE_TEMP_THROTTLING */
#ifdef DISABLE_PRUNED_SCAN
uint32 scan_features = 0;
#endif /* DISABLE_PRUNED_SCAN */
#ifdef CUSTOM_EVENT_PM_WAKE
uint32 pm_awake_thresh = CUSTOM_EVENT_PM_WAKE;
#endif /* CUSTOM_EVENT_PM_WAKE */
#ifdef PKT_FILTER_SUPPORT
dhd_pkt_filter_enable = TRUE;
#endif /* PKT_FILTER_SUPPORT */
dhd->suspend_bcn_li_dtim = CUSTOM_SUSPEND_BCN_LI_DTIM;
#ifdef ENABLE_MAX_DTIM_IN_SUSPEND
dhd->max_dtim_enable = TRUE;
#else
dhd->max_dtim_enable = FALSE;
#endif /* ENABLE_MAX_DTIM_IN_SUSPEND */
DHD_TRACE(("Enter %s\n", __FUNCTION__));
dhd->op_mode = 0;
#ifdef CUSTOMER_HW4_DEBUG
if (!dhd_validate_chipid(dhd)) {
DHD_ERROR(("%s: CONFIG_BCMXXX and CHIP ID(%x) is mismatched\n",
__FUNCTION__, dhd_bus_chip_id(dhd)));
#ifndef SUPPORT_MULTIPLE_CHIPS
ret = BCME_BADARG;
goto done;
#endif /* !SUPPORT_MULTIPLE_CHIPS */
}
#endif /* CUSTOMER_HW4_DEBUG */
if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_MFG_MODE) ||
(op_mode == DHD_FLAG_MFG_MODE)) {
#ifdef DHD_PCIE_RUNTIMEPM
/* Disable RuntimePM in mfg mode */
DHD_DISABLE_RUNTIME_PM(dhd);
DHD_ERROR(("%s : Disable RuntimePM in Manufactring Firmware\n", __FUNCTION__));
#endif /* DHD_PCIE_RUNTIME_PM */
/* Check and adjust IOCTL response timeout for Manufactring firmware */
dhd_os_set_ioctl_resp_timeout(MFG_IOCTL_RESP_TIMEOUT);
DHD_ERROR(("%s : Set IOCTL response time for Manufactring Firmware\n",
__FUNCTION__));
} else {
dhd_os_set_ioctl_resp_timeout(IOCTL_RESP_TIMEOUT);
DHD_INFO(("%s : Set IOCTL response time.\n", __FUNCTION__));
}
#ifdef GET_CUSTOM_MAC_ENABLE
ret = wifi_platform_get_mac_addr(dhd->info->adapter, ea_addr.octet);
if (!ret) {
memset(buf, 0, sizeof(buf));
bcm_mkiovar("cur_etheraddr", (void *)&ea_addr, ETHER_ADDR_LEN, buf, sizeof(buf));
ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, buf, sizeof(buf), TRUE, 0);
if (ret < 0) {
DHD_ERROR(("%s: can't set MAC address , error=%d\n", __FUNCTION__, ret));
ret = BCME_NOTUP;
goto done;
}
memcpy(dhd->mac.octet, ea_addr.octet, ETHER_ADDR_LEN);
} else {
#endif /* GET_CUSTOM_MAC_ENABLE */
/* Get the default device MAC address directly from firmware */
memset(buf, 0, sizeof(buf));
bcm_mkiovar("cur_etheraddr", 0, 0, buf, sizeof(buf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR, buf, sizeof(buf),
FALSE, 0)) < 0) {
DHD_ERROR(("%s: can't get MAC address , error=%d\n", __FUNCTION__, ret));
ret = BCME_NOTUP;
goto done;
}
/* Update public MAC address after reading from Firmware */
memcpy(dhd->mac.octet, buf, ETHER_ADDR_LEN);
#ifdef GET_CUSTOM_MAC_ENABLE
}
#endif /* GET_CUSTOM_MAC_ENABLE */
#ifdef DHD_USE_CLMINFO_PARSER
if ((ret = dhd_get_clminfo(dhd, clm_path)) < 0) {
DHD_ERROR(("%s: CLM Information load failed. Abort initialization.\n",
__FUNCTION__));
goto done;
}
#endif /* DHD_USE_CLMINFO_PARSER */
if ((ret = dhd_apply_default_clm(dhd, clm_path)) < 0) {
DHD_ERROR(("%s: CLM set failed. Abort initialization.\n", __FUNCTION__));
goto done;
}
/* get a capabilities from firmware */
{
uint32 cap_buf_size = sizeof(dhd->fw_capabilities);
memset(dhd->fw_capabilities, 0, cap_buf_size);
bcm_mkiovar("cap", 0, 0, dhd->fw_capabilities, cap_buf_size - 1);
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR, dhd->fw_capabilities,
(cap_buf_size - 1), FALSE, 0)) < 0)
{
DHD_ERROR(("%s: Get Capability failed (error=%d)\n",
__FUNCTION__, ret));
return 0;
}
memmove(&dhd->fw_capabilities[1], dhd->fw_capabilities, (cap_buf_size - 1));
dhd->fw_capabilities[0] = ' ';
dhd->fw_capabilities[cap_buf_size - 2] = ' ';
dhd->fw_capabilities[cap_buf_size - 1] = '\0';
}
if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_HOSTAP_MODE) ||
(op_mode == DHD_FLAG_HOSTAP_MODE)) {
#ifdef SET_RANDOM_MAC_SOFTAP
uint rand_mac;
#endif /* SET_RANDOM_MAC_SOFTAP */
dhd->op_mode = DHD_FLAG_HOSTAP_MODE;
#if defined(ARP_OFFLOAD_SUPPORT)
arpoe = 0;
#endif
#ifdef WLTDLS
dhd->tdls_enable = FALSE;
dhd_tdls_set_mode(dhd, false);
#endif /* WLTDLS */
#ifdef PKT_FILTER_SUPPORT
dhd_pkt_filter_enable = FALSE;
#endif
#ifdef SET_RANDOM_MAC_SOFTAP
SRANDOM32((uint)jiffies);
rand_mac = RANDOM32();
iovbuf[0] = (unsigned char)(vendor_oui >> 16) | 0x02; /* local admin bit */
iovbuf[1] = (unsigned char)(vendor_oui >> 8);
iovbuf[2] = (unsigned char)vendor_oui;
iovbuf[3] = (unsigned char)(rand_mac & 0x0F) | 0xF0;
iovbuf[4] = (unsigned char)(rand_mac >> 8);
iovbuf[5] = (unsigned char)(rand_mac >> 16);
bcm_mkiovar("cur_etheraddr", (void *)iovbuf, ETHER_ADDR_LEN, buf, sizeof(buf));
ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, buf, sizeof(buf), TRUE, 0);
if (ret < 0) {
DHD_ERROR(("%s: can't set MAC address , error=%d\n", __FUNCTION__, ret));
} else
memcpy(dhd->mac.octet, iovbuf, ETHER_ADDR_LEN);
#endif /* SET_RANDOM_MAC_SOFTAP */
#if !defined(AP) && defined(WL_CFG80211)
/* Turn off MPC in AP mode */
bcm_mkiovar("mpc", (char *)&mpc, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s mpc for HostAPD failed %d\n", __FUNCTION__, ret));
}
#endif
#ifdef USE_DYNAMIC_F2_BLKSIZE
dhdsdio_func_blocksize(dhd, 2, DYNAMIC_F2_BLKSIZE_FOR_NONLEGACY);
#endif /* USE_DYNAMIC_F2_BLKSIZE */
#ifdef SUPPORT_AP_POWERSAVE
dhd_set_ap_powersave(dhd, 0, TRUE);
#endif /* SUPPORT_AP_POWERSAVE */
#ifdef SOFTAP_UAPSD_OFF
bcm_mkiovar("wme_apsd", (char *)&wme_apsd, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s: set wme_apsd 0 fail (error=%d)\n",
__FUNCTION__, ret));
}
#endif /* SOFTAP_UAPSD_OFF */
} else if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_MFG_MODE) ||
(op_mode == DHD_FLAG_MFG_MODE)) {
#if defined(ARP_OFFLOAD_SUPPORT)
arpoe = 0;
#endif /* ARP_OFFLOAD_SUPPORT */
#ifdef PKT_FILTER_SUPPORT
dhd_pkt_filter_enable = FALSE;
#endif /* PKT_FILTER_SUPPORT */
dhd->op_mode = DHD_FLAG_MFG_MODE;
#ifdef USE_DYNAMIC_F2_BLKSIZE
dhdsdio_func_blocksize(dhd, 2, DYNAMIC_F2_BLKSIZE_FOR_NONLEGACY);
#endif /* USE_DYNAMIC_F2_BLKSIZE */
if (FW_SUPPORTED(dhd, rsdb)) {
rsdb_mode = 0;
bcm_mkiovar("rsdb_mode", (char *)&rsdb_mode, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s Disable rsdb_mode is failed ret= %d\n",
__FUNCTION__, ret));
}
}
} else {
uint32 concurrent_mode = 0;
if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_P2P_MODE) ||
(op_mode == DHD_FLAG_P2P_MODE)) {
#if defined(ARP_OFFLOAD_SUPPORT)
arpoe = 0;
#endif
#ifdef PKT_FILTER_SUPPORT
dhd_pkt_filter_enable = FALSE;
#endif
dhd->op_mode = DHD_FLAG_P2P_MODE;
} else if ((!op_mode && dhd_get_fw_mode(dhd->info) == DHD_FLAG_IBSS_MODE) ||
(op_mode == DHD_FLAG_IBSS_MODE)) {
dhd->op_mode = DHD_FLAG_IBSS_MODE;
} else
dhd->op_mode = DHD_FLAG_STA_MODE;
#if !defined(AP) && defined(WLP2P)
if (dhd->op_mode != DHD_FLAG_IBSS_MODE &&
(concurrent_mode = dhd_get_concurrent_capabilites(dhd))) {
#if defined(ARP_OFFLOAD_SUPPORT)
arpoe = 1;
#endif
dhd->op_mode |= concurrent_mode;
}
/* Check if we are enabling p2p */
if (dhd->op_mode & DHD_FLAG_P2P_MODE) {
bcm_mkiovar("apsta", (char *)&apsta, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s APSTA for P2P failed ret= %d\n", __FUNCTION__, ret));
}
#if defined(SOFTAP_AND_GC)
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_AP,
(char *)&ap_mode, sizeof(ap_mode), TRUE, 0)) < 0) {
DHD_ERROR(("%s WLC_SET_AP failed %d\n", __FUNCTION__, ret));
}
#endif
memcpy(&p2p_ea, &dhd->mac, ETHER_ADDR_LEN);
ETHER_SET_LOCALADDR(&p2p_ea);
bcm_mkiovar("p2p_da_override", (char *)&p2p_ea,
ETHER_ADDR_LEN, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s p2p_da_override ret= %d\n", __FUNCTION__, ret));
} else {
DHD_INFO(("dhd_preinit_ioctls: p2p_da_override succeeded\n"));
}
}
#else
(void)concurrent_mode;
#endif
}
#if defined(RSDB_MODE_FROM_FILE)
(void)dhd_rsdb_mode_from_file(dhd);
#endif
#ifdef DISABLE_PRUNED_SCAN
if (FW_SUPPORTED(dhd, rsdb)) {
memset(iovbuf, 0, sizeof(iovbuf));
bcm_mkiovar("scan_features", (char *)&scan_features,
4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR,
iovbuf, sizeof(iovbuf), FALSE, 0)) < 0) {
DHD_ERROR(("%s get scan_features is failed ret=%d\n",
__FUNCTION__, ret));
} else {
memcpy(&scan_features, iovbuf, 4);
scan_features &= ~RSDB_SCAN_DOWNGRADED_CH_PRUNE_ROAM;
memset(iovbuf, 0, sizeof(iovbuf));
bcm_mkiovar("scan_features", (char *)&scan_features,
4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR,
iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s set scan_features is failed ret=%d\n",
__FUNCTION__, ret));
}
}
}
#endif /* DISABLE_PRUNED_SCAN */
DHD_INFO(("Firmware up: op_mode=0x%04x, MAC="MACDBG"\n",
dhd->op_mode, MAC2STRDBG(dhd->mac.octet)));
#if defined(RXFRAME_THREAD) && defined(RXTHREAD_ONLYSTA)
if (dhd->op_mode == DHD_FLAG_HOSTAP_MODE)
dhd->info->rxthread_enabled = FALSE;
else
dhd->info->rxthread_enabled = TRUE;
#endif
/* Set Country code */
if (dhd->dhd_cspec.ccode[0] != 0) {
bcm_mkiovar("country", (char *)&dhd->dhd_cspec,
sizeof(wl_country_t), iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0)
DHD_ERROR(("%s: country code setting failed\n", __FUNCTION__));
}
#if defined(DISABLE_11AC)
bcm_mkiovar("vhtmode", (char *)&vhtmode, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0)
DHD_ERROR(("%s wl vhtmode 0 failed %d\n", __FUNCTION__, ret));
#endif /* DISABLE_11AC */
/* Set Listen Interval */
bcm_mkiovar("assoc_listen", (char *)&listen_interval, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0)
DHD_ERROR(("%s assoc_listen failed %d\n", __FUNCTION__, ret));
#if defined(ROAM_ENABLE) || defined(DISABLE_BUILTIN_ROAM)
#ifdef USE_WFA_CERT_CONF
if (sec_get_param_wfa_cert(dhd, SET_PARAM_ROAMOFF, &roamvar) == BCME_OK) {
DHD_ERROR(("%s: read roam_off param =%d\n", __FUNCTION__, roamvar));
}
#endif /* USE_WFA_CERT_CONF */
/* Disable built-in roaming to allowed ext supplicant to take care of roaming */
bcm_mkiovar("roam_off", (char *)&roamvar, 4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* ROAM_ENABLE || DISABLE_BUILTIN_ROAM */
#if defined(ROAM_ENABLE)
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_ROAM_TRIGGER, roam_trigger,
sizeof(roam_trigger), TRUE, 0)) < 0)
DHD_ERROR(("%s: roam trigger set failed %d\n", __FUNCTION__, ret));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_ROAM_SCAN_PERIOD, roam_scan_period,
sizeof(roam_scan_period), TRUE, 0)) < 0)
DHD_ERROR(("%s: roam scan period set failed %d\n", __FUNCTION__, ret));
if ((dhd_wl_ioctl_cmd(dhd, WLC_SET_ROAM_DELTA, roam_delta,
sizeof(roam_delta), TRUE, 0)) < 0)
DHD_ERROR(("%s: roam delta set failed %d\n", __FUNCTION__, ret));
bcm_mkiovar("fullroamperiod", (char *)&roam_fullscan_period, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0)
DHD_ERROR(("%s: roam fullscan period set failed %d\n", __FUNCTION__, ret));
#endif /* ROAM_ENABLE */
#ifdef CUSTOM_EVENT_PM_WAKE
bcm_mkiovar("const_awake_thresh", (char *)&pm_awake_thresh, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s set const_awake_thresh failed %d\n", __FUNCTION__, ret));
}
#endif /* CUSTOM_EVENT_PM_WAKE */
#ifdef WLTDLS
#ifdef ENABLE_TDLS_AUTO_MODE
/* by default TDLS on and auto mode on */
_dhd_tdls_enable(dhd, true, true, NULL);
#else
/* by default TDLS on and auto mode off */
_dhd_tdls_enable(dhd, true, false, NULL);
#endif /* ENABLE_TDLS_AUTO_MODE */
#endif /* WLTDLS */
#ifdef DHD_ENABLE_LPC
/* Set lpc 1 */
bcm_mkiovar("lpc", (char *)&lpc, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s Set lpc failed %d\n", __FUNCTION__, ret));
if (ret == BCME_NOTDOWN) {
uint wl_down = 1;
ret = dhd_wl_ioctl_cmd(dhd, WLC_DOWN,
(char *)&wl_down, sizeof(wl_down), TRUE, 0);
DHD_ERROR(("%s lpc fail WL_DOWN : %d, lpc = %d\n", __FUNCTION__, ret, lpc));
bcm_mkiovar("lpc", (char *)&lpc, 4, iovbuf, sizeof(iovbuf));
ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
DHD_ERROR(("%s Set lpc ret --> %d\n", __FUNCTION__, ret));
}
}
#endif /* DHD_ENABLE_LPC */
/* Set PowerSave mode */
dhd_wl_ioctl_cmd(dhd, WLC_SET_PM, (char *)&power_mode, sizeof(power_mode), TRUE, 0);
#if defined(BCMSDIO)
/* Match Host and Dongle rx alignment */
bcm_mkiovar("bus:txglomalign", (char *)&dongle_align, 4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#if defined(CUSTOMER_HW2) && defined(USE_WL_CREDALL)
/* enable credall to reduce the chance of no bus credit happened. */
bcm_mkiovar("bus:credall", (char *)&credall, 4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif
#ifdef USE_WFA_CERT_CONF
if (sec_get_param_wfa_cert(dhd, SET_PARAM_BUS_TXGLOM_MODE, &glom) == BCME_OK) {
DHD_ERROR(("%s, read txglom param =%d\n", __FUNCTION__, glom));
}
#endif /* USE_WFA_CERT_CONF */
if (glom != DEFAULT_GLOM_VALUE) {
DHD_INFO(("%s set glom=0x%X\n", __FUNCTION__, glom));
bcm_mkiovar("bus:txglom", (char *)&glom, 4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
}
#endif /* defined(BCMSDIO) */
/* Setup timeout if Beacons are lost and roam is off to report link down */
bcm_mkiovar("bcn_timeout", (char *)&bcn_timeout, 4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
/* Setup assoc_retry_max count to reconnect target AP in dongle */
bcm_mkiovar("assoc_retry_max", (char *)&retry_max, 4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#if defined(AP) && !defined(WLP2P)
/* Turn off MPC in AP mode */
bcm_mkiovar("mpc", (char *)&mpc, 4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
bcm_mkiovar("apsta", (char *)&apsta, 4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* defined(AP) && !defined(WLP2P) */
#ifdef MIMO_ANT_SETTING
dhd_sel_ant_from_file(dhd);
#endif /* MIMO_ANT_SETTING */
#if defined(SOFTAP)
if (ap_fw_loaded == TRUE) {
dhd_wl_ioctl_cmd(dhd, WLC_SET_DTIMPRD, (char *)&dtim, sizeof(dtim), TRUE, 0);
}
#endif
#if defined(KEEP_ALIVE)
{
/* Set Keep Alive : be sure to use FW with -keepalive */
int res;
#if defined(SOFTAP)
if (ap_fw_loaded == FALSE)
#endif
if (!(dhd->op_mode &
(DHD_FLAG_HOSTAP_MODE | DHD_FLAG_MFG_MODE))) {
if ((res = dhd_keep_alive_onoff(dhd)) < 0)
DHD_ERROR(("%s set keeplive failed %d\n",
__FUNCTION__, res));
}
}
#endif /* defined(KEEP_ALIVE) */
#ifdef USE_WL_TXBF
bcm_mkiovar("txbf", (char *)&txbf, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_INFO(("%s Set txbf returned (%d)\n", __FUNCTION__, ret));
}
#endif /* USE_WL_TXBF */
#ifdef USE_WFA_CERT_CONF
#ifdef USE_WL_FRAMEBURST
if (sec_get_param_wfa_cert(dhd, SET_PARAM_FRAMEBURST, &frameburst) == BCME_OK) {
DHD_ERROR(("%s, read frameburst param=%d\n", __FUNCTION__, frameburst));
}
#endif /* USE_WL_FRAMEBURST */
#ifdef DISABLE_FRAMEBURST_VSDB
g_frameburst = frameburst;
#endif /* DISABLE_FRAMEBURST_VSDB */
#endif /* USE_WFA_CERT_CONF */
#ifdef DISABLE_WL_FRAMEBURST_SOFTAP
/* Disable Framebursting for SofAP */
if (dhd->op_mode & DHD_FLAG_HOSTAP_MODE) {
frameburst = 0;
}
#endif /* DISABLE_WL_FRAMEBURST_SOFTAP */
/* Set frameburst to value */
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_FAKEFRAG, (char *)&frameburst,
sizeof(frameburst), TRUE, 0)) < 0) {
DHD_INFO(("%s frameburst not supported %d\n", __FUNCTION__, ret));
}
#if defined(CUSTOM_AMPDU_BA_WSIZE)
/* Set ampdu ba wsize to 64 or 16 */
#ifdef CUSTOM_AMPDU_BA_WSIZE
ampdu_ba_wsize = CUSTOM_AMPDU_BA_WSIZE;
#endif
if (ampdu_ba_wsize != 0) {
bcm_mkiovar("ampdu_ba_wsize", (char *)&ampdu_ba_wsize, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s Set ampdu_ba_wsize to %d failed %d\n",
__FUNCTION__, ampdu_ba_wsize, ret));
}
}
#endif
iov_buf = (char*)kmalloc(WLC_IOCTL_SMLEN, GFP_KERNEL);
if (iov_buf == NULL) {
DHD_ERROR(("failed to allocate %d bytes for iov_buf\n", WLC_IOCTL_SMLEN));
ret = BCME_NOMEM;
goto done;
}
#ifdef ENABLE_TEMP_THROTTLING
if (dhd->op_mode & DHD_FLAG_STA_MODE) {
memset(&temp_control, 0, sizeof(temp_control));
temp_control.enable = 1;
temp_control.control_bit = TEMP_THROTTLE_CONTROL_BIT;
bcm_mkiovar("temp_throttle_control", (char *)&temp_control,
sizeof(wl_temp_control_t), iov_buf, WLC_IOCTL_SMLEN);
ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iov_buf, WLC_IOCTL_SMLEN, TRUE, 0);
if (ret < 0) {
DHD_ERROR(("%s Set temp_throttle_control to %d failed \n",
__FUNCTION__, ret));
}
}
#endif /* ENABLE_TEMP_THROTTLING */
#if defined(CUSTOM_AMPDU_MPDU)
ampdu_mpdu = CUSTOM_AMPDU_MPDU;
if (ampdu_mpdu != 0 && (ampdu_mpdu <= ampdu_ba_wsize)) {
bcm_mkiovar("ampdu_mpdu", (char *)&ampdu_mpdu, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s Set ampdu_mpdu to %d failed %d\n",
__FUNCTION__, CUSTOM_AMPDU_MPDU, ret));
}
}
#endif /* CUSTOM_AMPDU_MPDU */
#if defined(CUSTOM_AMPDU_RELEASE)
ampdu_release = CUSTOM_AMPDU_RELEASE;
if (ampdu_release != 0 && (ampdu_release <= ampdu_ba_wsize)) {
bcm_mkiovar("ampdu_release", (char *)&ampdu_release, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s Set ampdu_release to %d failed %d\n",
__FUNCTION__, CUSTOM_AMPDU_RELEASE, ret));
}
}
#endif /* CUSTOM_AMPDU_RELEASE */
#if defined(CUSTOM_AMSDU_AGGSF)
amsdu_aggsf = CUSTOM_AMSDU_AGGSF;
if (amsdu_aggsf != 0) {
bcm_mkiovar("amsdu_aggsf", (char *)&amsdu_aggsf, 4, iovbuf, sizeof(iovbuf));
ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
if (ret < 0) {
DHD_ERROR(("%s Set amsdu_aggsf to %d failed %d\n",
__FUNCTION__, CUSTOM_AMSDU_AGGSF, ret));
}
}
#endif /* CUSTOM_AMSDU_AGGSF */
#ifdef CUSTOM_PSPRETEND_THR
/* Turn off MPC in AP mode */
bcm_mkiovar("pspretend_threshold", (char *)&pspretend_thr, 4,
iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s pspretend_threshold for HostAPD failed %d\n",
__FUNCTION__, ret));
}
#endif
bcm_mkiovar("buf_key_b4_m4", (char *)&buf_key_b4_m4, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf,
sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s buf_key_b4_m4 set failed %d\n", __FUNCTION__, ret));
}
/* Read event_msgs mask */
bcm_mkiovar("event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR, iovbuf, sizeof(iovbuf), FALSE, 0)) < 0) {
DHD_ERROR(("%s read Event mask failed %d\n", __FUNCTION__, ret));
goto done;
}
bcopy(iovbuf, eventmask, WL_EVENTING_MASK_LEN);
/* Setup event_msgs */
setbit(eventmask, WLC_E_SET_SSID);
setbit(eventmask, WLC_E_PRUNE);
setbit(eventmask, WLC_E_AUTH);
setbit(eventmask, WLC_E_AUTH_IND);
setbit(eventmask, WLC_E_ASSOC);
setbit(eventmask, WLC_E_REASSOC);
setbit(eventmask, WLC_E_REASSOC_IND);
if (!(dhd->op_mode & DHD_FLAG_IBSS_MODE))
setbit(eventmask, WLC_E_DEAUTH);
setbit(eventmask, WLC_E_DEAUTH_IND);
setbit(eventmask, WLC_E_DISASSOC_IND);
setbit(eventmask, WLC_E_DISASSOC);
setbit(eventmask, WLC_E_JOIN);
setbit(eventmask, WLC_E_START);
setbit(eventmask, WLC_E_ASSOC_IND);
setbit(eventmask, WLC_E_PSK_SUP);
setbit(eventmask, WLC_E_LINK);
setbit(eventmask, WLC_E_MIC_ERROR);
setbit(eventmask, WLC_E_ASSOC_REQ_IE);
setbit(eventmask, WLC_E_ASSOC_RESP_IE);
#ifndef WL_CFG80211
setbit(eventmask, WLC_E_PMKID_CACHE);
setbit(eventmask, WLC_E_TXFAIL);
#endif
setbit(eventmask, WLC_E_JOIN_START);
setbit(eventmask, WLC_E_SCAN_COMPLETE);
#ifdef DHD_DEBUG
setbit(eventmask, WLC_E_SCAN_CONFIRM_IND);
#endif
#ifdef WLMEDIA_HTSF
setbit(eventmask, WLC_E_HTSFSYNC);
#endif /* WLMEDIA_HTSF */
#ifdef PNO_SUPPORT
setbit(eventmask, WLC_E_PFN_NET_FOUND);
setbit(eventmask, WLC_E_PFN_BEST_BATCHING);
setbit(eventmask, WLC_E_PFN_BSSID_NET_FOUND);
setbit(eventmask, WLC_E_PFN_BSSID_NET_LOST);
#endif /* PNO_SUPPORT */
/* enable dongle roaming event */
setbit(eventmask, WLC_E_ROAM);
setbit(eventmask, WLC_E_BSSID);
#ifdef WLTDLS
setbit(eventmask, WLC_E_TDLS_PEER_EVENT);
#endif /* WLTDLS */
#ifdef WL_CFG80211
setbit(eventmask, WLC_E_ESCAN_RESULT);
setbit(eventmask, WLC_E_AP_STARTED);
if (dhd->op_mode & DHD_FLAG_P2P_MODE) {
setbit(eventmask, WLC_E_ACTION_FRAME_RX);
setbit(eventmask, WLC_E_P2P_DISC_LISTEN_COMPLETE);
}
#endif /* WL_CFG80211 */
#if defined(SHOW_LOGTRACE) && defined(LOGTRACE_FROM_FILE)
if (dhd_logtrace_from_file(dhd)) {
setbit(eventmask, WLC_E_TRACE);
} else {
clrbit(eventmask, WLC_E_TRACE);
}
#elif defined(SHOW_LOGTRACE)
setbit(eventmask, WLC_E_TRACE);
#else
clrbit(eventmask, WLC_E_TRACE);
#endif /* defined(SHOW_LOGTRACE) && defined(LOGTRACE_FROM_FILE) */
setbit(eventmask, WLC_E_CSA_COMPLETE_IND);
#ifdef DHD_LOSSLESS_ROAMING
setbit(eventmask, WLC_E_ROAM_PREP);
#endif
#ifdef CUSTOM_EVENT_PM_WAKE
setbit(eventmask, WLC_E_EXCESS_PM_WAKE_EVENT);
#endif /* CUSTOM_EVENT_PM_WAKE */
#if defined(PCIE_FULL_DONGLE) && defined(DHD_LOSSLESS_ROAMING)
dhd_update_flow_prio_map(dhd, DHD_FLOW_PRIO_LLR_MAP);
#endif /* defined(PCIE_FULL_DONGLE) && defined(DHD_LOSSLESS_ROAMING) */
/* Write updated Event mask */
bcm_mkiovar("event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s Set Event mask failed %d\n", __FUNCTION__, ret));
goto done;
}
/* make up event mask ext message iovar for event larger than 128 */
msglen = ROUNDUP(WLC_E_LAST, NBBY)/NBBY + EVENTMSGS_EXT_STRUCT_SIZE;
eventmask_msg = (eventmsgs_ext_t*)kmalloc(msglen, GFP_KERNEL);
if (eventmask_msg == NULL) {
DHD_ERROR(("failed to allocate %d bytes for event_msg_ext\n", msglen));
ret = BCME_NOMEM;
goto done;
}
bzero(eventmask_msg, msglen);
eventmask_msg->ver = EVENTMSGS_VER;
eventmask_msg->len = ROUNDUP(WLC_E_LAST, NBBY)/NBBY;
/* Read event_msgs_ext mask */
bcm_mkiovar("event_msgs_ext", (char *)eventmask_msg, msglen, iov_buf, WLC_IOCTL_SMLEN);
ret2 = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR, iov_buf, WLC_IOCTL_SMLEN, FALSE, 0);
if (ret2 == 0) { /* event_msgs_ext must be supported */
bcopy(iov_buf, eventmask_msg, msglen);
#ifdef GSCAN_SUPPORT
setbit(eventmask_msg->mask, WLC_E_PFN_GSCAN_FULL_RESULT);
setbit(eventmask_msg->mask, WLC_E_PFN_SCAN_COMPLETE);
setbit(eventmask_msg->mask, WLC_E_PFN_SWC);
#endif /* GSCAN_SUPPORT */
#ifdef BT_WIFI_HANDOVER
setbit(eventmask_msg->mask, WLC_E_BT_WIFI_HANDOVER_REQ);
#endif /* BT_WIFI_HANDOVER */
setbit(eventmask_msg->mask, WLC_E_SDB_TRANSITION);
#ifdef ENABLE_TEMP_THROTTLING
setbit(eventmask_msg->mask, WLC_E_TEMP_THROTTLE);
#endif /* ENABLE_TEMP_THROTTLING */
/* Write updated Event mask */
eventmask_msg->ver = EVENTMSGS_VER;
eventmask_msg->command = EVENTMSGS_SET_MASK;
eventmask_msg->len = ROUNDUP(WLC_E_LAST, NBBY)/NBBY;
bcm_mkiovar("event_msgs_ext", (char *)eventmask_msg,
msglen, iov_buf, WLC_IOCTL_SMLEN);
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR,
iov_buf, WLC_IOCTL_SMLEN, TRUE, 0)) < 0) {
DHD_ERROR(("%s write event mask ext failed %d\n", __FUNCTION__, ret));
goto done;
}
} else if (ret2 == BCME_UNSUPPORTED || ret2 == BCME_VERSION) {
/* Skip for BCME_UNSUPPORTED or BCME_VERSION */
DHD_ERROR(("%s event_msgs_ext not support or version mismatch %d\n",
__FUNCTION__, ret2));
} else {
DHD_ERROR(("%s read event mask ext failed %d\n", __FUNCTION__, ret2));
ret = ret2;
goto done;
}
dhd_wl_ioctl_cmd(dhd, WLC_SET_SCAN_CHANNEL_TIME, (char *)&scan_assoc_time,
sizeof(scan_assoc_time), TRUE, 0);
dhd_wl_ioctl_cmd(dhd, WLC_SET_SCAN_UNASSOC_TIME, (char *)&scan_unassoc_time,
sizeof(scan_unassoc_time), TRUE, 0);
dhd_wl_ioctl_cmd(dhd, WLC_SET_SCAN_PASSIVE_TIME, (char *)&scan_passive_time,
sizeof(scan_passive_time), TRUE, 0);
#ifdef ARP_OFFLOAD_SUPPORT
/* Set and enable ARP offload feature for STA only */
#if defined(SOFTAP)
if (arpoe && !ap_fw_loaded) {
#else
if (arpoe) {
#endif
dhd_arp_offload_enable(dhd, TRUE);
dhd_arp_offload_set(dhd, dhd_arp_mode);
} else {
dhd_arp_offload_enable(dhd, FALSE);
dhd_arp_offload_set(dhd, 0);
}
dhd_arp_enable = arpoe;
#endif /* ARP_OFFLOAD_SUPPORT */
#ifdef PKT_FILTER_SUPPORT
/* Setup default defintions for pktfilter , enable in suspend */
dhd->pktfilter_count = 6;
dhd->pktfilter[DHD_BROADCAST_FILTER_NUM] = NULL;
if (!FW_SUPPORTED(dhd, pf6)) {
dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = NULL;
dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = NULL;
} else {
/* Immediately pkt filter TYPE 6 Discard IPv4/IPv6 Multicast Packet */
dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = DISCARD_IPV4_MCAST;
dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = DISCARD_IPV6_MCAST;
}
/* apply APP pktfilter */
dhd->pktfilter[DHD_ARP_FILTER_NUM] = "105 0 0 12 0xFFFF 0x0806";
/* Setup filter to allow only unicast */
dhd->pktfilter[DHD_UNICAST_FILTER_NUM] = "100 0 0 0 0x01 0x00";
/* Add filter to pass multicastDNS packet and NOT filter out as Broadcast */
dhd->pktfilter[DHD_MDNS_FILTER_NUM] = NULL;
if (FW_SUPPORTED(dhd, pf6)) {
/* Immediately pkt filter TYPE 6 Dicard Broadcast IP packet */
dhd->pktfilter[DHD_IP4BCAST_DROP_FILTER_NUM] =
"107 1 6 IP4_H:16 0xf0 !0xe0 IP4_H:19 0xff 0xff";
dhd->pktfilter_count = 8;
}
#ifdef GAN_LITE_NAT_KEEPALIVE_FILTER
dhd->pktfilter_count = 4;
/* Setup filter to block broadcast and NAT Keepalive packets */
/* discard all broadcast packets */
dhd->pktfilter[DHD_UNICAST_FILTER_NUM] = "100 0 0 0 0xffffff 0xffffff";
/* discard NAT Keepalive packets */
dhd->pktfilter[DHD_BROADCAST_FILTER_NUM] = "102 0 0 36 0xffffffff 0x11940009";
/* discard NAT Keepalive packets */
dhd->pktfilter[DHD_MULTICAST4_FILTER_NUM] = "104 0 0 38 0xffffffff 0x11940009";
dhd->pktfilter[DHD_MULTICAST6_FILTER_NUM] = NULL;
#endif /* GAN_LITE_NAT_KEEPALIVE_FILTER */
#if defined(SOFTAP)
if (ap_fw_loaded) {
dhd_enable_packet_filter(0, dhd);
}
#endif /* defined(SOFTAP) */
dhd_set_packet_filter(dhd);
#endif /* PKT_FILTER_SUPPORT */
#ifdef DISABLE_11N
bcm_mkiovar("nmode", (char *)&nmode, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0)
DHD_ERROR(("%s wl nmode 0 failed %d\n", __FUNCTION__, ret));
#endif /* DISABLE_11N */
#ifdef ENABLE_BCN_LI_BCN_WAKEUP
bcm_mkiovar("bcn_li_bcn", (char *)&bcn_li_bcn, 4, iovbuf, sizeof(iovbuf));
dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
#endif /* ENABLE_BCN_LI_BCN_WAKEUP */
/* query for 'clmver' to get clm version info from firmware */
memset(buf, 0, sizeof(buf));
bcm_mkiovar("clmver", (char *)&buf, 4, buf, sizeof(buf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR, buf, sizeof(buf), FALSE, 0)) < 0)
DHD_ERROR(("%s failed %d\n", __FUNCTION__, ret));
else {
char *clmver_temp_buf = NULL;
if ((clmver_temp_buf = bcmstrstr(buf, "Data:")) == NULL) {
DHD_ERROR(("Couldn't find \"Data:\"\n"));
} else {
ptr = (clmver_temp_buf + strlen("Data:"));
if ((clmver_temp_buf = bcmstrtok(&ptr, "\n", 0)) == NULL) {
DHD_ERROR(("Couldn't find New line character\n"));
} else {
memset(clm_version, 0, CLM_VER_STR_LEN);
strncpy(clm_version, clmver_temp_buf,
MIN(strlen(clmver_temp_buf), CLM_VER_STR_LEN - 1));
DHD_INFO(("clm version = %s\n", clm_version));
}
}
}
/* query for 'ver' to get version info from firmware */
memset(buf, 0, sizeof(buf));
ptr = buf;
bcm_mkiovar("ver", (char *)&buf, 4, buf, sizeof(buf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR, buf, sizeof(buf), FALSE, 0)) < 0)
DHD_ERROR(("%s failed %d\n", __FUNCTION__, ret));
else {
bcmstrtok(&ptr, "\n", 0);
/* Print fw version info */
DHD_INFO(("Firmware version = %s\n", buf));
strncpy(fw_version, buf, FW_VER_STR_LEN);
fw_version[FW_VER_STR_LEN-1] = '\0';
#if defined(BCMSDIO)
dhd_set_version_info(dhd, buf);
#endif /* defined(BCMSDIO) */
#ifdef WRITE_WLANINFO
sec_save_wlinfo(buf, EPI_VERSION_STR, dhd->info->nv_path, clm_version);
#endif /* WRITE_WLANINFO */
}
#if defined(BCMSDIO)
dhd_txglom_enable(dhd, TRUE);
#endif /* defined(BCMSDIO) */
#if defined(BCMSDIO)
#ifdef PROP_TXSTATUS
if (disable_proptx ||
#ifdef PROP_TXSTATUS_VSDB
/* enable WLFC only if the firmware is VSDB when it is in STA mode */
(dhd->op_mode != DHD_FLAG_HOSTAP_MODE &&
dhd->op_mode != DHD_FLAG_IBSS_MODE) ||
#endif /* PROP_TXSTATUS_VSDB */
FALSE) {
wlfc_enable = FALSE;
}
#ifdef USE_WFA_CERT_CONF
if (sec_get_param_wfa_cert(dhd, SET_PARAM_PROPTX, &proptx) == BCME_OK) {
DHD_ERROR(("%s , read proptx param=%d\n", __FUNCTION__, proptx));
wlfc_enable = proptx;
}
#endif /* USE_WFA_CERT_CONF */
#ifndef DISABLE_11N
bcm_mkiovar("ampdu_hostreorder", (char *)&hostreorder, 4, iovbuf, sizeof(iovbuf));
if ((ret2 = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0) {
DHD_ERROR(("%s wl ampdu_hostreorder failed %d\n", __FUNCTION__, ret2));
if (ret2 != BCME_UNSUPPORTED)
ret = ret2;
if (ret == BCME_NOTDOWN) {
uint wl_down = 1;
ret2 = dhd_wl_ioctl_cmd(dhd, WLC_DOWN, (char *)&wl_down,
sizeof(wl_down), TRUE, 0);
DHD_ERROR(("%s ampdu_hostreorder fail WL_DOWN : %d, hostreorder :%d\n",
__FUNCTION__, ret2, hostreorder));
bcm_mkiovar("ampdu_hostreorder", (char *)&hostreorder, 4,
iovbuf, sizeof(iovbuf));
ret2 = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0);
DHD_ERROR(("%s wl ampdu_hostreorder. ret --> %d\n", __FUNCTION__, ret2));
if (ret2 != BCME_UNSUPPORTED)
ret = ret2;
}
if (ret2 != BCME_OK)
hostreorder = 0;
}
#endif /* DISABLE_11N */
if (wlfc_enable)
dhd_wlfc_init(dhd);
#ifndef DISABLE_11N
else if (hostreorder)
dhd_wlfc_hostreorder_init(dhd);
#endif /* DISABLE_11N */
#endif /* PROP_TXSTATUS */
#endif /* BCMSDIO || BCMBUS */
#ifdef PCIE_FULL_DONGLE
/* For FD we need all the packets at DHD to handle intra-BSS forwarding */
if (FW_SUPPORTED(dhd, ap)) {
wl_ap_isolate = AP_ISOLATE_SENDUP_ALL;
bcm_mkiovar("ap_isolate", (char *)&wl_ap_isolate, 4, iovbuf, sizeof(iovbuf));
if ((ret = dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0)) < 0)
DHD_ERROR(("%s failed %d\n", __FUNCTION__, ret));
}
#endif /* PCIE_FULL_DONGLE */
#ifdef PNO_SUPPORT
if (!dhd->pno_state) {
dhd_pno_init(dhd);
}
#endif
#ifdef WL11U
dhd_interworking_enable(dhd);
#endif /* WL11U */
#ifdef SUPPORT_SENSORHUB
bcm_mkiovar("shub", (char *)&(shub_ctl.enable), 4, iovbuf, sizeof(iovbuf));
if ((ret2 = dhd_wl_ioctl_cmd(dhd, WLC_GET_VAR, iovbuf, sizeof(iovbuf),
FALSE, 0)) < 0) {
DHD_ERROR(("%s failed to get shub hub enable information %d\n",
__FUNCTION__, ret2));
dhd->info->shub_enable = 0;
} else {
memcpy(&shub_ctl, iovbuf, sizeof(shub_ctl));
dhd->info->shub_enable = shub_ctl.enable;
DHD_ERROR(("%s: checking sensorhub enable %d\n",
__FUNCTION__, dhd->info->shub_enable));
}
#else
dhd->info->shub_enable = FALSE;
shub_ctl.enable = FALSE;
bcm_mkiovar("shub", (char *)&shub_ctl, sizeof(shub_ctl),
iovbuf, sizeof(iovbuf));
if ((dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf),
FALSE, 0)) < 0) {
DHD_INFO(("%s failed to set ShubHub disable\n",
__FUNCTION__));
}
#endif /* SUPPORT_SENSORHUB */
/* Set csa count used while AP/AGO makes switch to STA IF
* channel. this count is in dtim unit
*/
bcm_mkiovar("csa_count", (char *)&csa_count,
sizeof(csa_count), iovbuf, sizeof(iovbuf));
if (dhd_wl_ioctl_cmd(dhd, WLC_SET_VAR, iovbuf, sizeof(iovbuf), TRUE, 0) != BCME_OK) {
DHD_INFO(("%s Could not set csa_count\n", __FUNCTION__));
}
done:
if (eventmask_msg)
kfree(eventmask_msg);
if (iov_buf)
kfree(iov_buf);
return ret;
}
int
dhd_iovar(dhd_pub_t *pub, int ifidx, char *name, char *cmd_buf, uint cmd_len, int set)
{
char buf[strlen(name) + 1 + cmd_len];
int len = sizeof(buf);
wl_ioctl_t ioc;
int ret;
len = bcm_mkiovar(name, cmd_buf, cmd_len, buf, len);
memset(&ioc, 0, sizeof(ioc));
ioc.cmd = set? WLC_SET_VAR : WLC_GET_VAR;
ioc.buf = buf;
ioc.len = len;
ioc.set = set;
ret = dhd_wl_ioctl(pub, ifidx, &ioc, ioc.buf, ioc.len);
if (!set && ret >= 0)
memcpy(cmd_buf, buf, cmd_len);
return ret;
}
int dhd_change_mtu(dhd_pub_t *dhdp, int new_mtu, int ifidx)
{
struct dhd_info *dhd = dhdp->info;
struct net_device *dev = NULL;
ASSERT(dhd && dhd->iflist[ifidx]);
dev = dhd->iflist[ifidx]->net;
ASSERT(dev);
if (netif_running(dev)) {
DHD_ERROR(("%s: Must be down to change its MTU", dev->name));
return BCME_NOTDOWN;
}
#define DHD_MIN_MTU 1500
#define DHD_MAX_MTU 1752
if ((new_mtu < DHD_MIN_MTU) || (new_mtu > DHD_MAX_MTU)) {
DHD_ERROR(("%s: MTU size %d is invalid.\n", __FUNCTION__, new_mtu));
return BCME_BADARG;
}
dev->mtu = new_mtu;
return 0;
}
#ifdef ARP_OFFLOAD_SUPPORT
/* add or remove AOE host ip(s) (up to 8 IPs on the interface) */
void
aoe_update_host_ipv4_table(dhd_pub_t *dhd_pub, u32 ipa, bool add, int idx)
{
u32 ipv4_buf[MAX_IPV4_ENTRIES]; /* temp save for AOE host_ip table */
int i;
int ret;
bzero(ipv4_buf, sizeof(ipv4_buf));
/* display what we've got */
ret = dhd_arp_get_arp_hostip_table(dhd_pub, ipv4_buf, sizeof(ipv4_buf), idx);
DHD_ARPOE(("%s: hostip table read from Dongle:\n", __FUNCTION__));
#ifdef AOE_DBG
dhd_print_buf(ipv4_buf, 32, 4); /* max 8 IPs 4b each */
#endif
/* now we saved hoste_ip table, clr it in the dongle AOE */
dhd_aoe_hostip_clr(dhd_pub, idx);
if (ret) {
DHD_ERROR(("%s failed\n", __FUNCTION__));
return;
}
for (i = 0; i < MAX_IPV4_ENTRIES; i++) {
if (add && (ipv4_buf[i] == 0)) {
ipv4_buf[i] = ipa;
add = FALSE; /* added ipa to local table */
DHD_ARPOE(("%s: Saved new IP in temp arp_hostip[%d]\n",
__FUNCTION__, i));
} else if (ipv4_buf[i] == ipa) {
ipv4_buf[i] = 0;
DHD_ARPOE(("%s: removed IP:%x from temp table %d\n",
__FUNCTION__, ipa, i));
}
if (ipv4_buf[i] != 0) {
/* add back host_ip entries from our local cache */
dhd_arp_offload_add_ip(dhd_pub, ipv4_buf[i], idx);
DHD_ARPOE(("%s: added IP:%x to dongle arp_hostip[%d]\n\n",
__FUNCTION__, ipv4_buf[i], i));
}
}
#ifdef AOE_DBG
/* see the resulting hostip table */
dhd_arp_get_arp_hostip_table(dhd_pub, ipv4_buf, sizeof(ipv4_buf), idx);
DHD_ARPOE(("%s: read back arp_hostip table:\n", __FUNCTION__));
dhd_print_buf(ipv4_buf, 32, 4); /* max 8 IPs 4b each */
#endif
}
/*
* Notification mechanism from kernel to our driver. This function is called by the Linux kernel
* whenever there is an event related to an IP address.
* ptr : kernel provided pointer to IP address that has changed
*/
static int dhd_inetaddr_notifier_call(struct notifier_block *this,
unsigned long event,
void *ptr)
{
struct in_ifaddr *ifa = (struct in_ifaddr *)ptr;
dhd_info_t *dhd;
dhd_pub_t *dhd_pub;
int idx;
if (!dhd_arp_enable)
return NOTIFY_DONE;
if (!ifa || !(ifa->ifa_dev->dev))
return NOTIFY_DONE;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31))
/* Filter notifications meant for non Broadcom devices */
if ((ifa->ifa_dev->dev->netdev_ops != &dhd_ops_pri) &&
(ifa->ifa_dev->dev->netdev_ops != &dhd_ops_virt)) {
#if defined(WL_ENABLE_P2P_IF)
if (!wl_cfgp2p_is_ifops(ifa->ifa_dev->dev->netdev_ops))
#endif /* WL_ENABLE_P2P_IF */
return NOTIFY_DONE;
}
#endif /* LINUX_VERSION_CODE */
dhd = DHD_DEV_INFO(ifa->ifa_dev->dev);
if (!dhd)
return NOTIFY_DONE;
dhd_pub = &dhd->pub;
if (dhd_pub->arp_version == 1) {
idx = 0;
} else {
for (idx = 0; idx < DHD_MAX_IFS; idx++) {
if (dhd->iflist[idx] && dhd->iflist[idx]->net == ifa->ifa_dev->dev)
break;
}
if (idx < DHD_MAX_IFS) {
DHD_TRACE(("ifidx : %p %s %d\n", dhd->iflist[idx]->net,
dhd->iflist[idx]->name, dhd->iflist[idx]->idx));
} else {
DHD_ERROR(("Cannot find ifidx for(%s) set to 0\n", ifa->ifa_label));
idx = 0;
}
}
switch (event) {
case NETDEV_UP:
DHD_ARPOE(("%s: [%s] Up IP: 0x%x\n",
__FUNCTION__, ifa->ifa_label, ifa->ifa_address));
if (dhd->pub.busstate != DHD_BUS_DATA) {
DHD_ERROR(("%s: bus not ready, exit\n", __FUNCTION__));
if (dhd->pend_ipaddr) {
DHD_ERROR(("%s: overwrite pending ipaddr: 0x%x\n",
__FUNCTION__, dhd->pend_ipaddr));
}
dhd->pend_ipaddr = ifa->ifa_address;
break;
}
#ifdef AOE_IP_ALIAS_SUPPORT
DHD_ARPOE(("%s:add aliased IP to AOE hostip cache\n",
__FUNCTION__));
aoe_update_host_ipv4_table(dhd_pub, ifa->ifa_address, TRUE, idx);
#endif /* AOE_IP_ALIAS_SUPPORT */
break;
case NETDEV_DOWN:
DHD_ARPOE(("%s: [%s] Down IP: 0x%x\n",
__FUNCTION__, ifa->ifa_label, ifa->ifa_address));
dhd->pend_ipaddr = 0;
#ifdef AOE_IP_ALIAS_SUPPORT
DHD_ARPOE(("%s:interface is down, AOE clr all for this if\n",
__FUNCTION__));
aoe_update_host_ipv4_table(dhd_pub, ifa->ifa_address, FALSE, idx);
#else
dhd_aoe_hostip_clr(&dhd->pub, idx);
dhd_aoe_arp_clr(&dhd->pub, idx);
#endif /* AOE_IP_ALIAS_SUPPORT */
break;
default:
DHD_ARPOE(("%s: do noting for [%s] Event: %lu\n",
__func__, ifa->ifa_label, event));
break;
}
return NOTIFY_DONE;
}
#endif /* ARP_OFFLOAD_SUPPORT */
#if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT)
/* Neighbor Discovery Offload: defered handler */
static void
dhd_inet6_work_handler(void *dhd_info, void *event_data, u8 event)
{
struct ipv6_work_info_t *ndo_work = (struct ipv6_work_info_t *)event_data;
dhd_pub_t *pub = &((dhd_info_t *)dhd_info)->pub;
int ret;
if (event != DHD_WQ_WORK_IPV6_NDO) {
DHD_ERROR(("%s: unexpected event \n", __FUNCTION__));
return;
}
if (!ndo_work) {
DHD_ERROR(("%s: ipv6 work info is not initialized \n", __FUNCTION__));
return;
}
if (!pub) {
DHD_ERROR(("%s: dhd pub is not initialized \n", __FUNCTION__));
return;
}
if (ndo_work->if_idx) {
DHD_ERROR(("%s: idx %d \n", __FUNCTION__, ndo_work->if_idx));
return;
}
switch (ndo_work->event) {
case NETDEV_UP:
DHD_TRACE(("%s: Enable NDO and add ipv6 into table \n ", __FUNCTION__));
ret = dhd_ndo_enable(pub, TRUE);
if (ret < 0) {
DHD_ERROR(("%s: Enabling NDO Failed %d\n", __FUNCTION__, ret));
}
ret = dhd_ndo_add_ip(pub, &ndo_work->ipv6_addr[0], ndo_work->if_idx);
if (ret < 0) {
DHD_ERROR(("%s: Adding host ip for NDO failed %d\n",
__FUNCTION__, ret));
}
break;
case NETDEV_DOWN:
DHD_TRACE(("%s: clear ipv6 table \n", __FUNCTION__));
ret = dhd_ndo_remove_ip(pub, ndo_work->if_idx);
if (ret < 0) {
DHD_ERROR(("%s: Removing host ip for NDO failed %d\n",
__FUNCTION__, ret));
goto done;
}
ret = dhd_ndo_enable(pub, FALSE);
if (ret < 0) {
DHD_ERROR(("%s: disabling NDO Failed %d\n", __FUNCTION__, ret));
goto done;
}
break;
default:
DHD_ERROR(("%s: unknown notifier event \n", __FUNCTION__));
break;
}
done:
/* free ndo_work. alloced while scheduling the work */
kfree(ndo_work);
return;
}
/*
* Neighbor Discovery Offload: Called when an interface
* is assigned with ipv6 address.
* Handles only primary interface
*/
static int dhd_inet6addr_notifier_call(struct notifier_block *this,
unsigned long event,
void *ptr)
{
dhd_info_t *dhd;
dhd_pub_t *dhd_pub;
struct inet6_ifaddr *inet6_ifa = ptr;
struct in6_addr *ipv6_addr = &inet6_ifa->addr;
struct ipv6_work_info_t *ndo_info;
int idx = 0; /* REVISIT */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 31))
/* Filter notifications meant for non Broadcom devices */
if (inet6_ifa->idev->dev->netdev_ops != &dhd_ops_pri) {
return NOTIFY_DONE;
}
#endif /* LINUX_VERSION_CODE */
dhd = DHD_DEV_INFO(inet6_ifa->idev->dev);
if (!dhd)
return NOTIFY_DONE;
if (dhd->iflist[idx] && dhd->iflist[idx]->net != inet6_ifa->idev->dev)
return NOTIFY_DONE;
dhd_pub = &dhd->pub;
if (!FW_SUPPORTED(dhd_pub, ndoe))
return NOTIFY_DONE;
ndo_info = (struct ipv6_work_info_t *)kzalloc(sizeof(struct ipv6_work_info_t), GFP_ATOMIC);
if (!ndo_info) {
DHD_ERROR(("%s: ipv6 work alloc failed\n", __FUNCTION__));
return NOTIFY_DONE;
}
ndo_info->event = event;
ndo_info->if_idx = idx;
memcpy(&ndo_info->ipv6_addr[0], ipv6_addr, IPV6_ADDR_LEN);
/* defer the work to thread as it may block kernel */
dhd_deferred_schedule_work(dhd->dhd_deferred_wq, (void *)ndo_info, DHD_WQ_WORK_IPV6_NDO,
dhd_inet6_work_handler, DHD_WORK_PRIORITY_LOW);
return NOTIFY_DONE;
}
#endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */
int
dhd_register_if(dhd_pub_t *dhdp, int ifidx, bool need_rtnl_lock)
{
dhd_info_t *dhd = (dhd_info_t *)dhdp->info;
dhd_if_t *ifp;
struct net_device *net = NULL;
int err = 0;
uint8 temp_addr[ETHER_ADDR_LEN] = { 0x00, 0x90, 0x4c, 0x11, 0x22, 0x33 };
DHD_TRACE(("%s: ifidx %d\n", __FUNCTION__, ifidx));
ASSERT(dhd && dhd->iflist[ifidx]);
ifp = dhd->iflist[ifidx];
net = ifp->net;
ASSERT(net && (ifp->idx == ifidx));
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31))
ASSERT(!net->open);
net->get_stats = dhd_get_stats;
net->do_ioctl = dhd_ioctl_entry;
net->hard_start_xmit = dhd_start_xmit;
net->set_mac_address = dhd_set_mac_address;
net->set_multicast_list = dhd_set_multicast_list;
net->open = net->stop = NULL;
#else
ASSERT(!net->netdev_ops);
net->netdev_ops = &dhd_ops_virt;
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) */
/* Ok, link into the network layer... */
if (ifidx == 0) {
/*
* device functions for the primary interface only
*/
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31))
net->open = dhd_open;
net->stop = dhd_stop;
#else
net->netdev_ops = &dhd_ops_pri;
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31) */
if (!ETHER_ISNULLADDR(dhd->pub.mac.octet))
memcpy(temp_addr, dhd->pub.mac.octet, ETHER_ADDR_LEN);
} else {
/*
* We have to use the primary MAC for virtual interfaces
*/
memcpy(temp_addr, ifp->mac_addr, ETHER_ADDR_LEN);
/*
* Android sets the locally administered bit to indicate that this is a
* portable hotspot. This will not work in simultaneous AP/STA mode,
* nor with P2P. Need to set the Donlge's MAC address, and then use that.
*/
if (!memcmp(temp_addr, dhd->iflist[0]->mac_addr,
ETHER_ADDR_LEN)) {
DHD_ERROR(("%s interface [%s]: set locally administered bit in MAC\n",
__func__, net->name));
temp_addr[0] |= 0x02;
}
}
net->hard_header_len = ETH_HLEN + dhd->pub.hdrlen;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24)
net->ethtool_ops = &dhd_ethtool_ops;
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 24) */
#if defined(WL_WIRELESS_EXT)
#if WIRELESS_EXT < 19
net->get_wireless_stats = dhd_get_wireless_stats;
#endif /* WIRELESS_EXT < 19 */
#if WIRELESS_EXT > 12
net->wireless_handlers = (struct iw_handler_def *)&wl_iw_handler_def;
#endif /* WIRELESS_EXT > 12 */
#endif /* defined(WL_WIRELESS_EXT) */
dhd->pub.rxsz = DBUS_RX_BUFFER_SIZE_DHD(net);
memcpy(net->dev_addr, temp_addr, ETHER_ADDR_LEN);
if (ifidx == 0)
pr_info("%s\n", dhd_version);
if (need_rtnl_lock)
err = register_netdev(net);
else
err = register_netdevice(net);
if (err != 0) {
DHD_ERROR(("couldn't register the net device [%s], err %d\n", net->name, err));
goto fail;
}
pr_info("Register interface [%s] MAC: "MACDBG"\n\n", net->name,
#if defined(CUSTOMER_HW4_DEBUG)
MAC2STRDBG(dhd->pub.mac.octet));
#else
MAC2STRDBG(net->dev_addr));
#endif /* CUSTOMER_HW4_DEBUG */
#if defined(SOFTAP) && defined(WL_WIRELESS_EXT) && !defined(WL_CFG80211)
wl_iw_iscan_set_scan_broadcast_prep(net, 1);
#endif
#if (defined(BCMPCIE) || (defined(BCMLXSDMMC) && (LINUX_VERSION_CODE >= \
KERNEL_VERSION(2, 6, 27))))
if (ifidx == 0) {
#ifdef BCMLXSDMMC
up(&dhd_registration_sem);
#endif /* BCMLXSDMMC */
#ifndef ENABLE_INSMOD_NO_FW_LOAD
if (!dhd_download_fw_on_driverload) {
#ifdef WL_CFG80211
wl_terminate_event_handler(DHD_GET_CFG80211_PRIV(dhdp));
#endif /* WL_CFG80211 */
#if defined(DHD_LB) && defined(DHD_LB_RXP)
__skb_queue_purge(&dhd->rx_pend_queue);
#endif /* DHD_LB && DHD_LB_RXP */
#if defined(BCMPCIE) && defined(DHDTCPACK_SUPPRESS)
dhd_tcpack_suppress_set(dhdp, TCPACK_SUP_OFF);
#endif /* BCMPCIE && DHDTCPACK_SUPPRESS */
dhd_net_bus_devreset(net, TRUE);
#ifdef BCMLXSDMMC
dhd_net_bus_suspend(net);
#endif /* BCMLXSDMMC */
wifi_platform_set_power(dhdp->info->adapter, FALSE, WIFI_TURNOFF_DELAY);
}
#endif /* ENABLE_INSMOD_NO_FW_LOAD */
}
#endif /* OEM_ANDROID && (BCMPCIE || (BCMLXSDMMC && KERNEL_VERSION >= 2.6.27)) */
return 0;
fail:
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 31)
net->open = NULL;
#else
net->netdev_ops = NULL;
#endif
return err;
}
void
dhd_bus_detach(dhd_pub_t *dhdp)
{
dhd_info_t *dhd;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (dhdp) {
dhd = (dhd_info_t *)dhdp->info;
if (dhd) {
/*
* In case of Android cfg80211 driver, the bus is down in dhd_stop,
* calling stop again will cuase SD read/write errors.
*/
if (dhd->pub.busstate != DHD_BUS_DOWN) {
/* Stop the protocol module */
dhd_prot_stop(&dhd->pub);
/* Stop the bus module */
dhd_bus_stop(dhd->pub.bus, TRUE);
}
#if defined(OOB_INTR_ONLY) || defined(BCMPCIE_OOB_HOST_WAKE)
OOB_PARAM_IF(!(dhdp->oob_disable)) {
dhd_bus_oob_intr_unregister(dhdp);
}
#endif
}
}
}
void dhd_detach(dhd_pub_t *dhdp)
{
dhd_info_t *dhd;
unsigned long flags;
int timer_valid = FALSE;
struct net_device *dev;
if (!dhdp)
return;
dhd = (dhd_info_t *)dhdp->info;
if (!dhd)
return;
dev = dhd->iflist[0]->net;
if (dev) {
rtnl_lock();
if (dev->flags & IFF_UP) {
/* If IFF_UP is still up, it indicates that
* "ifconfig wlan0 down" hasn't been called.
* So invoke dev_close explicitly here to
* bring down the interface.
*/
DHD_TRACE(("IFF_UP flag is up. Enforcing dev_close from detach \n"));
dev_close(dev);
}
rtnl_unlock();
}
DHD_TRACE(("%s: Enter state 0x%x\n", __FUNCTION__, dhd->dhd_state));
dhd->pub.up = 0;
if (!(dhd->dhd_state & DHD_ATTACH_STATE_DONE)) {
/* Give sufficient time for threads to start running in case
* dhd_attach() has failed
*/
OSL_SLEEP(100);
}
#if defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW)
#endif /* defined(BCM_DNGL_EMBEDIMAGE) || defined(BCM_REQUEST_FW) */
#ifdef PROP_TXSTATUS
#ifdef DHD_WLFC_THREAD
if (dhd->pub.wlfc_thread) {
kthread_stop(dhd->pub.wlfc_thread);
dhdp->wlfc_thread_go = TRUE;
wake_up_interruptible(&dhdp->wlfc_wqhead);
}
dhd->pub.wlfc_thread = NULL;
#endif /* DHD_WLFC_THREAD */
#endif /* PROP_TXSTATUS */
if (dhd->dhd_state & DHD_ATTACH_STATE_PROT_ATTACH) {
dhd_bus_detach(dhdp);
#ifdef BCMPCIE
if (is_reboot == SYS_RESTART) {
extern bcmdhd_wifi_platdata_t *dhd_wifi_platdata;
if (dhd_wifi_platdata && !dhdp->dongle_reset) {
dhdpcie_bus_clock_stop(dhdp->bus);
wifi_platform_set_power(dhd_wifi_platdata->adapters,
FALSE, WIFI_TURNOFF_DELAY);
}
}
#endif /* BCMPCIE */
#ifndef PCIE_FULL_DONGLE
if (dhdp->prot)
dhd_prot_detach(dhdp);
#endif
}
#ifdef ARP_OFFLOAD_SUPPORT
if (dhd_inetaddr_notifier_registered) {
dhd_inetaddr_notifier_registered = FALSE;
unregister_inetaddr_notifier(&dhd_inetaddr_notifier);
}
#endif /* ARP_OFFLOAD_SUPPORT */
#if defined(CONFIG_IPV6) && defined(IPV6_NDO_SUPPORT)
if (dhd_inet6addr_notifier_registered) {
dhd_inet6addr_notifier_registered = FALSE;
unregister_inet6addr_notifier(&dhd_inet6addr_notifier);
}
#endif /* CONFIG_IPV6 && IPV6_NDO_SUPPORT */
#if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND)
if (dhd->dhd_state & DHD_ATTACH_STATE_EARLYSUSPEND_DONE) {
if (dhd->early_suspend.suspend)
unregister_early_suspend(&dhd->early_suspend);
}
#endif /* CONFIG_HAS_EARLYSUSPEND && DHD_USE_EARLYSUSPEND */
#if defined(WL_WIRELESS_EXT)
if (dhd->dhd_state & DHD_ATTACH_STATE_WL_ATTACH) {
/* Detatch and unlink in the iw */
wl_iw_detach();
}
#endif /* defined(WL_WIRELESS_EXT) */
/* delete all interfaces, start with virtual */
if (dhd->dhd_state & DHD_ATTACH_STATE_ADD_IF) {
int i = 1;
dhd_if_t *ifp;
/* Cleanup virtual interfaces */
dhd_net_if_lock_local(dhd);
for (i = 1; i < DHD_MAX_IFS; i++) {
if (dhd->iflist[i])
dhd_remove_if(&dhd->pub, i, TRUE);
}
/* delete primary interface 0 */
ifp = dhd->iflist[0];
ASSERT(ifp);
ASSERT(ifp->net);
if (ifp && ifp->net) {
/* in unregister_netdev case, the interface gets freed by net->destructor
* (which is set to free_netdev)
*/
if (ifp->net->reg_state == NETREG_UNINITIALIZED) {
free_netdev(ifp->net);
} else {
#ifdef SET_RPS_CPUS
custom_rps_map_clear(ifp->net->_rx);
#endif /* SET_RPS_CPUS */
netif_tx_disable(ifp->net);
unregister_netdev(ifp->net);
}
ifp->net = NULL;
#ifdef DHD_WMF
dhd_wmf_cleanup(dhdp, 0);
#endif /* DHD_WMF */
#ifdef DHD_L2_FILTER
bcm_l2_filter_arp_table_update(dhdp->osh, ifp->phnd_arp_table, TRUE,
NULL, FALSE, dhdp->tickcnt);
deinit_l2_filter_arp_table(dhdp->osh, ifp->phnd_arp_table);
ifp->phnd_arp_table = NULL;
#endif /* DHD_L2_FILTER */
dhd_if_del_sta_list(ifp);
MFREE(dhd->pub.osh, ifp, sizeof(*ifp));
dhd->iflist[0] = NULL;
}
dhd_net_if_unlock_local(dhd);
}
/* Clear the watchdog timer */
DHD_GENERAL_LOCK(&dhd->pub, flags);
timer_valid = dhd->wd_timer_valid;
dhd->wd_timer_valid = FALSE;
DHD_GENERAL_UNLOCK(&dhd->pub, flags);
if (timer_valid)
del_timer_sync(&dhd->timer);
DHD_DISABLE_RUNTIME_PM(&dhd->pub);
if (dhd->dhd_state & DHD_ATTACH_STATE_THREADS_CREATED) {
#ifdef DHD_PCIE_RUNTIMEPM
if (dhd->thr_rpm_ctl.thr_pid >= 0) {
PROC_STOP(&dhd->thr_rpm_ctl);
}
#endif /* DHD_PCIE_RUNTIMEPM */
if (dhd->thr_wdt_ctl.thr_pid >= 0) {
PROC_STOP(&dhd->thr_wdt_ctl);
}
if (dhd->rxthread_enabled && dhd->thr_rxf_ctl.thr_pid >= 0) {
PROC_STOP(&dhd->thr_rxf_ctl);
}
if (dhd->thr_dpc_ctl.thr_pid >= 0) {
PROC_STOP(&dhd->thr_dpc_ctl);
} else {
tasklet_kill(&dhd->tasklet);
#ifdef DHD_LB_RXP
__skb_queue_purge(&dhd->rx_pend_queue);
#endif /* DHD_LB_RXP */
}
}
#if defined(DHD_LB)
/* Kill the Load Balancing Tasklets */
#if defined(DHD_LB_TXC)
tasklet_disable(&dhd->tx_compl_tasklet);
tasklet_kill(&dhd->tx_compl_tasklet);
#endif /* DHD_LB_TXC */
#if defined(DHD_LB_RXC)
tasklet_disable(&dhd->rx_compl_tasklet);
tasklet_kill(&dhd->rx_compl_tasklet);
#endif /* DHD_LB_RXC */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0))
if (dhd->cpu_notifier.notifier_call != NULL)
unregister_cpu_notifier(&dhd->cpu_notifier);
#endif
dhd_cpumasks_deinit(dhd);
#endif /* DHD_LB */
#ifdef DHD_LOG_DUMP
dhd_log_dump_deinit(&dhd->pub);
#endif /* DHD_LOG_DUMP */
#ifdef WL_CFG80211
if (dhd->dhd_state & DHD_ATTACH_STATE_CFG80211) {
wl_cfg80211_detach(DHD_GET_CFG80211_PRIV(dhdp));
dhdp->cfg80211_priv = NULL;
dhd_monitor_uninit();
}
#endif
/* free deferred work queue */
dhd_deferred_work_deinit(dhd->dhd_deferred_wq);
dhd->dhd_deferred_wq = NULL;
#ifdef SHOW_LOGTRACE
if (dhd->event_data.fmts)
kfree(dhd->event_data.fmts);
if (dhd->event_data.raw_fmts)
kfree(dhd->event_data.raw_fmts);
if (dhd->event_data.raw_sstr)
kfree(dhd->event_data.raw_sstr);
#endif /* SHOW_LOGTRACE */
#ifdef PNO_SUPPORT
if (dhdp->pno_state)
dhd_pno_deinit(dhdp);
#endif
#if defined(CONFIG_PM_SLEEP)
if (dhd_pm_notifier_registered) {
unregister_pm_notifier(&dhd->pm_notifier);
dhd_pm_notifier_registered = FALSE;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef DEBUG_CPU_FREQ
if (dhd->new_freq)
free_percpu(dhd->new_freq);
dhd->new_freq = NULL;
cpufreq_unregister_notifier(&dhd->freq_trans, CPUFREQ_TRANSITION_NOTIFIER);
#endif
if (dhd->dhd_state & DHD_ATTACH_STATE_WAKELOCKS_INIT) {
DHD_TRACE(("wd wakelock count:%d\n", dhd->wakelock_wd_counter));
#ifdef CONFIG_PM_WAKELOCKS
dhd->wakelock_wd_counter = 0;
wakeup_source_trash(&dhd->wl_wdwake);
#endif /* CONFIG_PM_WAKELOCKS */
DHD_OS_WAKE_LOCK_DESTROY(dhd);
}
#ifdef DHDTCPACK_SUPPRESS
/* This will free all MEM allocated for TCPACK SUPPRESS */
dhd_tcpack_suppress_set(&dhd->pub, TCPACK_SUP_OFF);
#endif /* DHDTCPACK_SUPPRESS */
#ifdef PCIE_FULL_DONGLE
dhd_flow_rings_deinit(dhdp);
if (dhdp->prot)
dhd_prot_detach(dhdp);
#endif
dhd_sysfs_exit(dhd);
dhd->pub.is_fw_download_done = FALSE;
}
void
dhd_free(dhd_pub_t *dhdp)
{
dhd_info_t *dhd;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (dhdp) {
int i;
for (i = 0; i < ARRAYSIZE(dhdp->reorder_bufs); i++) {
if (dhdp->reorder_bufs[i]) {
reorder_info_t *ptr;
uint32 buf_size = sizeof(struct reorder_info);
ptr = dhdp->reorder_bufs[i];
buf_size += ((ptr->max_idx + 1) * sizeof(void*));
DHD_REORDER(("free flow id buf %d, maxidx is %d, buf_size %d\n",
i, ptr->max_idx, buf_size));
MFREE(dhdp->osh, dhdp->reorder_bufs[i], buf_size);
dhdp->reorder_bufs[i] = NULL;
}
}
dhd_sta_pool_fini(dhdp, DHD_MAX_STA);
dhd = (dhd_info_t *)dhdp->info;
if (dhdp->soc_ram) {
#if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP)
DHD_OS_PREFREE(dhdp, dhdp->soc_ram, dhdp->soc_ram_length);
#else
MFREE(dhdp->osh, dhdp->soc_ram, dhdp->soc_ram_length);
#endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */
dhdp->soc_ram = NULL;
}
#ifdef CACHE_FW_IMAGES
if (dhdp->cached_fw) {
MFREE(dhdp->osh, dhdp->cached_fw, dhdp->bus->ramsize);
dhdp->cached_fw = NULL;
}
if (dhdp->cached_nvram) {
MFREE(dhdp->osh, dhdp->cached_nvram, MAX_NVRAMBUF_SIZE);
dhdp->cached_nvram = NULL;
}
#endif
/* If pointer is allocated by dhd_os_prealloc then avoid MFREE */
if (dhd &&
dhd != (dhd_info_t *)dhd_os_prealloc(dhdp, DHD_PREALLOC_DHD_INFO, 0, FALSE))
MFREE(dhd->pub.osh, dhd, sizeof(*dhd));
dhd = NULL;
}
}
void
dhd_clear(dhd_pub_t *dhdp)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (dhdp) {
int i;
#ifdef DHDTCPACK_SUPPRESS
/* Clean up timer/data structure for any remaining/pending packet or timer. */
dhd_tcpack_info_tbl_clean(dhdp);
#endif /* DHDTCPACK_SUPPRESS */
for (i = 0; i < ARRAYSIZE(dhdp->reorder_bufs); i++) {
if (dhdp->reorder_bufs[i]) {
reorder_info_t *ptr;
uint32 buf_size = sizeof(struct reorder_info);
ptr = dhdp->reorder_bufs[i];
buf_size += ((ptr->max_idx + 1) * sizeof(void*));
DHD_REORDER(("free flow id buf %d, maxidx is %d, buf_size %d\n",
i, ptr->max_idx, buf_size));
MFREE(dhdp->osh, dhdp->reorder_bufs[i], buf_size);
dhdp->reorder_bufs[i] = NULL;
}
}
dhd_sta_pool_clear(dhdp, DHD_MAX_STA);
if (dhdp->soc_ram) {
#if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP)
DHD_OS_PREFREE(dhdp, dhdp->soc_ram, dhdp->soc_ram_length);
#else
MFREE(dhdp->osh, dhdp->soc_ram, dhdp->soc_ram_length);
#endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */
dhdp->soc_ram = NULL;
}
}
}
static void
dhd_module_cleanup(void)
{
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
dhd_bus_unregister();
wl_android_exit();
dhd_wifi_platform_unregister_drv();
}
static void __exit
dhd_module_exit(void)
{
dhd_buzzz_detach();
dhd_module_cleanup();
unregister_reboot_notifier(&dhd_reboot_notifier);
}
static int __init
dhd_module_init(void)
{
int err;
int retry = POWERUP_MAX_RETRY;
pr_info("%s in\n", __FUNCTION__);
dhd_buzzz_attach();
DHD_PERIM_RADIO_INIT();
if (firmware_path[0] != '\0') {
strncpy(fw_bak_path, firmware_path, MOD_PARAM_PATHLEN);
fw_bak_path[MOD_PARAM_PATHLEN-1] = '\0';
}
if (nvram_path[0] != '\0') {
strncpy(nv_bak_path, nvram_path, MOD_PARAM_PATHLEN);
nv_bak_path[MOD_PARAM_PATHLEN-1] = '\0';
}
do {
err = dhd_wifi_platform_register_drv();
if (!err) {
register_reboot_notifier(&dhd_reboot_notifier);
break;
}
else {
DHD_ERROR(("%s: Failed to load the driver, try cnt %d\n",
__FUNCTION__, retry));
strncpy(firmware_path, fw_bak_path, MOD_PARAM_PATHLEN);
firmware_path[MOD_PARAM_PATHLEN-1] = '\0';
strncpy(nvram_path, nv_bak_path, MOD_PARAM_PATHLEN);
nvram_path[MOD_PARAM_PATHLEN-1] = '\0';
}
} while (retry--);
if (err) {
DHD_ERROR(("%s: Failed to load driver max retry reached**\n", __FUNCTION__));
} else {
if (!dhd_download_fw_on_driverload) {
dhd_driver_init_done = TRUE;
}
}
pr_info("%s out\n", __FUNCTION__);
return err;
}
static int
dhd_reboot_callback(struct notifier_block *this, unsigned long code, void *unused)
{
DHD_TRACE(("%s: code = %ld\n", __FUNCTION__, code));
if (code == SYS_RESTART) {
#ifdef BCMPCIE
is_reboot = code;
#endif /* BCMPCIE */
}
return NOTIFY_DONE;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
#if defined(CONFIG_DEFERRED_INITCALLS)
#if defined(CONFIG_MACH_UNIVERSAL7420) || defined(CONFIG_SOC_EXYNOS8890) || \
defined(CONFIG_ARCH_MSM8996)
deferred_module_init_sync(dhd_module_init);
#else
deferred_module_init(dhd_module_init);
#endif /* CONFIG_MACH_UNIVERSAL7420 || CONFIG_SOC_EXYNOS8890 ||
* CONFIG_ARCH_MSM8996
*/
#elif defined(USE_LATE_INITCALL_SYNC)
late_initcall_sync(dhd_module_init);
#else
late_initcall(dhd_module_init);
#endif /* USE_LATE_INITCALL_SYNC */
#else
module_init(dhd_module_init);
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) */
module_exit(dhd_module_exit);
/*
* OS specific functions required to implement DHD driver in OS independent way
*/
int
dhd_os_proto_block(dhd_pub_t *pub)
{
dhd_info_t * dhd = (dhd_info_t *)(pub->info);
if (dhd) {
DHD_PERIM_UNLOCK(pub);
down(&dhd->proto_sem);
DHD_PERIM_LOCK(pub);
return 1;
}
return 0;
}
int
dhd_os_proto_unblock(dhd_pub_t *pub)
{
dhd_info_t * dhd = (dhd_info_t *)(pub->info);
if (dhd) {
up(&dhd->proto_sem);
return 1;
}
return 0;
}
void
dhd_os_dhdiovar_lock(dhd_pub_t *pub)
{
dhd_info_t * dhd = (dhd_info_t *)(pub->info);
if (dhd) {
mutex_lock(&dhd->dhd_iovar_mutex);
}
}
void
dhd_os_dhdiovar_unlock(dhd_pub_t *pub)
{
dhd_info_t * dhd = (dhd_info_t *)(pub->info);
if (dhd) {
mutex_unlock(&dhd->dhd_iovar_mutex);
}
}
unsigned int
dhd_os_get_ioctl_resp_timeout(void)
{
return ((unsigned int)dhd_ioctl_timeout_msec);
}
void
dhd_os_set_ioctl_resp_timeout(unsigned int timeout_msec)
{
dhd_ioctl_timeout_msec = (int)timeout_msec;
}
int
dhd_os_ioctl_resp_wait(dhd_pub_t *pub, uint *condition)
{
dhd_info_t * dhd = (dhd_info_t *)(pub->info);
int timeout;
/* Convert timeout in millsecond to jiffies */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27))
timeout = msecs_to_jiffies(dhd_ioctl_timeout_msec);
#else
timeout = dhd_ioctl_timeout_msec * HZ / 1000;
#endif
DHD_PERIM_UNLOCK(pub);
timeout = wait_event_timeout(dhd->ioctl_resp_wait, (*condition), timeout);
DHD_PERIM_LOCK(pub);
return timeout;
}
int
dhd_os_ioctl_resp_wake(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
wake_up(&dhd->ioctl_resp_wait);
return 0;
}
int
dhd_os_d3ack_wait(dhd_pub_t *pub, uint *condition)
{
dhd_info_t * dhd = (dhd_info_t *)(pub->info);
int timeout;
/* Convert timeout in millsecond to jiffies */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27))
timeout = msecs_to_jiffies(dhd_ioctl_timeout_msec);
#else
timeout = dhd_ioctl_timeout_msec * HZ / 1000;
#endif
DHD_PERIM_UNLOCK(pub);
timeout = wait_event_timeout(dhd->d3ack_wait, (*condition), timeout);
DHD_PERIM_LOCK(pub);
return timeout;
}
int
dhd_os_d3ack_wake(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
wake_up(&dhd->d3ack_wait);
return 0;
}
int
dhd_os_busbusy_wait_negation(dhd_pub_t *pub, uint *condition)
{
dhd_info_t * dhd = (dhd_info_t *)(pub->info);
int timeout;
/* Wait for bus usage contexts to gracefully exit within some timeout value
* Set time out to little higher than dhd_ioctl_timeout_msec,
* so that IOCTL timeout should not get affected.
*/
/* Convert timeout in millsecond to jiffies */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27))
timeout = msecs_to_jiffies(DHD_BUS_BUSY_TIMEOUT);
#else
timeout = DHD_BUS_BUSY_TIMEOUT * HZ / 1000;
#endif
timeout = wait_event_timeout(dhd->dhd_bus_busy_state_wait, !(*condition), timeout);
return timeout;
}
int INLINE
dhd_os_busbusy_wake(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
/* Call wmb() to make sure before waking up the other event value gets updated */
OSL_SMP_WMB();
wake_up(&dhd->dhd_bus_busy_state_wait);
return 0;
}
void
dhd_os_wd_timer_extend(void *bus, bool extend)
{
dhd_pub_t *pub = bus;
dhd_info_t *dhd = (dhd_info_t *)pub->info;
if (extend)
dhd_os_wd_timer(bus, WATCHDOG_EXTEND_INTERVAL);
else
dhd_os_wd_timer(bus, dhd->default_wd_interval);
}
void
dhd_os_wd_timer(void *bus, uint wdtick)
{
dhd_pub_t *pub = bus;
dhd_info_t *dhd = (dhd_info_t *)pub->info;
unsigned long flags;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (!dhd) {
DHD_ERROR(("%s: dhd NULL\n", __FUNCTION__));
return;
}
#if !defined(DHD_USE_IDLECOUNT) && defined(BCMPCIE)
DHD_OS_WD_WAKE_LOCK(pub);
#endif /* !DHD_USE_IDLECOUNT && BCMPCIE */
DHD_GENERAL_LOCK(pub, flags);
/* don't start the wd until fw is loaded */
if (pub->busstate == DHD_BUS_DOWN) {
DHD_GENERAL_UNLOCK(pub, flags);
#if !defined(DHD_USE_IDLECOUNT) && defined(BCMPCIE)
DHD_OS_WD_WAKE_UNLOCK(pub);
#endif /* !DHD_USE_IDLECOUNT && BCMPCIE */
return;
}
/* Totally stop the timer */
if (!wdtick && dhd->wd_timer_valid == TRUE) {
dhd->wd_timer_valid = FALSE;
DHD_GENERAL_UNLOCK(pub, flags);
del_timer_sync(&dhd->timer);
DHD_OS_WD_WAKE_UNLOCK(pub);
return;
}
if (wdtick) {
DHD_OS_WD_WAKE_LOCK(pub);
dhd_watchdog_ms = (uint)wdtick;
/* Re arm the timer, at last watchdog period */
mod_timer(&dhd->timer, jiffies + msecs_to_jiffies(dhd_watchdog_ms));
dhd->wd_timer_valid = TRUE;
}
DHD_GENERAL_UNLOCK(pub, flags);
#if !defined(DHD_USE_IDLECOUNT) && defined(BCMPCIE)
DHD_OS_WD_WAKE_UNLOCK(pub);
#endif /* !DHD_USE_IDLECOUNT && BCMPCIE */
}
#ifdef DHD_PCIE_RUNTIMEPM
void
dhd_os_runtimepm_timer(void *bus, uint tick)
{
dhd_pub_t *pub = bus;
dhd_info_t *dhd = (dhd_info_t *)pub->info;
unsigned long flags;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (!dhd) {
DHD_ERROR(("%s: dhd is NULL\n", __FUNCTION__));
return;
}
DHD_GENERAL_LOCK(pub, flags);
/* don't start the RPM until fw is loaded */
if (pub->busstate == DHD_BUS_DOWN ||
pub->busstate == DHD_BUS_DOWN_IN_PROGRESS) {
DHD_GENERAL_UNLOCK(pub, flags);
return;
}
/* If tick is non-zero, the request is to start the timer */
if (tick) {
/* Start the timer only if its not already running */
if (dhd->rpm_timer_valid == FALSE) {
mod_timer(&dhd->rpm_timer, jiffies + msecs_to_jiffies(dhd_runtimepm_ms));
dhd->rpm_timer_valid = TRUE;
}
} else {
/* tick is zero, we have to stop the timer */
/* Stop the timer only if its running, otherwise we don't have to do anything */
if (dhd->rpm_timer_valid == TRUE) {
dhd->rpm_timer_valid = FALSE;
DHD_GENERAL_UNLOCK(pub, flags);
del_timer_sync(&dhd->rpm_timer);
/* we have already released the lock, so just go to exit */
goto exit;
}
}
DHD_GENERAL_UNLOCK(pub, flags);
exit:
return;
}
#endif /* DHD_PCIE_RUNTIMEPM */
void *
dhd_os_open_image(char *filename)
{
struct file *fp;
int size;
fp = filp_open(filename, O_RDONLY, 0);
/*
* 2.6.11 (FC4) supports filp_open() but later revs don't?
* Alternative:
* fp = open_namei(AT_FDCWD, filename, O_RD, 0);
* ???
*/
if (IS_ERR(fp)) {
fp = NULL;
goto err;
}
if (!S_ISREG(file_inode(fp)->i_mode)) {
DHD_ERROR(("%s: %s is not regular file\n", __FUNCTION__, filename));
fp = NULL;
goto err;
}
size = i_size_read(file_inode(fp));
if (size <= 0) {
DHD_ERROR(("%s: %s file size invalid %d\n", __FUNCTION__, filename, size));
fp = NULL;
goto err;
}
DHD_INFO(("%s: %s (%d bytes) open success\n", __FUNCTION__, filename, size));
err:
return fp;
}
int
dhd_os_get_image_block(char *buf, int len, void *image)
{
struct file *fp = (struct file *)image;
int rdlen;
int size;
if (!image)
return 0;
size = i_size_read(file_inode(fp));
#if (LINUX_VERSION_CODE > KERNEL_VERSION(4, 13, 0))
rdlen = kernel_read(fp, buf, len, &fp->f_pos);
#else
rdlen = kernel_read(fp, fp->f_pos, buf, MIN(len, size));
if (rdlen > 0)
fp->f_pos += rdlen;
#endif
if (len >= size && size != rdlen) {
return -EIO;
}
return rdlen;
}
void
dhd_os_close_image(void *image)
{
if (image)
filp_close((struct file *)image, NULL);
}
int dhd_os_file_size(char *filename)
{
struct file *fp = NULL;
int size = 0;
fp = filp_open(filename, O_RDONLY, 0);
if (IS_ERR(fp)) {
DHD_ERROR(("%s: File %s doesn't exist\n", __FUNCTION__, filename));
return BCME_ERROR;
}
size = i_size_read(file_inode(fp));
if (size <= 0) {
DHD_ERROR(("%s: %s file size invalid %d\n", __FUNCTION__, filename, size));
}
if (fp)
filp_close(fp, NULL);
return size;
}
void
dhd_os_sdlock(dhd_pub_t *pub)
{
dhd_info_t *dhd;
dhd = (dhd_info_t *)(pub->info);
if (dhd_dpc_prio >= 0)
down(&dhd->sdsem);
else
spin_lock_bh(&dhd->sdlock);
}
void
dhd_os_sdunlock(dhd_pub_t *pub)
{
dhd_info_t *dhd;
dhd = (dhd_info_t *)(pub->info);
if (dhd_dpc_prio >= 0)
up(&dhd->sdsem);
else
spin_unlock_bh(&dhd->sdlock);
}
void
dhd_os_sdlock_txq(dhd_pub_t *pub)
{
dhd_info_t *dhd;
dhd = (dhd_info_t *)(pub->info);
spin_lock_bh(&dhd->txqlock);
}
void
dhd_os_sdunlock_txq(dhd_pub_t *pub)
{
dhd_info_t *dhd;
dhd = (dhd_info_t *)(pub->info);
spin_unlock_bh(&dhd->txqlock);
}
void
dhd_os_sdlock_rxq(dhd_pub_t *pub)
{
}
void
dhd_os_sdunlock_rxq(dhd_pub_t *pub)
{
}
static void
dhd_os_rxflock(dhd_pub_t *pub)
{
dhd_info_t *dhd;
dhd = (dhd_info_t *)(pub->info);
spin_lock_bh(&dhd->rxf_lock);
}
static void
dhd_os_rxfunlock(dhd_pub_t *pub)
{
dhd_info_t *dhd;
dhd = (dhd_info_t *)(pub->info);
spin_unlock_bh(&dhd->rxf_lock);
}
#ifdef DHDTCPACK_SUPPRESS
unsigned long
dhd_os_tcpacklock(dhd_pub_t *pub)
{
dhd_info_t *dhd;
unsigned long flags = 0;
dhd = (dhd_info_t *)(pub->info);
if (dhd) {
#ifdef BCMSDIO
spin_lock_bh(&dhd->tcpack_lock);
#else
spin_lock_irqsave(&dhd->tcpack_lock, flags);
#endif /* BCMSDIO */
}
return flags;
}
void
dhd_os_tcpackunlock(dhd_pub_t *pub, unsigned long flags)
{
dhd_info_t *dhd;
#ifdef BCMSDIO
BCM_REFERENCE(flags);
#endif /* BCMSDIO */
dhd = (dhd_info_t *)(pub->info);
if (dhd) {
#ifdef BCMSDIO
spin_unlock_bh(&dhd->tcpack_lock);
#else
spin_unlock_irqrestore(&dhd->tcpack_lock, flags);
#endif /* BCMSDIO */
}
}
#endif /* DHDTCPACK_SUPPRESS */
uint8* dhd_os_prealloc(dhd_pub_t *dhdpub, int section, uint size, bool kmalloc_if_fail)
{
uint8* buf;
gfp_t flags = CAN_SLEEP() ? GFP_KERNEL: GFP_ATOMIC;
buf = (uint8*)wifi_platform_prealloc(dhdpub->info->adapter, section, size);
if (buf == NULL && kmalloc_if_fail)
buf = kmalloc(size, flags);
return buf;
}
void dhd_os_prefree(dhd_pub_t *dhdpub, void *addr, uint size)
{
}
#if defined(WL_WIRELESS_EXT)
struct iw_statistics *
dhd_get_wireless_stats(struct net_device *dev)
{
int res = 0;
dhd_info_t *dhd = DHD_DEV_INFO(dev);
if (!dhd->pub.up) {
return NULL;
}
res = wl_iw_get_wireless_stats(dev, &dhd->iw.wstats);
if (res == 0)
return &dhd->iw.wstats;
else
return NULL;
}
#endif /* defined(WL_WIRELESS_EXT) */
static int
dhd_wl_host_event(dhd_info_t *dhd, int *ifidx, void *pktdata, size_t pktlen,
wl_event_msg_t *event, void **data)
{
int bcmerror = 0;
ASSERT(dhd != NULL);
#ifdef SHOW_LOGTRACE
bcmerror = wl_host_event(&dhd->pub, ifidx, pktdata, pktlen, event, data,
&dhd->event_data);
#else
bcmerror = wl_host_event(&dhd->pub, ifidx, pktdata, pktlen, event, data,
NULL);
#endif /* SHOW_LOGTRACE */
if (bcmerror != BCME_OK)
return (bcmerror);
#if defined(WL_WIRELESS_EXT)
if (event->bsscfgidx == 0) {
/*
* Wireless ext is on primary interface only
*/
ASSERT(dhd->iflist[*ifidx] != NULL);
ASSERT(dhd->iflist[*ifidx]->net != NULL);
if (dhd->iflist[*ifidx]->net) {
wl_iw_event(dhd->iflist[*ifidx]->net, event, *data);
}
}
#endif /* defined(WL_WIRELESS_EXT) */
#ifdef WL_CFG80211
ASSERT(dhd->iflist[*ifidx] != NULL);
ASSERT(dhd->iflist[*ifidx]->net != NULL);
if (dhd->iflist[*ifidx]->net)
wl_cfg80211_event(dhd->iflist[*ifidx]->net, event, *data);
#endif /* defined(WL_CFG80211) */
return (bcmerror);
}
/* send up locally generated event */
void
dhd_sendup_event(dhd_pub_t *dhdp, wl_event_msg_t *event, void *data)
{
switch (ntoh32(event->event_type)) {
default:
break;
}
}
#ifdef LOG_INTO_TCPDUMP
void
dhd_sendup_log(dhd_pub_t *dhdp, void *data, int data_len)
{
struct sk_buff *p, *skb;
uint32 pktlen;
int len;
dhd_if_t *ifp;
dhd_info_t *dhd;
uchar *skb_data;
int ifidx = 0;
struct ether_header eth;
pktlen = sizeof(eth) + data_len;
dhd = dhdp->info;
if ((p = PKTGET(dhdp->osh, pktlen, FALSE))) {
ASSERT(ISALIGNED((uintptr)PKTDATA(dhdp->osh, p), sizeof(uint32)));
bcopy(&dhdp->mac, &eth.ether_dhost, ETHER_ADDR_LEN);
bcopy(&dhdp->mac, &eth.ether_shost, ETHER_ADDR_LEN);
ETHER_TOGGLE_LOCALADDR(&eth.ether_shost);
eth.ether_type = hton16(ETHER_TYPE_BRCM);
bcopy((void *)&eth, PKTDATA(dhdp->osh, p), sizeof(eth));
bcopy(data, PKTDATA(dhdp->osh, p) + sizeof(eth), data_len);
skb = PKTTONATIVE(dhdp->osh, p);
skb_data = skb->data;
len = skb->len;
ifidx = dhd_ifname2idx(dhd, "wlan0");
ifp = dhd->iflist[ifidx];
if (ifp == NULL)
ifp = dhd->iflist[0];
ASSERT(ifp);
skb->dev = ifp->net;
skb->protocol = eth_type_trans(skb, skb->dev);
skb->data = skb_data;
skb->len = len;
/* Strip header, count, deliver upward */
skb_pull(skb, ETH_HLEN);
bcm_object_trace_opr(skb, BCM_OBJDBG_REMOVE,
__FUNCTION__, __LINE__);
/* Send the packet */
if (in_interrupt()) {
netif_rx(skb);
} else {
netif_rx_ni(skb);
}
}
else {
/* Could not allocate a sk_buf */
DHD_ERROR(("%s: unable to alloc sk_buf", __FUNCTION__));
}
}
#endif /* LOG_INTO_TCPDUMP */
void dhd_wait_for_event(dhd_pub_t *dhd, bool *lockvar)
{
#if defined(BCMSDIO) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0))
struct dhd_info *dhdinfo = dhd->info;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27))
int timeout = msecs_to_jiffies(IOCTL_RESP_TIMEOUT);
#else
int timeout = (IOCTL_RESP_TIMEOUT / 1000) * HZ;
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27)) */
dhd_os_sdunlock(dhd);
wait_event_timeout(dhdinfo->ctrl_wait, (*lockvar == FALSE), timeout);
dhd_os_sdlock(dhd);
#endif /* defined(BCMSDIO) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)) */
return;
}
void dhd_wait_event_wakeup(dhd_pub_t *dhd)
{
#if defined(BCMSDIO) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0))
struct dhd_info *dhdinfo = dhd->info;
if (waitqueue_active(&dhdinfo->ctrl_wait))
wake_up(&dhdinfo->ctrl_wait);
#endif
return;
}
#if defined(BCMSDIO) || defined(BCMPCIE)
int
dhd_net_bus_devreset(struct net_device *dev, uint8 flag)
{
int ret;
dhd_info_t *dhd = DHD_DEV_INFO(dev);
if (flag == TRUE) {
/* Issue wl down command before resetting the chip */
if (dhd_wl_ioctl_cmd(&dhd->pub, WLC_DOWN, NULL, 0, TRUE, 0) < 0) {
DHD_TRACE(("%s: wl down failed\n", __FUNCTION__));
}
#ifdef PROP_TXSTATUS
if (dhd->pub.wlfc_enabled)
dhd_wlfc_deinit(&dhd->pub);
#endif /* PROP_TXSTATUS */
#ifdef PNO_SUPPORT
if (dhd->pub.pno_state)
dhd_pno_deinit(&dhd->pub);
#endif
}
#ifdef BCMSDIO
if (!flag) {
dhd_update_fw_nv_path(dhd);
/* update firmware and nvram path to sdio bus */
dhd_bus_update_fw_nv_path(dhd->pub.bus,
dhd->fw_path, dhd->nv_path);
}
#endif /* BCMSDIO */
ret = dhd_bus_devreset(&dhd->pub, flag);
if (ret) {
DHD_ERROR(("%s: dhd_bus_devreset: %d\n", __FUNCTION__, ret));
return ret;
}
return ret;
}
#ifdef BCMSDIO
int
dhd_net_bus_suspend(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return dhd_bus_suspend(&dhd->pub);
}
int
dhd_net_bus_resume(struct net_device *dev, uint8 stage)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return dhd_bus_resume(&dhd->pub, stage);
}
#endif /* BCMSDIO */
#endif /* BCMSDIO || BCMPCIE */
int net_os_set_suspend_disable(struct net_device *dev, int val)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ret = 0;
if (dhd) {
ret = dhd->pub.suspend_disable_flag;
dhd->pub.suspend_disable_flag = val;
}
return ret;
}
int net_os_set_suspend(struct net_device *dev, int val, int force)
{
int ret = 0;
dhd_info_t *dhd = DHD_DEV_INFO(dev);
if (dhd) {
#ifdef CONFIG_MACH_UNIVERSAL7420
#endif /* CONFIG_MACH_UNIVERSAL7420 */
#if defined(CONFIG_HAS_EARLYSUSPEND) && defined(DHD_USE_EARLYSUSPEND)
ret = dhd_set_suspend(val, &dhd->pub);
#else
ret = dhd_suspend_resume_helper(dhd, val, force);
#endif
#ifdef WL_CFG80211
wl_cfg80211_update_power_mode(dev);
#endif
}
return ret;
}
int net_os_set_suspend_bcn_li_dtim(struct net_device *dev, int val)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
if (dhd)
dhd->pub.suspend_bcn_li_dtim = val;
return 0;
}
int net_os_set_max_dtim_enable(struct net_device *dev, int val)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
if (dhd) {
#ifdef ENABLE_MAX_DTIM_IN_SUSPEND
DHD_ERROR(("%s: use MAX bcn_li_dtim in suspend %s\n",
__FUNCTION__, (val ? "Enable" : "Disable")));
if (val) {
dhd->pub.max_dtim_enable = TRUE;
} else {
dhd->pub.max_dtim_enable = FALSE;
}
#else /* ENABLE_MAX_DTIM_IN_SUSPEND */
DHD_ERROR(("%s: max_dtim_enable always FALSE\n", __FUNCTION__));
dhd->pub.max_dtim_enable = FALSE;
#endif /* ENABLE_MAX_DTIM_IN_SUSPEND */
} else {
return -1;
}
return 0;
}
#ifdef PKT_FILTER_SUPPORT
int net_os_rxfilter_add_remove(struct net_device *dev, int add_remove, int num)
{
int ret = 0;
#ifndef GAN_LITE_NAT_KEEPALIVE_FILTER
dhd_info_t *dhd = DHD_DEV_INFO(dev);
DHD_ERROR(("%s: add_remove = %d, num = %d\n", __FUNCTION__, add_remove, num));
if (!dhd || (num == DHD_UNICAST_FILTER_NUM)) {
return 0;
}
if (num >= dhd->pub.pktfilter_count) {
return -EINVAL;
}
ret = dhd_packet_filter_add_remove(&dhd->pub, add_remove, num);
#endif /* !GAN_LITE_NAT_KEEPALIVE_FILTER */
return ret;
}
int dhd_os_enable_packet_filter(dhd_pub_t *dhdp, int val)
{
int ret = 0;
/* Packet filtering is set only if we still in early-suspend and
* we need either to turn it ON or turn it OFF
* We can always turn it OFF in case of early-suspend, but we turn it
* back ON only if suspend_disable_flag was not set
*/
if (dhdp && dhdp->up) {
if (dhdp->in_suspend) {
if (!val || (val && !dhdp->suspend_disable_flag))
dhd_enable_packet_filter(val, dhdp);
}
}
return ret;
}
/* function to enable/disable packet for Network device */
int net_os_enable_packet_filter(struct net_device *dev, int val)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
DHD_ERROR(("%s: val = %d\n", __FUNCTION__, val));
return dhd_os_enable_packet_filter(&dhd->pub, val);
}
#endif /* PKT_FILTER_SUPPORT */
int
dhd_dev_init_ioctl(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ret;
if ((ret = dhd_sync_with_dongle(&dhd->pub)) < 0)
goto done;
done:
return ret;
}
int
dhd_dev_get_feature_set(struct net_device *dev)
{
dhd_info_t *ptr = *(dhd_info_t **)netdev_priv(dev);
dhd_pub_t *dhd = (&ptr->pub);
int feature_set = 0;
#ifdef DYNAMIC_SWOOB_DURATION
#ifndef CUSTOM_INTR_WIDTH
#define CUSTOM_INTR_WIDTH 100
int intr_width = 0;
#endif /* CUSTOM_INTR_WIDTH */
#endif /* DYNAMIC_SWOOB_DURATION */
#if defined(CONFIG_WLAN_GRACE) || defined(CONFIG_SEC_GRACEQLTE_PROJECT)
DHD_ERROR(("%s: return feature_set = %d\n", __FUNCTION__, feature_set));
return feature_set;
#endif /* CONFIG_WLAN_GRACE || CONFIG_SEC_GRACEQLTE_PROJECT */
if (!dhd)
return feature_set;
if (FW_SUPPORTED(dhd, sta))
feature_set |= WIFI_FEATURE_INFRA;
if (FW_SUPPORTED(dhd, dualband))
feature_set |= WIFI_FEATURE_INFRA_5G;
if (FW_SUPPORTED(dhd, p2p))
feature_set |= WIFI_FEATURE_P2P;
if (dhd->op_mode & DHD_FLAG_HOSTAP_MODE)
feature_set |= WIFI_FEATURE_SOFT_AP;
if (FW_SUPPORTED(dhd, tdls))
feature_set |= WIFI_FEATURE_TDLS;
if (FW_SUPPORTED(dhd, vsdb))
feature_set |= WIFI_FEATURE_TDLS_OFFCHANNEL;
if (FW_SUPPORTED(dhd, nan)) {
feature_set |= WIFI_FEATURE_NAN;
/* NAN is essentail for d2d rtt */
if (FW_SUPPORTED(dhd, rttd2d))
feature_set |= WIFI_FEATURE_D2D_RTT;
}
#ifdef RTT_SUPPORT
feature_set |= WIFI_FEATURE_D2AP_RTT;
#endif /* RTT_SUPPORT */
#ifdef LINKSTAT_SUPPORT
feature_set |= WIFI_FEATURE_LINKSTAT;
#endif /* LINKSTAT_SUPPORT */
/* Supports STA + STA always */
feature_set |= WIFI_FEATURE_ADDITIONAL_STA;
#ifdef PNO_SUPPORT
if (dhd_is_pno_supported(dhd)) {
feature_set |= WIFI_FEATURE_PNO;
feature_set |= WIFI_FEATURE_BATCH_SCAN;
#ifdef GSCAN_SUPPORT
feature_set |= WIFI_FEATURE_GSCAN;
#endif /* GSCAN_SUPPORT */
}
#endif /* PNO_SUPPORT */
#ifdef WL11U
feature_set |= WIFI_FEATURE_HOTSPOT;
#endif /* WL11U */
return feature_set;
}
int *dhd_dev_get_feature_set_matrix(struct net_device *dev, int *num)
{
int feature_set_full, mem_needed;
int *ret;
*num = 0;
mem_needed = sizeof(int) * MAX_FEATURE_SET_CONCURRRENT_GROUPS;
ret = (int *) kmalloc(mem_needed, GFP_KERNEL);
if (!ret) {
DHD_ERROR(("%s: failed to allocate %d bytes\n", __FUNCTION__,
mem_needed));
return ret;
}
feature_set_full = dhd_dev_get_feature_set(dev);
ret[0] = (feature_set_full & WIFI_FEATURE_INFRA) |
(feature_set_full & WIFI_FEATURE_INFRA_5G) |
(feature_set_full & WIFI_FEATURE_NAN) |
(feature_set_full & WIFI_FEATURE_D2D_RTT) |
(feature_set_full & WIFI_FEATURE_D2AP_RTT) |
(feature_set_full & WIFI_FEATURE_PNO) |
(feature_set_full & WIFI_FEATURE_BATCH_SCAN) |
(feature_set_full & WIFI_FEATURE_GSCAN) |
(feature_set_full & WIFI_FEATURE_HOTSPOT) |
(feature_set_full & WIFI_FEATURE_ADDITIONAL_STA) |
(feature_set_full & WIFI_FEATURE_EPR);
ret[1] = (feature_set_full & WIFI_FEATURE_INFRA) |
(feature_set_full & WIFI_FEATURE_INFRA_5G) |
/* Not yet verified NAN with P2P */
/* (feature_set_full & WIFI_FEATURE_NAN) | */
(feature_set_full & WIFI_FEATURE_P2P) |
(feature_set_full & WIFI_FEATURE_D2AP_RTT) |
(feature_set_full & WIFI_FEATURE_D2D_RTT) |
(feature_set_full & WIFI_FEATURE_EPR);
ret[2] = (feature_set_full & WIFI_FEATURE_INFRA) |
(feature_set_full & WIFI_FEATURE_INFRA_5G) |
(feature_set_full & WIFI_FEATURE_NAN) |
(feature_set_full & WIFI_FEATURE_D2D_RTT) |
(feature_set_full & WIFI_FEATURE_D2AP_RTT) |
(feature_set_full & WIFI_FEATURE_TDLS) |
(feature_set_full & WIFI_FEATURE_TDLS_OFFCHANNEL) |
(feature_set_full & WIFI_FEATURE_EPR);
*num = MAX_FEATURE_SET_CONCURRRENT_GROUPS;
return ret;
}
#ifdef CUSTOM_FORCE_NODFS_FLAG
int
dhd_dev_set_nodfs(struct net_device *dev, u32 nodfs)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
if (nodfs)
dhd->pub.dhd_cflags |= WLAN_PLAT_NODFS_FLAG;
else
dhd->pub.dhd_cflags &= ~WLAN_PLAT_NODFS_FLAG;
dhd->pub.force_country_change = TRUE;
return 0;
}
#endif /* CUSTOM_FORCE_NODFS_FLAG */
#ifdef PNO_SUPPORT
/* Linux wrapper to call common dhd_pno_stop_for_ssid */
int
dhd_dev_pno_stop_for_ssid(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return (dhd_pno_stop_for_ssid(&dhd->pub));
}
/* Linux wrapper to call common dhd_pno_set_for_ssid */
int
dhd_dev_pno_set_for_ssid(struct net_device *dev, wlc_ssid_ext_t* ssids_local, int nssid,
uint16 scan_fr, int pno_repeat, int pno_freq_expo_max, uint16 *channel_list, int nchan)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return (dhd_pno_set_for_ssid(&dhd->pub, ssids_local, nssid, scan_fr,
pno_repeat, pno_freq_expo_max, channel_list, nchan));
}
/* Linux wrapper to call common dhd_pno_enable */
int
dhd_dev_pno_enable(struct net_device *dev, int enable)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return (dhd_pno_enable(&dhd->pub, enable));
}
/* Linux wrapper to call common dhd_pno_set_for_hotlist */
int
dhd_dev_pno_set_for_hotlist(struct net_device *dev, wl_pfn_bssid_t *p_pfn_bssid,
struct dhd_pno_hotlist_params *hotlist_params)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return (dhd_pno_set_for_hotlist(&dhd->pub, p_pfn_bssid, hotlist_params));
}
/* Linux wrapper to call common dhd_dev_pno_stop_for_batch */
int
dhd_dev_pno_stop_for_batch(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return (dhd_pno_stop_for_batch(&dhd->pub));
}
/* Linux wrapper to call common dhd_dev_pno_set_for_batch */
int
dhd_dev_pno_set_for_batch(struct net_device *dev, struct dhd_pno_batch_params *batch_params)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return (dhd_pno_set_for_batch(&dhd->pub, batch_params));
}
/* Linux wrapper to call common dhd_dev_pno_get_for_batch */
int
dhd_dev_pno_get_for_batch(struct net_device *dev, char *buf, int bufsize)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return (dhd_pno_get_for_batch(&dhd->pub, buf, bufsize, PNO_STATUS_NORMAL));
}
/* Linux wrapper to call common dhd_pno_set_mac_oui */
int
dhd_dev_pno_set_mac_oui(struct net_device *dev, uint8 *oui)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return (dhd_pno_set_mac_oui(&dhd->pub, oui));
}
#endif /* PNO_SUPPORT */
#if defined(PNO_SUPPORT)
#ifdef GSCAN_SUPPORT
/* Linux wrapper to call common dhd_pno_set_cfg_gscan */
int
dhd_dev_pno_set_cfg_gscan(struct net_device *dev, dhd_pno_gscan_cmd_cfg_t type,
void *buf, uint8 flush)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_pno_set_cfg_gscan(&dhd->pub, type, buf, flush));
}
/* Linux wrapper to call common dhd_pno_get_gscan */
void *
dhd_dev_pno_get_gscan(struct net_device *dev, dhd_pno_gscan_cmd_cfg_t type,
void *info, uint32 *len)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_pno_get_gscan(&dhd->pub, type, info, len));
}
/* Linux wrapper to call common dhd_wait_batch_results_complete */
void
dhd_dev_wait_batch_results_complete(struct net_device *dev)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_wait_batch_results_complete(&dhd->pub));
}
/* Linux wrapper to call common dhd_pno_lock_batch_results */
void
dhd_dev_pno_lock_access_batch_results(struct net_device *dev)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_pno_lock_batch_results(&dhd->pub));
}
/* Linux wrapper to call common dhd_pno_unlock_batch_results */
void
dhd_dev_pno_unlock_access_batch_results(struct net_device *dev)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_pno_unlock_batch_results(&dhd->pub));
}
/* Linux wrapper to call common dhd_pno_initiate_gscan_request */
int
dhd_dev_pno_run_gscan(struct net_device *dev, bool run, bool flush)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_pno_initiate_gscan_request(&dhd->pub, run, flush));
}
/* Linux wrapper to call common dhd_pno_enable_full_scan_result */
int
dhd_dev_pno_enable_full_scan_result(struct net_device *dev, bool real_time_flag)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_pno_enable_full_scan_result(&dhd->pub, real_time_flag));
}
/* Linux wrapper to call common dhd_handle_swc_evt */
void *
dhd_dev_swc_scan_event(struct net_device *dev, const void *data, int *send_evt_bytes)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_handle_swc_evt(&dhd->pub, data, send_evt_bytes));
}
/* Linux wrapper to call common dhd_handle_hotlist_scan_evt */
void *
dhd_dev_hotlist_scan_event(struct net_device *dev,
const void *data, int *send_evt_bytes, hotlist_type_t type)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_handle_hotlist_scan_evt(&dhd->pub, data, send_evt_bytes, type));
}
/* Linux wrapper to call common dhd_process_full_gscan_result */
void *
dhd_dev_process_full_gscan_result(struct net_device *dev,
const void *data, int *send_evt_bytes)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_process_full_gscan_result(&dhd->pub, data, send_evt_bytes));
}
void
dhd_dev_gscan_hotlist_cache_cleanup(struct net_device *dev, hotlist_type_t type)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
dhd_gscan_hotlist_cache_cleanup(&dhd->pub, type);
return;
}
int
dhd_dev_gscan_batch_cache_cleanup(struct net_device *dev)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_gscan_batch_cache_cleanup(&dhd->pub));
}
/* Linux wrapper to call common dhd_retreive_batch_scan_results */
int
dhd_dev_retrieve_batch_scan(struct net_device *dev)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_retreive_batch_scan_results(&dhd->pub));
}
#endif /* GSCAN_SUPPORT */
#endif
#ifdef RTT_SUPPORT
/* Linux wrapper to call common dhd_pno_set_cfg_gscan */
int
dhd_dev_rtt_set_cfg(struct net_device *dev, void *buf)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_rtt_set_cfg(&dhd->pub, buf));
}
int
dhd_dev_rtt_cancel_cfg(struct net_device *dev, struct ether_addr *mac_list, int mac_cnt)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_rtt_stop(&dhd->pub, mac_list, mac_cnt));
}
int
dhd_dev_rtt_register_noti_callback(struct net_device *dev, void *ctx, dhd_rtt_compl_noti_fn noti_fn)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_rtt_register_noti_callback(&dhd->pub, ctx, noti_fn));
}
int
dhd_dev_rtt_unregister_noti_callback(struct net_device *dev, dhd_rtt_compl_noti_fn noti_fn)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_rtt_unregister_noti_callback(&dhd->pub, noti_fn));
}
int
dhd_dev_rtt_capability(struct net_device *dev, rtt_capabilities_t *capa)
{
dhd_info_t *dhd = *(dhd_info_t **)netdev_priv(dev);
return (dhd_rtt_capability(&dhd->pub, capa));
}
#endif /* RTT_SUPPORT */
#if defined(KEEP_ALIVE)
#define TEMP_BUF_SIZE 512
#define TEMP_FRAME_SIZE 300
int
dhd_dev_start_mkeep_alive(dhd_pub_t *dhd_pub, u8 mkeep_alive_id, u8 *ip_pkt, u16 ip_pkt_len,
u8* src_mac, u8* dst_mac, u32 period_msec)
{
char *pbuf;
const char *str;
wl_mkeep_alive_pkt_t mkeep_alive_pkt = {0};
wl_mkeep_alive_pkt_t *mkeep_alive_pktp;
int buf_len;
int str_len;
int res = BCME_ERROR;
int len_bytes = 0;
int i;
/* ether frame to have both max IP pkt (256 bytes) and ether header */
char *pmac_frame;
/*
* The mkeep_alive packet is for STA interface only; if the bss is configured as AP,
* dongle shall reject a mkeep_alive request.
*/
if (!dhd_support_sta_mode(dhd_pub))
return res;
DHD_TRACE(("%s execution\n", __FUNCTION__));
if ((pbuf = kzalloc(TEMP_BUF_SIZE, GFP_KERNEL)) == NULL) {
DHD_ERROR(("failed to allocate buf with size %d\n", TEMP_BUF_SIZE));
res = BCME_NOMEM;
return res;
}
if ((pmac_frame = kzalloc(TEMP_FRAME_SIZE, GFP_KERNEL)) == NULL) {
DHD_ERROR(("failed to allocate mac_frame with size %d\n", TEMP_FRAME_SIZE));
res = BCME_NOMEM;
goto exit;
}
/*
* Get current mkeep-alive status.
*/
bcm_mkiovar("mkeep_alive", &mkeep_alive_id, sizeof(mkeep_alive_id),
pbuf, TEMP_BUF_SIZE);
if ((res = dhd_wl_ioctl_cmd(dhd_pub, WLC_GET_VAR, pbuf, TEMP_BUF_SIZE,
FALSE, 0)) < 0) {
DHD_ERROR(("%s: Get mkeep_alive failed (error=%d)\n", __FUNCTION__, res));
goto exit;
} else {
/* Check available ID whether it is occupied */
mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) pbuf;
if (dtoh32(mkeep_alive_pktp->period_msec != 0)) {
DHD_ERROR(("%s: Get mkeep_alive failed, ID %u is in use.\n",
__FUNCTION__, mkeep_alive_id));
/* Current occupied ID info */
DHD_ERROR(("%s: mkeep_alive\n", __FUNCTION__));
DHD_ERROR((" Id : %d\n"
" Period: %d msec\n"
" Length: %d\n"
" Packet: 0x",
mkeep_alive_pktp->keep_alive_id,
dtoh32(mkeep_alive_pktp->period_msec),
dtoh16(mkeep_alive_pktp->len_bytes)));
for (i = 0; i < mkeep_alive_pktp->len_bytes; i++) {
DHD_ERROR(("%02x", mkeep_alive_pktp->data[i]));
}
DHD_ERROR(("\n"));
res = BCME_NOTFOUND;
goto exit;
}
}
/* Request the specified ID */
memset(&mkeep_alive_pkt, 0, sizeof(wl_mkeep_alive_pkt_t));
memset(pbuf, 0, TEMP_BUF_SIZE);
str = "mkeep_alive";
str_len = strlen(str);
strcpy(pbuf, str);
mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) (pbuf + str_len + 1);
mkeep_alive_pkt.period_msec = htod32(period_msec);
buf_len = str_len + 1;
mkeep_alive_pkt.version = htod16(WL_MKEEP_ALIVE_VERSION);
mkeep_alive_pkt.length = htod16(WL_MKEEP_ALIVE_FIXED_LEN);
/* ID assigned */
mkeep_alive_pkt.keep_alive_id = mkeep_alive_id;
buf_len += WL_MKEEP_ALIVE_FIXED_LEN;
/*
* Build up Ethernet Frame
*/
/* Mapping dest mac addr */
memcpy(pmac_frame, dst_mac, ETHER_ADDR_LEN);
pmac_frame += ETHER_ADDR_LEN;
/* Mapping src mac addr */
memcpy(pmac_frame, src_mac, ETHER_ADDR_LEN);
pmac_frame += ETHER_ADDR_LEN;
/* Mapping Ethernet type (ETHERTYPE_IP: 0x0800) */
*(pmac_frame++) = 0x08;
*(pmac_frame++) = 0x00;
/* Mapping IP pkt */
memcpy(pmac_frame, ip_pkt, ip_pkt_len);
pmac_frame += ip_pkt_len;
/*
* Length of ether frame (assume to be all hexa bytes)
* = src mac + dst mac + ether type + ip pkt len
*/
len_bytes = ETHER_ADDR_LEN*2 + ETHER_TYPE_LEN + ip_pkt_len;
/* Get back to the beginning. */
pmac_frame -= len_bytes;
memcpy(mkeep_alive_pktp->data, pmac_frame, len_bytes);
buf_len += len_bytes;
mkeep_alive_pkt.len_bytes = htod16(len_bytes);
/*
* Keep-alive attributes are set in local variable (mkeep_alive_pkt), and
* then memcpy'ed into buffer (mkeep_alive_pktp) since there is no
* guarantee that the buffer is properly aligned.
*/
memcpy((char *)mkeep_alive_pktp, &mkeep_alive_pkt, WL_MKEEP_ALIVE_FIXED_LEN);
res = dhd_wl_ioctl_cmd(dhd_pub, WLC_SET_VAR, pbuf, buf_len, TRUE, 0);
exit:
kfree(pmac_frame);
kfree(pbuf);
return res;
}
int
dhd_dev_stop_mkeep_alive(dhd_pub_t *dhd_pub, u8 mkeep_alive_id)
{
char *pbuf;
const char *str;
wl_mkeep_alive_pkt_t mkeep_alive_pkt;
wl_mkeep_alive_pkt_t *mkeep_alive_pktp;
int buf_len;
int str_len;
int res = BCME_ERROR;
int i;
/*
* The mkeep_alive packet is for STA interface only; if the bss is configured as AP,
* dongle shall reject a mkeep_alive request.
*/
if (!dhd_support_sta_mode(dhd_pub)) {
DHD_ERROR(("sta mode not supported \n"));
return res;
}
DHD_TRACE(("%s execution\n", __FUNCTION__));
/*
* Get current mkeep-alive status. Skip ID 0 which is being used for NULL pkt.
*/
if ((pbuf = kzalloc(TEMP_BUF_SIZE, GFP_KERNEL)) == NULL) {
DHD_ERROR(("failed to allocate buf with size %d\n", TEMP_BUF_SIZE));
return res;
}
bcm_mkiovar("mkeep_alive", &mkeep_alive_id, sizeof(mkeep_alive_id), pbuf, TEMP_BUF_SIZE);
if ((res = dhd_wl_ioctl_cmd(dhd_pub, WLC_GET_VAR, pbuf, TEMP_BUF_SIZE, FALSE, 0)) < 0) {
DHD_ERROR(("%s: Get mkeep_alive failed (error=%d)\n", __FUNCTION__, res));
goto exit;
} else {
/* Check occupied ID */
mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) pbuf;
DHD_INFO(("%s: mkeep_alive\n", __FUNCTION__));
DHD_INFO((" Id : %d\n"
" Period: %d msec\n"
" Length: %d\n"
" Packet: 0x",
mkeep_alive_pktp->keep_alive_id,
dtoh32(mkeep_alive_pktp->period_msec),
dtoh16(mkeep_alive_pktp->len_bytes)));
for (i = 0; i < mkeep_alive_pktp->len_bytes; i++) {
DHD_INFO(("%02x", mkeep_alive_pktp->data[i]));
}
DHD_INFO(("\n"));
}
/* Make it stop if available */
if (dtoh32(mkeep_alive_pktp->period_msec != 0)) {
DHD_INFO(("stop mkeep_alive on ID %d\n", mkeep_alive_id));
memset(&mkeep_alive_pkt, 0, sizeof(wl_mkeep_alive_pkt_t));
memset(pbuf, 0, TEMP_BUF_SIZE);
str = "mkeep_alive";
str_len = strlen(str);
strcpy(pbuf, str);
mkeep_alive_pktp = (wl_mkeep_alive_pkt_t *) (pbuf + str_len + 1);
mkeep_alive_pkt.period_msec = 0;
buf_len = str_len + 1;
mkeep_alive_pkt.version = htod16(WL_MKEEP_ALIVE_VERSION);
mkeep_alive_pkt.length = htod16(WL_MKEEP_ALIVE_FIXED_LEN);
mkeep_alive_pkt.keep_alive_id = mkeep_alive_id;
buf_len += WL_MKEEP_ALIVE_FIXED_LEN;
/*
* Keep-alive attributes are set in local variable (mkeep_alive_pkt), and
* then memcpy'ed into buffer (mkeep_alive_pktp) since there is no
* guarantee that the buffer is properly aligned.
*/
memcpy((char *)mkeep_alive_pktp, &mkeep_alive_pkt, WL_MKEEP_ALIVE_FIXED_LEN);
res = dhd_wl_ioctl_cmd(dhd_pub, WLC_SET_VAR, pbuf, buf_len, TRUE, 0);
} else {
DHD_ERROR(("%s: ID %u does not exist.\n", __FUNCTION__, mkeep_alive_id));
res = BCME_NOTFOUND;
}
exit:
kfree(pbuf);
return res;
}
#endif /* defined(KEEP_ALIVE) */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27))
static void dhd_hang_process(void *dhd_info, void *event_info, u8 event)
{
dhd_info_t *dhd;
struct net_device *dev;
dhd = (dhd_info_t *)dhd_info;
dev = dhd->iflist[0]->net;
if (dev) {
#if defined(WL_WIRELESS_EXT)
wl_iw_send_priv_event(dev, "HANG");
#endif
#if defined(WL_CFG80211)
wl_cfg80211_hang(dev, WLAN_REASON_UNSPECIFIED);
#endif
}
}
#ifdef EXYNOS_PCIE_LINKDOWN_RECOVERY
extern dhd_pub_t *link_recovery;
void dhd_host_recover_link(void)
{
DHD_ERROR(("****** %s ******\n", __FUNCTION__));
link_recovery->hang_reason = HANG_REASON_PCIE_LINK_DOWN;
dhd_bus_set_linkdown(link_recovery, TRUE);
dhd_os_send_hang_message(link_recovery);
}
EXPORT_SYMBOL(dhd_host_recover_link);
#endif /* EXYNOS_PCIE_LINKDOWN_RECOVERY */
int dhd_os_send_hang_message(dhd_pub_t *dhdp)
{
int ret = 0;
if (dhdp) {
if (!dhdp->hang_was_sent) {
#ifdef DHD_DEBUG_UART
/* If PCIe lane has broken, execute the debug uart application
* to gether a ramdump data from dongle via uart
*/
#ifdef DHD_FW_COREDUMP
if (dhdp->memdump_enabled == DUMP_MEMFILE_BUGON)
#endif
{
if (dhdp->hang_reason == HANG_REASON_PCIE_LINK_DOWN ||
#ifdef DHD_FW_COREDUMP
dhdp->memdump_success == FALSE ||
#endif
FALSE) {
dhd_debug_uart_exec("rd");
#ifdef DHD_LOG_DUMP
if (dhdp->memdump_type != DUMP_TYPE_BY_SYSDUMP)
#endif
{
BUG_ON(1);
}
}
}
#endif /* DHD_DEBUG_UART */
dhdp->hang_was_sent = 1;
dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq, (void *)dhdp,
DHD_WQ_WORK_HANG_MSG, dhd_hang_process, DHD_WORK_PRIORITY_HIGH);
}
}
return ret;
}
int net_os_send_hang_message(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ret = 0;
if (dhd) {
/* Report FW problem when enabled */
if (dhd->pub.hang_report) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27))
ret = dhd_os_send_hang_message(&dhd->pub);
#else
ret = wl_cfg80211_hang(dev, WLAN_REASON_UNSPECIFIED);
#endif
} else {
DHD_ERROR(("%s: FW HANG ignored (for testing purpose) and not sent up\n",
__FUNCTION__));
}
}
return ret;
}
int net_os_send_hang_message_reason(struct net_device *dev, const char *string_num)
{
dhd_info_t *dhd = NULL;
dhd_pub_t *dhdp = NULL;
int reason;
dhd = DHD_DEV_INFO(dev);
if (dhd) {
dhdp = &dhd->pub;
}
if (!dhd || !dhdp) {
return 0;
}
reason = bcm_strtoul(string_num, NULL, 0);
DHD_INFO(("%s: Enter, reason=0x%x\n", __FUNCTION__, reason));
if ((reason <= HANG_REASON_MASK) || (reason >= HANG_REASON_MAX)) {
reason = 0;
}
dhdp->hang_reason = reason;
return net_os_send_hang_message(dev);
}
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 27) && OEM_ANDROID */
int dhd_net_wifi_platform_set_power(struct net_device *dev, bool on, unsigned long delay_msec)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
return wifi_platform_set_power(dhd->adapter, on, delay_msec);
}
bool dhd_force_country_change(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
if (dhd && dhd->pub.up)
return dhd->pub.force_country_change;
return FALSE;
}
void dhd_get_customized_country_code(struct net_device *dev, char *country_iso_code,
wl_country_t *cspec)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
#ifdef CUSTOM_COUNTRY_CODE
get_customized_country_code(dhd->adapter, country_iso_code, cspec,
dhd->pub.dhd_cflags);
#else
get_customized_country_code(dhd->adapter, country_iso_code, cspec);
#endif /* CUSTOM_COUNTRY_CODE */
}
void dhd_bus_country_set(struct net_device *dev, wl_country_t *cspec, bool notify)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
if (dhd && dhd->pub.up) {
memcpy(&dhd->pub.dhd_cspec, cspec, sizeof(wl_country_t));
#ifdef WL_CFG80211
wl_update_wiphybands(DHD_GET_CFG80211_PRIV(&dhd->pub), notify, true);
#endif
}
}
void dhd_bus_band_set(struct net_device *dev, uint band)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
if (dhd && dhd->pub.up) {
#ifdef WL_CFG80211
wl_update_wiphybands(DHD_GET_CFG80211_PRIV(&dhd->pub), true, true);
#endif
}
}
int dhd_net_set_fw_path(struct net_device *dev, char *fw)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
if (!fw || fw[0] == '\0')
return -EINVAL;
strncpy(dhd->fw_path, fw, sizeof(dhd->fw_path) - 1);
dhd->fw_path[sizeof(dhd->fw_path)-1] = '\0';
#if defined(SOFTAP)
if (strstr(fw, "apsta") != NULL) {
DHD_INFO(("GOT APSTA FIRMWARE\n"));
ap_fw_loaded = TRUE;
} else {
DHD_INFO(("GOT STA FIRMWARE\n"));
ap_fw_loaded = FALSE;
}
#endif
return 0;
}
void dhd_net_if_lock(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
dhd_net_if_lock_local(dhd);
}
void dhd_net_if_unlock(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
dhd_net_if_unlock_local(dhd);
}
static void dhd_net_if_lock_local(dhd_info_t *dhd)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
if (dhd)
mutex_lock(&dhd->dhd_net_if_mutex);
#endif
}
static void dhd_net_if_unlock_local(dhd_info_t *dhd)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
if (dhd)
mutex_unlock(&dhd->dhd_net_if_mutex);
#endif
}
static void dhd_suspend_lock(dhd_pub_t *pub)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd)
mutex_lock(&dhd->dhd_suspend_mutex);
#endif
}
static void dhd_suspend_unlock(dhd_pub_t *pub)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25))
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd)
mutex_unlock(&dhd->dhd_suspend_mutex);
#endif
}
unsigned long dhd_os_general_spin_lock(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags = 0;
if (dhd)
spin_lock_irqsave(&dhd->dhd_lock, flags);
return flags;
}
void dhd_os_general_spin_unlock(dhd_pub_t *pub, unsigned long flags)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd)
spin_unlock_irqrestore(&dhd->dhd_lock, flags);
}
/* Linux specific multipurpose spinlock API */
void *
dhd_os_spin_lock_init(osl_t *osh)
{
/* Adding 4 bytes since the sizeof(spinlock_t) could be 0 */
/* if CONFIG_SMP and CONFIG_DEBUG_SPINLOCK are not defined */
/* and this results in kernel asserts in internal builds */
spinlock_t * lock = MALLOC(osh, sizeof(spinlock_t) + 4);
if (lock)
spin_lock_init(lock);
return ((void *)lock);
}
void
dhd_os_spin_lock_deinit(osl_t *osh, void *lock)
{
if (lock)
MFREE(osh, lock, sizeof(spinlock_t) + 4);
}
unsigned long
dhd_os_spin_lock(void *lock)
{
unsigned long flags = 0;
if (lock)
spin_lock_irqsave((spinlock_t *)lock, flags);
return flags;
}
void
dhd_os_spin_unlock(void *lock, unsigned long flags)
{
if (lock)
spin_unlock_irqrestore((spinlock_t *)lock, flags);
}
static int
dhd_get_pend_8021x_cnt(dhd_info_t *dhd)
{
return (atomic_read(&dhd->pend_8021x_cnt));
}
#define MAX_WAIT_FOR_8021X_TX 100
int
dhd_wait_pend8021x(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int timeout = msecs_to_jiffies(10);
int ntimes = MAX_WAIT_FOR_8021X_TX;
int pend = dhd_get_pend_8021x_cnt(dhd);
while (ntimes && pend) {
if (pend) {
set_current_state(TASK_INTERRUPTIBLE);
DHD_PERIM_UNLOCK(&dhd->pub);
schedule_timeout(timeout);
DHD_PERIM_LOCK(&dhd->pub);
set_current_state(TASK_RUNNING);
ntimes--;
}
pend = dhd_get_pend_8021x_cnt(dhd);
}
if (ntimes == 0)
{
atomic_set(&dhd->pend_8021x_cnt, 0);
DHD_ERROR(("%s: TIMEOUT\n", __FUNCTION__));
}
return pend;
}
#ifdef DHD_DEBUG
static void
dhd_convert_memdump_type_to_str(uint32 type, char *buf)
{
char *type_str = NULL;
switch (type) {
case DUMP_TYPE_RESUMED_ON_TIMEOUT:
type_str = "resumed_on_timeout";
break;
case DUMP_TYPE_D3_ACK_TIMEOUT:
type_str = "D3_ACK_timeout";
break;
case DUMP_TYPE_DONGLE_TRAP:
type_str = "Dongle_Trap";
break;
case DUMP_TYPE_MEMORY_CORRUPTION:
type_str = "Memory_Corruption";
break;
case DUMP_TYPE_PKTID_AUDIT_FAILURE:
type_str = "PKTID_AUDIT_Fail";
break;
case DUMP_TYPE_SCAN_TIMEOUT:
type_str = "SCAN_timeout";
break;
case DUMP_TYPE_SCAN_BUSY:
type_str = "SCAN_Busy";
break;
case DUMP_TYPE_BY_SYSDUMP:
type_str = "BY_SYSDUMP";
break;
case DUMP_TYPE_BY_LIVELOCK:
type_str = "BY_LIVELOCK";
break;
case DUMP_TYPE_AP_LINKUP_FAILURE:
type_str = "BY_AP_LINK_FAILURE";
break;
case DUMP_TYPE_AP_ABNORMAL_ACCESS:
type_str = "INVALID_ACCESS";
break;
default:
type_str = "Unknown_type";
break;
}
strncpy(buf, type_str, strlen(type_str));
buf[strlen(type_str)] = 0;
}
int
write_to_file(dhd_pub_t *dhd, uint8 *buf, int size)
{
int ret = 0;
struct file *fp = NULL;
mm_segment_t old_fs;
loff_t pos = 0;
char memdump_path[128];
char memdump_type[32];
struct timeval curtime;
uint32 file_mode;
/* change to KERNEL_DS address limit */
old_fs = get_fs();
set_fs(KERNEL_DS);
/* Init file name */
memset(memdump_path, 0, sizeof(memdump_path));
memset(memdump_type, 0, sizeof(memdump_type));
do_gettimeofday(&curtime);
dhd_convert_memdump_type_to_str(dhd->memdump_type, memdump_type);
#ifdef CUSTOMER_HW4_DEBUG
snprintf(memdump_path, sizeof(memdump_path), "%s_%s_%ld.%ld",
DHD_COMMON_DUMP_PATH "mem_dump", memdump_type,
(unsigned long)curtime.tv_sec, (unsigned long)curtime.tv_usec);
file_mode = O_CREAT | O_WRONLY | O_SYNC;
#elif defined(CUSTOMER_HW2)
snprintf(memdump_path, sizeof(memdump_path), "%s_%s_%ld.%ld",
"/data/misc/wifi/mem_dump", memdump_type,
(unsigned long)curtime.tv_sec, (unsigned long)curtime.tv_usec);
file_mode = O_CREAT | O_WRONLY | O_SYNC;
#else
snprintf(memdump_path, sizeof(memdump_path), "%s_%s_%ld.%ld",
"/installmedia/mem_dump", memdump_type,
(unsigned long)curtime.tv_sec, (unsigned long)curtime.tv_usec);
/* Extra flags O_DIRECT and O_SYNC are required for Brix Android, as we are
* calling BUG_ON immediately after collecting the socram dump.
* So the file write operation should directly write the contents into the
* file instead of caching it. O_TRUNC flag ensures that file will be re-written
* instead of appending.
*/
file_mode = O_CREAT | O_WRONLY | O_DIRECT | O_SYNC | O_TRUNC;
#endif /* CUSTOMER_HW4_DEBUG */
/* print SOCRAM dump file path */
DHD_ERROR(("%s: memdump_path = %s\n", __FUNCTION__, memdump_path));
/* open file to write */
fp = filp_open(memdump_path, file_mode, 0644);
if (IS_ERR(fp)) {
ret = PTR_ERR(fp);
printf("%s: open file error, err = %d\n", __FUNCTION__, ret);
goto exit;
}
/* Write buf to file */
fp->f_op->write(fp, buf, size, &pos);
exit:
/* close file before return */
if (!ret)
filp_close(fp, current->files);
/* restore previous address limit */
set_fs(old_fs);
/* free buf before return */
#if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP)
DHD_OS_PREFREE(dhd, buf, size);
#else
MFREE(dhd->osh, buf, size);
#endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */
return ret;
}
#endif /* DHD_DEBUG */
int dhd_os_wake_lock_timeout(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags;
int ret = 0;
if (dhd) {
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
ret = dhd->wakelock_rx_timeout_enable > dhd->wakelock_ctrl_timeout_enable ?
dhd->wakelock_rx_timeout_enable : dhd->wakelock_ctrl_timeout_enable;
#ifdef CONFIG_PM_WAKELOCKS
if (dhd->wakelock_rx_timeout_enable)
__pm_wakeup_event(&dhd->wl_rxwake,
dhd->wakelock_rx_timeout_enable);
if (dhd->wakelock_ctrl_timeout_enable)
__pm_wakeup_event(&dhd->wl_ctrlwake,
dhd->wakelock_ctrl_timeout_enable);
#endif
dhd->wakelock_rx_timeout_enable = 0;
dhd->wakelock_ctrl_timeout_enable = 0;
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
return ret;
}
int net_os_wake_lock_timeout(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ret = 0;
if (dhd)
ret = dhd_os_wake_lock_timeout(&dhd->pub);
return ret;
}
int dhd_os_wake_lock_rx_timeout_enable(dhd_pub_t *pub, int val)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags;
if (dhd) {
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
if (val > dhd->wakelock_rx_timeout_enable)
dhd->wakelock_rx_timeout_enable = val;
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
return 0;
}
int dhd_os_wake_lock_ctrl_timeout_enable(dhd_pub_t *pub, int val)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags;
if (dhd) {
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
if (val > dhd->wakelock_ctrl_timeout_enable)
dhd->wakelock_ctrl_timeout_enable = val;
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
return 0;
}
int dhd_os_wake_lock_ctrl_timeout_cancel(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags;
if (dhd) {
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
dhd->wakelock_ctrl_timeout_enable = 0;
#ifdef CONFIG_PM_WAKELOCKS
if (dhd->wl_ctrlwake.active)
__pm_relax(&dhd->wl_ctrlwake);
#endif
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
return 0;
}
int net_os_wake_lock_rx_timeout_enable(struct net_device *dev, int val)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ret = 0;
if (dhd)
ret = dhd_os_wake_lock_rx_timeout_enable(&dhd->pub, val);
return ret;
}
int net_os_wake_lock_ctrl_timeout_enable(struct net_device *dev, int val)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ret = 0;
if (dhd)
ret = dhd_os_wake_lock_ctrl_timeout_enable(&dhd->pub, val);
return ret;
}
#if defined(DHD_TRACE_WAKE_LOCK)
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
#include <linux/hashtable.h>
#else
#include <linux/hash.h>
#endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
/* Define 2^5 = 32 bucket size hash table */
DEFINE_HASHTABLE(wklock_history, 5);
#else
/* Define 2^5 = 32 bucket size hash table */
struct hlist_head wklock_history[32] = { [0 ... 31] = HLIST_HEAD_INIT };
#endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */
int trace_wklock_onoff = 1;
typedef enum dhd_wklock_type {
DHD_WAKE_LOCK,
DHD_WAKE_UNLOCK,
DHD_WAIVE_LOCK,
DHD_RESTORE_LOCK
} dhd_wklock_t;
struct wk_trace_record {
unsigned long addr; /* Address of the instruction */
dhd_wklock_t lock_type; /* lock_type */
unsigned long long counter; /* counter information */
struct hlist_node wklock_node; /* hash node */
};
static struct wk_trace_record *find_wklock_entry(unsigned long addr)
{
struct wk_trace_record *wklock_info;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
hash_for_each_possible(wklock_history, wklock_info, wklock_node, addr)
#else
struct hlist_node *entry;
int index = hash_long(addr, ilog2(ARRAY_SIZE(wklock_history)));
hlist_for_each_entry(wklock_info, entry, &wklock_history[index], wklock_node)
#endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */
{
if (wklock_info->addr == addr) {
return wklock_info;
}
}
return NULL;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
#define HASH_ADD(hashtable, node, key) \
do { \
hash_add(hashtable, node, key); \
} while (0);
#else
#define HASH_ADD(hashtable, node, key) \
do { \
int index = hash_long(key, ilog2(ARRAY_SIZE(hashtable))); \
hlist_add_head(node, &hashtable[index]); \
} while (0);
#endif /* KERNEL_VER < KERNEL_VERSION(3, 7, 0) */
#define STORE_WKLOCK_RECORD(wklock_type) \
do { \
struct wk_trace_record *wklock_info = NULL; \
unsigned long func_addr = (unsigned long)__builtin_return_address(0); \
wklock_info = find_wklock_entry(func_addr); \
if (wklock_info) { \
if (wklock_type == DHD_WAIVE_LOCK || wklock_type == DHD_RESTORE_LOCK) { \
wklock_info->counter = dhd->wakelock_counter; \
} else { \
wklock_info->counter++; \
} \
} else { \
wklock_info = kzalloc(sizeof(*wklock_info), GFP_ATOMIC); \
if (!wklock_info) {\
printk("Can't allocate wk_trace_record \n"); \
} else { \
wklock_info->addr = func_addr; \
wklock_info->lock_type = wklock_type; \
if (wklock_type == DHD_WAIVE_LOCK || \
wklock_type == DHD_RESTORE_LOCK) { \
wklock_info->counter = dhd->wakelock_counter; \
} else { \
wklock_info->counter++; \
} \
HASH_ADD(wklock_history, &wklock_info->wklock_node, func_addr); \
} \
} \
} while (0);
static inline void dhd_wk_lock_rec_dump(void)
{
int bkt;
struct wk_trace_record *wklock_info;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
hash_for_each(wklock_history, bkt, wklock_info, wklock_node)
#else
struct hlist_node *entry = NULL;
int max_index = ARRAY_SIZE(wklock_history);
for (bkt = 0; bkt < max_index; bkt++)
hlist_for_each_entry(wklock_info, entry, &wklock_history[bkt], wklock_node)
#endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */
{
switch (wklock_info->lock_type) {
case DHD_WAKE_LOCK:
DHD_ERROR(("wakelock lock : %pS lock_counter : %llu\n",
(void *)wklock_info->addr, wklock_info->counter));
break;
case DHD_WAKE_UNLOCK:
DHD_ERROR(("wakelock unlock : %pS, unlock_counter : %llu\n",
(void *)wklock_info->addr, wklock_info->counter));
break;
case DHD_WAIVE_LOCK:
DHD_ERROR(("wakelock waive : %pS before_waive : %llu\n",
(void *)wklock_info->addr, wklock_info->counter));
break;
case DHD_RESTORE_LOCK:
DHD_ERROR(("wakelock restore : %pS, after_waive : %llu\n",
(void *)wklock_info->addr, wklock_info->counter));
break;
}
}
}
static void dhd_wk_lock_trace_init(struct dhd_info *dhd)
{
unsigned long flags;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0))
int i;
#endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
hash_init(wklock_history);
#else
for (i = 0; i < ARRAY_SIZE(wklock_history); i++)
INIT_HLIST_HEAD(&wklock_history[i]);
#endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
static void dhd_wk_lock_trace_deinit(struct dhd_info *dhd)
{
int bkt;
struct wk_trace_record *wklock_info;
struct hlist_node *tmp;
unsigned long flags;
#if (LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0))
struct hlist_node *entry = NULL;
int max_index = ARRAY_SIZE(wklock_history);
#endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0) */
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
hash_for_each_safe(wklock_history, bkt, tmp, wklock_info, wklock_node)
#else
for (bkt = 0; bkt < max_index; bkt++)
hlist_for_each_entry_safe(wklock_info, entry, tmp,
&wklock_history[bkt], wklock_node)
#endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0)) */
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0))
hash_del(&wklock_info->wklock_node);
#else
hlist_del_init(&wklock_info->wklock_node);
#endif /* KERNEL_VER >= KERNEL_VERSION(3, 7, 0)) */
kfree(wklock_info);
}
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
void dhd_wk_lock_stats_dump(dhd_pub_t *dhdp)
{
dhd_info_t *dhd = (dhd_info_t *)(dhdp->info);
unsigned long flags;
DHD_ERROR((KERN_ERR"DHD Printing wl_wake Lock/Unlock Record \r\n"));
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
dhd_wk_lock_rec_dump();
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
#else
#define STORE_WKLOCK_RECORD(wklock_type)
#endif /* ! DHD_TRACE_WAKE_LOCK */
int dhd_os_wake_lock(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags;
int ret = 0;
if (dhd) {
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
if (dhd->wakelock_counter == 0 && !dhd->waive_wakelock) {
#ifdef CONFIG_PM_WAKELOCKS
__pm_stay_awake(&dhd->wl_wifi);
#elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36))
dhd_bus_dev_pm_stay_awake(pub);
#endif
}
#ifdef DHD_TRACE_WAKE_LOCK
if (trace_wklock_onoff) {
STORE_WKLOCK_RECORD(DHD_WAKE_LOCK);
}
#endif /* DHD_TRACE_WAKE_LOCK */
dhd->wakelock_counter++;
ret = dhd->wakelock_counter;
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
return ret;
}
void dhd_event_wake_lock(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd) {
#ifdef CONFIG_PM_WAKELOCKS
__pm_stay_awake(&dhd->wl_evtwake);
#elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36))
dhd_bus_dev_pm_stay_awake(pub);
#endif
}
}
void
dhd_pm_wake_lock_timeout(dhd_pub_t *pub, int val)
{
#ifdef CONFIG_PM_WAKELOCKS
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd) {
__pm_wakeup_event(&dhd->wl_pmwake, val);
}
#endif /* CONFIG_HAS_WAKE_LOCK */
}
void
dhd_txfl_wake_lock(dhd_pub_t *pub)
{
#ifdef CONFIG_PM_WAKELOCKS
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd) {
__pm_stay_awake(&dhd->wl_txflwake);
}
#endif /* CONFIG_HAS_WAKE_LOCK */
}
int net_os_wake_lock(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ret = 0;
if (dhd)
ret = dhd_os_wake_lock(&dhd->pub);
return ret;
}
int dhd_os_wake_unlock(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags;
int ret = 0;
dhd_os_wake_lock_timeout(pub);
if (dhd) {
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
if (dhd->wakelock_counter > 0) {
dhd->wakelock_counter--;
#ifdef DHD_TRACE_WAKE_LOCK
if (trace_wklock_onoff) {
STORE_WKLOCK_RECORD(DHD_WAKE_UNLOCK);
}
#endif /* DHD_TRACE_WAKE_LOCK */
if (dhd->wakelock_counter == 0 && !dhd->waive_wakelock) {
#ifdef CONFIG_PM_WAKELOCKS
__pm_relax(&dhd->wl_wifi);
#elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36))
dhd_bus_dev_pm_relax(pub);
#endif
}
ret = dhd->wakelock_counter;
}
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
return ret;
}
void dhd_event_wake_unlock(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd) {
#ifdef CONFIG_PM_WAKELOCKS
__pm_relax(&dhd->wl_evtwake);
#elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36))
dhd_bus_dev_pm_relax(pub);
#endif
}
}
void dhd_pm_wake_unlock(dhd_pub_t *pub)
{
#ifdef CONFIG_PM_WAKELOCKS
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd) {
/* if wl_pmwake is active, unlock it */
if (dhd->wl_pmwake.active) {
__pm_relax(&dhd->wl_pmwake);
}
}
#endif /* CONFIG_PM_WAKELOCKS */
}
void dhd_txfl_wake_unlock(dhd_pub_t *pub)
{
#ifdef CONFIG_PM_WAKELOCKS
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd) {
/* if wl_txflwake is active, unlock it */
if (dhd->wl_txflwake.active) {
__pm_relax(&dhd->wl_txflwake);
}
}
#endif /* CONFIG_PM_WAKELOCKS */
}
int dhd_os_check_wakelock(dhd_pub_t *pub)
{
#if defined(CONFIG_PM_WAKELOCKS) || (defined(BCMSDIO) && (LINUX_VERSION_CODE > \
KERNEL_VERSION(2, 6, 36)))
dhd_info_t *dhd;
if (!pub)
return 0;
dhd = (dhd_info_t *)(pub->info);
#endif /* CONFIG_PM_WAKELOCKS || BCMSDIO */
#ifdef CONFIG_PM_WAKELOCKS
/* Indicate to the SD Host to avoid going to suspend if internal locks are up */
if (dhd && (dhd->wl_wifi.active || dhd->wl_wdwake.active))
return 1;
#elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36))
if (dhd && (dhd->wakelock_counter > 0) && dhd_bus_dev_pm_enabled(pub))
return 1;
#endif
return 0;
}
int
dhd_os_check_wakelock_all(dhd_pub_t *pub)
{
#ifdef CONFIG_PM_WAKELOCKS
int l1, l2, l3, l4, l7, l8, l9;
int l5 = 0, l6 = 0;
int c, lock_active;
#endif /* CONFIG_PM_WAKELOCKS */
#if defined(CONFIG_PM_WAKELOCKS) || (defined(BCMSDIO) && (LINUX_VERSION_CODE > \
KERNEL_VERSION(2, 6, 36)))
dhd_info_t *dhd;
if (!pub) {
return 0;
}
dhd = (dhd_info_t *)(pub->info);
if (!dhd) {
return 0;
}
#endif /* CONFIG_PM_WAKELOCKS || BCMSDIO */
#ifdef CONFIG_PM_WAKELOCKS
c = dhd->wakelock_counter;
l1 = dhd->wl_wifi.active;
l2 = dhd->wl_wdwake.active;
l3 = dhd->wl_rxwake.active;
l4 = dhd->wl_ctrlwake.active;
#ifdef BCMPCIE_OOB_HOST_WAKE
l5 = dhd->wl_intrwake.active;
#endif /* BCMPCIE_OOB_HOST_WAKE */
#ifdef DHD_USE_SCAN_WAKELOCK
l6 = dhd->wl_scanwake.active;
#endif /* DHD_USE_SCAN_WAKELOCK */
l7 = dhd->wl_evtwake.active;
l8 = dhd->wl_pmwake.active;
l9 = dhd->wl_txflwake.active;
lock_active = (l1 || l2 || l3 || l4 || l5 || l6 || l7 || l8 || l9);
/* Indicate to the Host to avoid going to suspend if internal locks are up */
if (dhd && lock_active) {
DHD_ERROR(("%s wakelock c-%d wl-%d wd-%d rx-%d "
"ctl-%d intr-%d scan-%d evt-%d, pm-%d, txfl-%d\n",
__FUNCTION__, c, l1, l2, l3, l4, l5, l6, l7, l8, l9));
return 1;
}
#elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36))
if (dhd && (dhd->wakelock_counter > 0) && dhd_bus_dev_pm_enabled(pub)) {
return 1;
}
#endif /* CONFIG_PM_WAKELOCKS */
return 0;
}
int net_os_wake_unlock(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ret = 0;
if (dhd)
ret = dhd_os_wake_unlock(&dhd->pub);
return ret;
}
int dhd_os_wd_wake_lock(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags;
int ret = 0;
if (dhd) {
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
#ifdef CONFIG_PM_WAKELOCKS
/* if wakelock_wd_counter was never used : lock it at once */
if (!dhd->wakelock_wd_counter)
__pm_stay_awake(&dhd->wl_wdwake);
#endif
dhd->wakelock_wd_counter++;
ret = dhd->wakelock_wd_counter;
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
return ret;
}
int dhd_os_wd_wake_unlock(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags;
int ret = 0;
if (dhd) {
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
if (dhd->wakelock_wd_counter) {
dhd->wakelock_wd_counter = 0;
#ifdef CONFIG_PM_WAKELOCKS
__pm_relax(&dhd->wl_wdwake);
#endif
}
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
return ret;
}
#ifdef BCMPCIE_OOB_HOST_WAKE
void
dhd_os_oob_irq_wake_lock_timeout(dhd_pub_t *pub, int val)
{
#ifdef CONFIG_PM_WAKELOCKS
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd) {
__pm_wakeup_event(&dhd->wl_intrwake, val);
}
#endif /* CONFIG_PM_WAKELOCKS */
}
void
dhd_os_oob_irq_wake_unlock(dhd_pub_t *pub)
{
#ifdef CONFIG_PM_WAKELOCKS
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd) {
/* if wl_intrwake is active, unlock it */
if (dhd->wl_intrwake.active) {
__pm_relax(&dhd->wl_intrwake);
}
}
#endif /* CONFIG_PM_WAKELOCKS */
}
#endif /* BCMPCIE_OOB_HOST_WAKE */
#ifdef DHD_USE_SCAN_WAKELOCK
void
dhd_os_scan_wake_lock_timeout(dhd_pub_t *pub, int val)
{
#ifdef CONFIG_PM_WAKELOCKS
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd) {
__pm_wakeup_event(&dhd->wl_scanwake, val);
}
#endif /* CONFIG_PM_WAKELOCKS */
}
void
dhd_os_scan_wake_unlock(dhd_pub_t *pub)
{
#ifdef CONFIG_PM_WAKELOCKS
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
if (dhd) {
/* if wl_scanwake is active, unlock it */
if (dhd->wl_scanwake.active) {
wake_unlock(&dhd->wl_scanwake);
}
}
#endif /* CONFIG_PM_WAKELOCKS */
}
#endif /* DHD_USE_SCAN_WAKELOCK */
/* waive wakelocks for operations such as IOVARs in suspend function, must be closed
* by a paired function call to dhd_wakelock_restore. returns current wakelock counter
*/
int dhd_os_wake_lock_waive(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags;
int ret = 0;
if (dhd) {
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
/* dhd_wakelock_waive/dhd_wakelock_restore must be paired */
if (dhd->waive_wakelock == FALSE) {
#ifdef DHD_TRACE_WAKE_LOCK
if (trace_wklock_onoff) {
STORE_WKLOCK_RECORD(DHD_WAIVE_LOCK);
}
#endif /* DHD_TRACE_WAKE_LOCK */
/* record current lock status */
dhd->wakelock_before_waive = dhd->wakelock_counter;
dhd->waive_wakelock = TRUE;
}
ret = dhd->wakelock_wd_counter;
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
}
return ret;
}
int dhd_os_wake_lock_restore(dhd_pub_t *pub)
{
dhd_info_t *dhd = (dhd_info_t *)(pub->info);
unsigned long flags;
int ret = 0;
if (!dhd)
return 0;
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
/* dhd_wakelock_waive/dhd_wakelock_restore must be paired */
if (!dhd->waive_wakelock)
goto exit;
dhd->waive_wakelock = FALSE;
/* if somebody else acquires wakelock between dhd_wakelock_waive/dhd_wakelock_restore,
* we need to make it up by calling wake_lock or pm_stay_awake. or if somebody releases
* the lock in between, do the same by calling wake_unlock or pm_relax
*/
#ifdef DHD_TRACE_WAKE_LOCK
if (trace_wklock_onoff) {
STORE_WKLOCK_RECORD(DHD_RESTORE_LOCK);
}
#endif /* DHD_TRACE_WAKE_LOCK */
if (dhd->wakelock_before_waive == 0 && dhd->wakelock_counter > 0) {
#ifdef CONFIG_PM_WAKELOCKS
__pm_stay_awake(&dhd->wl_wifi);
#elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36))
dhd_bus_dev_pm_stay_awake(&dhd->pub);
#endif
} else if (dhd->wakelock_before_waive > 0 && dhd->wakelock_counter == 0) {
#ifdef CONFIG_PM_WAKELOCKS
__pm_relax(&dhd->wl_wifi);
#elif defined(BCMSDIO) && (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 36))
dhd_bus_dev_pm_relax(&dhd->pub);
#endif
}
dhd->wakelock_before_waive = 0;
exit:
ret = dhd->wakelock_wd_counter;
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
return ret;
}
void dhd_os_wake_lock_init(struct dhd_info *dhd)
{
DHD_TRACE(("%s: initialize wake_lock_counters\n", __FUNCTION__));
dhd->wakelock_counter = 0;
dhd->wakelock_rx_timeout_enable = 0;
dhd->wakelock_ctrl_timeout_enable = 0;
#ifdef CONFIG_PM_WAKELOCKS
wakeup_source_init(&dhd->wl_wifi, "wlan_wake");
wakeup_source_init(&dhd->wl_rxwake, "wlan_rx_wake");
wakeup_source_init(&dhd->wl_ctrlwake, "wlan_ctrl_wake");
wakeup_source_init(&dhd->wl_evtwake, "wlan_evt_wake");
wakeup_source_init(&dhd->wl_pmwake, "wlan_pm_wake");
wakeup_source_init(&dhd->wl_txflwake, "wlan_txfl_wake");
#ifdef BCMPCIE_OOB_HOST_WAKE
wakeup_source_init(&dhd->wl_intrwake, "wlan_oob_irq_wake");
#endif /* BCMPCIE_OOB_HOST_WAKE */
#ifdef DHD_USE_SCAN_WAKELOCK
wakeup_source_init(&dhd->wl_scanwake, "wlan_scan_wake");
#endif /* DHD_USE_SCAN_WAKELOCK */
#endif /* CONFIG_PM_WAKELOCKS */
#ifdef DHD_TRACE_WAKE_LOCK
dhd_wk_lock_trace_init(dhd);
#endif /* DHD_TRACE_WAKE_LOCK */
}
void dhd_os_wake_lock_destroy(struct dhd_info *dhd)
{
DHD_TRACE(("%s: deinit wake_lock_counters\n", __FUNCTION__));
#ifdef CONFIG_PM_WAKELOCKS
dhd->wakelock_counter = 0;
dhd->wakelock_rx_timeout_enable = 0;
dhd->wakelock_ctrl_timeout_enable = 0;
wakeup_source_trash(&dhd->wl_wifi);
wakeup_source_trash(&dhd->wl_rxwake);
wakeup_source_trash(&dhd->wl_ctrlwake);
wakeup_source_trash(&dhd->wl_evtwake);
wakeup_source_trash(&dhd->wl_pmwake);
wakeup_source_trash(&dhd->wl_txflwake);
#ifdef BCMPCIE_OOB_HOST_WAKE
wakeup_source_trash(&dhd->wl_intrwake);
#endif /* BCMPCIE_OOB_HOST_WAKE */
#ifdef DHD_USE_SCAN_WAKELOCK
wakeup_source_trash(&dhd->wl_scanwake);
#endif /* DHD_USE_SCAN_WAKELOCK */
#ifdef DHD_TRACE_WAKE_LOCK
dhd_wk_lock_trace_deinit(dhd);
#endif /* DHD_TRACE_WAKE_LOCK */
#endif /* CONFIG_PM_WAKELOCKS */
}
bool dhd_os_check_if_up(dhd_pub_t *pub)
{
if (!pub)
return FALSE;
return pub->up;
}
#if defined(BCMSDIO)
/* function to collect firmware, chip id and chip version info */
void dhd_set_version_info(dhd_pub_t *dhdp, char *fw)
{
int i;
i = snprintf(info_string, sizeof(info_string),
" Driver: %s\n Firmware: %s ", EPI_VERSION_STR, fw);
if (!dhdp)
return;
i = snprintf(&info_string[i], sizeof(info_string) - i,
"\n Chip: %x Rev %x Pkg %x", dhd_bus_chip_id(dhdp),
dhd_bus_chiprev_id(dhdp), dhd_bus_chippkg_id(dhdp));
}
#endif /* defined(BCMSDIO) */
int dhd_ioctl_entry_local(struct net_device *net, wl_ioctl_t *ioc, int cmd)
{
int ifidx;
int ret = 0;
dhd_info_t *dhd = NULL;
if (!net || !DEV_PRIV(net)) {
DHD_ERROR(("%s invalid parameter\n", __FUNCTION__));
return -EINVAL;
}
dhd = DHD_DEV_INFO(net);
if (!dhd)
return -EINVAL;
ifidx = dhd_net2idx(dhd, net);
if (ifidx == DHD_BAD_IF) {
DHD_ERROR(("%s bad ifidx\n", __FUNCTION__));
return -ENODEV;
}
DHD_OS_WAKE_LOCK(&dhd->pub);
DHD_PERIM_LOCK(&dhd->pub);
ret = dhd_wl_ioctl(&dhd->pub, ifidx, ioc, ioc->buf, ioc->len);
dhd_check_hang(net, &dhd->pub, ret);
DHD_PERIM_UNLOCK(&dhd->pub);
DHD_OS_WAKE_UNLOCK(&dhd->pub);
return ret;
}
bool dhd_os_check_hang(dhd_pub_t *dhdp, int ifidx, int ret)
{
struct net_device *net;
net = dhd_idx2net(dhdp, ifidx);
if (!net) {
DHD_ERROR(("%s : Invalid index : %d\n", __FUNCTION__, ifidx));
return -EINVAL;
}
return dhd_check_hang(net, dhdp, ret);
}
/* Return instance */
int dhd_get_instance(dhd_pub_t *dhdp)
{
return dhdp->info->unit;
}
#ifdef PROP_TXSTATUS
void dhd_wlfc_plat_init(void *dhd)
{
#ifdef USE_DYNAMIC_F2_BLKSIZE
dhdsdio_func_blocksize((dhd_pub_t *)dhd, 2, DYNAMIC_F2_BLKSIZE_FOR_NONLEGACY);
#endif /* USE_DYNAMIC_F2_BLKSIZE */
return;
}
void dhd_wlfc_plat_deinit(void *dhd)
{
#ifdef USE_DYNAMIC_F2_BLKSIZE
dhdsdio_func_blocksize((dhd_pub_t *)dhd, 2, sd_f2_blocksize);
#endif /* USE_DYNAMIC_F2_BLKSIZE */
return;
}
bool dhd_wlfc_skip_fc(void *dhd)
{
#ifdef SKIP_WLFC_ON_CONCURRENT
#ifdef WL_CFG80211
dhd_pub_t *dhdp = (dhd_pub_t *)dhd;
/* enable flow control in vsdb mode */
return !(wl_cfg80211_is_concurrent_mode(DHD_GET_CFG80211_PRIV(dhdp)));
#else
return TRUE; /* skip flow control */
#endif /* WL_CFG80211 */
#else
return FALSE;
#endif /* SKIP_WLFC_ON_CONCURRENT */
}
#endif /* PROP_TXSTATUS */
#ifdef BCMDBGFS
#include <linux/debugfs.h>
typedef struct dhd_dbgfs {
struct dentry *debugfs_dir;
struct dentry *debugfs_mem;
dhd_pub_t *dhdp;
uint32 size;
} dhd_dbgfs_t;
dhd_dbgfs_t g_dbgfs;
extern uint32 dhd_readregl(void *bp, uint32 addr);
extern uint32 dhd_writeregl(void *bp, uint32 addr, uint32 data);
static int
dhd_dbg_state_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return 0;
}
static ssize_t
dhd_dbg_state_read(struct file *file, char __user *ubuf,
size_t count, loff_t *ppos)
{
ssize_t rval;
uint32 tmp;
loff_t pos = *ppos;
size_t ret;
if (pos < 0)
return -EINVAL;
if (pos >= g_dbgfs.size || !count)
return 0;
if (count > g_dbgfs.size - pos)
count = g_dbgfs.size - pos;
/* Basically enforce aligned 4 byte reads. It's up to the user to work out the details */
tmp = dhd_readregl(g_dbgfs.dhdp->bus, file->f_pos & (~3));
ret = copy_to_user(ubuf, &tmp, 4);
if (ret == count)
return -EFAULT;
count -= ret;
*ppos = pos + count;
rval = count;
return rval;
}
static ssize_t
dhd_debugfs_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos)
{
loff_t pos = *ppos;
size_t ret;
uint32 buf;
if (pos < 0)
return -EINVAL;
if (pos >= g_dbgfs.size || !count)
return 0;
if (count > g_dbgfs.size - pos)
count = g_dbgfs.size - pos;
ret = copy_from_user(&buf, ubuf, sizeof(uint32));
if (ret == count)
return -EFAULT;
/* Basically enforce aligned 4 byte writes. It's up to the user to work out the details */
dhd_writeregl(g_dbgfs.dhdp->bus, file->f_pos & (~3), buf);
return count;
}
loff_t
dhd_debugfs_lseek(struct file *file, loff_t off, int whence)
{
loff_t pos = -1;
switch (whence) {
case 0:
pos = off;
break;
case 1:
pos = file->f_pos + off;
break;
case 2:
pos = g_dbgfs.size - off;
}
return (pos < 0 || pos > g_dbgfs.size) ? -EINVAL : (file->f_pos = pos);
}
static const struct file_operations dhd_dbg_state_ops = {
.read = dhd_dbg_state_read,
.write = dhd_debugfs_write,
.open = dhd_dbg_state_open,
.llseek = dhd_debugfs_lseek
};
static void dhd_dbg_create(void)
{
if (g_dbgfs.debugfs_dir) {
g_dbgfs.debugfs_mem = debugfs_create_file("mem", 0644, g_dbgfs.debugfs_dir,
NULL, &dhd_dbg_state_ops);
}
}
void dhd_dbg_init(dhd_pub_t *dhdp)
{
g_dbgfs.dhdp = dhdp;
g_dbgfs.size = 0x20000000; /* Allow access to various cores regs */
g_dbgfs.debugfs_dir = debugfs_create_dir("dhd", 0);
if (IS_ERR(g_dbgfs.debugfs_dir)) {
g_dbgfs.debugfs_dir = NULL;
return;
}
dhd_dbg_create();
return;
}
void dhd_dbg_remove(void)
{
debugfs_remove(g_dbgfs.debugfs_mem);
debugfs_remove(g_dbgfs.debugfs_dir);
bzero((unsigned char *) &g_dbgfs, sizeof(g_dbgfs));
}
#endif /* BCMDBGFS */
#ifdef WLMEDIA_HTSF
static
void dhd_htsf_addtxts(dhd_pub_t *dhdp, void *pktbuf)
{
dhd_info_t *dhd = (dhd_info_t *)(dhdp->info);
struct sk_buff *skb;
uint32 htsf = 0;
uint16 dport = 0, oldmagic = 0xACAC;
char *p1;
htsfts_t ts;
/* timestamp packet */
p1 = (char*) PKTDATA(dhdp->osh, pktbuf);
if (PKTLEN(dhdp->osh, pktbuf) > HTSF_MINLEN) {
/* memcpy(&proto, p1+26, 4); */
memcpy(&dport, p1+40, 2);
/* proto = ((ntoh32(proto))>> 16) & 0xFF; */
dport = ntoh16(dport);
}
/* timestamp only if icmp or udb iperf with port 5555 */
/* if (proto == 17 && dport == tsport) { */
if (dport >= tsport && dport <= tsport + 20) {
skb = (struct sk_buff *) pktbuf;
htsf = dhd_get_htsf(dhd, 0);
memset(skb->data + 44, 0, 2); /* clear checksum */
memcpy(skb->data+82, &oldmagic, 2);
memcpy(skb->data+84, &htsf, 4);
memset(&ts, 0, sizeof(htsfts_t));
ts.magic = HTSFMAGIC;
ts.prio = PKTPRIO(pktbuf);
ts.seqnum = htsf_seqnum++;
ts.c10 = get_cycles();
ts.t10 = htsf;
ts.endmagic = HTSFENDMAGIC;
memcpy(skb->data + HTSF_HOSTOFFSET, &ts, sizeof(ts));
}
}
static void dhd_dump_htsfhisto(histo_t *his, char *s)
{
int pktcnt = 0, curval = 0, i;
for (i = 0; i < (NUMBIN-2); i++) {
curval += 500;
printf("%d ", his->bin[i]);
pktcnt += his->bin[i];
}
printf(" max: %d TotPkt: %d neg: %d [%s]\n", his->bin[NUMBIN-2], pktcnt,
his->bin[NUMBIN-1], s);
}
static
void sorttobin(int value, histo_t *histo)
{
int i, binval = 0;
if (value < 0) {
histo->bin[NUMBIN-1]++;
return;
}
if (value > histo->bin[NUMBIN-2]) /* store the max value */
histo->bin[NUMBIN-2] = value;
for (i = 0; i < (NUMBIN-2); i++) {
binval += 500; /* 500m s bins */
if (value <= binval) {
histo->bin[i]++;
return;
}
}
histo->bin[NUMBIN-3]++;
}
static
void dhd_htsf_addrxts(dhd_pub_t *dhdp, void *pktbuf)
{
dhd_info_t *dhd = (dhd_info_t *)dhdp->info;
struct sk_buff *skb;
char *p1;
uint16 old_magic;
int d1, d2, d3, end2end;
htsfts_t *htsf_ts;
uint32 htsf;
skb = PKTTONATIVE(dhdp->osh, pktbuf);
p1 = (char*)PKTDATA(dhdp->osh, pktbuf);
if (PKTLEN(osh, pktbuf) > HTSF_MINLEN) {
memcpy(&old_magic, p1+78, 2);
htsf_ts = (htsfts_t*) (p1 + HTSF_HOSTOFFSET - 4);
} else {
return;
}
if (htsf_ts->magic == HTSFMAGIC) {
htsf_ts->tE0 = dhd_get_htsf(dhd, 0);
htsf_ts->cE0 = get_cycles();
}
if (old_magic == 0xACAC) {
tspktcnt++;
htsf = dhd_get_htsf(dhd, 0);
memcpy(skb->data+92, &htsf, sizeof(uint32));
memcpy(&ts[tsidx].t1, skb->data+80, 16);
d1 = ts[tsidx].t2 - ts[tsidx].t1;
d2 = ts[tsidx].t3 - ts[tsidx].t2;
d3 = ts[tsidx].t4 - ts[tsidx].t3;
end2end = ts[tsidx].t4 - ts[tsidx].t1;
sorttobin(d1, &vi_d1);
sorttobin(d2, &vi_d2);
sorttobin(d3, &vi_d3);
sorttobin(end2end, &vi_d4);
if (end2end > 0 && end2end > maxdelay) {
maxdelay = end2end;
maxdelaypktno = tspktcnt;
memcpy(&maxdelayts, &ts[tsidx], 16);
}
if (++tsidx >= TSMAX)
tsidx = 0;
}
}
uint32 dhd_get_htsf(dhd_info_t *dhd, int ifidx)
{
uint32 htsf = 0, cur_cycle, delta, delta_us;
uint32 factor, baseval, baseval2;
cycles_t t;
t = get_cycles();
cur_cycle = t;
if (cur_cycle > dhd->htsf.last_cycle) {
delta = cur_cycle - dhd->htsf.last_cycle;
} else {
delta = cur_cycle + (0xFFFFFFFF - dhd->htsf.last_cycle);
}
delta = delta >> 4;
if (dhd->htsf.coef) {
/* times ten to get the first digit */
factor = (dhd->htsf.coef*10 + dhd->htsf.coefdec1);
baseval = (delta*10)/factor;
baseval2 = (delta*10)/(factor+1);
delta_us = (baseval - (((baseval - baseval2) * dhd->htsf.coefdec2)) / 10);
htsf = (delta_us << 4) + dhd->htsf.last_tsf + HTSF_BUS_DELAY;
} else {
DHD_ERROR(("-------dhd->htsf.coef = 0 -------\n"));
}
return htsf;
}
static void dhd_dump_latency(void)
{
int i, max = 0;
int d1, d2, d3, d4, d5;
printf("T1 T2 T3 T4 d1 d2 t4-t1 i \n");
for (i = 0; i < TSMAX; i++) {
d1 = ts[i].t2 - ts[i].t1;
d2 = ts[i].t3 - ts[i].t2;
d3 = ts[i].t4 - ts[i].t3;
d4 = ts[i].t4 - ts[i].t1;
d5 = ts[max].t4-ts[max].t1;
if (d4 > d5 && d4 > 0) {
max = i;
}
printf("%08X %08X %08X %08X \t%d %d %d %d i=%d\n",
ts[i].t1, ts[i].t2, ts[i].t3, ts[i].t4,
d1, d2, d3, d4, i);
}
printf("current idx = %d \n", tsidx);
printf("Highest latency %d pkt no.%d total=%d\n", maxdelay, maxdelaypktno, tspktcnt);
printf("%08X %08X %08X %08X \t%d %d %d %d\n",
maxdelayts.t1, maxdelayts.t2, maxdelayts.t3, maxdelayts.t4,
maxdelayts.t2 - maxdelayts.t1,
maxdelayts.t3 - maxdelayts.t2,
maxdelayts.t4 - maxdelayts.t3,
maxdelayts.t4 - maxdelayts.t1);
}
static int
dhd_ioctl_htsf_get(dhd_info_t *dhd, int ifidx)
{
wl_ioctl_t ioc;
char buf[32];
int ret;
uint32 s1, s2;
struct tsf {
uint32 low;
uint32 high;
} tsf_buf;
memset(&ioc, 0, sizeof(ioc));
memset(&tsf_buf, 0, sizeof(tsf_buf));
ioc.cmd = WLC_GET_VAR;
ioc.buf = buf;
ioc.len = (uint)sizeof(buf);
ioc.set = FALSE;
strncpy(buf, "tsf", sizeof(buf) - 1);
buf[sizeof(buf) - 1] = '\0';
s1 = dhd_get_htsf(dhd, 0);
if ((ret = dhd_wl_ioctl(&dhd->pub, ifidx, &ioc, ioc.buf, ioc.len)) < 0) {
if (ret == -EIO) {
DHD_ERROR(("%s: tsf is not supported by device\n",
dhd_ifname(&dhd->pub, ifidx)));
return -EOPNOTSUPP;
}
return ret;
}
s2 = dhd_get_htsf(dhd, 0);
memcpy(&tsf_buf, buf, sizeof(tsf_buf));
printf(" TSF_h=%04X lo=%08X Calc:htsf=%08X, coef=%d.%d%d delta=%d ",
tsf_buf.high, tsf_buf.low, s2, dhd->htsf.coef, dhd->htsf.coefdec1,
dhd->htsf.coefdec2, s2-tsf_buf.low);
printf("lasttsf=%08X lastcycle=%08X\n", dhd->htsf.last_tsf, dhd->htsf.last_cycle);
return 0;
}
void htsf_update(dhd_info_t *dhd, void *data)
{
static ulong cur_cycle = 0, prev_cycle = 0;
uint32 htsf, tsf_delta = 0;
uint32 hfactor = 0, cyc_delta, dec1 = 0, dec2, dec3, tmp;
ulong b, a;
cycles_t t;
/* cycles_t in inlcude/mips/timex.h */
t = get_cycles();
prev_cycle = cur_cycle;
cur_cycle = t;
if (cur_cycle > prev_cycle)
cyc_delta = cur_cycle - prev_cycle;
else {
b = cur_cycle;
a = prev_cycle;
cyc_delta = cur_cycle + (0xFFFFFFFF - prev_cycle);
}
if (data == NULL)
printf(" tsf update ata point er is null \n");
memcpy(&prev_tsf, &cur_tsf, sizeof(tsf_t));
memcpy(&cur_tsf, data, sizeof(tsf_t));
if (cur_tsf.low == 0) {
DHD_INFO((" ---- 0 TSF, do not update, return\n"));
return;
}
if (cur_tsf.low > prev_tsf.low)
tsf_delta = (cur_tsf.low - prev_tsf.low);
else {
DHD_INFO((" ---- tsf low is smaller cur_tsf= %08X, prev_tsf=%08X, \n",
cur_tsf.low, prev_tsf.low));
if (cur_tsf.high > prev_tsf.high) {
tsf_delta = cur_tsf.low + (0xFFFFFFFF - prev_tsf.low);
DHD_INFO((" ---- Wrap around tsf coutner adjusted TSF=%08X\n", tsf_delta));
} else {
return; /* do not update */
}
}
if (tsf_delta) {
hfactor = cyc_delta / tsf_delta;
tmp = (cyc_delta - (hfactor * tsf_delta))*10;
dec1 = tmp/tsf_delta;
dec2 = ((tmp - dec1*tsf_delta)*10) / tsf_delta;
tmp = (tmp - (dec1*tsf_delta))*10;
dec3 = ((tmp - dec2*tsf_delta)*10) / tsf_delta;
if (dec3 > 4) {
if (dec2 == 9) {
dec2 = 0;
if (dec1 == 9) {
dec1 = 0;
hfactor++;
} else {
dec1++;
}
} else {
dec2++;
}
}
}
if (hfactor) {
htsf = ((cyc_delta * 10) / (hfactor*10+dec1)) + prev_tsf.low;
dhd->htsf.coef = hfactor;
dhd->htsf.last_cycle = cur_cycle;
dhd->htsf.last_tsf = cur_tsf.low;
dhd->htsf.coefdec1 = dec1;
dhd->htsf.coefdec2 = dec2;
} else {
htsf = prev_tsf.low;
}
}
#endif /* WLMEDIA_HTSF */
#ifdef CUSTOM_SET_CPUCORE
void dhd_set_cpucore(dhd_pub_t *dhd, int set)
{
int e_dpc = 0, e_rxf = 0, retry_set = 0;
if (!(dhd->chan_isvht80)) {
DHD_ERROR(("%s: chan_status(%d) cpucore!!!\n", __FUNCTION__, dhd->chan_isvht80));
return;
}
if (DPC_CPUCORE) {
do {
if (set == TRUE) {
e_dpc = set_cpus_allowed_ptr(dhd->current_dpc,
cpumask_of(DPC_CPUCORE));
} else {
e_dpc = set_cpus_allowed_ptr(dhd->current_dpc,
cpumask_of(PRIMARY_CPUCORE));
}
if (retry_set++ > MAX_RETRY_SET_CPUCORE) {
DHD_ERROR(("%s: dpc(%d) invalid cpu!\n", __FUNCTION__, e_dpc));
return;
}
if (e_dpc < 0)
OSL_SLEEP(1);
} while (e_dpc < 0);
}
if (RXF_CPUCORE) {
do {
if (set == TRUE) {
e_rxf = set_cpus_allowed_ptr(dhd->current_rxf,
cpumask_of(RXF_CPUCORE));
} else {
e_rxf = set_cpus_allowed_ptr(dhd->current_rxf,
cpumask_of(PRIMARY_CPUCORE));
}
if (retry_set++ > MAX_RETRY_SET_CPUCORE) {
DHD_ERROR(("%s: rxf(%d) invalid cpu!\n", __FUNCTION__, e_rxf));
return;
}
if (e_rxf < 0)
OSL_SLEEP(1);
} while (e_rxf < 0);
}
#ifdef DHD_OF_SUPPORT
interrupt_set_cpucore(set);
#endif /* DHD_OF_SUPPORT */
DHD_TRACE(("%s: set(%d) cpucore success!\n", __FUNCTION__, set));
return;
}
#endif /* CUSTOM_SET_CPUCORE */
/* Get interface specific ap_isolate configuration */
int dhd_get_ap_isolate(dhd_pub_t *dhdp, uint32 idx)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
return ifp->ap_isolate;
}
/* Set interface specific ap_isolate configuration */
int dhd_set_ap_isolate(dhd_pub_t *dhdp, uint32 idx, int val)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
ifp->ap_isolate = val;
return 0;
}
int dhd_android_ap_isolate_getval(struct net_device *dev)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ifidx, val;
ifidx = dhd_net2idx(dhd, dev);
if (ifidx < 0) {
DHD_ERROR(("%s: DHD_BAD_IF return\n", __func__));
return ifidx;
}
val = dhd_get_ap_isolate(&dhd->pub, ifidx);
return val;
}
void dhd_android_ap_isolate_setval(struct net_device *dev, int val)
{
dhd_info_t *dhd = DHD_DEV_INFO(dev);
int ifidx;
ifidx = dhd_net2idx(dhd, dev);
if (ifidx < 0) {
DHD_ERROR(("%s: DHD_BAD_IF return\n", __func__));
return;
}
dhd_set_ap_isolate(&dhd->pub, ifidx, val);
}
#ifdef DHD_FW_COREDUMP
#ifdef CUSTOMER_HW4_DEBUG
#ifdef PLATFORM_SLP
#define MEMDUMPINFO "/opt/etc/.memdump.info"
#else
#define MEMDUMPINFO "/data/.memdump.info"
#endif /* PLATFORM_SLP */
#elif defined(CUSTOMER_HW2)
#define MEMDUMPINFO "/data/misc/wifi/.memdump.info"
#else
#define MEMDUMPINFO "/installmedia/.memdump.info"
#endif /* CUSTOMER_HW4_DEBUG */
void dhd_get_memdump_info(dhd_pub_t *dhd)
{
struct file *fp = NULL;
uint32 mem_val = DUMP_MEMFILE_MAX;
int ret = 0;
char *filepath = MEMDUMPINFO;
/* Read memdump info from the file */
fp = filp_open(filepath, O_RDONLY, 0);
if (IS_ERR(fp)) {
DHD_INFO(("%s: File [%s] doesn't exist\n", __FUNCTION__, filepath));
goto done;
} else {
#if (LINUX_VERSION_CODE > KERNEL_VERSION(4, 13, 0))
ret = kernel_read(fp, (char *)&mem_val, 4, 0);
#else
ret = kernel_read(fp, 0, (char *)&mem_val, 4);
#endif
if (ret < 0) {
DHD_ERROR(("%s: File read error, ret=%d\n", __FUNCTION__, ret));
filp_close(fp, NULL);
goto done;
}
mem_val = bcm_atoi((char *)&mem_val);
DHD_ERROR(("%s: MEMDUMP ENABLED = %d\n", __FUNCTION__, mem_val));
filp_close(fp, NULL);
}
done:
#ifdef CUSTOMER_HW4_DEBUG
dhd->memdump_enabled = (mem_val < DUMP_MEMFILE_MAX) ? mem_val : DUMP_DISABLED;
#else
dhd->memdump_enabled = (mem_val < DUMP_MEMFILE_MAX) ? mem_val : DUMP_MEMFILE_BUGON;
#endif /* CUSTOMER_HW4_DEBUG */
}
void dhd_schedule_memdump(dhd_pub_t *dhdp, uint8 *buf, uint32 size)
{
dhd_dump_t *dump = NULL;
dump = (dhd_dump_t *)MALLOC(dhdp->osh, sizeof(dhd_dump_t));
if (dump == NULL) {
DHD_ERROR(("%s: dhd dump memory allocation failed\n", __FUNCTION__));
return;
}
dump->buf = buf;
dump->bufsize = size;
#if defined(CONFIG_ARM64)
DHD_ERROR(("%s: buf(va)=%llx, buf(pa)=%llx, bufsize=%d\n", __FUNCTION__,
(uint64)buf, (uint64)__virt_to_phys((ulong)buf), size));
#elif defined(__ARM_ARCH_7A__)
DHD_ERROR(("%s: buf(va)=%x, buf(pa)=%x, bufsize=%d\n", __FUNCTION__,
(uint32)buf, (uint32)__virt_to_phys((ulong)buf), size));
#endif /* __ARM_ARCH_7A__ */
if (dhdp->memdump_enabled == DUMP_MEMONLY) {
BUG_ON(1);
}
#ifdef DHD_LOG_DUMP
if (dhdp->memdump_type != DUMP_TYPE_BY_SYSDUMP) {
dhd_schedule_log_dump(dhdp);
}
#endif /* DHD_LOG_DUMP */
dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq, (void *)dump,
DHD_WQ_WORK_SOC_RAM_DUMP, dhd_mem_dump, DHD_WORK_PRIORITY_HIGH);
}
static void
dhd_mem_dump(void *handle, void *event_info, u8 event)
{
dhd_info_t *dhd = handle;
dhd_dump_t *dump = event_info;
if (!dhd) {
DHD_ERROR(("%s: dhd is NULL\n", __FUNCTION__));
return;
}
if (!dump) {
DHD_ERROR(("%s: dump is NULL\n", __FUNCTION__));
return;
}
if (write_to_file(&dhd->pub, dump->buf, dump->bufsize)) {
DHD_ERROR(("%s: writing SoC_RAM dump to the file failed\n", __FUNCTION__));
dhd->pub.memdump_success = FALSE;
}
if (dhd->pub.memdump_enabled == DUMP_MEMFILE_BUGON &&
#ifdef DHD_LOG_DUMP
dhd->pub.memdump_type != DUMP_TYPE_BY_SYSDUMP &&
#endif
#ifdef DHD_DEBUG_UART
dhd->pub.memdump_success == TRUE &&
#endif
TRUE) {
BUG_ON(1);
}
MFREE(dhd->pub.osh, dump, sizeof(dhd_dump_t));
}
#endif /* DHD_FW_COREDUMP */
#ifdef DHD_LOG_DUMP
static void
dhd_log_dump(void *handle, void *event_info, u8 event)
{
dhd_info_t *dhd = handle;
if (!dhd) {
DHD_ERROR(("%s: dhd is NULL\n", __FUNCTION__));
return;
}
if (do_dhd_log_dump(&dhd->pub)) {
DHD_ERROR(("%s: writing debug dump to the file failed\n", __FUNCTION__));
return;
}
}
void dhd_schedule_log_dump(dhd_pub_t *dhdp)
{
dhd_deferred_schedule_work(dhdp->info->dhd_deferred_wq,
(void*)NULL, DHD_WQ_WORK_DHD_LOG_DUMP,
dhd_log_dump, DHD_WORK_PRIORITY_HIGH);
}
static int
do_dhd_log_dump(dhd_pub_t *dhdp)
{
int ret = 0;
struct file *fp = NULL;
mm_segment_t old_fs;
loff_t pos = 0;
char dump_path[128];
char common_info[1024];
struct timeval curtime;
uint32 file_mode;
unsigned long flags = 0;
if (!dhdp) {
return -1;
}
/* Building the additional information like DHD, F/W version */
memset(common_info, 0, sizeof(common_info));
snprintf(common_info, sizeof(common_info),
"---------- Common information ----------\n"
"DHD version: %s\n"
"F/W version: %s\n"
"----------------------------------------\n",
dhd_version, fw_version);
/* change to KERNEL_DS address limit */
old_fs = get_fs();
set_fs(KERNEL_DS);
/* Init file name */
memset(dump_path, 0, sizeof(dump_path));
do_gettimeofday(&curtime);
snprintf(dump_path, sizeof(dump_path), "%s_%ld.%ld",
DHD_COMMON_DUMP_PATH "debug_dump",
(unsigned long)curtime.tv_sec, (unsigned long)curtime.tv_usec);
file_mode = O_CREAT | O_WRONLY | O_SYNC;
DHD_ERROR(("debug_dump_path = %s\n", dump_path));
fp = filp_open(dump_path, file_mode, 0644);
if (IS_ERR(fp)) {
ret = PTR_ERR(fp);
DHD_ERROR(("open file error, err = %d\n", ret));
ret = -1;
goto exit;
}
fp->f_op->write(fp, common_info, strlen(common_info), &pos);
if (dhdp->dld_buf.wraparound) {
fp->f_op->write(fp, dhdp->dld_buf.buffer, DHD_LOG_DUMP_BUFFER_SIZE, &pos);
} else {
fp->f_op->write(fp, dhdp->dld_buf.buffer,
(int)(dhdp->dld_buf.present - dhdp->dld_buf.front), &pos);
}
/* re-init dhd_log_dump_buf structure */
spin_lock_irqsave(&dhdp->dld_buf.lock, flags);
dhdp->dld_buf.wraparound = 0;
dhdp->dld_buf.present = dhdp->dld_buf.front;
dhdp->dld_buf.remain = DHD_LOG_DUMP_BUFFER_SIZE;
bzero(dhdp->dld_buf.buffer, DHD_LOG_DUMP_BUFFER_SIZE);
spin_unlock_irqrestore(&dhdp->dld_buf.lock, flags);
exit:
if (!ret) {
filp_close(fp, NULL);
}
set_fs(old_fs);
return ret;
}
#endif /* DHD_LOG_DUMP */
#ifdef BCMASSERT_LOG
#ifdef CUSTOMER_HW4_DEBUG
#ifdef PLATFORM_SLP
#define ASSERTINFO "/opt/etc/.assert.info"
#else
#define ASSERTINFO "/data/.assert.info"
#endif /* PLATFORM_SLP */
#elif defined(CUSTOMER_HW2)
#define ASSERTINFO "/data/misc/wifi/.assert.info"
#else
#define ASSERTINFO "/installmedia/.assert.info"
#endif /* CUSTOMER_HW4_DEBUG */
void dhd_get_assert_info(dhd_pub_t *dhd)
{
struct file *fp = NULL;
char *filepath = ASSERTINFO;
/*
* Read assert info from the file
* 0: Trigger Kernel crash by panic()
* 1: Print out the logs and don't trigger Kernel panic. (default)
* 2: Trigger Kernel crash by BUG()
* File doesn't exist: Keep default value (1).
*/
fp = filp_open(filepath, O_RDONLY, 0);
if (IS_ERR(fp)) {
DHD_ERROR(("%s: File [%s] doesn't exist\n", __FUNCTION__, filepath));
} else {
int mem_val = 0;
#if (LINUX_VERSION_CODE > KERNEL_VERSION(4, 13, 0))
int ret = kernel_read(fp, (char *)&mem_val, 4, 0);
#else
int ret = kernel_read(fp, 0, (char *)&mem_val, 4);
#endif
if (ret < 0) {
DHD_ERROR(("%s: File read error, ret=%d\n", __FUNCTION__, ret));
} else {
mem_val = bcm_atoi((char *)&mem_val);
DHD_ERROR(("%s: ASSERT ENABLED = %d\n", __FUNCTION__, mem_val));
g_assert_type = mem_val;
}
filp_close(fp, NULL);
}
}
#endif /* BCMASSERT_LOG */
#ifdef DHD_WMF
/* Returns interface specific WMF configuration */
dhd_wmf_t* dhd_wmf_conf(dhd_pub_t *dhdp, uint32 idx)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
return &ifp->wmf;
}
#endif /* DHD_WMF */
#if defined(DHD_L2_FILTER)
bool dhd_sta_associated(dhd_pub_t *dhdp, uint32 bssidx, uint8 *mac)
{
return dhd_find_sta(dhdp, bssidx, mac) ? TRUE : FALSE;
}
#endif
#ifdef DHD_L2_FILTER
arp_table_t*
dhd_get_ifp_arp_table_handle(dhd_pub_t *dhdp, uint32 bssidx)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(bssidx < DHD_MAX_IFS);
ifp = dhd->iflist[bssidx];
return ifp->phnd_arp_table;
}
int dhd_get_parp_status(dhd_pub_t *dhdp, uint32 idx)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
if (ifp)
return ifp->parp_enable;
else
return FALSE;
}
/* Set interface specific proxy arp configuration */
int dhd_set_parp_status(dhd_pub_t *dhdp, uint32 idx, int val)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
if (!ifp)
return BCME_ERROR;
/* At present all 3 variables are being
* handled at once
*/
ifp->parp_enable = val;
ifp->parp_discard = val;
ifp->parp_allnode = !val;
/* Flush ARP entries when disabled */
if (val == FALSE) {
bcm_l2_filter_arp_table_update(dhdp->osh, ifp->phnd_arp_table, TRUE, NULL,
FALSE, dhdp->tickcnt);
}
return BCME_OK;
}
bool dhd_parp_discard_is_enabled(dhd_pub_t *dhdp, uint32 idx)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
ASSERT(ifp);
return ifp->parp_discard;
}
bool
dhd_parp_allnode_is_enabled(dhd_pub_t *dhdp, uint32 idx)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
ASSERT(ifp);
return ifp->parp_allnode;
}
int dhd_get_dhcp_unicast_status(dhd_pub_t *dhdp, uint32 idx)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
ASSERT(ifp);
return ifp->dhcp_unicast;
}
int dhd_set_dhcp_unicast_status(dhd_pub_t *dhdp, uint32 idx, int val)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
ASSERT(ifp);
ifp->dhcp_unicast = val;
return BCME_OK;
}
int dhd_get_block_ping_status(dhd_pub_t *dhdp, uint32 idx)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
ASSERT(ifp);
return ifp->block_ping;
}
int dhd_set_block_ping_status(dhd_pub_t *dhdp, uint32 idx, int val)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
ASSERT(ifp);
ifp->block_ping = val;
return BCME_OK;
}
int dhd_get_grat_arp_status(dhd_pub_t *dhdp, uint32 idx)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
ASSERT(ifp);
return ifp->grat_arp;
}
int dhd_set_grat_arp_status(dhd_pub_t *dhdp, uint32 idx, int val)
{
dhd_info_t *dhd = dhdp->info;
dhd_if_t *ifp;
ASSERT(idx < DHD_MAX_IFS);
ifp = dhd->iflist[idx];
ASSERT(ifp);
ifp->grat_arp = val;
return BCME_OK;
}
#endif /* DHD_L2_FILTER */
#if defined(SET_RPS_CPUS)
int dhd_rps_cpus_enable(struct net_device *net, int enable)
{
dhd_info_t *dhd = DHD_DEV_INFO(net);
dhd_if_t *ifp;
int ifidx;
char * RPS_CPU_SETBUF;
ifidx = dhd_net2idx(dhd, net);
if (ifidx == DHD_BAD_IF) {
DHD_ERROR(("%s bad ifidx\n", __FUNCTION__));
return -ENODEV;
}
if (ifidx == PRIMARY_INF) {
if (dhd->pub.op_mode == DHD_FLAG_IBSS_MODE) {
DHD_INFO(("%s : set for IBSS.\n", __FUNCTION__));
RPS_CPU_SETBUF = RPS_CPUS_MASK_IBSS;
} else {
DHD_INFO(("%s : set for BSS.\n", __FUNCTION__));
RPS_CPU_SETBUF = RPS_CPUS_MASK;
}
} else if (ifidx == VIRTUAL_INF) {
DHD_INFO(("%s : set for P2P.\n", __FUNCTION__));
RPS_CPU_SETBUF = RPS_CPUS_MASK_P2P;
} else {
DHD_ERROR(("%s : Invalid index : %d.\n", __FUNCTION__, ifidx));
return -EINVAL;
}
ifp = dhd->iflist[ifidx];
if (ifp) {
if (enable) {
DHD_INFO(("%s : set rps_cpus as [%s]\n", __FUNCTION__, RPS_CPU_SETBUF));
custom_rps_map_set(ifp->net->_rx, RPS_CPU_SETBUF, strlen(RPS_CPU_SETBUF));
} else {
custom_rps_map_clear(ifp->net->_rx);
}
} else {
DHD_ERROR(("%s : ifp is NULL!!\n", __FUNCTION__));
return -ENODEV;
}
return BCME_OK;
}
int custom_rps_map_set(struct netdev_rx_queue *queue, char *buf, size_t len)
{
struct rps_map *old_map, *map;
cpumask_var_t mask;
int err, cpu, i;
static DEFINE_SPINLOCK(rps_map_lock);
DHD_INFO(("%s : Entered.\n", __FUNCTION__));
if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
DHD_ERROR(("%s : alloc_cpumask_var fail.\n", __FUNCTION__));
return -ENOMEM;
}
err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
if (err) {
free_cpumask_var(mask);
DHD_ERROR(("%s : bitmap_parse fail.\n", __FUNCTION__));
return err;
}
map = kzalloc(max_t(unsigned int,
RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
GFP_KERNEL);
if (!map) {
free_cpumask_var(mask);
DHD_ERROR(("%s : map malloc fail.\n", __FUNCTION__));
return -ENOMEM;
}
i = 0;
for_each_cpu(cpu, mask) {
map->cpus[i++] = cpu;
}
if (i) {
map->len = i;
} else {
kfree(map);
map = NULL;
free_cpumask_var(mask);
DHD_ERROR(("%s : mapping cpu fail.\n", __FUNCTION__));
return -1;
}
spin_lock(&rps_map_lock);
old_map = rcu_dereference_protected(queue->rps_map,
lockdep_is_held(&rps_map_lock));
rcu_assign_pointer(queue->rps_map, map);
spin_unlock(&rps_map_lock);
if (map) {
static_key_slow_inc(&rps_needed);
}
if (old_map) {
kfree_rcu(old_map, rcu);
static_key_slow_dec(&rps_needed);
}
free_cpumask_var(mask);
DHD_INFO(("%s : Done. mapping cpu nummber : %d\n", __FUNCTION__, map->len));
return map->len;
}
void custom_rps_map_clear(struct netdev_rx_queue *queue)
{
struct rps_map *map;
DHD_INFO(("%s : Entered.\n", __FUNCTION__));
map = rcu_dereference_protected(queue->rps_map, 1);
if (map) {
RCU_INIT_POINTER(queue->rps_map, NULL);
kfree_rcu(map, rcu);
DHD_INFO(("%s : rps_cpus map clear.\n", __FUNCTION__));
}
}
#endif
#ifdef DHD_DEBUG_PAGEALLOC
void
dhd_page_corrupt_cb(void *handle, void *addr_corrupt, size_t len)
{
dhd_pub_t *dhdp = (dhd_pub_t *)handle;
DHD_ERROR(("%s: Got dhd_page_corrupt_cb 0x%p %d\n",
__FUNCTION__, addr_corrupt, (uint32)len));
DHD_OS_WAKE_LOCK(dhdp);
prhex("Page Corruption:", addr_corrupt, len);
dhd_dump_to_kernelog(dhdp);
#if defined(BCMPCIE) && defined(DHD_FW_COREDUMP)
/* Load the dongle side dump to host memory and then BUG_ON() */
dhdp->memdump_enabled = DUMP_MEMONLY;
dhdp->memdump_type = DUMP_TYPE_MEMORY_CORRUPTION;
dhd_bus_mem_dump(dhdp);
#endif /* BCMPCIE && DHD_FW_COREDUMP */
DHD_OS_WAKE_UNLOCK(dhdp);
}
EXPORT_SYMBOL(dhd_page_corrupt_cb);
#endif /* DHD_DEBUG_PAGEALLOC */
#ifdef DHD_PKTID_AUDIT_ENABLED
void
dhd_pktid_audit_fail_cb(dhd_pub_t *dhdp)
{
DHD_ERROR(("%s: Got Pkt Id Audit failure \n", __FUNCTION__));
DHD_OS_WAKE_LOCK(dhdp);
dhd_dump_to_kernelog(dhdp);
#if defined(BCMPCIE) && defined(DHD_FW_COREDUMP)
/* Load the dongle side dump to host memory and then BUG_ON() */
dhdp->memdump_enabled = DUMP_MEMFILE_BUGON;
dhdp->memdump_type = DUMP_TYPE_PKTID_AUDIT_FAILURE;
dhd_bus_mem_dump(dhdp);
#endif /* BCMPCIE && DHD_FW_COREDUMP */
DHD_OS_WAKE_UNLOCK(dhdp);
}
#endif /* DHD_PKTID_AUDIT_ENABLED */
/* ----------------------------------------------------------------------------
* Infrastructure code for sysfs interface support for DHD
*
* What is sysfs interface?
* https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
*
* Why sysfs interface?
* This is the Linux standard way of changing/configuring Run Time parameters
* for a driver. We can use this interface to control "linux" specific driver
* parameters.
*
* -----------------------------------------------------------------------------
*/
#include <linux/sysfs.h>
#include <linux/kobject.h>
#if defined(DHD_TRACE_WAKE_LOCK)
/* Function to show the history buffer */
static ssize_t
show_wklock_trace(struct dhd_info *dev, char *buf)
{
ssize_t ret = 0;
dhd_info_t *dhd = (dhd_info_t *)dev;
buf[ret] = '\n';
buf[ret+1] = 0;
dhd_wk_lock_stats_dump(&dhd->pub);
return ret+1;
}
/* Function to enable/disable wakelock trace */
static ssize_t
wklock_trace_onoff(struct dhd_info *dev, const char *buf, size_t count)
{
unsigned long onoff;
unsigned long flags;
dhd_info_t *dhd = (dhd_info_t *)dev;
onoff = bcm_strtoul(buf, NULL, 10);
if (onoff != 0 && onoff != 1) {
return -EINVAL;
}
spin_lock_irqsave(&dhd->wakelock_spinlock, flags);
trace_wklock_onoff = onoff;
spin_unlock_irqrestore(&dhd->wakelock_spinlock, flags);
if (trace_wklock_onoff) {
printk("ENABLE WAKLOCK TRACE\n");
} else {
printk("DISABLE WAKELOCK TRACE\n");
}
return (ssize_t)(onoff+1);
}
#endif /* DHD_TRACE_WAKE_LOCK */
/*
* Generic Attribute Structure for DHD.
* If we have to add a new sysfs entry under /sys/bcm-dhd/, we have
* to instantiate an object of type dhd_attr, populate it with
* the required show/store functions (ex:- dhd_attr_cpumask_primary)
* and add the object to default_attrs[] array, that gets registered
* to the kobject of dhd (named bcm-dhd).
*/
struct dhd_attr {
struct attribute attr;
ssize_t(*show)(struct dhd_info *, char *);
ssize_t(*store)(struct dhd_info *, const char *, size_t count);
};
#if defined(DHD_TRACE_WAKE_LOCK)
static struct dhd_attr dhd_attr_wklock =
__ATTR(wklock_trace, 0660, show_wklock_trace, wklock_trace_onoff);
#endif /* defined(DHD_TRACE_WAKE_LOCK */
/* Attribute object that gets registered with "bcm-dhd" kobject tree */
static struct attribute *default_attrs[] = {
#if defined(DHD_TRACE_WAKE_LOCK)
&dhd_attr_wklock.attr,
#endif
NULL
};
#define to_dhd(k) container_of(k, struct dhd_info, dhd_kobj)
#define to_attr(a) container_of(a, struct dhd_attr, attr)
/*
* bcm-dhd kobject show function, the "attr" attribute specifices to which
* node under "bcm-dhd" the show function is called.
*/
static ssize_t dhd_show(struct kobject *kobj, struct attribute *attr, char *buf)
{
dhd_info_t *dhd = to_dhd(kobj);
struct dhd_attr *d_attr = to_attr(attr);
int ret;
if (d_attr->show)
ret = d_attr->show(dhd, buf);
else
ret = -EIO;
return ret;
}
/*
* bcm-dhd kobject show function, the "attr" attribute specifices to which
* node under "bcm-dhd" the store function is called.
*/
static ssize_t dhd_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
dhd_info_t *dhd = to_dhd(kobj);
struct dhd_attr *d_attr = to_attr(attr);
int ret;
if (d_attr->store)
ret = d_attr->store(dhd, buf, count);
else
ret = -EIO;
return ret;
}
static struct sysfs_ops dhd_sysfs_ops = {
.show = dhd_show,
.store = dhd_store,
};
static struct kobj_type dhd_ktype = {
.sysfs_ops = &dhd_sysfs_ops,
.default_attrs = default_attrs,
};
/* Create a kobject and attach to sysfs interface */
static int dhd_sysfs_init(dhd_info_t *dhd)
{
int ret = -1;
if (dhd == NULL) {
DHD_ERROR(("%s(): dhd is NULL \r\n", __FUNCTION__));
return ret;
}
/* Initialize the kobject */
ret = kobject_init_and_add(&dhd->dhd_kobj, &dhd_ktype, NULL, "bcm-dhd");
if (ret) {
kobject_put(&dhd->dhd_kobj);
DHD_ERROR(("%s(): Unable to allocate kobject \r\n", __FUNCTION__));
return ret;
}
/*
* We are always responsible for sending the uevent that the kobject
* was added to the system.
*/
kobject_uevent(&dhd->dhd_kobj, KOBJ_ADD);
return ret;
}
/* Done with the kobject and detach the sysfs interface */
static void dhd_sysfs_exit(dhd_info_t *dhd)
{
if (dhd == NULL) {
DHD_ERROR(("%s(): dhd is NULL \r\n", __FUNCTION__));
return;
}
/* Releae the kobject */
kobject_put(&dhd->dhd_kobj);
}
/* ---------------------------- End of sysfs implementation ------------------------------------- */
#ifdef DHD_LOG_DUMP
void
dhd_log_dump_init(dhd_pub_t *dhd)
{
spin_lock_init(&dhd->dld_buf.lock);
#if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP)
dhd->dld_buf.buffer = DHD_OS_PREALLOC(dhd,
DHD_PREALLOC_DHD_LOG_DUMP_BUF, DHD_LOG_DUMP_BUFFER_SIZE);
#else
dhd->dld_buf.buffer = kmalloc(DHD_LOG_DUMP_BUFFER_SIZE, GFP_KERNEL);
#endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */
if (!dhd->dld_buf.buffer) {
dhd->dld_buf.buffer = kmalloc(DHD_LOG_DUMP_BUFFER_SIZE, GFP_KERNEL);
DHD_ERROR(("Try to allocate memory using kmalloc().\n"));
if (!dhd->dld_buf.buffer) {
DHD_ERROR(("Failed to allocate memory for dld_buf.\n"));
return;
}
}
dhd->dld_buf.wraparound = 0;
dhd->dld_buf.max = (unsigned long)dhd->dld_buf.buffer + DHD_LOG_DUMP_BUFFER_SIZE;
dhd->dld_buf.present = dhd->dld_buf.buffer;
dhd->dld_buf.front = dhd->dld_buf.buffer;
dhd->dld_buf.remain = DHD_LOG_DUMP_BUFFER_SIZE;
dhd->dld_enable = 1;
}
void
dhd_log_dump_deinit(dhd_pub_t *dhd)
{
dhd->dld_enable = 0;
#if defined(CONFIG_DHD_USE_STATIC_BUF) && defined(DHD_USE_STATIC_MEMDUMP)
DHD_OS_PREFREE(dhd,
dhd->dld_buf.buffer, DHD_LOG_DUMP_BUFFER_SIZE);
#else
kfree(dhd->dld_buf.buffer);
#endif /* CONFIG_DHD_USE_STATIC_BUF && DHD_USE_STATIC_MEMDUMP */
}
void
dhd_log_dump_print(const char *fmt, ...)
{
int len = 0;
char tmp_buf[DHD_LOG_DUMP_MAX_TEMP_BUFFER_SIZE] = {0, };
va_list args;
dhd_pub_t *dhd = NULL;
unsigned long flags = 0;
if (wl_get_bcm_cfg80211_ptr()) {
dhd = (dhd_pub_t*)(wl_get_bcm_cfg80211_ptr()->pub);
}
if (!dhd || dhd->dld_enable != 1) {
return;
}
va_start(args, fmt);
len = vsnprintf(tmp_buf, DHD_LOG_DUMP_MAX_TEMP_BUFFER_SIZE, fmt, args);
if (len < 0) {
return;
}
/* make a critical section to eliminate race conditions */
spin_lock_irqsave(&dhd->dld_buf.lock, flags);
if (dhd->dld_buf.remain < len) {
dhd->dld_buf.wraparound = 1;
dhd->dld_buf.present = dhd->dld_buf.front;
dhd->dld_buf.remain = DHD_LOG_DUMP_BUFFER_SIZE;
}
strncpy(dhd->dld_buf.present, tmp_buf, len);
dhd->dld_buf.remain -= len;
dhd->dld_buf.present += len;
spin_unlock_irqrestore(&dhd->dld_buf.lock, flags);
/* double check invalid memory operation */
ASSERT((unsigned long)dhd->dld_buf.present <= dhd->dld_buf.max);
va_end(args);
}
char*
dhd_log_dump_get_timestamp(void)
{
static char buf[16];
u64 ts_nsec;
unsigned long rem_nsec;
ts_nsec = local_clock();
rem_nsec = do_div(ts_nsec, 1000000000);
snprintf(buf, sizeof(buf), "%5lu.%06lu",
(unsigned long)ts_nsec, rem_nsec / 1000);
return buf;
}
#endif /* DHD_LOG_DUMP */
#ifdef DHD_DEBUG_UART
static void
dhd_debug_uart_exec(char *cmd)
{
int ret;
char *argv[] = {DHD_DEBUG_UART_EXEC_PATH, cmd, NULL};
char *envp[] = {"HOME=/", "TERM=linux", "PATH=/sbin:/system/bin", NULL};
ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
DHD_ERROR(("DHD: %s - run %s %s ret = %d\n",
__FUNCTION__, DHD_DEBUG_UART_EXEC_PATH, cmd, ret));
}
#endif
int
dhd_write_file(const char *filepath, char *buf, int buf_len)
{
struct file *fp = NULL;
mm_segment_t old_fs;
int ret = 0;
/* change to KERNEL_DS address limit */
old_fs = get_fs();
set_fs(KERNEL_DS);
/* File is always created. */
fp = filp_open(filepath, O_RDWR | O_CREAT, 0666);
if (IS_ERR(fp)) {
DHD_ERROR(("%s: Couldn't open file '%s'\n",
__FUNCTION__, filepath));
return BCME_ERROR;
} else {
if (fp->f_mode & FMODE_WRITE) {
ret = fp->f_op->write(fp, buf, buf_len, &fp->f_pos);
if (ret < 0) {
DHD_ERROR(("%s: Couldn't write file '%s'\n",
__FUNCTION__, filepath));
ret = BCME_ERROR;
}
}
}
filp_close(fp, NULL);
/* restore previous address limit */
set_fs(old_fs);
return ret;
}
int
dhd_read_file(const char *filepath, char *buf, int buf_len)
{
struct file *fp = NULL;
mm_segment_t old_fs;
int ret;
/* change to KERNEL_DS address limit */
old_fs = get_fs();
set_fs(KERNEL_DS);
fp = filp_open(filepath, O_RDONLY, 0);
if (IS_ERR(fp)) {
DHD_ERROR(("%s: File %s doesn't exist\n", __FUNCTION__, filepath));
return BCME_ERROR;
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(4, 13, 0))
ret = kernel_read(fp, buf, buf_len, 0);
#else
ret = kernel_read(fp, 0, buf, buf_len);
#endif
filp_close(fp, NULL);
/* restore previous address limit */
set_fs(old_fs);
/* Return the number of bytes read */
if (ret > 0) {
/* Success to read */
ret = 0;
} else {
DHD_ERROR(("%s: Couldn't read the file %s, ret=%d\n",
__FUNCTION__, filepath, ret));
ret = BCME_ERROR;
}
return ret;
}
int
dhd_write_file_and_check(const char *filepath, char *buf, int buf_len)
{
int ret;
ret = dhd_write_file(filepath, buf, buf_len);
if (ret < 0) {
return ret;
}
/* Read the file again and check if the file size is not zero */
memset(buf, 0, buf_len);
ret = dhd_read_file(filepath, buf, buf_len);
return ret;
}
#ifdef DHD_BANDSTEER
/*
* Function return true only if there exactly two GO interfaces
* TODO: Make it flexible to have AP + AP
*/
s32
dhd_bandsteer_get_ifaces(void *pub, void *ifaces)
{
dhd_if_t *iflist; /* For supporting multiple interfaces */
uint8 idx;
uint8 ap_idx_count = 0;
dhd_pub_t *dhd = (dhd_pub_t *) pub;
dhd_bandsteer_iface_info_t *bsd_ifp = (dhd_bandsteer_iface_info_t *)ifaces;
DHD_INFO(("%s: entered\n", __FUNCTION__));
for (idx = 0; idx < DHD_MAX_IFS; idx++) {
iflist = dhd->info->iflist[idx];
if (iflist == NULL) {
continue;
}
if (iflist->net != NULL) {
if (iflist->net->ieee80211_ptr != NULL) {
if (
(iflist->net->ieee80211_ptr->iftype == NL80211_IFTYPE_P2P_GO) ||
(iflist->net->ieee80211_ptr->iftype == NL80211_IFTYPE_AP)) {
ap_idx_count++;
if (ap_idx_count > 2) {
continue;
}
bsd_ifp->ndev = iflist->net;
bsd_ifp->bssidx = iflist->bssidx;
bsd_ifp++;
}
}
}
}
if (ap_idx_count == 2) {
return BCME_OK;
} else {
return BCME_ERROR;
}
}
void
dhd_bandsteer_schedule_work_on_timeout(dhd_bandsteer_mac_entry_t *dhd_bandsteer_mac)
{
dhd_bandsteer_context_t *dhd_bandsteer_cntx = dhd_bandsteer_mac->dhd_bandsteer_cntx;
dhd_pub_t *dhd = (dhd_pub_t *) dhd_bandsteer_cntx->dhd_pub;
dhd_deferred_schedule_work(dhd->info->dhd_deferred_wq,
(void *)dhd_bandsteer_mac, DHD_WQ_WORK_BANDSTEER_STEP_MOVE,
dhd_bandsteer_workqueue_wrapper, DHD_WORK_PRIORITY_LOW);
}
#endif /* DHD_BANDSTEER */
#ifdef BCM_AUTO_FWCRC
/*
* extracts CRC field from the firmware binary
*/
int dhd_extract_crc(char *filename)
{
struct file *fp = NULL;
char crcchk[9] = {0};
int crc = 0;
int ret = 0;
fp = filp_open(filename, O_RDONLY, 0);
if (IS_ERR(fp)) {
DHD_ERROR(("%s: File %s doesn't exist\n", __FUNCTION__, filename));
return BCME_ERROR;
}
ret = generic_file_llseek(fp, -(8), SEEK_END);
if ((ret < 0) || (ret < 8)) {
DHD_ERROR(("%s: file seek failed:%d\n", __FUNCTION__, ret));
crc = ret;
goto err;
}
#if (LINUX_VERSION_CODE > KERNEL_VERSION(4, 13, 0))
ret = kernel_read(fp, crcchk, 8, &ret);
#else
ret = kernel_read(fp, ret, crcchk, 8);
#endif
if (ret < 0) {
DHD_ERROR(("read failed\n"));
crc = ret;
goto err;
}
if (!bcm_atoicrc(crcchk, &crc)) {
DHD_INFO(("%s crc:%x\n", __FUNCTION__, crc));
} else {
DHD_ERROR(("%s crc_int failed\n", __FUNCTION__));
crc = BCME_ERROR;
goto err;
}
if (!crc || crc == CRC32_INIT_VALUE) {
DHD_ERROR(("%s invalid crc\n", __FUNCTION__));
crc = BCME_ERROR;
}
err: if (fp)
filp_close(fp, NULL);
return crc;
}
#define IS_SIZE_VALID(size) (size >= MEMBLOCK ? TRUE:FALSE)
/*
* validates firmware image crc
*/
int dhd_check_firmware_image(char *memptr, char *filename)
{
char *imgbuf = NULL;
int crcval = CRC32_INIT_VALUE;
int len = 0;
int totlen = 0;
int size = 0;
int crcchk;
int ret = 0;
if (filename == NULL)
return BCME_ERROR;
size = dhd_os_file_size(filename);
if (!IS_SIZE_VALID(size)) {
DHD_ERROR(("Invalid file size %s\n", __FUNCTION__));
return BCME_ERROR;
}
crcchk = dhd_extract_crc(filename);
if (crcchk == BCME_ERROR) {
ret = BCME_ERROR;
goto err;
}
DHD_INFO(("crcval:%x\n", crcchk));
if (!memptr) {
DHD_ERROR(("%s memory alloc failed\n", __FUNCTION__));
ret = BCME_ERROR;
goto err;
}
imgbuf = dhd_os_open_image(filename);
if (imgbuf == NULL) {
DHD_ERROR(("%s file is not proper\n", __FUNCTION__));
ret = BCME_ERROR;
goto err;
}
while ((len = dhd_os_get_image_block((char*)memptr, MEMBLOCK, imgbuf))) {
if (len < 0) {
DHD_ERROR(("%s: dhd_os_get_image_block failed (%d)\n", __FUNCTION__, len));
break;
}
wipedates(memptr, MEMBLOCK);
totlen += len;
if (size == totlen) {
len -= 21;
totlen -= 21;
}
crcval = hndcrc32(memptr, len, crcval);
}
DHD_INFO(("%s crcval:%X totlen:%d\n", __FUNCTION__, crcval, totlen));
if (crcchk == crcval) {
DHD_INFO(("%scrc match\n", __FUNCTION__));
ret = 0;
} else {
DHD_ERROR(("%scrc match failure crcchk:%x crcval:%x\n",
__FUNCTION__, crcchk, crcval));
ret = BCME_ERROR;
}
err: if (imgbuf)
dhd_os_close_image(imgbuf);
return ret;
}
#endif /* BCM_AUTO_FWCRC */