tegrakernel/kernel/nvidia/drivers/net/wireless/bcmdhd_pcie/dhd_msgbuf.c

6430 lines
192 KiB
C

/**
* @file definition of host message ring functionality
* Provides type definitions and function prototypes used to link the
* DHD OS, bus, and protocol modules.
*
* Portions of this code are copyright (c) 2017 Cypress Semiconductor Corporation
*
* Copyright (C) 1999-2017, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
*
* <<Broadcom-WL-IPTag/Open:>>
*
* $Id: dhd_msgbuf.c 664367 2017-03-23 09:23:22Z $
*/
#include <typedefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <bcmmsgbuf.h>
#include <bcmendian.h>
#include <dngl_stats.h>
#include <dhd.h>
#include <dhd_proto.h>
#include <dhd_bus.h>
#include <dhd_dbg.h>
#include <siutils.h>
#include <dhd_flowring.h>
#include <pcie_core.h>
#include <bcmpcie.h>
#include <dhd_pcie.h>
#if defined(DHD_LB)
#include <linux/cpu.h>
#include <bcm_ring.h>
#define DHD_LB_WORKQ_SZ (8192)
#define DHD_LB_WORKQ_SYNC (16)
#define DHD_LB_WORK_SCHED (DHD_LB_WORKQ_SYNC * 2)
#endif /* DHD_LB */
/**
* Host configures a soft doorbell for d2h rings, by specifying a 32bit host
* address where a value must be written. Host may also interrupt coalescing
* on this soft doorbell.
* Use Case: Hosts with network processors, may register with the dongle the
* network processor's thread wakeup register and a value corresponding to the
* core/thread context. Dongle will issue a write transaction <address,value>
* to the PCIE RC which will need to be routed to the mapped register space, by
* the host.
*/
/* #define DHD_D2H_SOFT_DOORBELL_SUPPORT */
/* Dependency Check */
#if defined(IOCTLRESP_USE_CONSTMEM) && defined(DHD_USE_STATIC_CTRLBUF)
#error "DHD_USE_STATIC_CTRLBUF is NOT working with DHD_USE_OSLPKT_FOR_RESPBUF"
#endif /* IOCTLRESP_USE_CONSTMEM && DHD_USE_STATIC_CTRLBUF */
#define RETRIES 2 /* # of retries to retrieve matching ioctl response */
#define DEFAULT_RX_BUFFERS_TO_POST 256
#define RXBUFPOST_THRESHOLD 32
#define RX_BUF_BURST 32 /* Rx buffers for MSDU Data */
#define DHD_STOP_QUEUE_THRESHOLD 200
#define DHD_START_QUEUE_THRESHOLD 100
#define RX_DMA_OFFSET 8 /* Mem2mem DMA inserts an extra 8 */
#define IOCT_RETBUF_SIZE (RX_DMA_OFFSET + WLC_IOCTL_MAXLEN)
#define FLOWRING_SIZE (H2DRING_TXPOST_MAX_ITEM * H2DRING_TXPOST_ITEMSIZE)
/* flags for ioctl pending status */
#define MSGBUF_IOCTL_ACK_PENDING (1<<0)
#define MSGBUF_IOCTL_RESP_PENDING (1<<1)
#define DMA_ALIGN_LEN 4
#define DMA_D2H_SCRATCH_BUF_LEN 8
#define DMA_XFER_LEN_LIMIT 0x400000
#define DHD_FLOWRING_IOCTL_BUFPOST_PKTSZ 8192
#define DHD_FLOWRING_MAX_EVENTBUF_POST 8
#define DHD_FLOWRING_MAX_IOCTLRESPBUF_POST 8
#define DHD_PROT_FUNCS 37
/* Length of buffer in host for bus throughput measurement */
#define DHD_BUS_TPUT_BUF_LEN 2048
#define TXP_FLUSH_NITEMS
/* optimization to write "n" tx items at a time to ring */
#define TXP_FLUSH_MAX_ITEMS_FLUSH_CNT 48
#define RING_NAME_MAX_LENGTH 24
struct msgbuf_ring; /* ring context for common and flow rings */
/**
* PCIE D2H DMA Complete Sync Modes
*
* Firmware may interrupt the host, prior to the D2H Mem2Mem DMA completes into
* Host system memory. A WAR using one of 3 approaches is needed:
* 1. Dongle places a modulo-253 seqnum in last word of each D2H message
* 2. XOR Checksum, with epoch# in each work item. Dongle builds an XOR checksum
* writes in the last word of each work item. Each work item has a seqnum
* number = sequence num % 253.
*
* 3. Read Barrier: Dongle does a host memory read access prior to posting an
* interrupt, ensuring that D2H data transfer indeed completed.
* 4. Dongle DMA's all indices after producing items in the D2H ring, flushing
* ring contents before the indices.
*
* Host does not sync for DMA to complete with option #3 or #4, and a noop sync
* callback (see dhd_prot_d2h_sync_none) may be bound.
*
* Dongle advertizes host side sync mechanism requirements.
*/
#define PCIE_D2H_SYNC
#if defined(PCIE_D2H_SYNC)
#define PCIE_D2H_SYNC_WAIT_TRIES (512UL)
#define PCIE_D2H_SYNC_NUM_OF_STEPS (3UL)
#define PCIE_D2H_SYNC_DELAY (50UL) /* in terms of usecs */
/**
* Custom callback attached based upon D2H DMA Sync mode advertized by dongle.
*
* On success: return cmn_msg_hdr_t::msg_type
* On failure: return 0 (invalid msg_type)
*/
typedef uint8 (* d2h_sync_cb_t)(dhd_pub_t *dhd, struct msgbuf_ring *ring,
volatile cmn_msg_hdr_t *msg, int msglen);
#endif /* PCIE_D2H_SYNC */
/*
* +----------------------------------------------------------------------------
*
* RingIds and FlowId are not equivalent as ringids include D2H rings whereas
* flowids do not.
*
* Dongle advertizes the max H2D rings, as max_sub_queues = 'N' which includes
* the H2D common rings as well as the (N-BCMPCIE_H2D_COMMON_MSGRINGS) flowrings
*
* Here is a sample mapping for (based on PCIE Full Dongle Rev5) where,
* BCMPCIE_H2D_COMMON_MSGRINGS = 2, i.e. 2 H2D common rings,
* BCMPCIE_COMMON_MSGRINGS = 5, i.e. include 3 D2H common rings.
*
* H2D Control Submit RingId = 0 FlowId = 0 reserved never allocated
* H2D RxPost Submit RingId = 1 FlowId = 1 reserved never allocated
*
* D2H Control Complete RingId = 2
* D2H Transmit Complete RingId = 3
* D2H Receive Complete RingId = 4
*
* H2D TxPost FLOWRING RingId = 5 FlowId = 2 (1st flowring)
* H2D TxPost FLOWRING RingId = 6 FlowId = 3 (2nd flowring)
* H2D TxPost FLOWRING RingId = 5 + (N-1) FlowId = (N-1) (Nth flowring)
*
* When TxPost FlowId(s) are allocated, the FlowIds [0..FLOWID_RESERVED) are
* unused, where FLOWID_RESERVED is BCMPCIE_H2D_COMMON_MSGRINGS.
*
* Example: when a system supports 4 bc/mc and 128 uc flowrings, with
* BCMPCIE_H2D_COMMON_MSGRINGS = 2, and BCMPCIE_H2D_COMMON_MSGRINGS = 5, and the
* FlowId values would be in the range [2..133] and the corresponding
* RingId values would be in the range [5..136].
*
* The flowId allocator, may chose to, allocate Flowids:
* bc/mc (per virtual interface) in one consecutive range [2..(2+VIFS))
* X# of uc flowids in consecutive ranges (per station Id), where X is the
* packet's access category (e.g. 4 uc flowids per station).
*
* CAUTION:
* When DMA indices array feature is used, RingId=5, corresponding to the 0th
* FLOWRING, will actually use the FlowId as index into the H2D DMA index,
* since the FlowId truly represents the index in the H2D DMA indices array.
*
* Likewise, in the D2H direction, the RingId - BCMPCIE_H2D_COMMON_MSGRINGS,
* will represent the index in the D2H DMA indices array.
*
* +----------------------------------------------------------------------------
*/
/* First TxPost Flowring Id */
#define DHD_FLOWRING_START_FLOWID BCMPCIE_H2D_COMMON_MSGRINGS
/* Determine whether a ringid belongs to a TxPost flowring */
#define DHD_IS_FLOWRING(ringid) \
((ringid) >= BCMPCIE_COMMON_MSGRINGS)
/* Convert a H2D TxPost FlowId to a MsgBuf RingId */
#define DHD_FLOWID_TO_RINGID(flowid) \
(BCMPCIE_COMMON_MSGRINGS + ((flowid) - BCMPCIE_H2D_COMMON_MSGRINGS))
/* Convert a MsgBuf RingId to a H2D TxPost FlowId */
#define DHD_RINGID_TO_FLOWID(ringid) \
(BCMPCIE_H2D_COMMON_MSGRINGS + ((ringid) - BCMPCIE_COMMON_MSGRINGS))
/* Convert a H2D MsgBuf RingId to an offset index into the H2D DMA indices array
* This may be used for the H2D DMA WR index array or H2D DMA RD index array or
* any array of H2D rings.
*/
#define DHD_H2D_RING_OFFSET(ringid) \
((DHD_IS_FLOWRING(ringid)) ? DHD_RINGID_TO_FLOWID(ringid) : (ringid))
/* Convert a D2H MsgBuf RingId to an offset index into the D2H DMA indices array
* This may be used for the D2H DMA WR index array or D2H DMA RD index array or
* any array of D2H rings.
*/
#define DHD_D2H_RING_OFFSET(ringid) \
((ringid) - BCMPCIE_H2D_COMMON_MSGRINGS)
/* Convert a D2H DMA Indices Offset to a RingId */
#define DHD_D2H_RINGID(offset) \
((offset) + BCMPCIE_H2D_COMMON_MSGRINGS)
#define DHD_DMAH_NULL ((void*)NULL)
/*
* Pad a DMA-able buffer by an additional cachline. If the end of the DMA-able
* buffer does not occupy the entire cacheline, and another object is placed
* following the DMA-able buffer, data corruption may occur if the DMA-able
* buffer is used to DMAing into (e.g. D2H direction), when HW cache coherency
* is not available.
*/
#if defined(L1_CACHE_BYTES)
#define DHD_DMA_PAD (L1_CACHE_BYTES)
#else
#define DHD_DMA_PAD (128)
#endif
/* Used in loopback tests */
typedef struct dhd_dmaxfer {
dhd_dma_buf_t srcmem;
dhd_dma_buf_t dstmem;
uint32 srcdelay;
uint32 destdelay;
uint32 len;
bool in_progress;
} dhd_dmaxfer_t;
/**
* msgbuf_ring : This object manages the host side ring that includes a DMA-able
* buffer, the WR and RD indices, ring parameters such as max number of items
* an length of each items, and other miscellaneous runtime state.
* A msgbuf_ring may be used to represent a H2D or D2H common ring or a
* H2D TxPost ring as specified in the PCIE FullDongle Spec.
* Ring parameters are conveyed to the dongle, which maintains its own peer end
* ring state. Depending on whether the DMA Indices feature is supported, the
* host will update the WR/RD index in the DMA indices array in host memory or
* directly in dongle memory.
*/
typedef struct msgbuf_ring {
bool inited;
uint16 idx; /* ring id */
uint16 rd; /* read index */
uint16 curr_rd; /* read index for debug */
uint16 wr; /* write index */
uint16 max_items; /* maximum number of items in ring */
uint16 item_len; /* length of each item in the ring */
sh_addr_t base_addr; /* LITTLE ENDIAN formatted: base address */
dhd_dma_buf_t dma_buf; /* DMA-able buffer: pa, va, len, dmah, secdma */
uint32 seqnum; /* next expected item's sequence number */
#ifdef TXP_FLUSH_NITEMS
void *start_addr;
/* # of messages on ring not yet announced to dongle */
uint16 pend_items_count;
#endif /* TXP_FLUSH_NITEMS */
uchar name[RING_NAME_MAX_LENGTH];
} msgbuf_ring_t;
#define DHD_RING_BGN_VA(ring) ((ring)->dma_buf.va)
#define DHD_RING_END_VA(ring) \
((uint8 *)(DHD_RING_BGN_VA((ring))) + \
(((ring)->max_items - 1) * (ring)->item_len))
/** DHD protocol handle. Is an opaque type to other DHD software layers. */
typedef struct dhd_prot {
osl_t *osh; /* OSL handle */
uint16 rxbufpost;
uint16 max_rxbufpost;
uint16 max_eventbufpost;
uint16 max_ioctlrespbufpost;
uint16 cur_event_bufs_posted;
uint16 cur_ioctlresp_bufs_posted;
/* Flow control mechanism based on active transmits pending */
uint16 active_tx_count; /* increments on every packet tx, and decrements on tx_status */
uint16 max_tx_count;
uint16 txp_threshold; /* optimization to write "n" tx items at a time to ring */
/* MsgBuf Ring info: has a dhd_dma_buf that is dynamically allocated */
msgbuf_ring_t h2dring_ctrl_subn; /* H2D ctrl message submission ring */
msgbuf_ring_t h2dring_rxp_subn; /* H2D RxBuf post ring */
msgbuf_ring_t d2hring_ctrl_cpln; /* D2H ctrl completion ring */
msgbuf_ring_t d2hring_tx_cpln; /* D2H Tx complete message ring */
msgbuf_ring_t d2hring_rx_cpln; /* D2H Rx complete message ring */
msgbuf_ring_t *h2d_flowrings_pool; /* Pool of preallocated flowings */
dhd_dma_buf_t flowrings_dma_buf; /* Contiguous DMA buffer for flowrings */
uint16 h2d_rings_total; /* total H2D (common rings + flowrings) */
uint32 rx_dataoffset;
dhd_mb_ring_t mb_ring_fn; /* called when dongle needs to be notified of new msg */
/* ioctl related resources */
uint8 ioctl_state;
int16 ioctl_status; /* status returned from dongle */
uint16 ioctl_resplen;
dhd_ioctl_recieved_status_t ioctl_received;
uint curr_ioctl_cmd;
dhd_dma_buf_t retbuf; /* For holding ioctl response */
dhd_dma_buf_t ioctbuf; /* For holding ioctl request */
dhd_dma_buf_t d2h_dma_scratch_buf; /* For holding d2h scratch */
/* DMA-able arrays for holding WR and RD indices */
uint32 rw_index_sz; /* Size of a RD or WR index in dongle */
dhd_dma_buf_t h2d_dma_indx_wr_buf; /* Array of H2D WR indices */
dhd_dma_buf_t h2d_dma_indx_rd_buf; /* Array of H2D RD indices */
dhd_dma_buf_t d2h_dma_indx_wr_buf; /* Array of D2H WR indices */
dhd_dma_buf_t d2h_dma_indx_rd_buf; /* Array of D2H RD indices */
dhd_dma_buf_t host_bus_throughput_buf; /* bus throughput measure buffer */
dhd_dma_buf_t *flowring_buf; /* pool of flow ring buf */
uint32 flowring_num;
#if defined(PCIE_D2H_SYNC)
d2h_sync_cb_t d2h_sync_cb; /* Sync on D2H DMA done: SEQNUM or XORCSUM */
ulong d2h_sync_wait_max; /* max number of wait loops to receive one msg */
ulong d2h_sync_wait_tot; /* total wait loops */
#endif /* PCIE_D2H_SYNC */
dhd_dmaxfer_t dmaxfer; /* for test/DMA loopback */
uint16 ioctl_seq_no;
uint16 data_seq_no;
uint16 ioctl_trans_id;
void *pktid_map_handle; /* a pktid maps to a packet and its metadata */
bool metadata_dbg;
void *pktid_map_handle_ioctl;
/* Applications/utilities can read tx and rx metadata using IOVARs */
uint16 rx_metadata_offset;
uint16 tx_metadata_offset;
#if defined(DHD_D2H_SOFT_DOORBELL_SUPPORT)
/* Host's soft doorbell configuration */
bcmpcie_soft_doorbell_t soft_doorbell[BCMPCIE_D2H_COMMON_MSGRINGS];
#endif /* DHD_D2H_SOFT_DOORBELL_SUPPORT */
#if defined(DHD_LB)
/* Work Queues to be used by the producer and the consumer, and threshold
* when the WRITE index must be synced to consumer's workq
*/
#if defined(DHD_LB_TXC)
uint32 tx_compl_prod_sync ____cacheline_aligned;
bcm_workq_t tx_compl_prod, tx_compl_cons;
#endif /* DHD_LB_TXC */
#if defined(DHD_LB_RXC)
uint32 rx_compl_prod_sync ____cacheline_aligned;
bcm_workq_t rx_compl_prod, rx_compl_cons;
#endif /* DHD_LB_RXC */
#endif /* DHD_LB */
} dhd_prot_t;
/* Convert a dmaaddr_t to a base_addr with htol operations */
static INLINE void dhd_base_addr_htolpa(sh_addr_t *base_addr, dmaaddr_t pa);
/* APIs for managing a DMA-able buffer */
static int dhd_dma_buf_audit(dhd_pub_t *dhd, dhd_dma_buf_t *dma_buf);
static int dhd_dma_buf_alloc(dhd_pub_t *dhd, dhd_dma_buf_t *dma_buf, uint32 buf_len);
static void dhd_dma_buf_reset(dhd_pub_t *dhd, dhd_dma_buf_t *dma_buf);
static void dhd_dma_buf_free(dhd_pub_t *dhd, dhd_dma_buf_t *dma_buf);
/* msgbuf ring management */
static int dhd_prot_ring_attach(dhd_pub_t *dhd, msgbuf_ring_t *ring,
const char *name, uint16 max_items, uint16 len_item, uint16 ringid);
static void dhd_prot_ring_init(dhd_pub_t *dhd, msgbuf_ring_t *ring);
static void dhd_prot_ring_reset(dhd_pub_t *dhd, msgbuf_ring_t *ring);
static void dhd_prot_ring_detach(dhd_pub_t *dhd, msgbuf_ring_t *ring);
/* Pool of pre-allocated msgbuf_ring_t with DMA-able buffers for Flowrings */
static int dhd_prot_flowrings_pool_attach(dhd_pub_t *dhd);
static void dhd_prot_flowrings_pool_reset(dhd_pub_t *dhd);
static void dhd_prot_flowrings_pool_detach(dhd_pub_t *dhd);
/* Fetch and Release a flowring msgbuf_ring from flowring pool */
static msgbuf_ring_t *dhd_prot_flowrings_pool_fetch(dhd_pub_t *dhd,
uint16 flowid);
/* see also dhd_prot_flowrings_pool_release() in dhd_prot.h */
/* Producer: Allocate space in a msgbuf ring */
static void* dhd_prot_alloc_ring_space(dhd_pub_t *dhd, msgbuf_ring_t *ring,
uint16 nitems, uint16 *alloced, bool exactly_nitems);
static void* dhd_prot_get_ring_space(msgbuf_ring_t *ring, uint16 nitems,
uint16 *alloced, bool exactly_nitems);
/* Consumer: Determine the location where the next message may be consumed */
static uint8* dhd_prot_get_read_addr(dhd_pub_t *dhd, msgbuf_ring_t *ring,
uint32 *available_len);
/* Producer (WR index update) or Consumer (RD index update) indication */
static void dhd_prot_ring_write_complete(dhd_pub_t *dhd, msgbuf_ring_t *ring,
void *p, uint16 len);
static void dhd_prot_upd_read_idx(dhd_pub_t *dhd, msgbuf_ring_t *ring);
/* Allocate DMA-able memory for saving H2D/D2H WR/RD indices */
static INLINE int dhd_prot_dma_indx_alloc(dhd_pub_t *dhd, uint8 type,
dhd_dma_buf_t *dma_buf, uint32 bufsz);
/* Set/Get a RD or WR index in the array of indices */
/* See also: dhd_prot_dma_indx_init() */
static void dhd_prot_dma_indx_set(dhd_pub_t *dhd, uint16 new_index, uint8 type,
uint16 ringid);
static uint16 dhd_prot_dma_indx_get(dhd_pub_t *dhd, uint8 type, uint16 ringid);
/* Locate a packet given a pktid */
static INLINE void *dhd_prot_packet_get(dhd_pub_t *dhd, uint32 pktid, uint8 pkttype,
bool free_pktid);
/* Locate a packet given a PktId and free it. */
static INLINE void dhd_prot_packet_free(dhd_pub_t *dhd, void *pkt, uint8 pkttype, bool send);
static int dhd_msgbuf_query_ioctl(dhd_pub_t *dhd, int ifidx, uint cmd,
void *buf, uint len, uint8 action);
static int dhd_msgbuf_set_ioctl(dhd_pub_t *dhd, int ifidx, uint cmd,
void *buf, uint len, uint8 action);
static int dhd_msgbuf_wait_ioctl_cmplt(dhd_pub_t *dhd, uint32 len, void *buf);
static int dhd_fillup_ioct_reqst(dhd_pub_t *dhd, uint16 len, uint cmd,
void *buf, int ifidx);
/* Post buffers for Rx, control ioctl response and events */
static uint16 dhd_msgbuf_rxbuf_post_ctrlpath(dhd_pub_t *dhd, bool event_buf, uint32 max_to_post);
static void dhd_msgbuf_rxbuf_post_ioctlresp_bufs(dhd_pub_t *pub);
static void dhd_msgbuf_rxbuf_post_event_bufs(dhd_pub_t *pub);
static void dhd_msgbuf_rxbuf_post(dhd_pub_t *dhd, bool use_rsv_pktid);
static int dhd_prot_rxbuf_post(dhd_pub_t *dhd, uint16 count, bool use_rsv_pktid);
static void dhd_prot_return_rxbuf(dhd_pub_t *dhd, uint32 pktid, uint32 rxcnt);
/* D2H Message handling */
static int dhd_prot_process_msgtype(dhd_pub_t *dhd, msgbuf_ring_t *ring, uint8 *buf, uint32 len);
/* D2H Message handlers */
static void dhd_prot_noop(dhd_pub_t *dhd, void *msg);
static void dhd_prot_txstatus_process(dhd_pub_t *dhd, void *msg);
static void dhd_prot_ioctcmplt_process(dhd_pub_t *dhd, void *msg);
static void dhd_prot_ioctack_process(dhd_pub_t *dhd, void *msg);
static void dhd_prot_ringstatus_process(dhd_pub_t *dhd, void *msg);
static void dhd_prot_genstatus_process(dhd_pub_t *dhd, void *msg);
static void dhd_prot_rxcmplt_process(dhd_pub_t *dhd, void *msg);
static void dhd_prot_event_process(dhd_pub_t *dhd, void *msg);
/* Loopback test with dongle */
static void dmaxfer_free_dmaaddr(dhd_pub_t *dhd, dhd_dmaxfer_t *dma);
static int dmaxfer_prepare_dmaaddr(dhd_pub_t *dhd, uint len, uint srcdelay,
uint destdelay, dhd_dmaxfer_t *dma);
static void dhd_msgbuf_dmaxfer_process(dhd_pub_t *dhd, void *msg);
/* Flowring management communication with dongle */
static void dhd_prot_flow_ring_create_response_process(dhd_pub_t *dhd, void *msg);
static void dhd_prot_flow_ring_delete_response_process(dhd_pub_t *dhd, void *msg);
static void dhd_prot_flow_ring_flush_response_process(dhd_pub_t *dhd, void *msg);
/* Configure a soft doorbell per D2H ring */
static void dhd_msgbuf_ring_config_d2h_soft_doorbell(dhd_pub_t *dhd);
static void dhd_prot_d2h_ring_config_cmplt_process(dhd_pub_t *dhd, void *msg);
typedef void (*dhd_msgbuf_func_t)(dhd_pub_t *dhd, void *msg);
/** callback functions for messages generated by the dongle */
#define MSG_TYPE_INVALID 0
static dhd_msgbuf_func_t table_lookup[DHD_PROT_FUNCS] = {
dhd_prot_noop, /* 0 is MSG_TYPE_INVALID */
dhd_prot_genstatus_process, /* MSG_TYPE_GEN_STATUS */
dhd_prot_ringstatus_process, /* MSG_TYPE_RING_STATUS */
NULL,
dhd_prot_flow_ring_create_response_process, /* MSG_TYPE_FLOW_RING_CREATE_CMPLT */
NULL,
dhd_prot_flow_ring_delete_response_process, /* MSG_TYPE_FLOW_RING_DELETE_CMPLT */
NULL,
dhd_prot_flow_ring_flush_response_process, /* MSG_TYPE_FLOW_RING_FLUSH_CMPLT */
NULL,
dhd_prot_ioctack_process, /* MSG_TYPE_IOCTLPTR_REQ_ACK */
NULL,
dhd_prot_ioctcmplt_process, /* MSG_TYPE_IOCTL_CMPLT */
NULL,
dhd_prot_event_process, /* MSG_TYPE_WL_EVENT */
NULL,
dhd_prot_txstatus_process, /* MSG_TYPE_TX_STATUS */
NULL,
dhd_prot_rxcmplt_process, /* MSG_TYPE_RX_CMPLT */
NULL,
dhd_msgbuf_dmaxfer_process, /* MSG_TYPE_LPBK_DMAXFER_CMPLT */
NULL, /* MSG_TYPE_FLOW_RING_RESUME */
NULL, /* MSG_TYPE_FLOW_RING_RESUME_CMPLT */
NULL, /* MSG_TYPE_FLOW_RING_SUSPEND */
NULL, /* MSG_TYPE_FLOW_RING_SUSPEND_CMPLT */
NULL, /* MSG_TYPE_INFO_BUF_POST */
NULL, /* MSG_TYPE_INFO_BUF_CMPLT */
NULL, /* MSG_TYPE_H2D_RING_CREATE */
NULL, /* MSG_TYPE_D2H_RING_CREATE */
NULL, /* MSG_TYPE_H2D_RING_CREATE_CMPLT */
NULL, /* MSG_TYPE_D2H_RING_CREATE_CMPLT */
NULL, /* MSG_TYPE_H2D_RING_CONFIG */
NULL, /* MSG_TYPE_D2H_RING_CONFIG */
NULL, /* MSG_TYPE_H2D_RING_CONFIG_CMPLT */
dhd_prot_d2h_ring_config_cmplt_process, /* MSG_TYPE_D2H_RING_CONFIG_CMPLT */
NULL, /* MSG_TYPE_H2D_MAILBOX_DATA */
NULL, /* MSG_TYPE_D2H_MAILBOX_DATA */
};
#ifdef DHD_RX_CHAINING
#define PKT_CTF_CHAINABLE(dhd, ifidx, evh, prio, h_sa, h_da, h_prio) \
(!ETHER_ISNULLDEST(((struct ether_header *)(evh))->ether_dhost) && \
!ETHER_ISMULTI(((struct ether_header *)(evh))->ether_dhost) && \
!eacmp((h_da), ((struct ether_header *)(evh))->ether_dhost) && \
!eacmp((h_sa), ((struct ether_header *)(evh))->ether_shost) && \
((h_prio) == (prio)) && (dhd_ctf_hotbrc_check((dhd), (evh), (ifidx))) && \
((((struct ether_header *)(evh))->ether_type == HTON16(ETHER_TYPE_IP)) || \
(((struct ether_header *)(evh))->ether_type == HTON16(ETHER_TYPE_IPV6))) && \
dhd_l2_filter_chainable((dhd), (evh), (ifidx)))
static INLINE void BCMFASTPATH dhd_rxchain_reset(rxchain_info_t *rxchain);
static void BCMFASTPATH dhd_rxchain_frame(dhd_pub_t *dhd, void *pkt, uint ifidx);
static void BCMFASTPATH dhd_rxchain_commit(dhd_pub_t *dhd);
#define DHD_PKT_CTF_MAX_CHAIN_LEN 64
#endif /* DHD_RX_CHAINING */
static void dhd_prot_h2d_sync_init(dhd_pub_t *dhd);
#if defined(PCIE_D2H_SYNC) /* avoids problems related to host CPU cache */
/**
* D2H DMA to completion callback handlers. Based on the mode advertised by the
* dongle through the PCIE shared region, the appropriate callback will be
* registered in the proto layer to be invoked prior to precessing any message
* from a D2H DMA ring. If the dongle uses a read barrier or another mode that
* does not require host participation, then a noop callback handler will be
* bound that simply returns the msg_type.
*/
static void dhd_prot_d2h_sync_livelock(dhd_pub_t *dhd, msgbuf_ring_t *ring,
uint32 tries, uchar *msg, int msglen);
static uint8 dhd_prot_d2h_sync_seqnum(dhd_pub_t *dhd, msgbuf_ring_t *ring,
volatile cmn_msg_hdr_t *msg, int msglen);
static uint8 dhd_prot_d2h_sync_xorcsum(dhd_pub_t *dhd, msgbuf_ring_t *ring,
volatile cmn_msg_hdr_t *msg, int msglen);
static uint8 dhd_prot_d2h_sync_none(dhd_pub_t *dhd, msgbuf_ring_t *ring,
volatile cmn_msg_hdr_t *msg, int msglen);
static void dhd_prot_d2h_sync_init(dhd_pub_t *dhd);
void dhd_prot_collect_memdump(dhd_pub_t *dhd)
{
DHD_ERROR(("%s(): Collecting mem dump now \r\n", __FUNCTION__));
#ifdef DHD_FW_COREDUMP
if (dhd->memdump_enabled) {
/* collect core dump */
dhd->memdump_type = DUMP_TYPE_BY_LIVELOCK;
dhd_bus_mem_dump(dhd);
}
#endif /* DHD_FW_COREDUMP */
#ifdef SUPPORT_LINKDOWN_RECOVERY
#ifdef CONFIG_ARCH_MSM
dhd->bus->no_cfg_restore = 1;
#endif /* CONFIG_ARCH_MSM */
dhd->hang_reason = HANG_REASON_MSGBUF_LIVELOCK;
dhd_os_send_hang_message(dhd);
#endif /* SUPPORT_LINKDOWN_RECOVERY */
}
/**
* dhd_prot_d2h_sync_livelock - when the host determines that a DMA transfer has
* not completed, a livelock condition occurs. Host will avert this livelock by
* dropping this message and moving to the next. This dropped message can lead
* to a packet leak, or even something disastrous in the case the dropped
* message happens to be a control response.
* Here we will log this condition. One may choose to reboot the dongle.
*
*/
static void
dhd_prot_d2h_sync_livelock(dhd_pub_t *dhd, msgbuf_ring_t *ring, uint32 tries,
uchar *msg, int msglen)
{
uint32 seqnum = ring->seqnum;
DHD_ERROR(("LIVELOCK DHD<%p> name<%s> seqnum<%u:%u> tries<%u> max<%lu> tot<%lu>"
"dma_buf va<%p> msg<%p> curr_rd<%d>\n",
dhd, ring->name, seqnum, seqnum% D2H_EPOCH_MODULO, tries,
dhd->prot->d2h_sync_wait_max, dhd->prot->d2h_sync_wait_tot,
ring->dma_buf.va, msg, ring->curr_rd));
prhex("D2H MsgBuf Failure", (uchar *)msg, msglen);
dhd_dump_to_kernelog(dhd);
#ifdef DHD_FW_COREDUMP
if (dhd->memdump_enabled) {
/* collect core dump */
dhd->memdump_type = DUMP_TYPE_BY_LIVELOCK;
dhd_bus_mem_dump(dhd);
}
#endif /* DHD_FW_COREDUMP */
#ifdef SUPPORT_LINKDOWN_RECOVERY
#ifdef CONFIG_ARCH_MSM
dhd->bus->no_cfg_restore = 1;
#endif /* CONFIG_ARCH_MSM */
dhd->hang_reason = HANG_REASON_MSGBUF_LIVELOCK;
dhd_os_send_hang_message(dhd);
#endif /* SUPPORT_LINKDOWN_RECOVERY */
}
/**
* dhd_prot_d2h_sync_seqnum - Sync on a D2H DMA completion using the SEQNUM
* mode. Sequence number is always in the last word of a message.
*/
static uint8 BCMFASTPATH
dhd_prot_d2h_sync_seqnum(dhd_pub_t *dhd, msgbuf_ring_t *ring,
volatile cmn_msg_hdr_t *msg, int msglen)
{
uint32 tries;
uint32 ring_seqnum = ring->seqnum % D2H_EPOCH_MODULO;
int num_words = msglen / sizeof(uint32); /* num of 32bit words */
volatile uint32 *marker = (uint32 *)msg + (num_words - 1); /* last word */
dhd_prot_t *prot = dhd->prot;
uint32 step = 0;
uint32 delay = PCIE_D2H_SYNC_DELAY;
uint32 total_tries = 0;
ASSERT(msglen == ring->item_len);
BCM_REFERENCE(delay);
/*
* For retries we have to make some sort of stepper algorithm.
* We see that every time when the Dongle comes out of the D3
* Cold state, the first D2H mem2mem DMA takes more time to
* complete, leading to livelock issues.
*
* Case 1 - Apart from Host CPU some other bus master is
* accessing the DDR port, probably page close to the ring
* so, PCIE does not get a change to update the memory.
* Solution - Increase the number of tries.
*
* Case 2 - The 50usec delay given by the Host CPU is not
* sufficient for the PCIe RC to start its work.
* In this case the breathing time of 50usec given by
* the Host CPU is not sufficient.
* Solution: Increase the delay in a stepper fashion.
* This is done to ensure that there are no
* unwanted extra delay introdcued in normal conditions.
*/
for (step = 1; step <= PCIE_D2H_SYNC_NUM_OF_STEPS; step++) {
for (tries = 1; tries <= PCIE_D2H_SYNC_WAIT_TRIES; tries++) {
uint32 msg_seqnum = *marker;
if (ltoh32(msg_seqnum) == ring_seqnum) { /* dma upto last word done */
ring->seqnum++; /* next expected sequence number */
goto dma_completed;
}
total_tries = ((step-1) * PCIE_D2H_SYNC_WAIT_TRIES) + tries;
if (total_tries > prot->d2h_sync_wait_max)
prot->d2h_sync_wait_max = total_tries;
OSL_CACHE_INV(msg, msglen); /* invalidate and try again */
OSL_CPU_RELAX(); /* CPU relax for msg_seqnum value to update */
#if defined(CONFIG_ARCH_MSM8996) || defined(CONFIG_SOC_EXYNOS8890)
/* For ARM there is no pause in cpu_relax, so add extra delay */
OSL_DELAY(delay * step);
#endif /* defined(CONFIG_ARCH_MSM8996) || defined(CONFIG_SOC_EXYNOS8890) */
} /* for PCIE_D2H_SYNC_WAIT_TRIES */
} /* for number of steps */
dhd_prot_d2h_sync_livelock(dhd, ring, total_tries, (uchar *)msg, msglen);
ring->seqnum++; /* skip this message ... leak of a pktid */
return MSG_TYPE_INVALID; /* invalid msg_type 0 -> noop callback */
dma_completed:
prot->d2h_sync_wait_tot += total_tries;
return msg->msg_type;
}
/**
* dhd_prot_d2h_sync_xorcsum - Sync on a D2H DMA completion using the XORCSUM
* mode. The xorcsum is placed in the last word of a message. Dongle will also
* place a seqnum in the epoch field of the cmn_msg_hdr.
*/
static uint8 BCMFASTPATH
dhd_prot_d2h_sync_xorcsum(dhd_pub_t *dhd, msgbuf_ring_t *ring,
volatile cmn_msg_hdr_t *msg, int msglen)
{
uint32 tries;
uint32 prot_checksum = 0; /* computed checksum */
int num_words = msglen / sizeof(uint32); /* num of 32bit words */
uint8 ring_seqnum = ring->seqnum % D2H_EPOCH_MODULO;
dhd_prot_t *prot = dhd->prot;
uint32 step = 0;
uint32 delay = PCIE_D2H_SYNC_DELAY;
uint32 total_tries = 0;
ASSERT(msglen == ring->item_len);
BCM_REFERENCE(delay);
/*
* For retries we have to make some sort of stepper algorithm.
* We see that every time when the Dongle comes out of the D3
* Cold state, the first D2H mem2mem DMA takes more time to
* complete, leading to livelock issues.
*
* Case 1 - Apart from Host CPU some other bus master is
* accessing the DDR port, probably page close to the ring
* so, PCIE does not get a change to update the memory.
* Solution - Increase the number of tries.
*
* Case 2 - The 50usec delay given by the Host CPU is not
* sufficient for the PCIe RC to start its work.
* In this case the breathing time of 50usec given by
* the Host CPU is not sufficient.
* Solution: Increase the delay in a stepper fashion.
* This is done to ensure that there are no
* unwanted extra delay introdcued in normal conditions.
*/
for (step = 1; step <= PCIE_D2H_SYNC_NUM_OF_STEPS; step++) {
for (tries = 1; tries <= PCIE_D2H_SYNC_WAIT_TRIES; tries++) {
prot_checksum = bcm_compute_xor32((volatile uint32 *)msg, num_words);
if (prot_checksum == 0U) { /* checksum is OK */
if (msg->epoch == ring_seqnum) {
ring->seqnum++; /* next expected sequence number */
goto dma_completed;
}
}
total_tries = ((step-1) * PCIE_D2H_SYNC_WAIT_TRIES) + tries;
if (total_tries > prot->d2h_sync_wait_max)
prot->d2h_sync_wait_max = total_tries;
OSL_CACHE_INV(msg, msglen); /* invalidate and try again */
OSL_CPU_RELAX(); /* CPU relax for msg_seqnum value to update */
#if defined(CONFIG_ARCH_MSM8996) || defined(CONFIG_SOC_EXYNOS8890)
/* For ARM there is no pause in cpu_relax, so add extra delay */
OSL_DELAY(delay * step);
#endif /* defined(CONFIG_ARCH_MSM8996) || defined(CONFIG_SOC_EXYNOS8890) */
} /* for PCIE_D2H_SYNC_WAIT_TRIES */
} /* for number of steps */
dhd_prot_d2h_sync_livelock(dhd, ring, total_tries, (uchar *)msg, msglen);
ring->seqnum++; /* skip this message ... leak of a pktid */
return MSG_TYPE_INVALID; /* invalid msg_type 0 -> noop callback */
dma_completed:
prot->d2h_sync_wait_tot += total_tries;
return msg->msg_type;
}
/**
* dhd_prot_d2h_sync_none - Dongle ensure that the DMA will complete and host
* need to try to sync. This noop sync handler will be bound when the dongle
* advertises that neither the SEQNUM nor XORCSUM mode of DMA sync is required.
*/
static uint8 BCMFASTPATH
dhd_prot_d2h_sync_none(dhd_pub_t *dhd, msgbuf_ring_t *ring,
volatile cmn_msg_hdr_t *msg, int msglen)
{
return msg->msg_type;
}
/**
* dhd_prot_d2h_sync_init - Setup the host side DMA sync mode based on what
* dongle advertizes.
*/
static void
dhd_prot_d2h_sync_init(dhd_pub_t *dhd)
{
dhd_prot_t *prot = dhd->prot;
prot->d2h_sync_wait_max = 0UL;
prot->d2h_sync_wait_tot = 0UL;
prot->d2hring_ctrl_cpln.seqnum = D2H_EPOCH_INIT_VAL;
prot->d2hring_tx_cpln.seqnum = D2H_EPOCH_INIT_VAL;
prot->d2hring_rx_cpln.seqnum = D2H_EPOCH_INIT_VAL;
if (dhd->d2h_sync_mode & PCIE_SHARED_D2H_SYNC_SEQNUM) {
prot->d2h_sync_cb = dhd_prot_d2h_sync_seqnum;
} else if (dhd->d2h_sync_mode & PCIE_SHARED_D2H_SYNC_XORCSUM) {
prot->d2h_sync_cb = dhd_prot_d2h_sync_xorcsum;
} else {
prot->d2h_sync_cb = dhd_prot_d2h_sync_none;
}
}
#endif /* PCIE_D2H_SYNC */
int INLINE
dhd_wakeup_ioctl_event(dhd_pub_t *dhd, dhd_ioctl_recieved_status_t reason)
{
/* To synchronize with the previous memory operations call wmb() */
OSL_SMP_WMB();
dhd->prot->ioctl_received = reason;
/* Call another wmb() to make sure before waking up the other event value gets updated */
OSL_SMP_WMB();
dhd_os_ioctl_resp_wake(dhd);
return 0;
}
/**
* dhd_prot_h2d_sync_init - Per H2D common ring, setup the msgbuf ring seqnum
*/
static void
dhd_prot_h2d_sync_init(dhd_pub_t *dhd)
{
dhd_prot_t *prot = dhd->prot;
prot->h2dring_rxp_subn.seqnum = H2D_EPOCH_INIT_VAL;
prot->h2dring_ctrl_subn.seqnum = H2D_EPOCH_INIT_VAL;
}
/* +----------------- End of PCIE DHD H2D DMA SYNC ------------------------+ */
/*
* +---------------------------------------------------------------------------+
* PCIE DMA-able buffer. Sets up a dhd_dma_buf_t object, which includes the
* virtual and physical address, the buffer lenght and the DMA handler.
* A secdma handler is also included in the dhd_dma_buf object.
* +---------------------------------------------------------------------------+
*/
static INLINE void
dhd_base_addr_htolpa(sh_addr_t *base_addr, dmaaddr_t pa)
{
base_addr->low_addr = htol32(PHYSADDRLO(pa));
base_addr->high_addr = htol32(PHYSADDRHI(pa));
}
/**
* dhd_dma_buf_audit - Any audits on a DHD DMA Buffer.
*/
static int
dhd_dma_buf_audit(dhd_pub_t *dhd, dhd_dma_buf_t *dma_buf)
{
uint32 base, end; /* dongle uses 32bit ptr arithmetic */
ASSERT(dma_buf);
base = PHYSADDRLO(dma_buf->pa);
ASSERT(base);
ASSERT(ISALIGNED(base, DMA_ALIGN_LEN));
ASSERT(dma_buf->len != 0);
/* test 32bit offset arithmetic over dma buffer for loss of carry-over */
end = (base + dma_buf->len); /* end address */
if ((end & 0xFFFFFFFF) < (base & 0xFFFFFFFF)) { /* exclude carryover */
DHD_ERROR(("%s: dma_buf %x len %d spans dongle 32bit ptr arithmetic\n",
__FUNCTION__, base, dma_buf->len));
return BCME_ERROR;
}
return BCME_OK;
}
/**
* dhd_dma_buf_alloc - Allocate a cache coherent DMA-able buffer.
* returns BCME_OK=0 on success
* returns non-zero negative error value on failure.
*/
static int
dhd_dma_buf_alloc(dhd_pub_t *dhd, dhd_dma_buf_t *dma_buf, uint32 buf_len)
{
uint32 dma_pad = 0;
osl_t *osh = dhd->osh;
ASSERT(dma_buf != NULL);
ASSERT(dma_buf->va == NULL);
ASSERT(dma_buf->len == 0);
/* Pad the buffer length by one extra cacheline size.
* Required for D2H direction.
*/
dma_pad = (buf_len % DHD_DMA_PAD) ? DHD_DMA_PAD : 0;
dma_buf->va = DMA_ALLOC_CONSISTENT(osh, buf_len + dma_pad,
DMA_ALIGN_LEN, &dma_buf->_alloced, &dma_buf->pa, &dma_buf->dmah);
if (dma_buf->va == NULL) {
DHD_ERROR(("%s: buf_len %d, no memory available\n",
__FUNCTION__, buf_len));
return BCME_NOMEM;
}
dma_buf->len = buf_len; /* not including padded len */
if (dhd_dma_buf_audit(dhd, dma_buf) != BCME_OK) { /* audit dma buf */
dhd_dma_buf_free(dhd, dma_buf);
return BCME_ERROR;
}
dhd_dma_buf_reset(dhd, dma_buf); /* zero out and cache flush */
return BCME_OK;
}
/**
* dhd_dma_buf_reset - Reset a cache coherent DMA-able buffer.
*/
static void
dhd_dma_buf_reset(dhd_pub_t *dhd, dhd_dma_buf_t *dma_buf)
{
if ((dma_buf == NULL) || (dma_buf->va == NULL)) {
return;
}
(void)dhd_dma_buf_audit(dhd, dma_buf);
/* Zero out the entire buffer and cache flush */
memset((void*)dma_buf->va, 0, dma_buf->len);
OSL_CACHE_FLUSH((void *)dma_buf->va, dma_buf->len);
}
/**
* dhd_dma_buf_free - Free a DMA-able buffer that was previously allocated using
* dhd_dma_buf_alloc().
*/
static void
dhd_dma_buf_free(dhd_pub_t *dhd, dhd_dma_buf_t *dma_buf)
{
osl_t *osh = dhd->osh;
ASSERT(dma_buf);
if (dma_buf->va == NULL) {
return; /* Allow for free invocation, when alloc failed */
}
/* DEBUG: dhd_dma_buf_reset(dhd, dma_buf) */
(void)dhd_dma_buf_audit(dhd, dma_buf);
/* dma buffer may have been padded at allocation */
DMA_FREE_CONSISTENT(osh, dma_buf->va, dma_buf->_alloced,
dma_buf->pa, dma_buf->dmah);
memset(dma_buf, 0, sizeof(dhd_dma_buf_t));
}
/**
* dhd_dma_buf_init - Initialize a dhd_dma_buf with speicifed values.
* Do not use dhd_dma_buf_init to zero out a dhd_dma_buf_t object. Use memset 0.
*/
void
dhd_dma_buf_init(dhd_pub_t *dhd, void *dhd_dma_buf,
void *va, uint32 len, dmaaddr_t pa, void *dmah, void *secdma)
{
dhd_dma_buf_t *dma_buf;
ASSERT(dhd_dma_buf);
dma_buf = (dhd_dma_buf_t *)dhd_dma_buf;
dma_buf->va = va;
dma_buf->len = len;
dma_buf->pa = pa;
dma_buf->dmah = dmah;
dma_buf->secdma = secdma;
/* Audit user defined configuration */
(void)dhd_dma_buf_audit(dhd, dma_buf);
}
/* +------------------ End of PCIE DHD DMA BUF ADT ------------------------+ */
/*
* +---------------------------------------------------------------------------+
* PktId Map: Provides a native packet pointer to unique 32bit PktId mapping.
* Main purpose is to save memory on the dongle, has other purposes as well.
* The packet id map, also includes storage for some packet parameters that
* may be saved. A native packet pointer along with the parameters may be saved
* and a unique 32bit pkt id will be returned. Later, the saved packet pointer
* and the metadata may be retrieved using the previously allocated packet id.
* +---------------------------------------------------------------------------+
*/
#define DHD_PCIE_PKTID
#define MAX_PKTID_ITEMS (3072) /* Maximum number of pktids supported */
/* On Router, the pktptr serves as a pktid. */
#if defined(PROP_TXSTATUS) && !defined(DHD_PCIE_PKTID)
#error "PKTIDMAP must be supported with PROP_TXSTATUS/WLFC"
#endif
/* Enum for marking the buffer color based on usage */
typedef enum dhd_pkttype {
PKTTYPE_DATA_TX = 0,
PKTTYPE_DATA_RX,
PKTTYPE_IOCTL_RX,
PKTTYPE_EVENT_RX,
/* dhd_prot_pkt_free no check, if pktid reserved and no space avail case */
PKTTYPE_NO_CHECK
} dhd_pkttype_t;
#define DHD_PKTID_INVALID (0U)
#define DHD_IOCTL_REQ_PKTID (0xFFFE)
#define DHD_FAKE_PKTID (0xFACE)
#define DHD_PKTID_FREE_LOCKER (FALSE)
#define DHD_PKTID_RSV_LOCKER (TRUE)
typedef void * dhd_pktid_map_handle_t; /* opaque handle to a pktid map */
/* Construct a packet id mapping table, returning an opaque map handle */
static dhd_pktid_map_handle_t *dhd_pktid_map_init(dhd_pub_t *dhd, uint32 num_items, uint32 index);
/* Destroy a packet id mapping table, freeing all packets active in the table */
static void dhd_pktid_map_fini(dhd_pub_t *dhd, dhd_pktid_map_handle_t *map);
#define PKTID_MAP_HANDLE (0)
#define PKTID_MAP_HANDLE_IOCTL (1)
#define DHD_NATIVE_TO_PKTID_INIT(dhd, items, index) dhd_pktid_map_init((dhd), (items), (index))
#define DHD_NATIVE_TO_PKTID_FINI(dhd, map) dhd_pktid_map_fini((dhd), (map))
#if defined(DHD_PCIE_PKTID)
/* Determine number of pktids that are available */
static INLINE uint32 dhd_pktid_map_avail_cnt(dhd_pktid_map_handle_t *handle);
/* Allocate a unique pktid against which a pkt and some metadata is saved */
static INLINE uint32 dhd_pktid_map_reserve(dhd_pub_t *dhd, dhd_pktid_map_handle_t *handle,
void *pkt);
static INLINE void dhd_pktid_map_save(dhd_pub_t *dhd, dhd_pktid_map_handle_t *handle,
void *pkt, uint32 nkey, dmaaddr_t pa, uint32 len, uint8 dma,
void *dmah, void *secdma, dhd_pkttype_t pkttype);
static uint32 dhd_pktid_map_alloc(dhd_pub_t *dhd, dhd_pktid_map_handle_t *map,
void *pkt, dmaaddr_t pa, uint32 len, uint8 dma,
void *dmah, void *secdma, dhd_pkttype_t pkttype);
/* Return an allocated pktid, retrieving previously saved pkt and metadata */
static void *dhd_pktid_map_free(dhd_pub_t *dhd, dhd_pktid_map_handle_t *map,
uint32 id, dmaaddr_t *pa, uint32 *len, void **dmah,
void **secdma, dhd_pkttype_t pkttype, bool rsv_locker);
/*
* DHD_PKTID_AUDIT_ENABLED: Audit of PktIds in DHD for duplicate alloc and frees
*
* DHD_PKTID_AUDIT_MAP: Audit the LIFO or FIFO PktIdMap allocator
* DHD_PKTID_AUDIT_RING: Audit the pktid during producer/consumer ring operation
*
* CAUTION: When DHD_PKTID_AUDIT_ENABLED is defined,
* either DHD_PKTID_AUDIT_MAP or DHD_PKTID_AUDIT_RING may be selected.
*/
#if defined(DHD_PKTID_AUDIT_ENABLED)
#define USE_DHD_PKTID_AUDIT_LOCK 1
/* Audit the pktidmap allocator */
/* #define DHD_PKTID_AUDIT_MAP */
/* Audit the pktid during production/consumption of workitems */
#define DHD_PKTID_AUDIT_RING
#if defined(DHD_PKTID_AUDIT_MAP) && defined(DHD_PKTID_AUDIT_RING)
#error "May only enabled audit of MAP or RING, at a time."
#endif /* DHD_PKTID_AUDIT_MAP && DHD_PKTID_AUDIT_RING */
#define DHD_DUPLICATE_ALLOC 1
#define DHD_DUPLICATE_FREE 2
#define DHD_TEST_IS_ALLOC 3
#define DHD_TEST_IS_FREE 4
#ifdef USE_DHD_PKTID_AUDIT_LOCK
#define DHD_PKTID_AUDIT_LOCK_INIT(osh) dhd_os_spin_lock_init(osh)
#define DHD_PKTID_AUDIT_LOCK_DEINIT(osh, lock) dhd_os_spin_lock_deinit(osh, lock)
#define DHD_PKTID_AUDIT_LOCK(lock) dhd_os_spin_lock(lock)
#define DHD_PKTID_AUDIT_UNLOCK(lock, flags) dhd_os_spin_unlock(lock, flags)
#else
#define DHD_PKTID_AUDIT_LOCK_INIT(osh) (void *)(1)
#define DHD_PKTID_AUDIT_LOCK_DEINIT(osh, lock) do { /* noop */ } while (0)
#define DHD_PKTID_AUDIT_LOCK(lock) 0
#define DHD_PKTID_AUDIT_UNLOCK(lock, flags) do { /* noop */ } while (0)
#endif /* !USE_DHD_PKTID_AUDIT_LOCK */
#endif /* DHD_PKTID_AUDIT_ENABLED */
/* #define USE_DHD_PKTID_LOCK 1 */
#ifdef USE_DHD_PKTID_LOCK
#define DHD_PKTID_LOCK_INIT(osh) dhd_os_spin_lock_init(osh)
#define DHD_PKTID_LOCK_DEINIT(osh, lock) dhd_os_spin_lock_deinit(osh, lock)
#define DHD_PKTID_LOCK(lock) dhd_os_spin_lock(lock)
#define DHD_PKTID_UNLOCK(lock, flags) dhd_os_spin_unlock(lock, flags)
#else
#define DHD_PKTID_LOCK_INIT(osh) (void *)(1)
#define DHD_PKTID_LOCK_DEINIT(osh, lock) \
do { \
BCM_REFERENCE(osh); \
BCM_REFERENCE(lock); \
} while (0)
#define DHD_PKTID_LOCK(lock) 0
#define DHD_PKTID_UNLOCK(lock, flags) \
do { \
BCM_REFERENCE(lock); \
BCM_REFERENCE(flags); \
} while (0)
#endif /* !USE_DHD_PKTID_LOCK */
/* Packet metadata saved in packet id mapper */
/* The Locker can be 3 states
* LOCKER_IS_FREE - Locker is free and can be allocated
* LOCKER_IS_BUSY - Locker is assigned and is being used, values in the
* locker (buffer address, len, phy addr etc) are populated
* with valid values
* LOCKER_IS_RSVD - The locker is reserved for future use, but the values
* in the locker are not valid. Especially pkt should be
* NULL in this state. When the user wants to re-use the
* locker dhd_pktid_map_free can be called with a flag
* to reserve the pktid for future use, which will clear
* the contents of the locker. When the user calls
* dhd_pktid_map_save the locker would move to LOCKER_IS_BUSY
*/
typedef enum dhd_locker_state {
LOCKER_IS_FREE,
LOCKER_IS_BUSY,
LOCKER_IS_RSVD
} dhd_locker_state_t;
typedef struct dhd_pktid_item {
dhd_locker_state_t state; /* tag a locker to be free, busy or reserved */
uint8 dir; /* dma map direction (Tx=flush or Rx=invalidate) */
dhd_pkttype_t pkttype; /* pktlists are maintained based on pkttype */
uint16 len; /* length of mapped packet's buffer */
void *pkt; /* opaque native pointer to a packet */
dmaaddr_t pa; /* physical address of mapped packet's buffer */
void *dmah; /* handle to OS specific DMA map */
void *secdma;
} dhd_pktid_item_t;
typedef struct dhd_pktid_map {
uint32 items; /* total items in map */
uint32 avail; /* total available items */
int failures; /* lockers unavailable count */
/* Spinlock to protect dhd_pktid_map in process/tasklet context */
void *pktid_lock; /* Used when USE_DHD_PKTID_LOCK is defined */
#if defined(DHD_PKTID_AUDIT_ENABLED)
void *pktid_audit_lock;
struct bcm_mwbmap *pktid_audit; /* multi word bitmap based audit */
#endif /* DHD_PKTID_AUDIT_ENABLED */
uint32 keys[MAX_PKTID_ITEMS + 1]; /* stack of unique pkt ids */
dhd_pktid_item_t lockers[0]; /* metadata storage */
} dhd_pktid_map_t;
/*
* PktId (Locker) #0 is never allocated and is considered invalid.
*
* On request for a pktid, a value DHD_PKTID_INVALID must be treated as a
* depleted pktid pool and must not be used by the caller.
*
* Likewise, a caller must never free a pktid of value DHD_PKTID_INVALID.
*/
#define DHD_PKTID_ITEM_SZ (sizeof(dhd_pktid_item_t))
#define DHD_PKIDMAP_ITEMS(items) (items)
#define DHD_PKTID_MAP_SZ(items) (sizeof(dhd_pktid_map_t) + \
(DHD_PKTID_ITEM_SZ * ((items) + 1)))
#define DHD_NATIVE_TO_PKTID_FINI_IOCTL(dhd, map) dhd_pktid_map_fini_ioctl((dhd), (map))
/* Convert a packet to a pktid, and save pkt pointer in busy locker */
#define DHD_NATIVE_TO_PKTID_RSV(dhd, map, pkt) dhd_pktid_map_reserve((dhd), (map), (pkt))
/* Reuse a previously reserved locker to save packet params */
#define DHD_NATIVE_TO_PKTID_SAVE(dhd, map, pkt, nkey, pa, len, dir, dmah, secdma, pkttype) \
dhd_pktid_map_save((dhd), (map), (void *)(pkt), (nkey), (pa), (uint32)(len), \
(uint8)(dir), (void *)(dmah), (void *)(secdma), \
(dhd_pkttype_t)(pkttype))
/* Convert a packet to a pktid, and save packet params in locker */
#define DHD_NATIVE_TO_PKTID(dhd, map, pkt, pa, len, dir, dmah, secdma, pkttype) \
dhd_pktid_map_alloc((dhd), (map), (void *)(pkt), (pa), (uint32)(len), \
(uint8)(dir), (void *)(dmah), (void *)(secdma), \
(dhd_pkttype_t)(pkttype))
/* Convert pktid to a packet, and free the locker */
#define DHD_PKTID_TO_NATIVE(dhd, map, pktid, pa, len, dmah, secdma, pkttype) \
dhd_pktid_map_free((dhd), (map), (uint32)(pktid), \
(dmaaddr_t *)&(pa), (uint32 *)&(len), (void **)&(dmah), \
(void **) &secdma, (dhd_pkttype_t)(pkttype), DHD_PKTID_FREE_LOCKER)
/* Convert the pktid to a packet, empty locker, but keep it reserved */
#define DHD_PKTID_TO_NATIVE_RSV(dhd, map, pktid, pa, len, dmah, secdma, pkttype) \
dhd_pktid_map_free((dhd), (map), (uint32)(pktid), \
(dmaaddr_t *)&(pa), (uint32 *)&(len), (void **)&(dmah), \
(void **) &secdma, (dhd_pkttype_t)(pkttype), DHD_PKTID_RSV_LOCKER)
#define DHD_PKTID_AVAIL(map) dhd_pktid_map_avail_cnt(map)
#if defined(DHD_PKTID_AUDIT_ENABLED)
static int dhd_pktid_audit(dhd_pub_t *dhd, dhd_pktid_map_t *pktid_map, uint32 pktid,
const int test_for, const char *errmsg);
/**
* dhd_pktid_audit - Use the mwbmap to audit validity of a pktid.
*/
static int
dhd_pktid_audit(dhd_pub_t *dhd, dhd_pktid_map_t *pktid_map, uint32 pktid,
const int test_for, const char *errmsg)
{
#define DHD_PKT_AUDIT_STR "ERROR: %16s Host PktId Audit: "
const uint32 max_pktid_items = (MAX_PKTID_ITEMS);
struct bcm_mwbmap *handle;
uint32 flags;
bool ignore_audit;
if (pktid_map == (dhd_pktid_map_t *)NULL) {
DHD_ERROR((DHD_PKT_AUDIT_STR "Pkt id map NULL\n", errmsg));
return BCME_OK;
}
flags = DHD_PKTID_AUDIT_LOCK(pktid_map->pktid_audit_lock);
handle = pktid_map->pktid_audit;
if (handle == (struct bcm_mwbmap *)NULL) {
DHD_ERROR((DHD_PKT_AUDIT_STR "Handle NULL\n", errmsg));
DHD_PKTID_AUDIT_UNLOCK(pktid_map->pktid_audit_lock, flags);
return BCME_OK;
}
/* Exclude special pktids from audit */
ignore_audit = (pktid == DHD_IOCTL_REQ_PKTID) | (pktid == DHD_FAKE_PKTID);
if (ignore_audit) {
DHD_PKTID_AUDIT_UNLOCK(pktid_map->pktid_audit_lock, flags);
return BCME_OK;
}
if ((pktid == DHD_PKTID_INVALID) || (pktid > max_pktid_items)) {
DHD_ERROR((DHD_PKT_AUDIT_STR "PktId<%d> invalid\n", errmsg, pktid));
/* lock is released in "error" */
goto error;
}
/* Perform audit */
switch (test_for) {
case DHD_DUPLICATE_ALLOC:
if (!bcm_mwbmap_isfree(handle, pktid)) {
DHD_ERROR((DHD_PKT_AUDIT_STR "PktId<%d> alloc duplicate\n",
errmsg, pktid));
goto error;
}
bcm_mwbmap_force(handle, pktid);
break;
case DHD_DUPLICATE_FREE:
if (bcm_mwbmap_isfree(handle, pktid)) {
DHD_ERROR((DHD_PKT_AUDIT_STR "PktId<%d> free duplicate\n",
errmsg, pktid));
goto error;
}
bcm_mwbmap_free(handle, pktid);
break;
case DHD_TEST_IS_ALLOC:
if (bcm_mwbmap_isfree(handle, pktid)) {
DHD_ERROR((DHD_PKT_AUDIT_STR "PktId<%d> is not allocated\n",
errmsg, pktid));
goto error;
}
break;
case DHD_TEST_IS_FREE:
if (!bcm_mwbmap_isfree(handle, pktid)) {
DHD_ERROR((DHD_PKT_AUDIT_STR "PktId<%d> is not free",
errmsg, pktid));
goto error;
}
break;
default:
goto error;
}
DHD_PKTID_AUDIT_UNLOCK(pktid_map->pktid_audit_lock, flags);
return BCME_OK;
error:
DHD_PKTID_AUDIT_UNLOCK(pktid_map->pktid_audit_lock, flags);
/* May insert any trap mechanism here ! */
dhd_pktid_audit_fail_cb(dhd);
return BCME_ERROR;
}
#define DHD_PKTID_AUDIT(dhdp, map, pktid, test_for) \
dhd_pktid_audit((dhdp), (dhd_pktid_map_t *)(map), (pktid), (test_for), __FUNCTION__)
#endif /* DHD_PKTID_AUDIT_ENABLED */
/* +------------------ End of PCIE DHD PKTID AUDIT ------------------------+ */
/**
* +---------------------------------------------------------------------------+
* Packet to Packet Id mapper using a <numbered_key, locker> paradigm.
*
* dhd_pktid_map manages a set of unique Packet Ids range[1..MAX_PKTID_ITEMS].
*
* dhd_pktid_map_alloc() may be used to save some packet metadata, and a unique
* packet id is returned. This unique packet id may be used to retrieve the
* previously saved packet metadata, using dhd_pktid_map_free(). On invocation
* of dhd_pktid_map_free(), the unique packet id is essentially freed. A
* subsequent call to dhd_pktid_map_alloc() may reuse this packet id.
*
* Implementation Note:
* Convert this into a <key,locker> abstraction and place into bcmutils !
* Locker abstraction should treat contents as opaque storage, and a
* callback should be registered to handle busy lockers on destructor.
*
* +---------------------------------------------------------------------------+
*/
/** Allocate and initialize a mapper of num_items <numbered_key, locker> */
static dhd_pktid_map_handle_t *
dhd_pktid_map_init(dhd_pub_t *dhd, uint32 num_items, uint32 index)
{
void *osh;
uint32 nkey;
dhd_pktid_map_t *map;
uint32 dhd_pktid_map_sz;
uint32 map_items;
#ifdef DHD_USE_STATIC_PKTIDMAP
uint32 section;
#endif /* DHD_USE_STATIC_PKTIDMAP */
osh = dhd->osh;
ASSERT((num_items >= 1) && (num_items <= MAX_PKTID_ITEMS));
dhd_pktid_map_sz = DHD_PKTID_MAP_SZ(num_items);
#ifdef DHD_USE_STATIC_PKTIDMAP
if (index == PKTID_MAP_HANDLE) {
section = DHD_PREALLOC_PKTID_MAP;
} else {
section = DHD_PREALLOC_PKTID_MAP_IOCTL;
}
map = (dhd_pktid_map_t *)DHD_OS_PREALLOC(dhd, section, dhd_pktid_map_sz);
#else
map = (dhd_pktid_map_t *)MALLOC(osh, dhd_pktid_map_sz);
#endif /* DHD_USE_STATIC_PKTIDMAP */
if (map == NULL) {
DHD_ERROR(("%s:%d: MALLOC failed for size %d\n",
__FUNCTION__, __LINE__, dhd_pktid_map_sz));
goto error;
}
bzero(map, dhd_pktid_map_sz);
/* Initialize the lock that protects this structure */
map->pktid_lock = DHD_PKTID_LOCK_INIT(osh);
if (map->pktid_lock == NULL) {
DHD_ERROR(("%s:%d: Lock init failed \r\n", __FUNCTION__, __LINE__));
goto error;
}
map->items = num_items;
map->avail = num_items;
map_items = DHD_PKIDMAP_ITEMS(map->items);
#if defined(DHD_PKTID_AUDIT_ENABLED)
/* Incarnate a hierarchical multiword bitmap for auditing pktid allocator */
map->pktid_audit = bcm_mwbmap_init(osh, map_items + 1);
if (map->pktid_audit == (struct bcm_mwbmap *)NULL) {
DHD_ERROR(("%s:%d: pktid_audit init failed\r\n", __FUNCTION__, __LINE__));
goto error;
} else {
DHD_INFO(("%s:%d: pktid_audit init succeeded %d\n",
__FUNCTION__, __LINE__, map_items + 1));
}
map->pktid_audit_lock = DHD_PKTID_AUDIT_LOCK_INIT(osh);
#endif /* DHD_PKTID_AUDIT_ENABLED */
for (nkey = 1; nkey <= map_items; nkey++) { /* locker #0 is reserved */
map->keys[nkey] = nkey; /* populate with unique keys */
map->lockers[nkey].state = LOCKER_IS_FREE;
map->lockers[nkey].pkt = NULL; /* bzero: redundant */
map->lockers[nkey].len = 0;
}
/* Reserve pktid #0, i.e. DHD_PKTID_INVALID to be busy */
map->lockers[DHD_PKTID_INVALID].state = LOCKER_IS_BUSY;
map->lockers[DHD_PKTID_INVALID].pkt = NULL; /* bzero: redundant */
map->lockers[DHD_PKTID_INVALID].len = 0;
#if defined(DHD_PKTID_AUDIT_ENABLED)
/* do not use dhd_pktid_audit() here, use bcm_mwbmap_force directly */
bcm_mwbmap_force(map->pktid_audit, DHD_PKTID_INVALID);
#endif /* DHD_PKTID_AUDIT_ENABLED */
return (dhd_pktid_map_handle_t *)map; /* opaque handle */
error:
if (map) {
#if defined(DHD_PKTID_AUDIT_ENABLED)
if (map->pktid_audit != (struct bcm_mwbmap *)NULL) {
bcm_mwbmap_fini(osh, map->pktid_audit); /* Destruct pktid_audit */
map->pktid_audit = (struct bcm_mwbmap *)NULL;
if (map->pktid_audit_lock)
DHD_PKTID_AUDIT_LOCK_DEINIT(osh, map->pktid_audit_lock);
}
#endif /* DHD_PKTID_AUDIT_ENABLED */
if (map->pktid_lock)
DHD_PKTID_LOCK_DEINIT(osh, map->pktid_lock);
MFREE(osh, map, dhd_pktid_map_sz);
}
return (dhd_pktid_map_handle_t *)NULL;
}
/**
* Retrieve all allocated keys and free all <numbered_key, locker>.
* Freeing implies: unmapping the buffers and freeing the native packet
* This could have been a callback registered with the pktid mapper.
*/
static void
dhd_pktid_map_fini(dhd_pub_t *dhd, dhd_pktid_map_handle_t *handle)
{
void *osh;
uint32 nkey;
dhd_pktid_map_t *map;
uint32 dhd_pktid_map_sz;
dhd_pktid_item_t *locker;
uint32 map_items;
uint32 flags;
if (handle == NULL) {
return;
}
map = (dhd_pktid_map_t *)handle;
flags = DHD_PKTID_LOCK(map->pktid_lock);
osh = dhd->osh;
dhd_pktid_map_sz = DHD_PKTID_MAP_SZ(map->items);
nkey = 1; /* skip reserved KEY #0, and start from 1 */
locker = &map->lockers[nkey];
map_items = DHD_PKIDMAP_ITEMS(map->items);
for (; nkey <= map_items; nkey++, locker++) {
if (locker->state == LOCKER_IS_BUSY) { /* numbered key still in use */
locker->state = LOCKER_IS_FREE; /* force open the locker */
#if defined(DHD_PKTID_AUDIT_ENABLED)
DHD_PKTID_AUDIT(dhd, map, nkey, DHD_DUPLICATE_FREE); /* duplicate frees */
#endif /* DHD_PKTID_AUDIT_ENABLED */
{ /* This could be a callback registered with dhd_pktid_map */
DMA_UNMAP(osh, locker->pa, locker->len,
locker->dir, 0, DHD_DMAH_NULL);
dhd_prot_packet_free(dhd, (ulong*)locker->pkt,
locker->pkttype, TRUE);
}
}
#if defined(DHD_PKTID_AUDIT_ENABLED)
else {
DHD_PKTID_AUDIT(dhd, map, nkey, DHD_TEST_IS_FREE);
}
#endif /* DHD_PKTID_AUDIT_ENABLED */
locker->pkt = NULL; /* clear saved pkt */
locker->len = 0;
}
#if defined(DHD_PKTID_AUDIT_ENABLED)
if (map->pktid_audit != (struct bcm_mwbmap *)NULL) {
bcm_mwbmap_fini(osh, map->pktid_audit); /* Destruct pktid_audit */
map->pktid_audit = (struct bcm_mwbmap *)NULL;
if (map->pktid_audit_lock) {
DHD_PKTID_AUDIT_LOCK_DEINIT(osh, map->pktid_audit_lock);
}
}
#endif /* DHD_PKTID_AUDIT_ENABLED */
DHD_PKTID_UNLOCK(map->pktid_lock, flags);
DHD_PKTID_LOCK_DEINIT(osh, map->pktid_lock);
#ifdef DHD_USE_STATIC_PKTIDMAP
DHD_OS_PREFREE(dhd, handle, dhd_pktid_map_sz);
#else
MFREE(osh, handle, dhd_pktid_map_sz);
#endif /* DHD_USE_STATIC_PKTIDMAP */
}
#ifdef IOCTLRESP_USE_CONSTMEM
/** Called in detach scenario. Releasing IOCTL buffers. */
static void
dhd_pktid_map_fini_ioctl(dhd_pub_t *dhd, dhd_pktid_map_handle_t *handle)
{
uint32 nkey;
dhd_pktid_map_t *map;
uint32 dhd_pktid_map_sz;
dhd_pktid_item_t *locker;
uint32 map_items;
uint32 flags;
osl_t *osh = dhd->osh;
if (handle == NULL) {
return;
}
map = (dhd_pktid_map_t *)handle;
flags = DHD_PKTID_LOCK(map->pktid_lock);
dhd_pktid_map_sz = DHD_PKTID_MAP_SZ(map->items);
nkey = 1; /* skip reserved KEY #0, and start from 1 */
locker = &map->lockers[nkey];
map_items = DHD_PKIDMAP_ITEMS(map->items);
for (; nkey <= map_items; nkey++, locker++) {
if (locker->state == LOCKER_IS_BUSY) { /* numbered key still in use */
locker->state = LOCKER_IS_FREE; /* force open the locker */
#if defined(DHD_PKTID_AUDIT_ENABLED)
DHD_PKTID_AUDIT(dhd, map, nkey, DHD_DUPLICATE_FREE); /* duplicate frees */
#endif /* DHD_PKTID_AUDIT_ENABLED */
{
dhd_dma_buf_t retbuf;
retbuf.va = locker->pkt;
retbuf.len = locker->len;
retbuf.pa = locker->pa;
retbuf.dmah = locker->dmah;
retbuf.secdma = locker->secdma;
/* This could be a callback registered with dhd_pktid_map */
DHD_PKTID_UNLOCK(map->pktid_lock, flags);
free_ioctl_return_buffer(dhd, &retbuf);
flags = DHD_PKTID_LOCK(map->pktid_lock);
}
}
#if defined(DHD_PKTID_AUDIT_ENABLED)
else {
DHD_PKTID_AUDIT(dhd, map, nkey, DHD_TEST_IS_FREE);
}
#endif /* DHD_PKTID_AUDIT_ENABLED */
locker->pkt = NULL; /* clear saved pkt */
locker->len = 0;
}
#if defined(DHD_PKTID_AUDIT_ENABLED)
if (map->pktid_audit != (struct bcm_mwbmap *)NULL) {
bcm_mwbmap_fini(osh, map->pktid_audit); /* Destruct pktid_audit */
map->pktid_audit = (struct bcm_mwbmap *)NULL;
if (map->pktid_audit_lock) {
DHD_PKTID_AUDIT_LOCK_DEINIT(osh, map->pktid_audit_lock);
}
}
#endif /* DHD_PKTID_AUDIT_ENABLED */
DHD_PKTID_UNLOCK(map->pktid_lock, flags);
DHD_PKTID_LOCK_DEINIT(osh, map->pktid_lock);
#ifdef DHD_USE_STATIC_PKTIDMAP
DHD_OS_PREFREE(dhd, handle, dhd_pktid_map_sz);
#else
MFREE(osh, handle, dhd_pktid_map_sz);
#endif /* DHD_USE_STATIC_PKTIDMAP */
}
#endif /* IOCTLRESP_USE_CONSTMEM */
/** Get the pktid free count */
static INLINE uint32 BCMFASTPATH
dhd_pktid_map_avail_cnt(dhd_pktid_map_handle_t *handle)
{
dhd_pktid_map_t *map;
uint32 flags;
uint32 avail;
ASSERT(handle != NULL);
map = (dhd_pktid_map_t *)handle;
flags = DHD_PKTID_LOCK(map->pktid_lock);
avail = map->avail;
DHD_PKTID_UNLOCK(map->pktid_lock, flags);
return avail;
}
/**
* Allocate locker, save pkt contents, and return the locker's numbered key.
* dhd_pktid_map_alloc() is not reentrant, and is the caller's responsibility.
* Caller must treat a returned value DHD_PKTID_INVALID as a failure case,
* implying a depleted pool of pktids.
*/
static INLINE uint32
__dhd_pktid_map_reserve(dhd_pub_t *dhd, dhd_pktid_map_handle_t *handle, void *pkt)
{
uint32 nkey;
dhd_pktid_map_t *map;
dhd_pktid_item_t *locker;
ASSERT(handle != NULL);
map = (dhd_pktid_map_t *)handle;
if (map->avail <= 0) { /* no more pktids to allocate */
map->failures++;
DHD_INFO(("%s:%d: failed, no free keys\n", __FUNCTION__, __LINE__));
return DHD_PKTID_INVALID; /* failed alloc request */
}
ASSERT(map->avail <= map->items);
nkey = map->keys[map->avail]; /* fetch a free locker, pop stack */
locker = &map->lockers[nkey]; /* save packet metadata in locker */
map->avail--;
locker->pkt = pkt; /* pkt is saved, other params not yet saved. */
locker->len = 0;
locker->state = LOCKER_IS_BUSY; /* reserve this locker */
#if defined(DHD_PKTID_AUDIT_MAP)
DHD_PKTID_AUDIT(dhd, map, nkey, DHD_DUPLICATE_ALLOC); /* Audit duplicate alloc */
#endif /* DHD_PKTID_AUDIT_MAP */
ASSERT(nkey != DHD_PKTID_INVALID);
return nkey; /* return locker's numbered key */
}
/**
* dhd_pktid_map_reserve - reserve a unique numbered key. Reserved locker is not
* yet populated. Invoke the pktid save api to populate the packet parameters
* into the locker.
* Wrapper that takes the required lock when called directly.
*/
static INLINE uint32
dhd_pktid_map_reserve(dhd_pub_t *dhd, dhd_pktid_map_handle_t *handle, void *pkt)
{
dhd_pktid_map_t *map;
uint32 flags;
uint32 ret;
ASSERT(handle != NULL);
map = (dhd_pktid_map_t *)handle;
flags = DHD_PKTID_LOCK(map->pktid_lock);
ret = __dhd_pktid_map_reserve(dhd, handle, pkt);
DHD_PKTID_UNLOCK(map->pktid_lock, flags);
return ret;
}
static INLINE void
__dhd_pktid_map_save(dhd_pub_t *dhd, dhd_pktid_map_handle_t *handle, void *pkt,
uint32 nkey, dmaaddr_t pa, uint32 len, uint8 dir, void *dmah, void *secdma,
dhd_pkttype_t pkttype)
{
dhd_pktid_map_t *map;
dhd_pktid_item_t *locker;
ASSERT(handle != NULL);
map = (dhd_pktid_map_t *)handle;
ASSERT((nkey != DHD_PKTID_INVALID) && (nkey <= DHD_PKIDMAP_ITEMS(map->items)));
locker = &map->lockers[nkey];
ASSERT(((locker->state == LOCKER_IS_BUSY) && (locker->pkt == pkt)) ||
((locker->state == LOCKER_IS_RSVD) && (locker->pkt == NULL)));
#if defined(DHD_PKTID_AUDIT_MAP)
DHD_PKTID_AUDIT(dhd, map, nkey, DHD_TEST_IS_ALLOC); /* apriori, reservation */
#endif /* DHD_PKTID_AUDIT_MAP */
/* store contents in locker */
locker->dir = dir;
locker->pa = pa;
locker->len = (uint16)len; /* 16bit len */
locker->dmah = dmah; /* 16bit len */
locker->secdma = secdma;
locker->pkttype = pkttype;
locker->pkt = pkt;
locker->state = LOCKER_IS_BUSY; /* make this locker busy */
}
/**
* dhd_pktid_map_save - Save a packet's parameters into a locker corresponding
* to a previously reserved unique numbered key.
* Wrapper that takes the required lock when called directly.
*/
static INLINE void
dhd_pktid_map_save(dhd_pub_t *dhd, dhd_pktid_map_handle_t *handle, void *pkt,
uint32 nkey, dmaaddr_t pa, uint32 len, uint8 dir, void *dmah, void *secdma,
dhd_pkttype_t pkttype)
{
dhd_pktid_map_t *map;
uint32 flags;
ASSERT(handle != NULL);
map = (dhd_pktid_map_t *)handle;
flags = DHD_PKTID_LOCK(map->pktid_lock);
__dhd_pktid_map_save(dhd, handle, pkt, nkey, pa, len,
dir, dmah, secdma, pkttype);
DHD_PKTID_UNLOCK(map->pktid_lock, flags);
}
/**
* dhd_pktid_map_alloc - Allocate a unique numbered key and save the packet
* contents into the corresponding locker. Return the numbered key.
*/
static uint32 BCMFASTPATH
dhd_pktid_map_alloc(dhd_pub_t *dhd, dhd_pktid_map_handle_t *handle, void *pkt,
dmaaddr_t pa, uint32 len, uint8 dir, void *dmah, void *secdma,
dhd_pkttype_t pkttype)
{
uint32 nkey;
uint32 flags;
dhd_pktid_map_t *map;
ASSERT(handle != NULL);
map = (dhd_pktid_map_t *)handle;
flags = DHD_PKTID_LOCK(map->pktid_lock);
nkey = __dhd_pktid_map_reserve(dhd, handle, pkt);
if (nkey != DHD_PKTID_INVALID) {
__dhd_pktid_map_save(dhd, handle, pkt, nkey, pa,
len, dir, dmah, secdma, pkttype);
#if defined(DHD_PKTID_AUDIT_MAP)
DHD_PKTID_AUDIT(dhd, map, nkey, DHD_TEST_IS_ALLOC); /* apriori, reservation */
#endif /* DHD_PKTID_AUDIT_MAP */
}
DHD_PKTID_UNLOCK(map->pktid_lock, flags);
return nkey;
}
/**
* dhd_pktid_map_free - Given a numbered key, return the locker contents.
* dhd_pktid_map_free() is not reentrant, and is the caller's responsibility.
* Caller may not free a pktid value DHD_PKTID_INVALID or an arbitrary pktid
* value. Only a previously allocated pktid may be freed.
*/
static void * BCMFASTPATH
dhd_pktid_map_free(dhd_pub_t *dhd, dhd_pktid_map_handle_t *handle, uint32 nkey,
dmaaddr_t *pa, uint32 *len, void **dmah, void **secdma,
dhd_pkttype_t pkttype, bool rsv_locker)
{
dhd_pktid_map_t *map;
dhd_pktid_item_t *locker;
void * pkt;
uint32 flags;
unsigned long locker_addr;
ASSERT(handle != NULL);
map = (dhd_pktid_map_t *)handle;
flags = DHD_PKTID_LOCK(map->pktid_lock);
ASSERT((nkey != DHD_PKTID_INVALID) && (nkey <= DHD_PKIDMAP_ITEMS(map->items)));
locker = &map->lockers[nkey];
#if defined(DHD_PKTID_AUDIT_MAP)
DHD_PKTID_AUDIT(dhd, map, nkey, DHD_DUPLICATE_FREE); /* Audit duplicate FREE */
#endif /* DHD_PKTID_AUDIT_MAP */
if (locker->state == LOCKER_IS_FREE) { /* Debug check for cloned numbered key */
DHD_ERROR(("%s:%d: Error! freeing invalid pktid<%u>\n",
__FUNCTION__, __LINE__, nkey));
ASSERT(locker->state != LOCKER_IS_FREE);
DHD_PKTID_UNLOCK(map->pktid_lock, flags);
return NULL;
}
/* Check for the colour of the buffer i.e The buffer posted for TX,
* should be freed for TX completion. Similarly the buffer posted for
* IOCTL should be freed for IOCT completion etc.
*/
if ((pkttype != PKTTYPE_NO_CHECK) && (locker->pkttype != pkttype)) {
DHD_PKTID_UNLOCK(map->pktid_lock, flags);
DHD_ERROR(("%s:%d: Error! Invalid Buffer Free for pktid<%u> \n",
__FUNCTION__, __LINE__, nkey));
#ifdef BCMDMA64OSL
PHYSADDRTOULONG(locker->pa, locker_addr);
#else
locker_addr = PHYSADDRLO(locker->pa);
#endif /* BCMDMA64OSL */
DHD_ERROR(("%s:%d: locker->state <%d>, locker->pkttype <%d>,"
"pkttype <%d> locker->pa <0x%lx> \n",
__FUNCTION__, __LINE__, locker->state, locker->pkttype,
pkttype, locker_addr));
ASSERT(locker->pkttype == pkttype);
return NULL;
}
if (rsv_locker == DHD_PKTID_FREE_LOCKER) {
map->avail++;
map->keys[map->avail] = nkey; /* make this numbered key available */
locker->state = LOCKER_IS_FREE; /* open and free Locker */
} else {
/* pktid will be reused, but the locker does not have a valid pkt */
locker->state = LOCKER_IS_RSVD;
}
#if defined(DHD_PKTID_AUDIT_MAP)
DHD_PKTID_AUDIT(dhd, map, nkey, DHD_TEST_IS_FREE);
#endif /* DHD_PKTID_AUDIT_MAP */
*pa = locker->pa; /* return contents of locker */
*len = (uint32)locker->len;
*dmah = locker->dmah;
*secdma = locker->secdma;
pkt = locker->pkt;
locker->pkt = NULL; /* Clear pkt */
locker->len = 0;
DHD_PKTID_UNLOCK(map->pktid_lock, flags);
return pkt;
}
#else /* ! DHD_PCIE_PKTID */
typedef struct pktlist {
PKT_LIST *tx_pkt_list; /* list for tx packets */
PKT_LIST *rx_pkt_list; /* list for rx packets */
PKT_LIST *ctrl_pkt_list; /* list for ioctl/event buf post */
} pktlists_t;
/*
* Given that each workitem only uses a 32bit pktid, only 32bit hosts may avail
* of a one to one mapping 32bit pktptr and a 32bit pktid.
*
* - When PKTIDMAP is not used, DHD_NATIVE_TO_PKTID variants will never fail.
* - Neither DHD_NATIVE_TO_PKTID nor DHD_PKTID_TO_NATIVE need to be protected by
* a lock.
* - Hence DHD_PKTID_INVALID is not defined when DHD_PCIE_PKTID is undefined.
*/
#define DHD_PKTID32(pktptr32) ((uint32)(pktptr32))
#define DHD_PKTPTR32(pktid32) ((void *)(pktid32))
static INLINE uint32 dhd_native_to_pktid(dhd_pktid_map_handle_t *map, void *pktptr32,
dmaaddr_t pa, uint32 dma_len, void *dmah, void *secdma,
dhd_pkttype_t pkttype);
static INLINE void * dhd_pktid_to_native(dhd_pktid_map_handle_t *map, uint32 pktid32,
dmaaddr_t *pa, uint32 *dma_len, void **dmah, void **secdma,
dhd_pkttype_t pkttype);
static dhd_pktid_map_handle_t *
dhd_pktid_map_init(dhd_pub_t *dhd, uint32 num_items, uint32 index)
{
osl_t *osh = dhd->osh;
pktlists_t *handle = NULL;
if ((handle = (pktlists_t *) MALLOCZ(osh, sizeof(pktlists_t))) == NULL) {
DHD_ERROR(("%s:%d: MALLOC failed for lists allocation, size=%d\n",
__FUNCTION__, __LINE__, sizeof(pktlists_t)));
goto error_done;
}
if ((handle->tx_pkt_list = (PKT_LIST *) MALLOC(osh, sizeof(PKT_LIST))) == NULL) {
DHD_ERROR(("%s:%d: MALLOC failed for list allocation, size=%d\n",
__FUNCTION__, __LINE__, sizeof(PKT_LIST)));
goto error;
}
if ((handle->rx_pkt_list = (PKT_LIST *) MALLOC(osh, sizeof(PKT_LIST))) == NULL) {
DHD_ERROR(("%s:%d: MALLOC failed for list allocation, size=%d\n",
__FUNCTION__, __LINE__, sizeof(PKT_LIST)));
goto error;
}
if ((handle->ctrl_pkt_list = (PKT_LIST *) MALLOC(osh, sizeof(PKT_LIST))) == NULL) {
DHD_ERROR(("%s:%d: MALLOC failed for list allocation, size=%d\n",
__FUNCTION__, __LINE__, sizeof(PKT_LIST)));
goto error;
}
PKTLIST_INIT(handle->tx_pkt_list);
PKTLIST_INIT(handle->rx_pkt_list);
PKTLIST_INIT(handle->ctrl_pkt_list);
return (dhd_pktid_map_handle_t *) handle;
error:
if (handle->ctrl_pkt_list) {
MFREE(osh, handle->ctrl_pkt_list, sizeof(PKT_LIST));
}
if (handle->rx_pkt_list) {
MFREE(osh, handle->rx_pkt_list, sizeof(PKT_LIST));
}
if (handle->tx_pkt_list) {
MFREE(osh, handle->tx_pkt_list, sizeof(PKT_LIST));
}
if (handle) {
MFREE(osh, handle, sizeof(pktlists_t));
}
error_done:
return (dhd_pktid_map_handle_t *)NULL;
}
static void
dhd_pktid_map_fini(dhd_pub_t *dhd, dhd_pktid_map_handle_t *map)
{
osl_t *osh = dhd->osh;
pktlists_t *handle = (pktlists_t *) map;
ASSERT(handle != NULL);
if (handle == (pktlists_t *)NULL) {
return;
}
if (handle->ctrl_pkt_list) {
PKTLIST_FINI(handle->ctrl_pkt_list);
MFREE(osh, handle->ctrl_pkt_list, sizeof(PKT_LIST));
}
if (handle->rx_pkt_list) {
PKTLIST_FINI(handle->rx_pkt_list);
MFREE(osh, handle->rx_pkt_list, sizeof(PKT_LIST));
}
if (handle->tx_pkt_list) {
PKTLIST_FINI(handle->tx_pkt_list);
MFREE(osh, handle->tx_pkt_list, sizeof(PKT_LIST));
}
if (handle) {
MFREE(osh, handle, sizeof(pktlists_t));
}
}
/** Save dma parameters into the packet's pkttag and convert a pktptr to pktid */
static INLINE uint32
dhd_native_to_pktid(dhd_pktid_map_handle_t *map, void *pktptr32,
dmaaddr_t pa, uint32 dma_len, void *dmah, void *secdma,
dhd_pkttype_t pkttype)
{
pktlists_t *handle = (pktlists_t *) map;
ASSERT(pktptr32 != NULL);
DHD_PKT_SET_DMA_LEN(pktptr32, dma_len);
DHD_PKT_SET_DMAH(pktptr32, dmah);
DHD_PKT_SET_PA(pktptr32, pa);
DHD_PKT_SET_SECDMA(pktptr32, secdma);
if (pkttype == PKTTYPE_DATA_TX) {
PKTLIST_ENQ(handle->tx_pkt_list, pktptr32);
} else if (pkttype == PKTTYPE_DATA_RX) {
PKTLIST_ENQ(handle->rx_pkt_list, pktptr32);
} else {
PKTLIST_ENQ(handle->ctrl_pkt_list, pktptr32);
}
return DHD_PKTID32(pktptr32);
}
/** Convert a pktid to pktptr and retrieve saved dma parameters from packet */
static INLINE void *
dhd_pktid_to_native(dhd_pktid_map_handle_t *map, uint32 pktid32,
dmaaddr_t *pa, uint32 *dma_len, void **dmah, void **secdma,
dhd_pkttype_t pkttype)
{
pktlists_t *handle = (pktlists_t *) map;
void *pktptr32;
ASSERT(pktid32 != 0U);
pktptr32 = DHD_PKTPTR32(pktid32);
*dma_len = DHD_PKT_GET_DMA_LEN(pktptr32);
*dmah = DHD_PKT_GET_DMAH(pktptr32);
*pa = DHD_PKT_GET_PA(pktptr32);
*secdma = DHD_PKT_GET_SECDMA(pktptr32);
if (pkttype == PKTTYPE_DATA_TX) {
PKTLIST_UNLINK(handle->tx_pkt_list, pktptr32);
} else if (pkttype == PKTTYPE_DATA_RX) {
PKTLIST_UNLINK(handle->rx_pkt_list, pktptr32);
} else {
PKTLIST_UNLINK(handle->ctrl_pkt_list, pktptr32);
}
return pktptr32;
}
#define DHD_NATIVE_TO_PKTID_RSV(dhd, map, pkt) DHD_PKTID32(pkt)
#define DHD_NATIVE_TO_PKTID_SAVE(dhd, map, pkt, nkey, pa, len, dma_dir, dmah, secdma, pkttype) \
({ BCM_REFERENCE(dhd); BCM_REFERENCE(nkey); BCM_REFERENCE(dma_dir); \
dhd_native_to_pktid((dhd_pktid_map_handle_t *) map, (pkt), (pa), (len), \
(dmah), (secdma), (dhd_pkttype_t)(pkttype)); \
})
#define DHD_NATIVE_TO_PKTID(dhd, map, pkt, pa, len, dma_dir, dmah, secdma, pkttype) \
({ BCM_REFERENCE(dhd); BCM_REFERENCE(dma_dir); \
dhd_native_to_pktid((dhd_pktid_map_handle_t *) map, (pkt), (pa), (len), \
(dmah), (secdma), (dhd_pkttype_t)(pkttype)); \
})
#define DHD_PKTID_TO_NATIVE(dhd, map, pktid, pa, len, dmah, secdma, pkttype) \
({ BCM_REFERENCE(dhd); BCM_REFERENCE(pkttype); \
dhd_pktid_to_native((dhd_pktid_map_handle_t *) map, (uint32)(pktid), \
(dmaaddr_t *)&(pa), (uint32 *)&(len), (void **)&(dmah), \
(void **)&secdma, (dhd_pkttype_t)(pkttype)); \
})
#define DHD_PKTID_AVAIL(map) (~0)
#endif /* ! DHD_PCIE_PKTID */
/* +------------------ End of PCIE DHD PKTID MAPPER -----------------------+ */
/**
* The PCIE FD protocol layer is constructed in two phases:
* Phase 1. dhd_prot_attach()
* Phase 2. dhd_prot_init()
*
* dhd_prot_attach() - Allocates a dhd_prot_t object and resets all its fields.
* All Common rings are allose attached (msgbuf_ring_t objects are allocated
* with DMA-able buffers).
* All dhd_dma_buf_t objects are also allocated here.
*
* As dhd_prot_attach is invoked prior to the pcie_shared object is read, any
* initialization of objects that requires information advertized by the dongle
* may not be performed here.
* E.g. the number of TxPost flowrings is not know at this point, neither do
* we know shich form of D2H DMA sync mechanism is advertized by the dongle, or
* whether the dongle supports DMA-ing of WR/RD indices for the H2D and/or D2H
* rings (common + flow).
*
* dhd_prot_init() is invoked after the bus layer has fetched the information
* advertized by the dongle in the pcie_shared_t.
*/
int
dhd_prot_attach(dhd_pub_t *dhd)
{
osl_t *osh = dhd->osh;
dhd_prot_t *prot;
/* Allocate prot structure */
if (!(prot = (dhd_prot_t *)DHD_OS_PREALLOC(dhd, DHD_PREALLOC_PROT,
sizeof(dhd_prot_t)))) {
DHD_ERROR(("%s: kmalloc failed\n", __FUNCTION__));
goto fail;
}
memset(prot, 0, sizeof(*prot));
prot->osh = osh;
dhd->prot = prot;
/* DMAing ring completes supported? FALSE by default */
dhd->dma_d2h_ring_upd_support = FALSE;
dhd->dma_h2d_ring_upd_support = FALSE;
/* Common Ring Allocations */
/* Ring 0: H2D Control Submission */
if (dhd_prot_ring_attach(dhd, &prot->h2dring_ctrl_subn, "h2dctrl",
H2DRING_CTRL_SUB_MAX_ITEM, H2DRING_CTRL_SUB_ITEMSIZE,
BCMPCIE_H2D_MSGRING_CONTROL_SUBMIT) != BCME_OK) {
DHD_ERROR(("%s: dhd_prot_ring_attach H2D Ctrl Submission failed\n",
__FUNCTION__));
goto fail;
}
/* Ring 1: H2D Receive Buffer Post */
if (dhd_prot_ring_attach(dhd, &prot->h2dring_rxp_subn, "h2drxp",
H2DRING_RXPOST_MAX_ITEM, H2DRING_RXPOST_ITEMSIZE,
BCMPCIE_H2D_MSGRING_RXPOST_SUBMIT) != BCME_OK) {
DHD_ERROR(("%s: dhd_prot_ring_attach H2D RxPost failed\n",
__FUNCTION__));
goto fail;
}
/* Ring 2: D2H Control Completion */
if (dhd_prot_ring_attach(dhd, &prot->d2hring_ctrl_cpln, "d2hctrl",
D2HRING_CTRL_CMPLT_MAX_ITEM, D2HRING_CTRL_CMPLT_ITEMSIZE,
BCMPCIE_D2H_MSGRING_CONTROL_COMPLETE) != BCME_OK) {
DHD_ERROR(("%s: dhd_prot_ring_attach D2H Ctrl Completion failed\n",
__FUNCTION__));
goto fail;
}
/* Ring 3: D2H Transmit Complete */
if (dhd_prot_ring_attach(dhd, &prot->d2hring_tx_cpln, "d2htxcpl",
D2HRING_TXCMPLT_MAX_ITEM, D2HRING_TXCMPLT_ITEMSIZE,
BCMPCIE_D2H_MSGRING_TX_COMPLETE) != BCME_OK) {
DHD_ERROR(("%s: dhd_prot_ring_attach D2H Tx Completion failed\n",
__FUNCTION__));
goto fail;
}
/* Ring 4: D2H Receive Complete */
if (dhd_prot_ring_attach(dhd, &prot->d2hring_rx_cpln, "d2hrxcpl",
D2HRING_RXCMPLT_MAX_ITEM, D2HRING_RXCMPLT_ITEMSIZE,
BCMPCIE_D2H_MSGRING_RX_COMPLETE) != BCME_OK) {
DHD_ERROR(("%s: dhd_prot_ring_attach D2H Rx Completion failed\n",
__FUNCTION__));
goto fail;
}
/*
* Max number of flowrings is not yet known. msgbuf_ring_t with DMA-able
* buffers for flowrings will be instantiated, in dhd_prot_init() .
* See dhd_prot_flowrings_pool_attach()
*/
/* ioctl response buffer */
if (dhd_dma_buf_alloc(dhd, &prot->retbuf, IOCT_RETBUF_SIZE)) {
goto fail;
}
/* IOCTL request buffer */
if (dhd_dma_buf_alloc(dhd, &prot->ioctbuf, IOCT_RETBUF_SIZE)) {
goto fail;
}
/* Scratch buffer for dma rx offset */
if (dhd_dma_buf_alloc(dhd, &prot->d2h_dma_scratch_buf, DMA_D2H_SCRATCH_BUF_LEN)) {
goto fail;
}
/* scratch buffer bus throughput measurement */
if (dhd_dma_buf_alloc(dhd, &prot->host_bus_throughput_buf, DHD_BUS_TPUT_BUF_LEN)) {
goto fail;
}
#ifdef DHD_RX_CHAINING
dhd_rxchain_reset(&prot->rxchain);
#endif
#if defined(DHD_LB)
/* Initialize the work queues to be used by the Load Balancing logic */
#if defined(DHD_LB_TXC)
{
void *buffer;
buffer = MALLOC(dhd->osh, sizeof(void*) * DHD_LB_WORKQ_SZ);
bcm_workq_init(&prot->tx_compl_prod, &prot->tx_compl_cons,
buffer, DHD_LB_WORKQ_SZ);
prot->tx_compl_prod_sync = 0;
DHD_INFO(("%s: created tx_compl_workq <%p,%d>\n",
__FUNCTION__, buffer, DHD_LB_WORKQ_SZ));
}
#endif /* DHD_LB_TXC */
#if defined(DHD_LB_RXC)
{
void *buffer;
buffer = MALLOC(dhd->osh, sizeof(uint32) * DHD_LB_WORKQ_SZ);
bcm_workq_init(&prot->rx_compl_prod, &prot->rx_compl_cons,
buffer, DHD_LB_WORKQ_SZ);
prot->rx_compl_prod_sync = 0;
DHD_INFO(("%s: created rx_compl_workq <%p,%d>\n",
__FUNCTION__, buffer, DHD_LB_WORKQ_SZ));
}
#endif /* DHD_LB_RXC */
#endif /* DHD_LB */
return BCME_OK;
fail:
#ifndef CONFIG_DHD_USE_STATIC_BUF
if (prot != NULL) {
dhd_prot_detach(dhd);
}
#endif /* CONFIG_DHD_USE_STATIC_BUF */
return BCME_NOMEM;
} /* dhd_prot_attach */
/**
* dhd_prot_init - second stage of dhd_prot_attach. Now that the dongle has
* completed it's initialization of the pcie_shared structure, we may now fetch
* the dongle advertized features and adjust the protocol layer accordingly.
*
* dhd_prot_init() may be invoked again after a dhd_prot_reset().
*/
int
dhd_prot_init(dhd_pub_t *dhd)
{
sh_addr_t base_addr;
dhd_prot_t *prot = dhd->prot;
/* PKTID handle INIT */
if (prot->pktid_map_handle != NULL) {
DHD_ERROR(("%s: pktid_map_handle already set!\n", __FUNCTION__));
ASSERT(0);
return BCME_ERROR;
}
#ifdef IOCTLRESP_USE_CONSTMEM
if (prot->pktid_map_handle_ioctl != NULL) {
DHD_ERROR(("%s: pktid_map_handle_ioctl already set!\n", __FUNCTION__));
ASSERT(0);
return BCME_ERROR;
}
#endif /* IOCTLRESP_USE_CONSTMEM */
prot->pktid_map_handle = DHD_NATIVE_TO_PKTID_INIT(dhd, MAX_PKTID_ITEMS, PKTID_MAP_HANDLE);
if (prot->pktid_map_handle == NULL) {
DHD_ERROR(("%s: Unable to map packet id's\n", __FUNCTION__));
ASSERT(0);
return BCME_NOMEM;
}
#ifdef IOCTLRESP_USE_CONSTMEM
prot->pktid_map_handle_ioctl = DHD_NATIVE_TO_PKTID_INIT(dhd,
DHD_FLOWRING_MAX_IOCTLRESPBUF_POST, PKTID_MAP_HANDLE_IOCTL);
if (prot->pktid_map_handle_ioctl == NULL) {
DHD_ERROR(("%s: Unable to map ioctl response buffers\n", __FUNCTION__));
ASSERT(0);
return BCME_NOMEM;
}
#endif /* IOCTLRESP_USE_CONSTMEM */
/* Max pkts in ring */
prot->max_tx_count = H2DRING_TXPOST_MAX_ITEM;
DHD_INFO(("%s:%d: MAX_TX_COUNT = %d\n", __FUNCTION__, __LINE__, prot->max_tx_count));
/* Read max rx packets supported by dongle */
dhd_bus_cmn_readshared(dhd->bus, &prot->max_rxbufpost, MAX_HOST_RXBUFS, 0);
if (prot->max_rxbufpost == 0) {
/* This would happen if the dongle firmware is not */
/* using the latest shared structure template */
prot->max_rxbufpost = DEFAULT_RX_BUFFERS_TO_POST;
}
DHD_INFO(("%s:%d: MAX_RXBUFPOST = %d\n", __FUNCTION__, __LINE__, prot->max_rxbufpost));
/* Initialize. bzero() would blow away the dma pointers. */
prot->max_eventbufpost = DHD_FLOWRING_MAX_EVENTBUF_POST;
prot->max_ioctlrespbufpost = DHD_FLOWRING_MAX_IOCTLRESPBUF_POST;
prot->cur_ioctlresp_bufs_posted = 0;
prot->active_tx_count = 0;
prot->data_seq_no = 0;
prot->ioctl_seq_no = 0;
prot->rxbufpost = 0;
prot->cur_event_bufs_posted = 0;
prot->ioctl_state = 0;
prot->curr_ioctl_cmd = 0;
prot->ioctl_received = IOCTL_WAIT;
prot->dmaxfer.srcmem.va = NULL;
prot->dmaxfer.dstmem.va = NULL;
prot->dmaxfer.in_progress = FALSE;
prot->metadata_dbg = FALSE;
prot->rx_metadata_offset = 0;
prot->tx_metadata_offset = 0;
prot->txp_threshold = TXP_FLUSH_MAX_ITEMS_FLUSH_CNT;
prot->ioctl_trans_id = 0;
/* Register the interrupt function upfront */
/* remove corerev checks in data path */
prot->mb_ring_fn = dhd_bus_get_mbintr_fn(dhd->bus);
/* Initialize Common MsgBuf Rings */
dhd_prot_ring_init(dhd, &prot->h2dring_ctrl_subn);
dhd_prot_ring_init(dhd, &prot->h2dring_rxp_subn);
dhd_prot_ring_init(dhd, &prot->d2hring_ctrl_cpln);
dhd_prot_ring_init(dhd, &prot->d2hring_tx_cpln);
dhd_prot_ring_init(dhd, &prot->d2hring_rx_cpln);
#if defined(PCIE_D2H_SYNC)
dhd_prot_d2h_sync_init(dhd);
#endif /* PCIE_D2H_SYNC */
dhd_prot_h2d_sync_init(dhd);
/* init the scratch buffer */
dhd_base_addr_htolpa(&base_addr, prot->d2h_dma_scratch_buf.pa);
dhd_bus_cmn_writeshared(dhd->bus, &base_addr, sizeof(base_addr),
D2H_DMA_SCRATCH_BUF, 0);
dhd_bus_cmn_writeshared(dhd->bus, &prot->d2h_dma_scratch_buf.len,
sizeof(prot->d2h_dma_scratch_buf.len), D2H_DMA_SCRATCH_BUF_LEN, 0);
/* If supported by the host, indicate the memory block
* for completion writes / submission reads to shared space
*/
if (DMA_INDX_ENAB(dhd->dma_d2h_ring_upd_support)) {
dhd_base_addr_htolpa(&base_addr, prot->d2h_dma_indx_wr_buf.pa);
dhd_bus_cmn_writeshared(dhd->bus, &base_addr, sizeof(base_addr),
D2H_DMA_INDX_WR_BUF, 0);
dhd_base_addr_htolpa(&base_addr, prot->h2d_dma_indx_rd_buf.pa);
dhd_bus_cmn_writeshared(dhd->bus, &base_addr, sizeof(base_addr),
H2D_DMA_INDX_RD_BUF, 0);
}
if (DMA_INDX_ENAB(dhd->dma_h2d_ring_upd_support)) {
dhd_base_addr_htolpa(&base_addr, prot->h2d_dma_indx_wr_buf.pa);
dhd_bus_cmn_writeshared(dhd->bus, &base_addr, sizeof(base_addr),
H2D_DMA_INDX_WR_BUF, 0);
dhd_base_addr_htolpa(&base_addr, prot->d2h_dma_indx_rd_buf.pa);
dhd_bus_cmn_writeshared(dhd->bus, &base_addr, sizeof(base_addr),
D2H_DMA_INDX_RD_BUF, 0);
}
/*
* If the DMA-able buffers for flowring needs to come from a specific
* contiguous memory region, then setup prot->flowrings_dma_buf here.
* dhd_prot_flowrings_pool_attach() will carve out DMA-able buffers from
* this contiguous memory region, for each of the flowrings.
*/
/* Pre-allocate pool of msgbuf_ring for flowrings */
if (dhd_prot_flowrings_pool_attach(dhd) != BCME_OK) {
return BCME_ERROR;
}
/* Host should configure soft doorbells if needed ... here */
/* Post to dongle host configured soft doorbells */
dhd_msgbuf_ring_config_d2h_soft_doorbell(dhd);
/* Post buffers for packet reception and ioctl/event responses */
dhd_msgbuf_rxbuf_post(dhd, FALSE); /* alloc pkt ids */
dhd_msgbuf_rxbuf_post_ioctlresp_bufs(dhd);
dhd_msgbuf_rxbuf_post_event_bufs(dhd);
return BCME_OK;
} /* dhd_prot_init */
/**
* dhd_prot_detach - PCIE FD protocol layer destructor.
* Unlink, frees allocated protocol memory (including dhd_prot)
*/
void
dhd_prot_detach(dhd_pub_t *dhd)
{
dhd_prot_t *prot = dhd->prot;
/* Stop the protocol module */
if (prot) {
/* free up all DMA-able buffers allocated during prot attach/init */
dhd_dma_buf_free(dhd, &prot->d2h_dma_scratch_buf);
dhd_dma_buf_free(dhd, &prot->retbuf); /* ioctl return buffer */
dhd_dma_buf_free(dhd, &prot->ioctbuf);
dhd_dma_buf_free(dhd, &prot->host_bus_throughput_buf);
/* DMA-able buffers for DMAing H2D/D2H WR/RD indices */
dhd_dma_buf_free(dhd, &prot->h2d_dma_indx_wr_buf);
dhd_dma_buf_free(dhd, &prot->h2d_dma_indx_rd_buf);
dhd_dma_buf_free(dhd, &prot->d2h_dma_indx_wr_buf);
dhd_dma_buf_free(dhd, &prot->d2h_dma_indx_rd_buf);
/* Common MsgBuf Rings */
dhd_prot_ring_detach(dhd, &prot->h2dring_ctrl_subn);
dhd_prot_ring_detach(dhd, &prot->h2dring_rxp_subn);
dhd_prot_ring_detach(dhd, &prot->d2hring_ctrl_cpln);
dhd_prot_ring_detach(dhd, &prot->d2hring_tx_cpln);
dhd_prot_ring_detach(dhd, &prot->d2hring_rx_cpln);
/* Detach each DMA-able buffer and free the pool of msgbuf_ring_t */
dhd_prot_flowrings_pool_detach(dhd);
DHD_NATIVE_TO_PKTID_FINI(dhd, dhd->prot->pktid_map_handle);
#ifndef CONFIG_DHD_USE_STATIC_BUF
MFREE(dhd->osh, dhd->prot, sizeof(dhd_prot_t));
#endif /* CONFIG_DHD_USE_STATIC_BUF */
#if defined(DHD_LB)
#if defined(DHD_LB_TXC)
if (prot->tx_compl_prod.buffer) {
MFREE(dhd->osh, prot->tx_compl_prod.buffer,
sizeof(void*) * DHD_LB_WORKQ_SZ);
}
#endif /* DHD_LB_TXC */
#if defined(DHD_LB_RXC)
if (prot->rx_compl_prod.buffer) {
MFREE(dhd->osh, prot->rx_compl_prod.buffer,
sizeof(void*) * DHD_LB_WORKQ_SZ);
}
#endif /* DHD_LB_RXC */
#endif /* DHD_LB */
dhd->prot = NULL;
}
} /* dhd_prot_detach */
/**
* dhd_prot_reset - Reset the protocol layer without freeing any objects. This
* may be invoked to soft reboot the dongle, without having to detach and attach
* the entire protocol layer.
*
* After dhd_prot_reset(), dhd_prot_init() may be invoked without going through
* a dhd_prot_attach() phase.
*/
void
dhd_prot_reset(dhd_pub_t *dhd)
{
struct dhd_prot *prot = dhd->prot;
DHD_TRACE(("%s\n", __FUNCTION__));
if (prot == NULL) {
return;
}
dhd_prot_flowrings_pool_reset(dhd);
dhd_prot_ring_reset(dhd, &prot->h2dring_ctrl_subn);
dhd_prot_ring_reset(dhd, &prot->h2dring_rxp_subn);
dhd_prot_ring_reset(dhd, &prot->d2hring_ctrl_cpln);
dhd_prot_ring_reset(dhd, &prot->d2hring_tx_cpln);
dhd_prot_ring_reset(dhd, &prot->d2hring_rx_cpln);
dhd_dma_buf_reset(dhd, &prot->retbuf);
dhd_dma_buf_reset(dhd, &prot->ioctbuf);
dhd_dma_buf_reset(dhd, &prot->d2h_dma_scratch_buf);
dhd_dma_buf_reset(dhd, &prot->h2d_dma_indx_rd_buf);
dhd_dma_buf_reset(dhd, &prot->h2d_dma_indx_wr_buf);
dhd_dma_buf_reset(dhd, &prot->d2h_dma_indx_rd_buf);
dhd_dma_buf_reset(dhd, &prot->d2h_dma_indx_wr_buf);
prot->rx_metadata_offset = 0;
prot->tx_metadata_offset = 0;
prot->rxbufpost = 0;
prot->cur_event_bufs_posted = 0;
prot->cur_ioctlresp_bufs_posted = 0;
prot->active_tx_count = 0;
prot->data_seq_no = 0;
prot->ioctl_seq_no = 0;
prot->ioctl_state = 0;
prot->curr_ioctl_cmd = 0;
prot->ioctl_received = IOCTL_WAIT;
prot->ioctl_trans_id = 0;
/* dhd_flow_rings_init is located at dhd_bus_start,
* so when stopping bus, flowrings shall be deleted
*/
if (dhd->flow_rings_inited) {
dhd_flow_rings_deinit(dhd);
}
if (prot->pktid_map_handle) {
DHD_NATIVE_TO_PKTID_FINI(dhd, prot->pktid_map_handle);
prot->pktid_map_handle = NULL;
}
#ifdef IOCTLRESP_USE_CONSTMEM
if (prot->pktid_map_handle_ioctl) {
DHD_NATIVE_TO_PKTID_FINI_IOCTL(dhd, prot->pktid_map_handle_ioctl);
prot->pktid_map_handle_ioctl = NULL;
}
#endif /* IOCTLRESP_USE_CONSTMEM */
} /* dhd_prot_reset */
void
dhd_prot_rx_dataoffset(dhd_pub_t *dhd, uint32 rx_offset)
{
dhd_prot_t *prot = dhd->prot;
prot->rx_dataoffset = rx_offset;
}
/**
* Initialize protocol: sync w/dongle state.
* Sets dongle media info (iswl, drv_version, mac address).
*/
int
dhd_sync_with_dongle(dhd_pub_t *dhd)
{
int ret = 0;
wlc_rev_info_t revinfo;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
dhd_os_set_ioctl_resp_timeout(IOCTL_RESP_TIMEOUT);
#ifdef DHD_FW_COREDUMP
/* Check the memdump capability */
dhd_get_memdump_info(dhd);
#endif /* DHD_FW_COREDUMP */
#ifdef BCMASSERT_LOG
dhd_get_assert_info(dhd);
#endif /* BCMASSERT_LOG */
/* Get the device rev info */
memset(&revinfo, 0, sizeof(revinfo));
ret = dhd_wl_ioctl_cmd(dhd, WLC_GET_REVINFO, &revinfo, sizeof(revinfo), FALSE, 0);
if (ret < 0) {
DHD_ERROR(("%s: GET revinfo FAILED\n", __FUNCTION__));
goto done;
}
DHD_INFO(("%s: GET_REVINFO device 0x%x, vendor 0x%x, chipnum 0x%x\n", __FUNCTION__,
revinfo.deviceid, revinfo.vendorid, revinfo.chipnum));
dhd_process_cid_mac(dhd, TRUE);
ret = dhd_preinit_ioctls(dhd);
dhd_process_cid_mac(dhd, FALSE);
/* Always assumes wl for now */
dhd->iswl = TRUE;
done:
return ret;
} /* dhd_sync_with_dongle */
#if defined(DHD_LB)
/* DHD load balancing: deferral of work to another online CPU */
/* DHD_LB_TXC DHD_LB_RXC DHD_LB_RXP dispatchers, in dhd_linux.c */
extern void dhd_lb_tx_compl_dispatch(dhd_pub_t *dhdp);
extern void dhd_lb_rx_compl_dispatch(dhd_pub_t *dhdp);
extern void dhd_lb_rx_napi_dispatch(dhd_pub_t *dhdp);
extern void dhd_lb_rx_pkt_enqueue(dhd_pub_t *dhdp, void *pkt, int ifidx);
/**
* dhd_lb_dispatch - load balance by dispatch work to other CPU cores
* Note: rx_compl_tasklet is dispatched explicitly.
*/
static INLINE void
dhd_lb_dispatch(dhd_pub_t *dhdp, uint16 ring_idx)
{
switch (ring_idx) {
#if defined(DHD_LB_TXC)
case BCMPCIE_D2H_MSGRING_TX_COMPLETE:
bcm_workq_prod_sync(&dhdp->prot->tx_compl_prod); /* flush WR index */
dhd_lb_tx_compl_dispatch(dhdp); /* dispatch tx_compl_tasklet */
break;
#endif /* DHD_LB_TXC */
case BCMPCIE_D2H_MSGRING_RX_COMPLETE:
{
#if defined(DHD_LB_RXC)
dhd_prot_t *prot = dhdp->prot;
/* Schedule the takslet only if we have to */
if (prot->rxbufpost <= (prot->max_rxbufpost - RXBUFPOST_THRESHOLD)) {
/* flush WR index */
bcm_workq_prod_sync(&dhdp->prot->rx_compl_prod);
dhd_lb_rx_compl_dispatch(dhdp); /* dispatch rx_compl_tasklet */
}
#endif /* DHD_LB_RXC */
#if defined(DHD_LB_RXP)
dhd_lb_rx_napi_dispatch(dhdp); /* dispatch rx_process_napi */
#endif /* DHD_LB_RXP */
break;
}
default:
break;
}
}
#if defined(DHD_LB_TXC)
/**
* DHD load balanced tx completion tasklet handler, that will perform the
* freeing of packets on the selected CPU. Packet pointers are delivered to
* this tasklet via the tx complete workq.
*/
void
dhd_lb_tx_compl_handler(unsigned long data)
{
int elem_ix;
void *pkt, **elem;
dmaaddr_t pa;
uint32 pa_len;
dhd_pub_t *dhd = (dhd_pub_t *)data;
dhd_prot_t *prot = dhd->prot;
bcm_workq_t *workq = &prot->tx_compl_cons;
uint32 count = 0;
DHD_LB_STATS_TXC_PERCPU_CNT_INCR(dhd);
while (1) {
elem_ix = bcm_ring_cons(WORKQ_RING(workq), DHD_LB_WORKQ_SZ);
if (elem_ix == BCM_RING_EMPTY) {
break;
}
elem = WORKQ_ELEMENT(void *, workq, elem_ix);
pkt = *elem;
DHD_INFO(("%s: tx_compl_cons pkt<%p>\n", __FUNCTION__, pkt));
OSL_PREFETCH(PKTTAG(pkt));
OSL_PREFETCH(pkt);
pa = DHD_PKTTAG_PA((dhd_pkttag_fr_t *)PKTTAG(pkt));
pa_len = DHD_PKTTAG_PA_LEN((dhd_pkttag_fr_t *)PKTTAG(pkt));
DMA_UNMAP(dhd->osh, pa, pa_len, DMA_RX, 0, 0);
#if defined(BCMPCIE)
dhd_txcomplete(dhd, pkt, true);
#endif
PKTFREE(dhd->osh, pkt, TRUE);
count++;
}
/* smp_wmb(); */
bcm_workq_cons_sync(workq);
DHD_LB_STATS_UPDATE_TXC_HISTO(dhd, count);
}
#endif /* DHD_LB_TXC */
#if defined(DHD_LB_RXC)
void
dhd_lb_rx_compl_handler(unsigned long data)
{
dhd_pub_t *dhd = (dhd_pub_t *)data;
bcm_workq_t *workq = &dhd->prot->rx_compl_cons;
DHD_LB_STATS_RXC_PERCPU_CNT_INCR(dhd);
dhd_msgbuf_rxbuf_post(dhd, TRUE); /* re-use pktids */
bcm_workq_cons_sync(workq);
}
#endif /* DHD_LB_RXC */
#endif /* DHD_LB */
#define DHD_DBG_SHOW_METADATA 0
#if DHD_DBG_SHOW_METADATA
static void BCMFASTPATH
dhd_prot_print_metadata(dhd_pub_t *dhd, void *ptr, int len)
{
uint8 tlv_t;
uint8 tlv_l;
uint8 *tlv_v = (uint8 *)ptr;
if (len <= BCMPCIE_D2H_METADATA_HDRLEN)
return;
len -= BCMPCIE_D2H_METADATA_HDRLEN;
tlv_v += BCMPCIE_D2H_METADATA_HDRLEN;
while (len > TLV_HDR_LEN) {
tlv_t = tlv_v[TLV_TAG_OFF];
tlv_l = tlv_v[TLV_LEN_OFF];
len -= TLV_HDR_LEN;
tlv_v += TLV_HDR_LEN;
if (len < tlv_l)
break;
if ((tlv_t == 0) || (tlv_t == WLFC_CTL_TYPE_FILLER))
break;
switch (tlv_t) {
case WLFC_CTL_TYPE_TXSTATUS: {
uint32 txs;
memcpy(&txs, tlv_v, sizeof(uint32));
if (tlv_l < (sizeof(wl_txstatus_additional_info_t) + sizeof(uint32))) {
printf("METADATA TX_STATUS: %08x\n", txs);
} else {
wl_txstatus_additional_info_t tx_add_info;
memcpy(&tx_add_info, tlv_v + sizeof(uint32),
sizeof(wl_txstatus_additional_info_t));
printf("METADATA TX_STATUS: %08x WLFCTS[%04x | %08x - %08x - %08x]"
" rate = %08x tries = %d - %d\n", txs,
tx_add_info.seq, tx_add_info.entry_ts,
tx_add_info.enq_ts, tx_add_info.last_ts,
tx_add_info.rspec, tx_add_info.rts_cnt,
tx_add_info.tx_cnt);
}
} break;
case WLFC_CTL_TYPE_RSSI: {
if (tlv_l == 1)
printf("METADATA RX_RSSI: rssi = %d\n", *tlv_v);
else
printf("METADATA RX_RSSI[%04x]: rssi = %d snr = %d\n",
(*(tlv_v + 3) << 8) | *(tlv_v + 2),
(int8)(*tlv_v), *(tlv_v + 1));
} break;
case WLFC_CTL_TYPE_FIFO_CREDITBACK:
bcm_print_bytes("METADATA FIFO_CREDITBACK", tlv_v, tlv_l);
break;
case WLFC_CTL_TYPE_TX_ENTRY_STAMP:
bcm_print_bytes("METADATA TX_ENTRY", tlv_v, tlv_l);
break;
case WLFC_CTL_TYPE_RX_STAMP: {
struct {
uint32 rspec;
uint32 bus_time;
uint32 wlan_time;
} rx_tmstamp;
memcpy(&rx_tmstamp, tlv_v, sizeof(rx_tmstamp));
printf("METADATA RX TIMESTMAP: WLFCTS[%08x - %08x] rate = %08x\n",
rx_tmstamp.wlan_time, rx_tmstamp.bus_time, rx_tmstamp.rspec);
} break;
case WLFC_CTL_TYPE_TRANS_ID:
bcm_print_bytes("METADATA TRANS_ID", tlv_v, tlv_l);
break;
case WLFC_CTL_TYPE_COMP_TXSTATUS:
bcm_print_bytes("METADATA COMP_TXSTATUS", tlv_v, tlv_l);
break;
default:
bcm_print_bytes("METADATA UNKNOWN", tlv_v, tlv_l);
break;
}
len -= tlv_l;
tlv_v += tlv_l;
}
}
#endif /* DHD_DBG_SHOW_METADATA */
static INLINE void BCMFASTPATH
dhd_prot_packet_free(dhd_pub_t *dhd, void *pkt, uint8 pkttype, bool send)
{
if (pkt) {
if (pkttype == PKTTYPE_IOCTL_RX ||
pkttype == PKTTYPE_EVENT_RX) {
#ifdef DHD_USE_STATIC_CTRLBUF
PKTFREE_STATIC(dhd->osh, pkt, send);
#else
PKTFREE(dhd->osh, pkt, send);
#endif /* DHD_USE_STATIC_CTRLBUF */
} else {
PKTFREE(dhd->osh, pkt, send);
}
}
}
static INLINE void * BCMFASTPATH
dhd_prot_packet_get(dhd_pub_t *dhd, uint32 pktid, uint8 pkttype, bool free_pktid)
{
void *PKTBUF;
dmaaddr_t pa;
uint32 len;
void *dmah;
void *secdma;
#ifdef DHD_PCIE_PKTID
if (free_pktid) {
PKTBUF = DHD_PKTID_TO_NATIVE(dhd, dhd->prot->pktid_map_handle,
pktid, pa, len, dmah, secdma, pkttype);
} else {
PKTBUF = DHD_PKTID_TO_NATIVE_RSV(dhd, dhd->prot->pktid_map_handle,
pktid, pa, len, dmah, secdma, pkttype);
}
#else
PKTBUF = DHD_PKTID_TO_NATIVE(dhd, dhd->prot->pktid_map_handle, pktid, pa,
len, dmah, secdma, pkttype);
#endif /* DHD_PCIE_PKTID */
if (PKTBUF) {
{
if (SECURE_DMA_ENAB(dhd->osh)) {
SECURE_DMA_UNMAP(dhd->osh, pa, (uint) len, DMA_RX, 0, dmah,
secdma, 0);
} else {
DMA_UNMAP(dhd->osh, pa, (uint) len, DMA_RX, 0, dmah);
}
}
}
return PKTBUF;
}
#ifdef IOCTLRESP_USE_CONSTMEM
static INLINE void BCMFASTPATH
dhd_prot_ioctl_ret_buffer_get(dhd_pub_t *dhd, uint32 pktid, dhd_dma_buf_t *retbuf)
{
memset(retbuf, 0, sizeof(dhd_dma_buf_t));
retbuf->va = DHD_PKTID_TO_NATIVE(dhd, dhd->prot->pktid_map_handle_ioctl, pktid,
retbuf->pa, retbuf->len, retbuf->dmah, retbuf->secdma, PKTTYPE_IOCTL_RX);
return;
}
#endif /* IOCTLRESP_USE_CONSTMEM */
static void BCMFASTPATH
dhd_msgbuf_rxbuf_post(dhd_pub_t *dhd, bool use_rsv_pktid)
{
dhd_prot_t *prot = dhd->prot;
int16 fillbufs;
uint16 cnt = 256;
int retcount = 0;
fillbufs = prot->max_rxbufpost - prot->rxbufpost;
while (fillbufs >= RX_BUF_BURST) {
cnt--;
if (cnt == 0) {
/* find a better way to reschedule rx buf post if space not available */
DHD_ERROR(("h2d rx post ring not available to post host buffers \n"));
DHD_ERROR(("Current posted host buf count %d \n", prot->rxbufpost));
break;
}
/* Post in a burst of 32 buffers at a time */
fillbufs = MIN(fillbufs, RX_BUF_BURST);
/* Post buffers */
retcount = dhd_prot_rxbuf_post(dhd, fillbufs, use_rsv_pktid);
if (retcount >= 0) {
prot->rxbufpost += (uint16)retcount;
#ifdef DHD_LB_RXC
/* dhd_prot_rxbuf_post returns the number of buffers posted */
DHD_LB_STATS_UPDATE_RXC_HISTO(dhd, retcount);
#endif /* DHD_LB_RXC */
/* how many more to post */
fillbufs = prot->max_rxbufpost - prot->rxbufpost;
} else {
/* Make sure we don't run loop any further */
fillbufs = 0;
}
}
}
/** Post 'count' no of rx buffers to dongle */
static int BCMFASTPATH
dhd_prot_rxbuf_post(dhd_pub_t *dhd, uint16 count, bool use_rsv_pktid)
{
void *p;
uint16 pktsz = DHD_FLOWRING_RX_BUFPOST_PKTSZ;
uint8 *rxbuf_post_tmp;
host_rxbuf_post_t *rxbuf_post;
void *msg_start;
dmaaddr_t pa;
uint32 pktlen;
uint8 i = 0;
uint16 alloced = 0;
unsigned long flags;
uint32 pktid;
dhd_prot_t *prot = dhd->prot;
msgbuf_ring_t *ring = &prot->h2dring_rxp_subn;
DHD_GENERAL_LOCK(dhd, flags);
/* Claim space for exactly 'count' no of messages, for mitigation purpose */
msg_start = (void *)
dhd_prot_alloc_ring_space(dhd, ring, count, &alloced, TRUE);
DHD_GENERAL_UNLOCK(dhd, flags);
if (msg_start == NULL) {
DHD_INFO(("%s:%d: Rxbufpost Msgbuf Not available\n", __FUNCTION__, __LINE__));
return -1;
}
/* if msg_start != NULL, we should have alloced space for atleast 1 item */
ASSERT(alloced > 0);
rxbuf_post_tmp = (uint8*)msg_start;
/* loop through each allocated message in the rxbuf post msgbuf_ring */
for (i = 0; i < alloced; i++) {
rxbuf_post = (host_rxbuf_post_t *)rxbuf_post_tmp;
/* Create a rx buffer */
if ((p = PKTGET(dhd->osh, pktsz, FALSE)) == NULL) {
DHD_ERROR(("%s:%d: PKTGET for rxbuf failed\n", __FUNCTION__, __LINE__));
dhd->rx_pktgetfail++;
break;
}
pktlen = PKTLEN(dhd->osh, p);
if (SECURE_DMA_ENAB(dhd->osh)) {
DHD_GENERAL_LOCK(dhd, flags);
pa = SECURE_DMA_MAP(dhd->osh, PKTDATA(dhd->osh, p), pktlen,
DMA_RX, p, 0, ring->dma_buf.secdma, 0);
DHD_GENERAL_UNLOCK(dhd, flags);
} else {
pa = DMA_MAP(dhd->osh, PKTDATA(dhd->osh, p), pktlen, DMA_RX, p, 0);
}
if (PHYSADDRISZERO(pa)) {
PKTFREE(dhd->osh, p, FALSE);
DHD_ERROR(("Invalid phyaddr 0\n"));
ASSERT(0);
break;
}
PKTPULL(dhd->osh, p, prot->rx_metadata_offset);
pktlen = PKTLEN(dhd->osh, p);
/* Common msg header */
rxbuf_post->cmn_hdr.msg_type = MSG_TYPE_RXBUF_POST;
rxbuf_post->cmn_hdr.if_id = 0;
rxbuf_post->cmn_hdr.epoch = ring->seqnum % H2D_EPOCH_MODULO;
ring->seqnum++;
#if defined(DHD_LB_RXC)
if (use_rsv_pktid == TRUE) {
bcm_workq_t *workq = &prot->rx_compl_cons;
int elem_ix = bcm_ring_cons(WORKQ_RING(workq), DHD_LB_WORKQ_SZ);
if (elem_ix == BCM_RING_EMPTY) {
DHD_ERROR(("%s rx_compl_cons ring is empty\n", __FUNCTION__));
pktid = DHD_PKTID_INVALID;
goto alloc_pkt_id;
} else {
uint32 *elem = WORKQ_ELEMENT(uint32, workq, elem_ix);
pktid = *elem;
}
/* Now populate the previous locker with valid information */
if (pktid != DHD_PKTID_INVALID) {
rxbuf_post->cmn_hdr.request_id = htol32(pktid);
DHD_NATIVE_TO_PKTID_SAVE(dhd, dhd->prot->pktid_map_handle, p, pktid,
pa, pktlen, DMA_RX, NULL, ring->dma_buf.secdma,
PKTTYPE_DATA_RX);
}
} else
#endif /* DHD_LB_RXC */
{
#if defined(DHD_LB_RXC)
alloc_pkt_id:
#endif
#if defined(DHD_PCIE_PKTID)
/* get the lock before calling DHD_NATIVE_TO_PKTID */
DHD_GENERAL_LOCK(dhd, flags);
#endif
pktid = DHD_NATIVE_TO_PKTID(dhd, dhd->prot->pktid_map_handle, p, pa,
pktlen, DMA_RX, NULL, ring->dma_buf.secdma, PKTTYPE_DATA_RX);
#if defined(DHD_PCIE_PKTID)
/* free lock */
DHD_GENERAL_UNLOCK(dhd, flags);
if (pktid == DHD_PKTID_INVALID) {
if (SECURE_DMA_ENAB(dhd->osh)) {
DHD_GENERAL_LOCK(dhd, flags);
SECURE_DMA_UNMAP(dhd->osh, pa, pktlen, DMA_RX, 0, DHD_DMAH_NULL,
ring->dma_buf.secdma, 0);
DHD_GENERAL_UNLOCK(dhd, flags);
} else {
DMA_UNMAP(dhd->osh, pa, pktlen, DMA_RX, 0, DHD_DMAH_NULL);
}
PKTFREE(dhd->osh, p, FALSE);
DHD_ERROR(("Pktid pool depleted.\n"));
break;
}
#endif /* DHD_PCIE_PKTID */
}
rxbuf_post->data_buf_len = htol16((uint16)pktlen);
rxbuf_post->data_buf_addr.high_addr = htol32(PHYSADDRHI(pa));
rxbuf_post->data_buf_addr.low_addr =
htol32(PHYSADDRLO(pa) + prot->rx_metadata_offset);
if (prot->rx_metadata_offset) {
rxbuf_post->metadata_buf_len = prot->rx_metadata_offset;
rxbuf_post->metadata_buf_addr.high_addr = htol32(PHYSADDRHI(pa));
rxbuf_post->metadata_buf_addr.low_addr = htol32(PHYSADDRLO(pa));
} else {
rxbuf_post->metadata_buf_len = 0;
rxbuf_post->metadata_buf_addr.high_addr = 0;
rxbuf_post->metadata_buf_addr.low_addr = 0;
}
#if defined(DHD_PKTID_AUDIT_RING)
DHD_PKTID_AUDIT(dhd, prot->pktid_map_handle, pktid, DHD_DUPLICATE_ALLOC);
#endif /* DHD_PKTID_AUDIT_RING */
rxbuf_post->cmn_hdr.request_id = htol32(pktid);
/* Move rxbuf_post_tmp to next item */
rxbuf_post_tmp = rxbuf_post_tmp + ring->item_len;
}
if (i < alloced) {
if (ring->wr < (alloced - i)) {
ring->wr = ring->max_items - (alloced - i);
} else {
ring->wr -= (alloced - i);
}
alloced = i;
}
/* Update ring's WR index and ring doorbell to dongle */
if (alloced > 0) {
dhd_prot_ring_write_complete(dhd, ring, msg_start, alloced);
}
return alloced;
} /* dhd_prot_rxbuf_post */
#ifdef IOCTLRESP_USE_CONSTMEM
static int
alloc_ioctl_return_buffer(dhd_pub_t *dhd, dhd_dma_buf_t *retbuf)
{
int err;
memset(retbuf, 0, sizeof(dhd_dma_buf_t));
if ((err = dhd_dma_buf_alloc(dhd, retbuf, IOCT_RETBUF_SIZE)) != BCME_OK) {
DHD_ERROR(("%s: dhd_dma_buf_alloc err %d\n", __FUNCTION__, err));
ASSERT(0);
return BCME_NOMEM;
}
return BCME_OK;
}
static void
free_ioctl_return_buffer(dhd_pub_t *dhd, dhd_dma_buf_t *retbuf)
{
/* retbuf (declared on stack) not fully populated ... */
if (retbuf->va) {
uint32 dma_pad;
dma_pad = (IOCT_RETBUF_SIZE % DHD_DMA_PAD) ? DHD_DMA_PAD : 0;
retbuf->len = IOCT_RETBUF_SIZE;
retbuf->_alloced = retbuf->len + dma_pad;
/* JIRA:SWWLAN-70021 The pa value would be overwritten by the dongle.
* Need to reassign before free to pass the check in dhd_dma_buf_audit().
*/
retbuf->pa = DMA_MAP(dhd->osh, retbuf->va, retbuf->len, DMA_RX, NULL, NULL);
}
dhd_dma_buf_free(dhd, retbuf);
return;
}
#endif /* IOCTLRESP_USE_CONSTMEM */
static int
dhd_prot_rxbufpost_ctrl(dhd_pub_t *dhd, bool event_buf)
{
void *p;
uint16 pktsz;
ioctl_resp_evt_buf_post_msg_t *rxbuf_post;
dmaaddr_t pa;
uint32 pktlen;
dhd_prot_t *prot = dhd->prot;
uint16 alloced = 0;
unsigned long flags;
dhd_dma_buf_t retbuf;
void *dmah = NULL;
uint32 pktid;
void *map_handle;
msgbuf_ring_t *ring = &prot->h2dring_ctrl_subn;
if (dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s: bus is already down.\n", __FUNCTION__));
return -1;
}
memset(&retbuf, 0, sizeof(dhd_dma_buf_t));
if (event_buf) {
/* Allocate packet for event buffer post */
pktsz = DHD_FLOWRING_RX_BUFPOST_PKTSZ;
} else {
/* Allocate packet for ctrl/ioctl buffer post */
pktsz = DHD_FLOWRING_IOCTL_BUFPOST_PKTSZ;
}
#ifdef IOCTLRESP_USE_CONSTMEM
if (!event_buf) {
if (alloc_ioctl_return_buffer(dhd, &retbuf) != BCME_OK) {
DHD_ERROR(("Could not allocate IOCTL response buffer\n"));
return -1;
}
ASSERT(retbuf.len == IOCT_RETBUF_SIZE);
p = retbuf.va;
pktlen = retbuf.len;
pa = retbuf.pa;
dmah = retbuf.dmah;
} else
#endif /* IOCTLRESP_USE_CONSTMEM */
{
#ifdef DHD_USE_STATIC_CTRLBUF
p = PKTGET_STATIC(dhd->osh, pktsz, FALSE);
#else
p = PKTGET(dhd->osh, pktsz, FALSE);
#endif /* DHD_USE_STATIC_CTRLBUF */
if (p == NULL) {
DHD_ERROR(("%s:%d: PKTGET for %s buf failed\n",
__FUNCTION__, __LINE__, event_buf ?
"EVENT" : "IOCTL RESP"));
dhd->rx_pktgetfail++;
return -1;
}
pktlen = PKTLEN(dhd->osh, p);
if (SECURE_DMA_ENAB(dhd->osh)) {
DHD_GENERAL_LOCK(dhd, flags);
pa = SECURE_DMA_MAP(dhd->osh, PKTDATA(dhd->osh, p), pktlen,
DMA_RX, p, 0, ring->dma_buf.secdma, 0);
DHD_GENERAL_UNLOCK(dhd, flags);
} else {
pa = DMA_MAP(dhd->osh, PKTDATA(dhd->osh, p), pktlen, DMA_RX, p, 0);
}
if (PHYSADDRISZERO(pa)) {
DHD_ERROR(("Invalid physaddr 0\n"));
ASSERT(0);
goto free_pkt_return;
}
}
DHD_GENERAL_LOCK(dhd, flags);
rxbuf_post = (ioctl_resp_evt_buf_post_msg_t *)
dhd_prot_alloc_ring_space(dhd, ring, 1, &alloced, FALSE);
if (rxbuf_post == NULL) {
DHD_GENERAL_UNLOCK(dhd, flags);
DHD_ERROR(("%s:%d: Ctrl submit Msgbuf Not available to post buffer \n",
__FUNCTION__, __LINE__));
#ifdef IOCTLRESP_USE_CONSTMEM
if (event_buf)
#endif /* IOCTLRESP_USE_CONSTMEM */
{
if (SECURE_DMA_ENAB(dhd->osh)) {
DHD_GENERAL_LOCK(dhd, flags);
SECURE_DMA_UNMAP(dhd->osh, pa, pktlen, DMA_RX, 0, DHD_DMAH_NULL,
ring->dma_buf.secdma, 0);
DHD_GENERAL_UNLOCK(dhd, flags);
} else {
DMA_UNMAP(dhd->osh, pa, pktlen, DMA_RX, 0, DHD_DMAH_NULL);
}
}
goto free_pkt_return;
}
/* CMN msg header */
if (event_buf) {
rxbuf_post->cmn_hdr.msg_type = MSG_TYPE_EVENT_BUF_POST;
} else {
rxbuf_post->cmn_hdr.msg_type = MSG_TYPE_IOCTLRESP_BUF_POST;
}
#ifdef IOCTLRESP_USE_CONSTMEM
if (!event_buf) {
map_handle = dhd->prot->pktid_map_handle_ioctl;
pktid = DHD_NATIVE_TO_PKTID(dhd, map_handle, p, pa, pktlen,
DMA_RX, dmah, ring->dma_buf.secdma, PKTTYPE_IOCTL_RX);
} else
#endif /* IOCTLRESP_USE_CONSTMEM */
{
map_handle = dhd->prot->pktid_map_handle;
pktid = DHD_NATIVE_TO_PKTID(dhd, map_handle,
p, pa, pktlen, DMA_RX, dmah, ring->dma_buf.secdma,
event_buf ? PKTTYPE_EVENT_RX : PKTTYPE_IOCTL_RX);
}
if (pktid == DHD_PKTID_INVALID) {
if (ring->wr == 0) {
ring->wr = ring->max_items - 1;
} else {
ring->wr--;
}
DHD_GENERAL_UNLOCK(dhd, flags);
DMA_UNMAP(dhd->osh, pa, pktlen, DMA_RX, 0, DHD_DMAH_NULL);
goto free_pkt_return;
}
#if defined(DHD_PKTID_AUDIT_RING)
DHD_PKTID_AUDIT(dhd, map_handle, pktid, DHD_DUPLICATE_ALLOC);
#endif /* DHD_PKTID_AUDIT_RING */
rxbuf_post->cmn_hdr.request_id = htol32(pktid);
rxbuf_post->cmn_hdr.if_id = 0;
rxbuf_post->cmn_hdr.epoch = ring->seqnum % H2D_EPOCH_MODULO;
ring->seqnum++;
#if defined(DHD_PCIE_PKTID)
if (rxbuf_post->cmn_hdr.request_id == DHD_PKTID_INVALID) {
if (ring->wr == 0) {
ring->wr = ring->max_items - 1;
} else {
ring->wr--;
}
DHD_GENERAL_UNLOCK(dhd, flags);
#ifdef IOCTLRESP_USE_CONSTMEM
if (event_buf)
#endif /* IOCTLRESP_USE_CONSTMEM */
{
if (SECURE_DMA_ENAB(dhd->osh)) {
DHD_GENERAL_LOCK(dhd, flags);
SECURE_DMA_UNMAP(dhd->osh, pa, pktlen, DMA_RX, 0, DHD_DMAH_NULL,
ring->dma_buf.secdma, 0);
DHD_GENERAL_UNLOCK(dhd, flags);
} else {
DMA_UNMAP(dhd->osh, pa, pktlen, DMA_RX, 0, DHD_DMAH_NULL);
}
}
goto free_pkt_return;
}
#endif /* DHD_PCIE_PKTID */
rxbuf_post->cmn_hdr.flags = 0;
#ifndef IOCTLRESP_USE_CONSTMEM
rxbuf_post->host_buf_len = htol16((uint16)PKTLEN(dhd->osh, p));
#else
rxbuf_post->host_buf_len = htol16((uint16)pktlen);
#endif /* IOCTLRESP_USE_CONSTMEM */
rxbuf_post->host_buf_addr.high_addr = htol32(PHYSADDRHI(pa));
rxbuf_post->host_buf_addr.low_addr = htol32(PHYSADDRLO(pa));
/* update ring's WR index and ring doorbell to dongle */
dhd_prot_ring_write_complete(dhd, ring, rxbuf_post, 1);
DHD_GENERAL_UNLOCK(dhd, flags);
return 1;
free_pkt_return:
#ifdef IOCTLRESP_USE_CONSTMEM
if (!event_buf) {
free_ioctl_return_buffer(dhd, &retbuf);
} else
#endif /* IOCTLRESP_USE_CONSTMEM */
{
dhd_prot_packet_free(dhd, p,
event_buf ? PKTTYPE_EVENT_RX : PKTTYPE_IOCTL_RX,
FALSE);
}
return -1;
} /* dhd_prot_rxbufpost_ctrl */
static uint16
dhd_msgbuf_rxbuf_post_ctrlpath(dhd_pub_t *dhd, bool event_buf, uint32 max_to_post)
{
uint32 i = 0;
int32 ret_val;
DHD_INFO(("max to post %d, event %d \n", max_to_post, event_buf));
if (dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s: bus is already down.\n", __FUNCTION__));
return 0;
}
while (i < max_to_post) {
ret_val = dhd_prot_rxbufpost_ctrl(dhd, event_buf);
if (ret_val < 0) {
break;
}
i++;
}
DHD_INFO(("posted %d buffers to event_pool/ioctl_resp_pool %d\n", i, event_buf));
return (uint16)i;
}
static void
dhd_msgbuf_rxbuf_post_ioctlresp_bufs(dhd_pub_t *dhd)
{
dhd_prot_t *prot = dhd->prot;
int max_to_post;
DHD_INFO(("ioctl resp buf post\n"));
max_to_post = prot->max_ioctlrespbufpost - prot->cur_ioctlresp_bufs_posted;
if (max_to_post <= 0) {
DHD_INFO(("%s: Cannot post more than max IOCTL resp buffers\n",
__FUNCTION__));
return;
}
prot->cur_ioctlresp_bufs_posted += dhd_msgbuf_rxbuf_post_ctrlpath(dhd,
FALSE, max_to_post);
}
static void
dhd_msgbuf_rxbuf_post_event_bufs(dhd_pub_t *dhd)
{
dhd_prot_t *prot = dhd->prot;
int max_to_post;
max_to_post = prot->max_eventbufpost - prot->cur_event_bufs_posted;
if (max_to_post <= 0) {
DHD_INFO(("%s: Cannot post more than max event buffers\n",
__FUNCTION__));
return;
}
prot->cur_event_bufs_posted += dhd_msgbuf_rxbuf_post_ctrlpath(dhd,
TRUE, max_to_post);
}
/** called when DHD needs to check for 'receive complete' messages from the dongle */
bool BCMFASTPATH
dhd_prot_process_msgbuf_rxcpl(dhd_pub_t *dhd, uint bound)
{
bool more = TRUE;
uint n = 0;
msgbuf_ring_t *ring = &dhd->prot->d2hring_rx_cpln;
/* Process all the messages - DTOH direction */
while (!dhd_is_device_removed(dhd)) {
uint8 *msg_addr;
uint32 msg_len;
if (dhd->hang_was_sent) {
more = FALSE;
break;
}
/* Get the address of the next message to be read from ring */
msg_addr = dhd_prot_get_read_addr(dhd, ring, &msg_len);
if (msg_addr == NULL) {
more = FALSE;
break;
}
/* Prefetch data to populate the cache */
OSL_PREFETCH(msg_addr);
if (dhd_prot_process_msgtype(dhd, ring, msg_addr, msg_len) != BCME_OK) {
DHD_ERROR(("%s: process %s msg addr %p len %d\n",
__FUNCTION__, ring->name, msg_addr, msg_len));
}
/* Update read pointer */
dhd_prot_upd_read_idx(dhd, ring);
/* After batch processing, check RX bound */
n += msg_len / ring->item_len;
if (n >= bound) {
break;
}
}
return more;
}
/**
* Hands transmit packets (with a caller provided flow_id) over to dongle territory (the flow ring)
*/
void
dhd_prot_update_txflowring(dhd_pub_t *dhd, uint16 flowid, void *msgring)
{
msgbuf_ring_t *ring = (msgbuf_ring_t *)msgring;
/* Update read pointer */
if (DMA_INDX_ENAB(dhd->dma_d2h_ring_upd_support)) {
ring->rd = dhd_prot_dma_indx_get(dhd, H2D_DMA_INDX_RD_UPD, ring->idx);
}
DHD_TRACE(("ringid %d flowid %d write %d read %d \n\n",
ring->idx, flowid, ring->wr, ring->rd));
/* Need more logic here, but for now use it directly */
dhd_bus_schedule_queue(dhd->bus, flowid, TRUE); /* from queue to flowring */
}
/** called when DHD needs to check for 'transmit complete' messages from the dongle */
bool BCMFASTPATH
dhd_prot_process_msgbuf_txcpl(dhd_pub_t *dhd, uint bound)
{
bool more = TRUE;
uint n = 0;
msgbuf_ring_t *ring = &dhd->prot->d2hring_tx_cpln;
/* Process all the messages - DTOH direction */
while (!dhd_is_device_removed(dhd)) {
uint8 *msg_addr;
uint32 msg_len;
if (dhd->hang_was_sent) {
more = FALSE;
break;
}
/* Get the address of the next message to be read from ring */
msg_addr = dhd_prot_get_read_addr(dhd, ring, &msg_len);
if (msg_addr == NULL) {
more = FALSE;
break;
}
/* Prefetch data to populate the cache */
OSL_PREFETCH(msg_addr);
if (dhd_prot_process_msgtype(dhd, ring, msg_addr, msg_len) != BCME_OK) {
DHD_ERROR(("%s: process %s msg addr %p len %d\n",
__FUNCTION__, ring->name, msg_addr, msg_len));
}
/* Write to dngl rd ptr */
dhd_prot_upd_read_idx(dhd, ring);
/* After batch processing, check bound */
n += msg_len / ring->item_len;
if (n >= bound) {
break;
}
}
return more;
}
/** called when DHD needs to check for 'ioctl complete' messages from the dongle */
int BCMFASTPATH
dhd_prot_process_ctrlbuf(dhd_pub_t *dhd)
{
dhd_prot_t *prot = dhd->prot;
msgbuf_ring_t *ring = &prot->d2hring_ctrl_cpln;
/* Process all the messages - DTOH direction */
while (!dhd_is_device_removed(dhd)) {
uint8 *msg_addr;
uint32 msg_len;
if (dhd->hang_was_sent) {
break;
}
/* Get the address of the next message to be read from ring */
msg_addr = dhd_prot_get_read_addr(dhd, ring, &msg_len);
if (msg_addr == NULL) {
break;
}
/* Prefetch data to populate the cache */
OSL_PREFETCH(msg_addr);
if (dhd_prot_process_msgtype(dhd, ring, msg_addr, msg_len) != BCME_OK) {
DHD_ERROR(("%s: process %s msg addr %p len %d\n",
__FUNCTION__, ring->name, msg_addr, msg_len));
}
/* Write to dngl rd ptr */
dhd_prot_upd_read_idx(dhd, ring);
}
return 0;
}
/**
* Consume messages out of the D2H ring. Ensure that the message's DMA to host
* memory has completed, before invoking the message handler via a table lookup
* of the cmn_msg_hdr::msg_type.
*/
static int BCMFASTPATH
dhd_prot_process_msgtype(dhd_pub_t *dhd, msgbuf_ring_t *ring, uint8 *buf, uint32 len)
{
int buf_len = len;
uint16 item_len;
uint8 msg_type;
cmn_msg_hdr_t *msg = NULL;
int ret = BCME_OK;
ASSERT(ring);
item_len = ring->item_len;
if (item_len == 0) {
DHD_ERROR(("%s: ringidx %d item_len %d buf_len %d\n",
__FUNCTION__, ring->idx, item_len, buf_len));
return BCME_ERROR;
}
while (buf_len > 0) {
if (dhd->hang_was_sent) {
ret = BCME_ERROR;
goto done;
}
msg = (cmn_msg_hdr_t *)buf;
/*
* Update the curr_rd to the current index in the ring, from where
* the work item is fetched. This way if the fetched work item
* fails in LIVELOCK, we can print the exact read index in the ring
* that shows up the corrupted work item.
*/
if ((ring->curr_rd + 1) >= ring->max_items) {
ring->curr_rd = 0;
} else {
ring->curr_rd += 1;
}
#if defined(PCIE_D2H_SYNC)
/* Wait until DMA completes, then fetch msg_type */
msg_type = dhd->prot->d2h_sync_cb(dhd, ring, msg, item_len);
#else
msg_type = msg->msg_type;
#endif /* !PCIE_D2H_SYNC */
/* Prefetch data to populate the cache */
OSL_PREFETCH(buf + item_len);
DHD_INFO(("msg_type %d item_len %d buf_len %d\n",
msg_type, item_len, buf_len));
if (msg_type == MSG_TYPE_LOOPBACK) {
bcm_print_bytes("LPBK RESP: ", (uint8 *)msg, item_len);
DHD_ERROR((" MSG_TYPE_LOOPBACK, len %d\n", item_len));
}
ASSERT(msg_type < DHD_PROT_FUNCS);
if (msg_type >= DHD_PROT_FUNCS) {
DHD_ERROR(("%s: msg_type %d item_len %d buf_len %d\n",
__FUNCTION__, msg_type, item_len, buf_len));
ret = BCME_ERROR;
goto done;
}
if (table_lookup[msg_type]) {
table_lookup[msg_type](dhd, buf);
}
if (buf_len < item_len) {
ret = BCME_ERROR;
goto done;
}
buf_len = buf_len - item_len;
buf = buf + item_len;
}
done:
#ifdef DHD_RX_CHAINING
dhd_rxchain_commit(dhd);
#endif
#if defined(DHD_LB)
dhd_lb_dispatch(dhd, ring->idx);
#endif
return ret;
} /* dhd_prot_process_msgtype */
static void
dhd_prot_noop(dhd_pub_t *dhd, void *msg)
{
return;
}
/** called on MSG_TYPE_RING_STATUS message received from dongle */
static void
dhd_prot_ringstatus_process(dhd_pub_t *dhd, void *msg)
{
pcie_ring_status_t *ring_status = (pcie_ring_status_t *)msg;
DHD_ERROR(("ring status: request_id %d, status 0x%04x, flow ring %d, write_idx %d \n",
ring_status->cmn_hdr.request_id, ring_status->compl_hdr.status,
ring_status->compl_hdr.flow_ring_id, ring_status->write_idx));
/* How do we track this to pair it with ??? */
return;
}
/** called on MSG_TYPE_GEN_STATUS ('general status') message received from dongle */
static void
dhd_prot_genstatus_process(dhd_pub_t *dhd, void *msg)
{
pcie_gen_status_t *gen_status = (pcie_gen_status_t *)msg;
DHD_ERROR(("ERROR: gen status: request_id %d, STATUS 0x%04x, flow ring %d \n",
gen_status->cmn_hdr.request_id, gen_status->compl_hdr.status,
gen_status->compl_hdr.flow_ring_id));
/* How do we track this to pair it with ??? */
return;
}
/**
* Called on MSG_TYPE_IOCTLPTR_REQ_ACK ('ioctl ack') message received from dongle, meaning that the
* dongle received the ioctl message in dongle memory.
*/
static void
dhd_prot_ioctack_process(dhd_pub_t *dhd, void *msg)
{
uint32 pktid;
ioctl_req_ack_msg_t *ioct_ack = (ioctl_req_ack_msg_t *)msg;
unsigned long flags;
pktid = ltoh32(ioct_ack->cmn_hdr.request_id);
#if defined(DHD_PKTID_AUDIT_RING)
/* Skip DHD_IOCTL_REQ_PKTID = 0xFFFE */
if (pktid != DHD_IOCTL_REQ_PKTID) {
if (DHD_PKTID_AUDIT(dhd, dhd->prot->pktid_map_handle, pktid,
DHD_TEST_IS_ALLOC) == BCME_ERROR) {
prhex("dhd_prot_ioctack_process:",
(uchar *)msg, D2HRING_CTRL_CMPLT_ITEMSIZE);
}
}
#endif /* DHD_PKTID_AUDIT_RING */
DHD_GENERAL_LOCK(dhd, flags);
if ((dhd->prot->ioctl_state & MSGBUF_IOCTL_ACK_PENDING) &&
(dhd->prot->ioctl_state & MSGBUF_IOCTL_RESP_PENDING)) {
dhd->prot->ioctl_state &= ~MSGBUF_IOCTL_ACK_PENDING;
} else {
DHD_ERROR(("%s: received ioctl ACK with state %02x trans_id = %d\n",
__FUNCTION__, dhd->prot->ioctl_state, dhd->prot->ioctl_trans_id));
prhex("dhd_prot_ioctack_process:",
(uchar *)msg, D2HRING_CTRL_CMPLT_ITEMSIZE);
}
DHD_GENERAL_UNLOCK(dhd, flags);
DHD_CTL(("ioctl req ack: request_id %d, status 0x%04x, flow ring %d \n",
ioct_ack->cmn_hdr.request_id, ioct_ack->compl_hdr.status,
ioct_ack->compl_hdr.flow_ring_id));
if (ioct_ack->compl_hdr.status != 0) {
DHD_ERROR(("got an error status for the ioctl request...need to handle that\n"));
}
}
/** called on MSG_TYPE_IOCTL_CMPLT message received from dongle */
static void
dhd_prot_ioctcmplt_process(dhd_pub_t *dhd, void *msg)
{
dhd_prot_t *prot = dhd->prot;
uint32 pkt_id, xt_id;
ioctl_comp_resp_msg_t *ioct_resp = (ioctl_comp_resp_msg_t *)msg;
void *pkt;
unsigned long flags;
dhd_dma_buf_t retbuf;
memset(&retbuf, 0, sizeof(dhd_dma_buf_t));
pkt_id = ltoh32(ioct_resp->cmn_hdr.request_id);
#if defined(DHD_PKTID_AUDIT_RING)
{
int ret;
#ifndef IOCTLRESP_USE_CONSTMEM
ret = DHD_PKTID_AUDIT(dhd, prot->pktid_map_handle, pkt_id,
DHD_DUPLICATE_FREE);
#else
ret = DHD_PKTID_AUDIT(dhd, prot->pktid_map_handle_ioctl, pkt_id,
DHD_DUPLICATE_FREE);
#endif /* !IOCTLRESP_USE_CONSTMEM */
if (ret == BCME_ERROR) {
prhex("dhd_prot_ioctcmplt_process:",
(uchar *)msg, D2HRING_CTRL_CMPLT_ITEMSIZE);
}
}
#endif /* DHD_PKTID_AUDIT_RING */
DHD_GENERAL_LOCK(dhd, flags);
if ((prot->ioctl_state & MSGBUF_IOCTL_ACK_PENDING) ||
!(prot->ioctl_state & MSGBUF_IOCTL_RESP_PENDING)) {
DHD_ERROR(("%s: received ioctl response with state %02x trans_id = %d\n",
__FUNCTION__, dhd->prot->ioctl_state, dhd->prot->ioctl_trans_id));
prhex("dhd_prot_ioctcmplt_process:",
(uchar *)msg, D2HRING_CTRL_CMPLT_ITEMSIZE);
DHD_GENERAL_UNLOCK(dhd, flags);
return;
}
#ifndef IOCTLRESP_USE_CONSTMEM
pkt = dhd_prot_packet_get(dhd, pkt_id, PKTTYPE_IOCTL_RX, TRUE);
#else
dhd_prot_ioctl_ret_buffer_get(dhd, pkt_id, &retbuf);
pkt = retbuf.va;
#endif /* !IOCTLRESP_USE_CONSTMEM */
if (!pkt) {
prot->ioctl_state = 0;
DHD_GENERAL_UNLOCK(dhd, flags);
DHD_ERROR(("%s: received ioctl response with NULL pkt\n", __FUNCTION__));
return;
}
DHD_GENERAL_UNLOCK(dhd, flags);
prot->ioctl_resplen = ltoh16(ioct_resp->resp_len);
prot->ioctl_status = ltoh16(ioct_resp->compl_hdr.status);
xt_id = ltoh16(ioct_resp->trans_id);
if (xt_id != prot->ioctl_trans_id) {
ASSERT(0);
goto exit;
}
DHD_CTL(("IOCTL_COMPLETE: req_id %x transid %d status %x resplen %d\n",
pkt_id, xt_id, prot->ioctl_status, prot->ioctl_resplen));
if (prot->ioctl_resplen > 0) {
#ifndef IOCTLRESP_USE_CONSTMEM
bcopy(PKTDATA(dhd->osh, pkt), prot->retbuf.va, prot->ioctl_resplen);
#else
bcopy(pkt, prot->retbuf.va, prot->ioctl_resplen);
#endif /* !IOCTLRESP_USE_CONSTMEM */
}
/* wake up any dhd_os_ioctl_resp_wait() */
dhd_wakeup_ioctl_event(dhd, IOCTL_RETURN_ON_SUCCESS);
exit:
#ifndef IOCTLRESP_USE_CONSTMEM
dhd_prot_packet_free(dhd, pkt,
PKTTYPE_IOCTL_RX, FALSE);
#else
free_ioctl_return_buffer(dhd, &retbuf);
#endif /* !IOCTLRESP_USE_CONSTMEM */
}
/** called on MSG_TYPE_TX_STATUS message received from dongle */
static void BCMFASTPATH
dhd_prot_txstatus_process(dhd_pub_t *dhd, void *msg)
{
dhd_prot_t *prot = dhd->prot;
host_txbuf_cmpl_t * txstatus;
unsigned long flags;
uint32 pktid;
void *pkt = NULL;
dmaaddr_t pa;
uint32 len;
void *dmah;
void *secdma;
/* locks required to protect circular buffer accesses */
DHD_GENERAL_LOCK(dhd, flags);
txstatus = (host_txbuf_cmpl_t *)msg;
pktid = ltoh32(txstatus->cmn_hdr.request_id);
#if defined(DHD_PKTID_AUDIT_RING)
if (DHD_PKTID_AUDIT(dhd, dhd->prot->pktid_map_handle, pktid,
DHD_DUPLICATE_FREE) == BCME_ERROR) {
prhex("dhd_prot_txstatus_process:",
(uchar *)msg, D2HRING_TXCMPLT_ITEMSIZE);
}
#endif /* DHD_PKTID_AUDIT_RING */
DHD_INFO(("txstatus for pktid 0x%04x\n", pktid));
if (prot->active_tx_count) {
prot->active_tx_count--;
/* Release the Lock when no more tx packets are pending */
if (prot->active_tx_count == 0)
DHD_TXFL_WAKE_UNLOCK(dhd);
} else {
DHD_ERROR(("Extra packets are freed\n"));
}
ASSERT(pktid != 0);
#if defined(DHD_LB_TXC) && !defined(BCM_SECURE_DMA)
{
int elem_ix;
void **elem;
bcm_workq_t *workq;
pkt = DHD_PKTID_TO_NATIVE(dhd, dhd->prot->pktid_map_handle,
pktid, pa, len, dmah, secdma, PKTTYPE_DATA_TX);
workq = &prot->tx_compl_prod;
/*
* Produce the packet into the tx_compl workq for the tx compl tasklet
* to consume.
*/
OSL_PREFETCH(PKTTAG(pkt));
/* fetch next available slot in workq */
elem_ix = bcm_ring_prod(WORKQ_RING(workq), DHD_LB_WORKQ_SZ);
DHD_PKTTAG_SET_PA((dhd_pkttag_fr_t *)PKTTAG(pkt), pa);
DHD_PKTTAG_SET_PA_LEN((dhd_pkttag_fr_t *)PKTTAG(pkt), len);
if (elem_ix == BCM_RING_FULL) {
DHD_ERROR(("tx_compl_prod BCM_RING_FULL\n"));
goto workq_ring_full;
}
elem = WORKQ_ELEMENT(void *, &prot->tx_compl_prod, elem_ix);
*elem = pkt;
smp_wmb();
/* Sync WR index to consumer if the SYNC threshold has been reached */
if (++prot->tx_compl_prod_sync >= DHD_LB_WORKQ_SYNC) {
bcm_workq_prod_sync(workq);
prot->tx_compl_prod_sync = 0;
}
DHD_INFO(("%s: tx_compl_prod pkt<%p> sync<%d>\n",
__FUNCTION__, pkt, prot->tx_compl_prod_sync));
DHD_GENERAL_UNLOCK(dhd, flags);
return;
}
workq_ring_full:
#endif /* !DHD_LB_TXC */
/*
* We can come here if no DHD_LB_TXC is enabled and in case where DHD_LB_TXC is
* defined but the tx_compl queue is full.
*/
if (pkt == NULL) {
pkt = DHD_PKTID_TO_NATIVE(dhd, dhd->prot->pktid_map_handle,
pktid, pa, len, dmah, secdma, PKTTYPE_DATA_TX);
}
if (pkt) {
if (SECURE_DMA_ENAB(dhd->osh)) {
int offset = 0;
BCM_REFERENCE(offset);
if (dhd->prot->tx_metadata_offset)
offset = dhd->prot->tx_metadata_offset + ETHER_HDR_LEN;
SECURE_DMA_UNMAP(dhd->osh, (uint) pa,
(uint) dhd->prot->tx_metadata_offset, DMA_RX, 0, dmah,
secdma, offset);
} else {
DMA_UNMAP(dhd->osh, pa, (uint) len, DMA_RX, 0, dmah);
}
#if defined(BCMPCIE)
dhd_txcomplete(dhd, pkt, true);
#endif
#if DHD_DBG_SHOW_METADATA
if (dhd->prot->metadata_dbg &&
dhd->prot->tx_metadata_offset && txstatus->metadata_len) {
uchar *ptr;
/* The Ethernet header of TX frame was copied and removed.
* Here, move the data pointer forward by Ethernet header size.
*/
PKTPULL(dhd->osh, pkt, ETHER_HDR_LEN);
ptr = PKTDATA(dhd->osh, pkt) - (dhd->prot->tx_metadata_offset);
bcm_print_bytes("txmetadata", ptr, txstatus->metadata_len);
dhd_prot_print_metadata(dhd, ptr, txstatus->metadata_len);
}
#endif /* DHD_DBG_SHOW_METADATA */
PKTFREE(dhd->osh, pkt, TRUE);
DHD_FLOWRING_TXSTATUS_CNT_UPDATE(dhd->bus, txstatus->compl_hdr.flow_ring_id,
txstatus->tx_status);
}
DHD_GENERAL_UNLOCK(dhd, flags);
return;
} /* dhd_prot_txstatus_process */
/** called on MSG_TYPE_WL_EVENT message received from dongle */
static void
dhd_prot_event_process(dhd_pub_t *dhd, void *msg)
{
wlevent_req_msg_t *evnt;
uint32 bufid;
uint16 buflen;
int ifidx = 0;
void* pkt;
unsigned long flags;
dhd_prot_t *prot = dhd->prot;
/* Event complete header */
evnt = (wlevent_req_msg_t *)msg;
bufid = ltoh32(evnt->cmn_hdr.request_id);
#if defined(DHD_PKTID_AUDIT_RING)
if (DHD_PKTID_AUDIT(dhd, dhd->prot->pktid_map_handle, bufid,
DHD_DUPLICATE_FREE) == BCME_ERROR) {
prhex("dhd_prot_event_process:",
(uchar *)msg, D2HRING_CTRL_CMPLT_ITEMSIZE);
}
#endif /* DHD_PKTID_AUDIT_RING */
buflen = ltoh16(evnt->event_data_len);
ifidx = BCMMSGBUF_API_IFIDX(&evnt->cmn_hdr);
/* Post another rxbuf to the device */
if (prot->cur_event_bufs_posted) {
prot->cur_event_bufs_posted--;
}
dhd_msgbuf_rxbuf_post_event_bufs(dhd);
/* locks required to protect pktid_map */
DHD_GENERAL_LOCK(dhd, flags);
pkt = dhd_prot_packet_get(dhd, bufid, PKTTYPE_EVENT_RX, TRUE);
DHD_GENERAL_UNLOCK(dhd, flags);
if (!pkt) {
return;
}
/* DMA RX offset updated through shared area */
if (dhd->prot->rx_dataoffset) {
PKTPULL(dhd->osh, pkt, dhd->prot->rx_dataoffset);
}
PKTSETLEN(dhd->osh, pkt, buflen);
dhd_bus_rx_frame(dhd->bus, pkt, ifidx, 1);
}
/** called on MSG_TYPE_RX_CMPLT message received from dongle */
static void BCMFASTPATH
dhd_prot_rxcmplt_process(dhd_pub_t *dhd, void *msg)
{
host_rxbuf_cmpl_t *rxcmplt_h;
uint16 data_offset; /* offset at which data starts */
void *pkt;
unsigned long flags;
uint ifidx;
uint32 pktid;
#if defined(DHD_LB_RXC)
const bool free_pktid = FALSE;
#else
const bool free_pktid = TRUE;
#endif /* DHD_LB_RXC */
/* RXCMPLT HDR */
rxcmplt_h = (host_rxbuf_cmpl_t *)msg;
/* offset from which data starts is populated in rxstatus0 */
data_offset = ltoh16(rxcmplt_h->data_offset);
pktid = ltoh32(rxcmplt_h->cmn_hdr.request_id);
#if defined(DHD_PKTID_AUDIT_RING)
if (DHD_PKTID_AUDIT(dhd, dhd->prot->pktid_map_handle, pktid,
DHD_DUPLICATE_FREE) == BCME_ERROR) {
prhex("dhd_prot_rxcmplt_process:",
(uchar *)msg, D2HRING_RXCMPLT_ITEMSIZE);
}
#endif /* DHD_PKTID_AUDIT_RING */
DHD_GENERAL_LOCK(dhd, flags);
pkt = dhd_prot_packet_get(dhd, pktid, PKTTYPE_DATA_RX, free_pktid);
DHD_GENERAL_UNLOCK(dhd, flags);
if (!pkt) {
return;
}
/* Post another set of rxbufs to the device */
dhd_prot_return_rxbuf(dhd, pktid, 1);
DHD_INFO(("id 0x%04x, offset %d, len %d, idx %d, phase 0x%02x, pktdata %p, metalen %d\n",
ltoh32(rxcmplt_h->cmn_hdr.request_id), data_offset, ltoh16(rxcmplt_h->data_len),
rxcmplt_h->cmn_hdr.if_id, rxcmplt_h->cmn_hdr.flags, PKTDATA(dhd->osh, pkt),
ltoh16(rxcmplt_h->metadata_len)));
#if DHD_DBG_SHOW_METADATA
if (dhd->prot->metadata_dbg &&
dhd->prot->rx_metadata_offset && rxcmplt_h->metadata_len) {
uchar *ptr;
ptr = PKTDATA(dhd->osh, pkt) - (dhd->prot->rx_metadata_offset);
/* header followed by data */
bcm_print_bytes("rxmetadata", ptr, rxcmplt_h->metadata_len);
dhd_prot_print_metadata(dhd, ptr, rxcmplt_h->metadata_len);
}
#endif /* DHD_DBG_SHOW_METADATA */
if (rxcmplt_h->flags & BCMPCIE_PKT_FLAGS_FRAME_802_11) {
DHD_INFO(("D11 frame rxed \n"));
}
/* data_offset from buf start */
if (data_offset) {
/* data offset given from dongle after split rx */
PKTPULL(dhd->osh, pkt, data_offset); /* data offset */
} else {
/* DMA RX offset updated through shared area */
if (dhd->prot->rx_dataoffset) {
PKTPULL(dhd->osh, pkt, dhd->prot->rx_dataoffset);
}
}
/* Actual length of the packet */
PKTSETLEN(dhd->osh, pkt, ltoh16(rxcmplt_h->data_len));
ifidx = rxcmplt_h->cmn_hdr.if_id;
#if defined(DHD_LB_RXP)
dhd_lb_rx_pkt_enqueue(dhd, pkt, ifidx);
#else /* ! DHD_LB_RXP */
#ifdef DHD_RX_CHAINING
/* Chain the packets */
dhd_rxchain_frame(dhd, pkt, ifidx);
#else /* ! DHD_RX_CHAINING */
/* offset from which data starts is populated in rxstatus0 */
dhd_bus_rx_frame(dhd->bus, pkt, ifidx, 1);
#endif /* ! DHD_RX_CHAINING */
#endif /* ! DHD_LB_RXP */
} /* dhd_prot_rxcmplt_process */
/** Stop protocol: sync w/dongle state. */
void dhd_prot_stop(dhd_pub_t *dhd)
{
ASSERT(dhd);
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
}
/* Add any protocol-specific data header.
* Caller must reserve prot_hdrlen prepend space.
*/
void BCMFASTPATH
dhd_prot_hdrpush(dhd_pub_t *dhd, int ifidx, void *PKTBUF)
{
return;
}
uint
dhd_prot_hdrlen(dhd_pub_t *dhd, void *PKTBUF)
{
return 0;
}
#define PKTBUF pktbuf
/**
* Called when a tx ethernet packet has been dequeued from a flow queue, and has to be inserted in
* the corresponding flow ring.
*/
int BCMFASTPATH
dhd_prot_txdata(dhd_pub_t *dhd, void *PKTBUF, uint8 ifidx)
{
unsigned long flags;
dhd_prot_t *prot = dhd->prot;
host_txbuf_post_t *txdesc = NULL;
dmaaddr_t pa, meta_pa;
uint8 *pktdata;
uint32 pktlen;
uint32 pktid;
uint8 prio;
uint16 flowid = 0;
uint16 alloced = 0;
uint16 headroom;
msgbuf_ring_t *ring;
flow_ring_table_t *flow_ring_table;
flow_ring_node_t *flow_ring_node;
if (dhd->flow_ring_table == NULL) {
return BCME_NORESOURCE;
}
flowid = DHD_PKT_GET_FLOWID(PKTBUF);
flow_ring_table = (flow_ring_table_t *)dhd->flow_ring_table;
flow_ring_node = (flow_ring_node_t *)&flow_ring_table[flowid];
ring = (msgbuf_ring_t *)flow_ring_node->prot_info;
DHD_GENERAL_LOCK(dhd, flags);
/* Create a unique 32-bit packet id */
pktid = DHD_NATIVE_TO_PKTID_RSV(dhd, dhd->prot->pktid_map_handle, PKTBUF);
#if defined(DHD_PCIE_PKTID)
if (pktid == DHD_PKTID_INVALID) {
DHD_ERROR(("Pktid pool depleted.\n"));
/*
* If we return error here, the caller would queue the packet
* again. So we'll just free the skb allocated in DMA Zone.
* Since we have not freed the original SKB yet the caller would
* requeue the same.
*/
goto err_no_res_pktfree;
}
#endif /* DHD_PCIE_PKTID */
/* Reserve space in the circular buffer */
txdesc = (host_txbuf_post_t *)
dhd_prot_alloc_ring_space(dhd, ring, 1, &alloced, FALSE);
if (txdesc == NULL) {
#if defined(DHD_PCIE_PKTID)
void *dmah;
void *secdma;
/* Free up the PKTID. physaddr and pktlen will be garbage. */
DHD_PKTID_TO_NATIVE(dhd, dhd->prot->pktid_map_handle, pktid,
pa, pktlen, dmah, secdma, PKTTYPE_NO_CHECK);
#endif /* DHD_PCIE_PKTID */
DHD_INFO(("%s:%d: HTOD Msgbuf Not available TxCount = %d\n",
__FUNCTION__, __LINE__, prot->active_tx_count));
goto err_no_res_pktfree;
}
/* Extract the data pointer and length information */
pktdata = PKTDATA(dhd->osh, PKTBUF);
pktlen = PKTLEN(dhd->osh, PKTBUF);
/* Ethernet header: Copy before we cache flush packet using DMA_MAP */
bcopy(pktdata, txdesc->txhdr, ETHER_HDR_LEN);
/* Extract the ethernet header and adjust the data pointer and length */
pktdata = PKTPULL(dhd->osh, PKTBUF, ETHER_HDR_LEN);
pktlen -= ETHER_HDR_LEN;
/* Map the data pointer to a DMA-able address */
if (SECURE_DMA_ENAB(dhd->osh)) {
int offset = 0;
BCM_REFERENCE(offset);
if (prot->tx_metadata_offset) {
offset = prot->tx_metadata_offset + ETHER_HDR_LEN;
}
pa = SECURE_DMA_MAP(dhd->osh, PKTDATA(dhd->osh, PKTBUF), pktlen,
DMA_TX, PKTBUF, 0, ring->dma_buf.secdma, offset);
} else {
pa = DMA_MAP(dhd->osh, PKTDATA(dhd->osh, PKTBUF), pktlen, DMA_TX, PKTBUF, 0);
}
if (PHYSADDRISZERO(pa)) {
DHD_ERROR(("Something really bad, unless 0 is a valid phyaddr\n"));
ASSERT(0);
}
/* No need to lock. Save the rest of the packet's metadata */
DHD_NATIVE_TO_PKTID_SAVE(dhd, dhd->prot->pktid_map_handle, PKTBUF, pktid,
pa, pktlen, DMA_TX, NULL, ring->dma_buf.secdma, PKTTYPE_DATA_TX);
#ifdef TXP_FLUSH_NITEMS
if (ring->pend_items_count == 0) {
ring->start_addr = (void *)txdesc;
}
ring->pend_items_count++;
#endif
/* Form the Tx descriptor message buffer */
/* Common message hdr */
txdesc->cmn_hdr.msg_type = MSG_TYPE_TX_POST;
txdesc->cmn_hdr.if_id = ifidx;
txdesc->flags = BCMPCIE_PKT_FLAGS_FRAME_802_3;
prio = (uint8)PKTPRIO(PKTBUF);
txdesc->flags |= (prio & 0x7) << BCMPCIE_PKT_FLAGS_PRIO_SHIFT;
txdesc->seg_cnt = 1;
txdesc->data_len = htol16((uint16) pktlen);
txdesc->data_buf_addr.high_addr = htol32(PHYSADDRHI(pa));
txdesc->data_buf_addr.low_addr = htol32(PHYSADDRLO(pa));
/* Move data pointer to keep ether header in local PKTBUF for later reference */
PKTPUSH(dhd->osh, PKTBUF, ETHER_HDR_LEN);
/* Handle Tx metadata */
headroom = (uint16)PKTHEADROOM(dhd->osh, PKTBUF);
if (prot->tx_metadata_offset && (headroom < prot->tx_metadata_offset)) {
DHD_ERROR(("No headroom for Metadata tx %d %d\n",
prot->tx_metadata_offset, headroom));
}
if (prot->tx_metadata_offset && (headroom >= prot->tx_metadata_offset)) {
DHD_TRACE(("Metadata in tx %d\n", prot->tx_metadata_offset));
/* Adjust the data pointer to account for meta data in DMA_MAP */
PKTPUSH(dhd->osh, PKTBUF, prot->tx_metadata_offset);
if (SECURE_DMA_ENAB(dhd->osh)) {
meta_pa = SECURE_DMA_MAP_TXMETA(dhd->osh, PKTDATA(dhd->osh, PKTBUF),
prot->tx_metadata_offset + ETHER_HDR_LEN, DMA_RX, PKTBUF,
0, ring->dma_buf.secdma);
} else {
meta_pa = DMA_MAP(dhd->osh, PKTDATA(dhd->osh, PKTBUF),
prot->tx_metadata_offset, DMA_RX, PKTBUF, 0);
}
if (PHYSADDRISZERO(meta_pa)) {
DHD_ERROR(("Something really bad, unless 0 is a valid phyaddr\n"));
ASSERT(0);
}
/* Adjust the data pointer back to original value */
PKTPULL(dhd->osh, PKTBUF, prot->tx_metadata_offset);
txdesc->metadata_buf_len = prot->tx_metadata_offset;
txdesc->metadata_buf_addr.high_addr = htol32(PHYSADDRHI(meta_pa));
txdesc->metadata_buf_addr.low_addr = htol32(PHYSADDRLO(meta_pa));
} else {
txdesc->metadata_buf_len = htol16(0);
txdesc->metadata_buf_addr.high_addr = 0;
txdesc->metadata_buf_addr.low_addr = 0;
}
#if defined(DHD_PKTID_AUDIT_RING)
DHD_PKTID_AUDIT(dhd, prot->pktid_map_handle, pktid,
DHD_DUPLICATE_ALLOC);
#endif /* DHD_PKTID_AUDIT_RING */
txdesc->cmn_hdr.request_id = htol32(pktid);
DHD_TRACE(("txpost: data_len %d, pktid 0x%04x\n", txdesc->data_len,
txdesc->cmn_hdr.request_id));
/* Update the write pointer in TCM & ring bell */
#ifdef TXP_FLUSH_NITEMS
/* Flush if we have either hit the txp_threshold or if this msg is */
/* occupying the last slot in the flow_ring - before wrap around. */
if ((ring->pend_items_count == prot->txp_threshold) ||
((uint8 *) txdesc == (uint8 *) DHD_RING_END_VA(ring))) {
dhd_prot_txdata_write_flush(dhd, flowid, TRUE);
}
#else
/* update ring's WR index and ring doorbell to dongle */
dhd_prot_ring_write_complete(dhd, ring, txdesc, 1);
#endif
prot->active_tx_count++;
/*
* Take a wake lock, do not sleep if we have atleast one packet
* to finish.
*/
if (prot->active_tx_count == 1)
DHD_TXFL_WAKE_LOCK(dhd);
DHD_GENERAL_UNLOCK(dhd, flags);
return BCME_OK;
err_no_res_pktfree:
DHD_GENERAL_UNLOCK(dhd, flags);
return BCME_NORESOURCE;
} /* dhd_prot_txdata */
/* called with a lock */
/** optimization to write "n" tx items at a time to ring */
void BCMFASTPATH
dhd_prot_txdata_write_flush(dhd_pub_t *dhd, uint16 flowid, bool in_lock)
{
#ifdef TXP_FLUSH_NITEMS
unsigned long flags = 0;
flow_ring_table_t *flow_ring_table;
flow_ring_node_t *flow_ring_node;
msgbuf_ring_t *ring;
if (dhd->flow_ring_table == NULL) {
return;
}
if (!in_lock) {
DHD_GENERAL_LOCK(dhd, flags);
}
flow_ring_table = (flow_ring_table_t *)dhd->flow_ring_table;
flow_ring_node = (flow_ring_node_t *)&flow_ring_table[flowid];
ring = (msgbuf_ring_t *)flow_ring_node->prot_info;
if (ring->pend_items_count) {
/* update ring's WR index and ring doorbell to dongle */
dhd_prot_ring_write_complete(dhd, ring, ring->start_addr,
ring->pend_items_count);
ring->pend_items_count = 0;
ring->start_addr = NULL;
}
if (!in_lock) {
DHD_GENERAL_UNLOCK(dhd, flags);
}
#endif /* TXP_FLUSH_NITEMS */
}
#undef PKTBUF /* Only defined in the above routine */
int BCMFASTPATH
dhd_prot_hdrpull(dhd_pub_t *dhd, int *ifidx, void *pkt, uchar *buf, uint *len)
{
return 0;
}
/** post a set of receive buffers to the dongle */
static void BCMFASTPATH
dhd_prot_return_rxbuf(dhd_pub_t *dhd, uint32 pktid, uint32 rxcnt)
{
dhd_prot_t *prot = dhd->prot;
#if defined(DHD_LB_RXC)
int elem_ix;
uint32 *elem;
bcm_workq_t *workq;
workq = &prot->rx_compl_prod;
/* Produce the work item */
elem_ix = bcm_ring_prod(WORKQ_RING(workq), DHD_LB_WORKQ_SZ);
if (elem_ix == BCM_RING_FULL) {
DHD_ERROR(("%s LB RxCompl workQ is full\n", __FUNCTION__));
ASSERT(0);
return;
}
elem = WORKQ_ELEMENT(uint32, workq, elem_ix);
*elem = pktid;
smp_wmb();
/* Sync WR index to consumer if the SYNC threshold has been reached */
if (++prot->rx_compl_prod_sync >= DHD_LB_WORKQ_SYNC) {
bcm_workq_prod_sync(workq);
prot->rx_compl_prod_sync = 0;
}
DHD_INFO(("%s: rx_compl_prod pktid<%u> sync<%d>\n",
__FUNCTION__, pktid, prot->rx_compl_prod_sync));
#endif /* DHD_LB_RXC */
if (prot->rxbufpost >= rxcnt) {
prot->rxbufpost -= rxcnt;
} else {
/* ASSERT(0); */
prot->rxbufpost = 0;
}
#if !defined(DHD_LB_RXC)
if (prot->rxbufpost <= (prot->max_rxbufpost - RXBUFPOST_THRESHOLD)) {
dhd_msgbuf_rxbuf_post(dhd, FALSE); /* alloc pkt ids */
}
#endif /* !DHD_LB_RXC */
}
/* called before an ioctl is sent to the dongle */
static void
dhd_prot_wlioctl_intercept(dhd_pub_t *dhd, wl_ioctl_t * ioc, void * buf)
{
dhd_prot_t *prot = dhd->prot;
if (ioc->cmd == WLC_SET_VAR && buf != NULL && !strcmp(buf, "pcie_bus_tput")) {
int slen = 0;
pcie_bus_tput_params_t *tput_params;
slen = strlen("pcie_bus_tput") + 1;
tput_params = (pcie_bus_tput_params_t*)((char *)buf + slen);
bcopy(&prot->host_bus_throughput_buf.pa, &tput_params->host_buf_addr,
sizeof(tput_params->host_buf_addr));
tput_params->host_buf_len = DHD_BUS_TPUT_BUF_LEN;
}
}
/** Use protocol to issue ioctl to dongle. Only one ioctl may be in transit. */
int dhd_prot_ioctl(dhd_pub_t *dhd, int ifidx, wl_ioctl_t * ioc, void * buf, int len)
{
int ret = -1;
uint8 action;
if ((dhd->busstate == DHD_BUS_DOWN) || dhd->hang_was_sent) {
DHD_ERROR(("%s : bus is down. we have nothing to do\n", __FUNCTION__));
goto done;
}
if (dhd->busstate == DHD_BUS_SUSPEND) {
DHD_ERROR(("%s : bus is suspended\n", __FUNCTION__));
goto done;
}
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (ioc->cmd == WLC_SET_PM) {
DHD_TRACE_HW4(("%s: SET PM to %d\n", __FUNCTION__, *(char *)buf));
}
ASSERT(len <= WLC_IOCTL_MAXLEN);
if (len > WLC_IOCTL_MAXLEN) {
goto done;
}
action = ioc->set;
dhd_prot_wlioctl_intercept(dhd, ioc, buf);
if (action & WL_IOCTL_ACTION_SET) {
ret = dhd_msgbuf_set_ioctl(dhd, ifidx, ioc->cmd, buf, len, action);
} else {
ret = dhd_msgbuf_query_ioctl(dhd, ifidx, ioc->cmd, buf, len, action);
if (ret > 0) {
ioc->used = ret;
}
}
/* Too many programs assume ioctl() returns 0 on success */
if (ret >= 0) {
ret = 0;
} else {
DHD_INFO(("%s: status ret value is %d \n", __FUNCTION__, ret));
dhd->dongle_error = ret;
}
if (!ret && ioc->cmd == WLC_SET_VAR && buf != NULL) {
/* Intercept the wme_dp ioctl here */
if (!strcmp(buf, "wme_dp")) {
int slen, val = 0;
slen = strlen("wme_dp") + 1;
if (len >= (int)(slen + sizeof(int))) {
bcopy(((char *)buf + slen), &val, sizeof(int));
}
dhd->wme_dp = (uint8) ltoh32(val);
}
}
done:
return ret;
} /* dhd_prot_ioctl */
/** test / loopback */
int
dhdmsgbuf_lpbk_req(dhd_pub_t *dhd, uint len)
{
unsigned long flags;
dhd_prot_t *prot = dhd->prot;
uint16 alloced = 0;
ioct_reqst_hdr_t *ioct_rqst;
uint16 hdrlen = sizeof(ioct_reqst_hdr_t);
uint16 msglen = len + hdrlen;
msgbuf_ring_t *ring = &prot->h2dring_ctrl_subn;
msglen = ALIGN_SIZE(msglen, DMA_ALIGN_LEN);
msglen = LIMIT_TO_MAX(msglen, MSGBUF_MAX_MSG_SIZE);
DHD_GENERAL_LOCK(dhd, flags);
ioct_rqst = (ioct_reqst_hdr_t *)
dhd_prot_alloc_ring_space(dhd, ring, 1, &alloced, FALSE);
if (ioct_rqst == NULL) {
DHD_GENERAL_UNLOCK(dhd, flags);
return 0;
}
{
uint8 *ptr;
uint16 i;
ptr = (uint8 *)ioct_rqst;
for (i = 0; i < msglen; i++) {
ptr[i] = i % 256;
}
}
/* Common msg buf hdr */
ioct_rqst->msg.epoch = ring->seqnum % H2D_EPOCH_MODULO;
ring->seqnum++;
ioct_rqst->msg.msg_type = MSG_TYPE_LOOPBACK;
ioct_rqst->msg.if_id = 0;
bcm_print_bytes("LPBK REQ: ", (uint8 *)ioct_rqst, msglen);
/* update ring's WR index and ring doorbell to dongle */
dhd_prot_ring_write_complete(dhd, ring, ioct_rqst, 1);
DHD_GENERAL_UNLOCK(dhd, flags);
return 0;
}
/** test / loopback */
void dmaxfer_free_dmaaddr(dhd_pub_t *dhd, dhd_dmaxfer_t *dmaxfer)
{
if (dmaxfer == NULL) {
return;
}
dhd_dma_buf_free(dhd, &dmaxfer->srcmem);
dhd_dma_buf_free(dhd, &dmaxfer->dstmem);
}
/** test / loopback */
int dmaxfer_prepare_dmaaddr(dhd_pub_t *dhd, uint len,
uint srcdelay, uint destdelay, dhd_dmaxfer_t *dmaxfer)
{
uint i;
if (!dmaxfer) {
return BCME_ERROR;
}
/* First free up existing buffers */
dmaxfer_free_dmaaddr(dhd, dmaxfer);
if (dhd_dma_buf_alloc(dhd, &dmaxfer->srcmem, len)) {
return BCME_NOMEM;
}
if (dhd_dma_buf_alloc(dhd, &dmaxfer->dstmem, len + 8)) {
dhd_dma_buf_free(dhd, &dmaxfer->srcmem);
return BCME_NOMEM;
}
dmaxfer->len = len;
/* Populate source with a pattern */
for (i = 0; i < dmaxfer->len; i++) {
((uint8*)dmaxfer->srcmem.va)[i] = i % 256;
}
OSL_CACHE_FLUSH(dmaxfer->srcmem.va, dmaxfer->len);
dmaxfer->srcdelay = srcdelay;
dmaxfer->destdelay = destdelay;
return BCME_OK;
} /* dmaxfer_prepare_dmaaddr */
static void
dhd_msgbuf_dmaxfer_process(dhd_pub_t *dhd, void *msg)
{
dhd_prot_t *prot = dhd->prot;
OSL_CACHE_INV(prot->dmaxfer.dstmem.va, prot->dmaxfer.len);
if (prot->dmaxfer.srcmem.va && prot->dmaxfer.dstmem.va) {
if (memcmp(prot->dmaxfer.srcmem.va,
prot->dmaxfer.dstmem.va, prot->dmaxfer.len)) {
bcm_print_bytes("XFER SRC: ",
prot->dmaxfer.srcmem.va, prot->dmaxfer.len);
bcm_print_bytes("XFER DST: ",
prot->dmaxfer.dstmem.va, prot->dmaxfer.len);
} else {
DHD_INFO(("DMA successful\n"));
}
}
dmaxfer_free_dmaaddr(dhd, &prot->dmaxfer);
dhd->prot->dmaxfer.in_progress = FALSE;
}
/** Test functionality.
* Transfers bytes from host to dongle and to host again using DMA
* This function is not reentrant, as prot->dmaxfer.in_progress is not protected
* by a spinlock.
*/
int
dhdmsgbuf_dmaxfer_req(dhd_pub_t *dhd, uint len, uint srcdelay, uint destdelay)
{
unsigned long flags;
int ret = BCME_OK;
dhd_prot_t *prot = dhd->prot;
pcie_dma_xfer_params_t *dmap;
uint32 xferlen = LIMIT_TO_MAX(len, DMA_XFER_LEN_LIMIT);
uint16 alloced = 0;
msgbuf_ring_t *ring = &prot->h2dring_ctrl_subn;
if (prot->dmaxfer.in_progress) {
DHD_ERROR(("DMA is in progress...\n"));
return ret;
}
prot->dmaxfer.in_progress = TRUE;
if ((ret = dmaxfer_prepare_dmaaddr(dhd, xferlen, srcdelay, destdelay,
&prot->dmaxfer)) != BCME_OK) {
prot->dmaxfer.in_progress = FALSE;
return ret;
}
DHD_GENERAL_LOCK(dhd, flags);
dmap = (pcie_dma_xfer_params_t *)
dhd_prot_alloc_ring_space(dhd, ring, 1, &alloced, FALSE);
if (dmap == NULL) {
dmaxfer_free_dmaaddr(dhd, &prot->dmaxfer);
prot->dmaxfer.in_progress = FALSE;
DHD_GENERAL_UNLOCK(dhd, flags);
return BCME_NOMEM;
}
/* Common msg buf hdr */
dmap->cmn_hdr.msg_type = MSG_TYPE_LPBK_DMAXFER;
dmap->cmn_hdr.request_id = htol32(DHD_FAKE_PKTID);
dmap->cmn_hdr.epoch = ring->seqnum % H2D_EPOCH_MODULO;
ring->seqnum++;
dmap->host_input_buf_addr.high = htol32(PHYSADDRHI(prot->dmaxfer.srcmem.pa));
dmap->host_input_buf_addr.low = htol32(PHYSADDRLO(prot->dmaxfer.srcmem.pa));
dmap->host_ouput_buf_addr.high = htol32(PHYSADDRHI(prot->dmaxfer.dstmem.pa));
dmap->host_ouput_buf_addr.low = htol32(PHYSADDRLO(prot->dmaxfer.dstmem.pa));
dmap->xfer_len = htol32(prot->dmaxfer.len);
dmap->srcdelay = htol32(prot->dmaxfer.srcdelay);
dmap->destdelay = htol32(prot->dmaxfer.destdelay);
/* update ring's WR index and ring doorbell to dongle */
dhd_prot_ring_write_complete(dhd, ring, dmap, 1);
DHD_GENERAL_UNLOCK(dhd, flags);
DHD_ERROR(("DMA Started...\n"));
return BCME_OK;
} /* dhdmsgbuf_dmaxfer_req */
/** Called in the process of submitting an ioctl to the dongle */
static int
dhd_msgbuf_query_ioctl(dhd_pub_t *dhd, int ifidx, uint cmd, void *buf, uint len, uint8 action)
{
int ret = 0;
uint copylen = 0;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (!len || !buf) {
DHD_ERROR(("%s(): Zero length bailing\n", __FUNCTION__));
ret = BCME_BADARG;
goto done;
}
/* Respond "bcmerror" and "bcmerrorstr" with local cache */
if (cmd == WLC_GET_VAR) {
if ((len >= strlen("bcmerrorstr")) && (!strcmp((char *)buf, "bcmerrorstr"))) {
copylen = MIN(len, BCME_STRLEN);
strncpy((char *)buf, bcmerrorstr(dhd->dongle_error), copylen);
*(uint8 *)(buf + (copylen - 1)) = '\0';
goto done;
} else if ((len >= strlen("bcmerror")) && !strcmp((char *)buf, "bcmerror")) {
store32_ua(buf, dhd->dongle_error);
*(uint8 *)(buf + (sizeof(uint32))) = '\0';
goto done;
}
}
ret = dhd_fillup_ioct_reqst(dhd, (uint16)len, cmd, buf, ifidx);
DHD_CTL(("query_ioctl: ACTION %d ifdix %d cmd %d len %d \n",
action, ifidx, cmd, len));
/* wait for IOCTL completion message from dongle and get first fragment */
ret = dhd_msgbuf_wait_ioctl_cmplt(dhd, len, buf);
done:
return ret;
}
/**
* Waits for IOCTL completion message from the dongle, copies this into caller
* provided parameter 'buf'.
*/
static int
dhd_msgbuf_wait_ioctl_cmplt(dhd_pub_t *dhd, uint32 len, void *buf)
{
dhd_prot_t *prot = dhd->prot;
int timeleft;
unsigned long flags;
int ret = 0;
DHD_TRACE(("%s: Enter\n", __FUNCTION__));
if (dhd_query_bus_erros(dhd)) {
ret = -EIO;
goto out;
}
if (prot->cur_ioctlresp_bufs_posted) {
prot->cur_ioctlresp_bufs_posted--;
}
dhd_msgbuf_rxbuf_post_ioctlresp_bufs(dhd);
timeleft = dhd_os_ioctl_resp_wait(dhd, &prot->ioctl_received);
if (timeleft == 0) {
dhd->rxcnt_timeout++;
dhd->rx_ctlerrs++;
dhd->iovar_timeout_occured = TRUE;
DHD_ERROR(("%s: resumed on timeout rxcnt_timeout %d ioctl_cmd %d "
"trans_id %d state %d busstate=%d ioctl_received=%d\n",
__FUNCTION__, dhd->rxcnt_timeout, prot->curr_ioctl_cmd,
prot->ioctl_trans_id, prot->ioctl_state,
dhd->busstate, prot->ioctl_received));
dhd_prot_debug_info_print(dhd);
#ifdef DHD_FW_COREDUMP
/* Collect socram dump */
if (dhd->memdump_enabled) {
/* collect core dump */
dhd->memdump_type = DUMP_TYPE_RESUMED_ON_TIMEOUT;
dhd_bus_mem_dump(dhd);
}
#endif /* DHD_FW_COREDUMP */
if (dhd->rxcnt_timeout >= MAX_CNTL_RX_TIMEOUT) {
#ifdef SUPPORT_LINKDOWN_RECOVERY
#ifdef CONFIG_ARCH_MSM
dhd->bus->no_cfg_restore = 1;
#endif /* CONFIG_ARCH_MSM */
#endif /* SUPPORT_LINKDOWN_RECOVERY */
DHD_ERROR(("%s: timeout > MAX_CNTL_TX_TIMEOUT\n", __FUNCTION__));
}
ret = -ETIMEDOUT;
goto out;
} else {
if (prot->ioctl_received != IOCTL_RETURN_ON_SUCCESS) {
DHD_ERROR(("%s: IOCTL failure due to ioctl_received = %d\n",
__FUNCTION__, prot->ioctl_received));
ret = -ECONNABORTED;
goto out;
}
dhd->rxcnt_timeout = 0;
dhd->rx_ctlpkts++;
DHD_CTL(("%s: ioctl resp resumed, got %d\n",
__FUNCTION__, prot->ioctl_resplen));
}
if (dhd->dongle_trap_occured) {
#ifdef SUPPORT_LINKDOWN_RECOVERY
#ifdef CONFIG_ARCH_MSM
dhd->bus->no_cfg_restore = 1;
#endif /* CONFIG_ARCH_MSM */
#endif /* SUPPORT_LINKDOWN_RECOVERY */
DHD_ERROR(("%s: TRAP occurred!!\n", __FUNCTION__));
ret = -EREMOTEIO;
goto out;
}
if (dhd->prot->ioctl_resplen > len) {
dhd->prot->ioctl_resplen = (uint16)len;
}
if (buf) {
bcopy(dhd->prot->retbuf.va, buf, dhd->prot->ioctl_resplen);
}
ret = (int)(dhd->prot->ioctl_status);
out:
DHD_GENERAL_LOCK(dhd, flags);
dhd->prot->ioctl_state = 0;
dhd->prot->ioctl_resplen = 0;
dhd->prot->ioctl_received = IOCTL_WAIT;
dhd->prot->curr_ioctl_cmd = 0;
DHD_GENERAL_UNLOCK(dhd, flags);
return ret;
} /* dhd_msgbuf_wait_ioctl_cmplt */
static int
dhd_msgbuf_set_ioctl(dhd_pub_t *dhd, int ifidx, uint cmd, void *buf, uint len, uint8 action)
{
int ret = 0;
DHD_TRACE(("%s: Enter \n", __FUNCTION__));
if (dhd->busstate == DHD_BUS_DOWN) {
DHD_ERROR(("%s : bus is down. we have nothing to do\n", __FUNCTION__));
return -EIO;
}
/* don't talk to the dongle if fw is about to be reloaded */
if (dhd->hang_was_sent) {
DHD_ERROR(("%s: HANG was sent up earlier. Not talking to the chip\n",
__FUNCTION__));
return -EIO;
}
/* Fill up msgbuf for ioctl req */
ret = dhd_fillup_ioct_reqst(dhd, (uint16)len, cmd, buf, ifidx);
DHD_CTL(("ACTION %d ifdix %d cmd %d len %d \n",
action, ifidx, cmd, len));
ret = dhd_msgbuf_wait_ioctl_cmplt(dhd, len, buf);
return ret;
}
/** Called by upper DHD layer. Handles a protocol control response asynchronously. */
int dhd_prot_ctl_complete(dhd_pub_t *dhd)
{
return 0;
}
/** Called by upper DHD layer. Check for and handle local prot-specific iovar commands */
int dhd_prot_iovar_op(dhd_pub_t *dhd, const char *name,
void *params, int plen, void *arg, int len, bool set)
{
return BCME_UNSUPPORTED;
}
/** Add prot dump output to a buffer */
void dhd_prot_dump(dhd_pub_t *dhd, struct bcmstrbuf *b)
{
#if defined(PCIE_D2H_SYNC)
if (dhd->d2h_sync_mode & PCIE_SHARED_D2H_SYNC_SEQNUM)
bcm_bprintf(b, "\nd2h_sync: SEQNUM:");
else if (dhd->d2h_sync_mode & PCIE_SHARED_D2H_SYNC_XORCSUM)
bcm_bprintf(b, "\nd2h_sync: XORCSUM:");
else
bcm_bprintf(b, "\nd2h_sync: NONE:");
bcm_bprintf(b, " d2h_sync_wait max<%lu> tot<%lu>\n",
dhd->prot->d2h_sync_wait_max, dhd->prot->d2h_sync_wait_tot);
#endif /* PCIE_D2H_SYNC */
bcm_bprintf(b, "\nDongle DMA Indices: h2d %d d2h %d index size %d bytes\n",
DMA_INDX_ENAB(dhd->dma_h2d_ring_upd_support),
DMA_INDX_ENAB(dhd->dma_d2h_ring_upd_support),
dhd->prot->rw_index_sz);
}
/* Update local copy of dongle statistics */
void dhd_prot_dstats(dhd_pub_t *dhd)
{
return;
}
/** Called by upper DHD layer */
int dhd_process_pkt_reorder_info(dhd_pub_t *dhd, uchar *reorder_info_buf,
uint reorder_info_len, void **pkt, uint32 *free_buf_count)
{
return 0;
}
/** Debug related, post a dummy message to interrupt dongle. Used to process cons commands. */
int
dhd_post_dummy_msg(dhd_pub_t *dhd)
{
unsigned long flags;
hostevent_hdr_t *hevent = NULL;
uint16 alloced = 0;
dhd_prot_t *prot = dhd->prot;
msgbuf_ring_t *ring = &prot->h2dring_ctrl_subn;
DHD_GENERAL_LOCK(dhd, flags);
hevent = (hostevent_hdr_t *)
dhd_prot_alloc_ring_space(dhd, ring, 1, &alloced, FALSE);
if (hevent == NULL) {
DHD_GENERAL_UNLOCK(dhd, flags);
return -1;
}
/* CMN msg header */
hevent->msg.epoch = ring->seqnum % H2D_EPOCH_MODULO;
ring->seqnum++;
hevent->msg.msg_type = MSG_TYPE_HOST_EVNT;
hevent->msg.if_id = 0;
/* Event payload */
hevent->evnt_pyld = htol32(HOST_EVENT_CONS_CMD);
/* Since, we are filling the data directly into the bufptr obtained
* from the msgbuf, we can directly call the write_complete
*/
dhd_prot_ring_write_complete(dhd, ring, hevent, 1);
DHD_GENERAL_UNLOCK(dhd, flags);
return 0;
}
/**
* If exactly_nitems is true, this function will allocate space for nitems or fail
* If exactly_nitems is false, this function will allocate space for nitems or less
*/
static void * BCMFASTPATH
dhd_prot_alloc_ring_space(dhd_pub_t *dhd, msgbuf_ring_t *ring,
uint16 nitems, uint16 * alloced, bool exactly_nitems)
{
void * ret_buf;
/* Alloc space for nitems in the ring */
ret_buf = dhd_prot_get_ring_space(ring, nitems, alloced, exactly_nitems);
if (ret_buf == NULL) {
/* if alloc failed , invalidate cached read ptr */
if (DMA_INDX_ENAB(dhd->dma_d2h_ring_upd_support)) {
ring->rd = dhd_prot_dma_indx_get(dhd, H2D_DMA_INDX_RD_UPD, ring->idx);
} else {
dhd_bus_cmn_readshared(dhd->bus, &(ring->rd), RING_RD_UPD, ring->idx);
}
/* Try allocating once more */
ret_buf = dhd_prot_get_ring_space(ring, nitems, alloced, exactly_nitems);
if (ret_buf == NULL) {
DHD_INFO(("%s: Ring space not available \n", ring->name));
return NULL;
}
}
/* Return alloced space */
return ret_buf;
}
/**
* Non inline ioct request.
* Form a ioctl request first as per ioctptr_reqst_hdr_t header in the circular buffer
* Form a separate request buffer where a 4 byte cmn header is added in the front
* buf contents from parent function is copied to remaining section of this buffer
*/
static int
dhd_fillup_ioct_reqst(dhd_pub_t *dhd, uint16 len, uint cmd, void* buf, int ifidx)
{
dhd_prot_t *prot = dhd->prot;
ioctl_req_msg_t *ioct_rqst;
void * ioct_buf; /* For ioctl payload */
uint16 rqstlen, resplen;
unsigned long flags;
uint16 alloced = 0;
msgbuf_ring_t *ring = &prot->h2dring_ctrl_subn;
if (dhd_query_bus_erros(dhd)) {
return -EIO;
}
rqstlen = len;
resplen = len;
/* Limit ioct request to MSGBUF_MAX_MSG_SIZE bytes including hdrs */
/* 8K allocation of dongle buffer fails */
/* dhd doesnt give separate input & output buf lens */
/* so making the assumption that input length can never be more than 1.5k */
rqstlen = MIN(rqstlen, MSGBUF_MAX_MSG_SIZE);
DHD_GENERAL_LOCK(dhd, flags);
if (prot->ioctl_state) {
DHD_ERROR(("%s: pending ioctl %02x\n", __FUNCTION__, prot->ioctl_state));
DHD_GENERAL_UNLOCK(dhd, flags);
return BCME_BUSY;
} else {
prot->ioctl_state = MSGBUF_IOCTL_ACK_PENDING | MSGBUF_IOCTL_RESP_PENDING;
}
/* Request for cbuf space */
ioct_rqst = (ioctl_req_msg_t*)
dhd_prot_alloc_ring_space(dhd, ring, 1, &alloced, FALSE);
if (ioct_rqst == NULL) {
DHD_ERROR(("couldn't allocate space on msgring to send ioctl request\n"));
prot->ioctl_state = 0;
prot->curr_ioctl_cmd = 0;
prot->ioctl_received = IOCTL_WAIT;
DHD_GENERAL_UNLOCK(dhd, flags);
return -1;
}
/* Common msg buf hdr */
ioct_rqst->cmn_hdr.msg_type = MSG_TYPE_IOCTLPTR_REQ;
ioct_rqst->cmn_hdr.if_id = (uint8)ifidx;
ioct_rqst->cmn_hdr.flags = 0;
ioct_rqst->cmn_hdr.request_id = htol32(DHD_IOCTL_REQ_PKTID);
ioct_rqst->cmn_hdr.epoch = ring->seqnum % H2D_EPOCH_MODULO;
ring->seqnum++;
ioct_rqst->cmd = htol32(cmd);
prot->curr_ioctl_cmd = cmd;
ioct_rqst->output_buf_len = htol16(resplen);
prot->ioctl_trans_id++;
ioct_rqst->trans_id = prot->ioctl_trans_id;
/* populate ioctl buffer info */
ioct_rqst->input_buf_len = htol16(rqstlen);
ioct_rqst->host_input_buf_addr.high = htol32(PHYSADDRHI(prot->ioctbuf.pa));
ioct_rqst->host_input_buf_addr.low = htol32(PHYSADDRLO(prot->ioctbuf.pa));
/* copy ioct payload */
ioct_buf = (void *) prot->ioctbuf.va;
if (buf) {
memcpy(ioct_buf, buf, len);
}
OSL_CACHE_FLUSH((void *) prot->ioctbuf.va, len);
if (!ISALIGNED(ioct_buf, DMA_ALIGN_LEN)) {
DHD_ERROR(("host ioct address unaligned !!!!! \n"));
}
DHD_CTL(("submitted IOCTL request request_id %d, cmd %d, output_buf_len %d, tx_id %d\n",
ioct_rqst->cmn_hdr.request_id, cmd, ioct_rqst->output_buf_len,
ioct_rqst->trans_id));
/* update ring's WR index and ring doorbell to dongle */
dhd_prot_ring_write_complete(dhd, ring, ioct_rqst, 1);
DHD_GENERAL_UNLOCK(dhd, flags);
return 0;
} /* dhd_fillup_ioct_reqst */
/**
* dhd_prot_ring_attach - Initialize the msgbuf_ring object and attach a
* DMA-able buffer to it. The ring is NOT tagged as inited until all the ring
* information is posted to the dongle.
*
* Invoked in dhd_prot_attach for the common rings, and in dhd_prot_init for
* each flowring in pool of flowrings.
*
* returns BCME_OK=0 on success
* returns non-zero negative error value on failure.
*/
static int
dhd_prot_ring_attach(dhd_pub_t *dhd, msgbuf_ring_t *ring, const char *name,
uint16 max_items, uint16 item_len, uint16 ringid)
{
int dma_buf_alloced = BCME_NOMEM;
uint32 dma_buf_len = max_items * item_len;
dhd_prot_t *prot = dhd->prot;
ASSERT(ring);
ASSERT(name);
ASSERT((max_items < 0xFFFF) && (item_len < 0xFFFF) && (ringid < 0xFFFF));
/* Init name */
strncpy(ring->name, name, RING_NAME_MAX_LENGTH);
ring->name[RING_NAME_MAX_LENGTH - 1] = '\0';
ring->idx = ringid;
ring->max_items = max_items;
ring->item_len = item_len;
/* A contiguous space may be reserved for all flowrings */
if (DHD_IS_FLOWRING(ringid) && (prot->flowrings_dma_buf.va)) {
/* Carve out from the contiguous DMA-able flowring buffer */
uint16 flowid;
uint32 base_offset;
dhd_dma_buf_t *dma_buf = &ring->dma_buf;
dhd_dma_buf_t *rsv_buf = &prot->flowrings_dma_buf;
flowid = DHD_RINGID_TO_FLOWID(ringid);
base_offset = (flowid - BCMPCIE_H2D_COMMON_MSGRINGS) * dma_buf_len;
ASSERT(base_offset + dma_buf_len <= rsv_buf->len);
dma_buf->len = dma_buf_len;
dma_buf->va = (void *)((uintptr)rsv_buf->va + base_offset);
PHYSADDRHISET(dma_buf->pa, PHYSADDRHI(rsv_buf->pa));
PHYSADDRLOSET(dma_buf->pa, PHYSADDRLO(rsv_buf->pa) + base_offset);
/* On 64bit, contiguous space may not span across 0x00000000FFFFFFFF */
ASSERT(PHYSADDRLO(dma_buf->pa) >= PHYSADDRLO(rsv_buf->pa));
dma_buf->dmah = rsv_buf->dmah;
dma_buf->secdma = rsv_buf->secdma;
(void)dhd_dma_buf_audit(dhd, &ring->dma_buf);
} else {
/* Allocate a dhd_dma_buf */
dma_buf_alloced = dhd_dma_buf_alloc(dhd, &ring->dma_buf, dma_buf_len);
if (dma_buf_alloced != BCME_OK) {
return BCME_NOMEM;
}
}
/* CAUTION: Save ring::base_addr in little endian format! */
dhd_base_addr_htolpa(&ring->base_addr, ring->dma_buf.pa);
#ifdef BCM_SECURE_DMA
if (SECURE_DMA_ENAB(prot->osh)) {
ring->dma_buf.secdma = MALLOCZ(prot->osh, sizeof(sec_cma_info_t));
if (ring->dma_buf.secdma == NULL) {
goto free_dma_buf;
}
}
#endif /* BCM_SECURE_DMA */
DHD_INFO(("RING_ATTACH : %s Max item %d len item %d total size %d "
"ring start %p buf phys addr %x:%x \n",
ring->name, ring->max_items, ring->item_len,
dma_buf_len, ring->dma_buf.va, ltoh32(ring->base_addr.high_addr),
ltoh32(ring->base_addr.low_addr)));
return BCME_OK;
#ifdef BCM_SECURE_DMA
free_dma_buf:
if (dma_buf_alloced == BCME_OK) {
dhd_dma_buf_free(dhd, &ring->dma_buf);
}
#endif /* BCM_SECURE_DMA */
return BCME_NOMEM;
} /* dhd_prot_ring_attach */
/**
* dhd_prot_ring_init - Post the common ring information to dongle.
*
* Used only for common rings.
*
* The flowrings information is passed via the create flowring control message
* (tx_flowring_create_request_t) sent over the H2D control submission common
* ring.
*/
static void
dhd_prot_ring_init(dhd_pub_t *dhd, msgbuf_ring_t *ring)
{
ring->wr = 0;
ring->rd = 0;
ring->curr_rd = 0;
/* CAUTION: ring::base_addr already in Little Endian */
dhd_bus_cmn_writeshared(dhd->bus, &ring->base_addr,
sizeof(sh_addr_t), RING_BUF_ADDR, ring->idx);
dhd_bus_cmn_writeshared(dhd->bus, &ring->max_items,
sizeof(uint16), RING_MAX_ITEMS, ring->idx);
dhd_bus_cmn_writeshared(dhd->bus, &ring->item_len,
sizeof(uint16), RING_ITEM_LEN, ring->idx);
dhd_bus_cmn_writeshared(dhd->bus, &(ring->wr),
sizeof(uint16), RING_WR_UPD, ring->idx);
dhd_bus_cmn_writeshared(dhd->bus, &(ring->rd),
sizeof(uint16), RING_RD_UPD, ring->idx);
/* ring inited */
ring->inited = TRUE;
} /* dhd_prot_ring_init */
/**
* dhd_prot_ring_reset - bzero a ring's DMA-ble buffer and cache flush
* Reset WR and RD indices to 0.
*/
static void
dhd_prot_ring_reset(dhd_pub_t *dhd, msgbuf_ring_t *ring)
{
DHD_TRACE(("%s\n", __FUNCTION__));
dhd_dma_buf_reset(dhd, &ring->dma_buf);
ring->rd = ring->wr = 0;
ring->curr_rd = 0;
}
/**
* dhd_prot_ring_detach - Detach the DMA-able buffer and any other objects
* hanging off the msgbuf_ring.
*/
static void
dhd_prot_ring_detach(dhd_pub_t *dhd, msgbuf_ring_t *ring)
{
dhd_prot_t *prot = dhd->prot;
ASSERT(ring);
ring->inited = FALSE;
/* rd = ~0, wr = ring->rd - 1, max_items = 0, len_item = ~0 */
#ifdef BCM_SECURE_DMA
if (SECURE_DMA_ENAB(prot->osh)) {
SECURE_DMA_UNMAP_ALL(prot->osh, ring->dma_buf.secdma);
if (ring->dma_buf.secdma) {
MFREE(prot->osh, ring->dma_buf.secdma, sizeof(sec_cma_info_t));
}
ring->dma_buf.secdma = NULL;
}
#endif /* BCM_SECURE_DMA */
/* If the DMA-able buffer was carved out of a pre-reserved contiguous
* memory, then simply stop using it.
*/
if (DHD_IS_FLOWRING(ring->idx) && (prot->flowrings_dma_buf.va)) {
(void)dhd_dma_buf_audit(dhd, &ring->dma_buf);
memset(&ring->dma_buf, 0, sizeof(dhd_dma_buf_t));
} else {
dhd_dma_buf_free(dhd, &ring->dma_buf);
}
} /* dhd_prot_ring_detach */
/*
* +----------------------------------------------------------------------------
* Flowring Pool
*
* Unlike common rings, which are attached very early on (dhd_prot_attach),
* flowrings are dynamically instantiated. Moreover, flowrings may require a
* larger DMA-able buffer. To avoid issues with fragmented cache coherent
* DMA-able memory, a pre-allocated pool of msgbuf_ring_t is allocated once.
* The DMA-able buffers are attached to these pre-allocated msgbuf_ring.
*
* Each DMA-able buffer may be allocated independently, or may be carved out
* of a single large contiguous region that is registered with the protocol
* layer into flowrings_dma_buf. On a 64bit platform, this contiguous region
* may not span 0x00000000FFFFFFFF (avoid dongle side 64bit ptr arithmetic).
*
* No flowring pool action is performed in dhd_prot_attach(), as the number
* of h2d rings is not yet known.
*
* In dhd_prot_init(), the dongle advertized number of h2d rings is used to
* determine the number of flowrings required, and a pool of msgbuf_rings are
* allocated and a DMA-able buffer (carved or allocated) is attached.
* See: dhd_prot_flowrings_pool_attach()
*
* A flowring msgbuf_ring object may be fetched from this pool during flowring
* creation, using the flowid. Likewise, flowrings may be freed back into the
* pool on flowring deletion.
* See: dhd_prot_flowrings_pool_fetch(), dhd_prot_flowrings_pool_release()
*
* In dhd_prot_detach(), the flowring pool is detached. The DMA-able buffers
* are detached (returned back to the carved region or freed), and the pool of
* msgbuf_ring and any objects allocated against it are freed.
* See: dhd_prot_flowrings_pool_detach()
*
* In dhd_prot_reset(), the flowring pool is simply reset by returning it to a
* state as-if upon an attach. All DMA-able buffers are retained.
* Following a dhd_prot_reset(), in a subsequent dhd_prot_init(), the flowring
* pool attach will notice that the pool persists and continue to use it. This
* will avoid the case of a fragmented DMA-able region.
*
* +----------------------------------------------------------------------------
*/
/* Fetch number of H2D flowrings given the total number of h2d rings */
#define DHD_FLOWRINGS_POOL_TOTAL(h2d_rings_total) \
((h2d_rings_total) - BCMPCIE_H2D_COMMON_MSGRINGS)
/* Conversion of a flowid to a flowring pool index */
#define DHD_FLOWRINGS_POOL_OFFSET(flowid) \
((flowid) - BCMPCIE_H2D_COMMON_MSGRINGS)
/* Fetch the msgbuf_ring_t from the flowring pool given a flowid */
#define DHD_RING_IN_FLOWRINGS_POOL(prot, flowid) \
(msgbuf_ring_t*)((prot)->h2d_flowrings_pool) + DHD_FLOWRINGS_POOL_OFFSET(flowid)
/* Traverse each flowring in the flowring pool, assigning ring and flowid */
#define FOREACH_RING_IN_FLOWRINGS_POOL(prot, ring, flowid) \
for ((flowid) = DHD_FLOWRING_START_FLOWID, \
(ring) = DHD_RING_IN_FLOWRINGS_POOL(prot, flowid); \
(flowid) < (prot)->h2d_rings_total; \
(flowid)++, (ring)++)
/**
* dhd_prot_flowrings_pool_attach - Initialize a pool of flowring msgbuf_ring_t.
*
* Allocate a pool of msgbuf_ring along with DMA-able buffers for flowrings.
* Dongle includes common rings when it advertizes the number of H2D rings.
* Allocates a pool of msgbuf_ring_t and invokes dhd_prot_ring_attach to
* allocate the DMA-able buffer and initialize each msgbuf_ring_t object.
*
* dhd_prot_ring_attach is invoked to perform the actual initialization and
* attaching the DMA-able buffer.
*
* Later dhd_prot_flowrings_pool_fetch() may be used to fetch a preallocated and
* initialized msgbuf_ring_t object.
*
* returns BCME_OK=0 on success
* returns non-zero negative error value on failure.
*/
static int
dhd_prot_flowrings_pool_attach(dhd_pub_t *dhd)
{
uint16 flowid;
msgbuf_ring_t *ring;
uint16 h2d_flowrings_total; /* exclude H2D common rings */
dhd_prot_t *prot = dhd->prot;
char ring_name[RING_NAME_MAX_LENGTH];
if (prot->h2d_flowrings_pool != NULL) {
return BCME_OK; /* dhd_prot_init rentry after a dhd_prot_reset */
}
ASSERT(prot->h2d_rings_total == 0);
/* h2d_rings_total includes H2D common rings: ctrl and rxbuf subn */
prot->h2d_rings_total = (uint16)dhd_bus_max_h2d_queues(dhd->bus);
if (prot->h2d_rings_total < BCMPCIE_H2D_COMMON_MSGRINGS) {
DHD_ERROR(("%s: h2d_rings_total advertized as %u\n",
__FUNCTION__, prot->h2d_rings_total));
return BCME_ERROR;
}
/* Subtract number of H2D common rings, to determine number of flowrings */
h2d_flowrings_total = DHD_FLOWRINGS_POOL_TOTAL(prot->h2d_rings_total);
DHD_INFO(("Attach flowrings pool for %d rings\n", h2d_flowrings_total));
/* Allocate pool of msgbuf_ring_t objects for all flowrings */
prot->h2d_flowrings_pool = (msgbuf_ring_t *)MALLOCZ(prot->osh,
(h2d_flowrings_total * sizeof(msgbuf_ring_t)));
if (prot->h2d_flowrings_pool == NULL) {
DHD_ERROR(("%s: flowrings pool for %d flowrings, alloc failure\n",
__FUNCTION__, h2d_flowrings_total));
goto fail;
}
/* Setup & Attach a DMA-able buffer to each flowring in the flowring pool */
FOREACH_RING_IN_FLOWRINGS_POOL(prot, ring, flowid) {
snprintf(ring_name, sizeof(ring_name), "h2dflr_%03u", flowid);
ring_name[RING_NAME_MAX_LENGTH - 1] = '\0';
if (dhd_prot_ring_attach(dhd, ring, ring_name,
H2DRING_TXPOST_MAX_ITEM, H2DRING_TXPOST_ITEMSIZE,
DHD_FLOWID_TO_RINGID(flowid)) != BCME_OK) {
goto attach_fail;
}
}
return BCME_OK;
attach_fail:
dhd_prot_flowrings_pool_detach(dhd); /* Free entire pool of flowrings */
fail:
prot->h2d_rings_total = 0;
return BCME_NOMEM;
} /* dhd_prot_flowrings_pool_attach */
/**
* dhd_prot_flowrings_pool_reset - Reset all msgbuf_ring_t objects in the pool.
* Invokes dhd_prot_ring_reset to perform the actual reset.
*
* The DMA-able buffer is not freed during reset and neither is the flowring
* pool freed.
*
* dhd_prot_flowrings_pool_reset will be invoked in dhd_prot_reset. Following
* the dhd_prot_reset, dhd_prot_init will be re-invoked, and the flowring pool
* from a previous flowring pool instantiation will be reused.
*
* This will avoid a fragmented DMA-able memory condition, if multiple
* dhd_prot_reset were invoked to reboot the dongle without a full detach/attach
* cycle.
*/
static void
dhd_prot_flowrings_pool_reset(dhd_pub_t *dhd)
{
uint16 flowid;
msgbuf_ring_t *ring;
dhd_prot_t *prot = dhd->prot;
if (prot->h2d_flowrings_pool == NULL) {
ASSERT(prot->h2d_rings_total == 0);
return;
}
/* Reset each flowring in the flowring pool */
FOREACH_RING_IN_FLOWRINGS_POOL(prot, ring, flowid) {
dhd_prot_ring_reset(dhd, ring);
ring->inited = FALSE;
}
/* Flowring pool state must be as-if dhd_prot_flowrings_pool_attach */
}
/**
* dhd_prot_flowrings_pool_detach - Free pool of msgbuf_ring along with
* DMA-able buffers for flowrings.
* dhd_prot_ring_detach is invoked to free the DMA-able buffer and perform any
* de-initialization of each msgbuf_ring_t.
*/
static void
dhd_prot_flowrings_pool_detach(dhd_pub_t *dhd)
{
int flowid;
msgbuf_ring_t *ring;
int h2d_flowrings_total; /* exclude H2D common rings */
dhd_prot_t *prot = dhd->prot;
if (prot->h2d_flowrings_pool == NULL) {
ASSERT(prot->h2d_rings_total == 0);
return;
}
/* Detach the DMA-able buffer for each flowring in the flowring pool */
FOREACH_RING_IN_FLOWRINGS_POOL(prot, ring, flowid) {
dhd_prot_ring_detach(dhd, ring);
}
h2d_flowrings_total = DHD_FLOWRINGS_POOL_TOTAL(prot->h2d_rings_total);
MFREE(prot->osh, prot->h2d_flowrings_pool,
(h2d_flowrings_total * sizeof(msgbuf_ring_t)));
prot->h2d_flowrings_pool = (msgbuf_ring_t*)NULL;
prot->h2d_rings_total = 0;
} /* dhd_prot_flowrings_pool_detach */
/**
* dhd_prot_flowrings_pool_fetch - Fetch a preallocated and initialized
* msgbuf_ring from the flowring pool, and assign it.
*
* Unlike common rings, which uses a dhd_prot_ring_init() to pass the common
* ring information to the dongle, a flowring's information is passed via a
* flowring create control message.
*
* Only the ring state (WR, RD) index are initialized.
*/
static msgbuf_ring_t *
dhd_prot_flowrings_pool_fetch(dhd_pub_t *dhd, uint16 flowid)
{
msgbuf_ring_t *ring;
dhd_prot_t *prot = dhd->prot;
ASSERT(flowid >= DHD_FLOWRING_START_FLOWID);
ASSERT(flowid < prot->h2d_rings_total);
ASSERT(prot->h2d_flowrings_pool != NULL);
ring = DHD_RING_IN_FLOWRINGS_POOL(prot, flowid);
/* ASSERT flow_ring->inited == FALSE */
ring->wr = 0;
ring->rd = 0;
ring->curr_rd = 0;
ring->inited = TRUE;
return ring;
}
/**
* dhd_prot_flowrings_pool_release - release a previously fetched flowring's
* msgbuf_ring back to the flow_ring pool.
*/
void
dhd_prot_flowrings_pool_release(dhd_pub_t *dhd, uint16 flowid, void *flow_ring)
{
msgbuf_ring_t *ring;
dhd_prot_t *prot = dhd->prot;
ASSERT(flowid >= DHD_FLOWRING_START_FLOWID);
ASSERT(flowid < prot->h2d_rings_total);
ASSERT(prot->h2d_flowrings_pool != NULL);
ring = DHD_RING_IN_FLOWRINGS_POOL(prot, flowid);
ASSERT(ring == (msgbuf_ring_t*)flow_ring);
/* ASSERT flow_ring->inited == TRUE */
(void)dhd_dma_buf_audit(dhd, &ring->dma_buf);
ring->wr = 0;
ring->rd = 0;
ring->inited = FALSE;
ring->curr_rd = 0;
}
/* Assumes only one index is updated at a time */
/* If exactly_nitems is true, this function will allocate space for nitems or fail */
/* Exception: when wrap around is encountered, to prevent hangup (last nitems of ring buffer) */
/* If exactly_nitems is false, this function will allocate space for nitems or less */
static void *BCMFASTPATH
dhd_prot_get_ring_space(msgbuf_ring_t *ring, uint16 nitems, uint16 * alloced,
bool exactly_nitems)
{
void *ret_ptr = NULL;
uint16 ring_avail_cnt;
ASSERT(nitems <= ring->max_items);
ring_avail_cnt = CHECK_WRITE_SPACE(ring->rd, ring->wr, ring->max_items);
if ((ring_avail_cnt == 0) ||
(exactly_nitems && (ring_avail_cnt < nitems) &&
((ring->max_items - ring->wr) >= nitems))) {
DHD_INFO(("Space not available: ring %s items %d write %d read %d\n",
ring->name, nitems, ring->wr, ring->rd));
return NULL;
}
*alloced = MIN(nitems, ring_avail_cnt);
/* Return next available space */
ret_ptr = (char *)DHD_RING_BGN_VA(ring) + (ring->wr * ring->item_len);
/* Update write index */
if ((ring->wr + *alloced) == ring->max_items) {
ring->wr = 0;
} else if ((ring->wr + *alloced) < ring->max_items) {
ring->wr += *alloced;
} else {
/* Should never hit this */
ASSERT(0);
return NULL;
}
return ret_ptr;
} /* dhd_prot_get_ring_space */
/**
* dhd_prot_ring_write_complete - Host updates the new WR index on producing
* new messages in a H2D ring. The messages are flushed from cache prior to
* posting the new WR index. The new WR index will be updated in the DMA index
* array or directly in the dongle's ring state memory.
* A PCIE doorbell will be generated to wake up the dongle.
*/
static void BCMFASTPATH
dhd_prot_ring_write_complete(dhd_pub_t *dhd, msgbuf_ring_t * ring, void* p,
uint16 nitems)
{
dhd_prot_t *prot = dhd->prot;
/* cache flush */
OSL_CACHE_FLUSH(p, ring->item_len * nitems);
if (DMA_INDX_ENAB(dhd->dma_h2d_ring_upd_support)) {
dhd_prot_dma_indx_set(dhd, ring->wr,
H2D_DMA_INDX_WR_UPD, ring->idx);
} else {
dhd_bus_cmn_writeshared(dhd->bus, &(ring->wr),
sizeof(uint16), RING_WR_UPD, ring->idx);
}
/* raise h2d interrupt */
prot->mb_ring_fn(dhd->bus, ring->wr);
}
/**
* dhd_prot_upd_read_idx - Host updates the new RD index on consuming messages
* from a D2H ring. The new RD index will be updated in the DMA Index array or
* directly in dongle's ring state memory.
*/
static void
dhd_prot_upd_read_idx(dhd_pub_t *dhd, msgbuf_ring_t * ring)
{
/* update read index */
/* If dma'ing h2d indices supported
* update the r -indices in the
* host memory o/w in TCM
*/
if (DMA_INDX_ENAB(dhd->dma_h2d_ring_upd_support)) {
dhd_prot_dma_indx_set(dhd, ring->rd,
D2H_DMA_INDX_RD_UPD, ring->idx);
} else {
dhd_bus_cmn_writeshared(dhd->bus, &(ring->rd),
sizeof(uint16), RING_RD_UPD, ring->idx);
}
}
/**
* dhd_prot_dma_indx_set - set a new WR or RD index in the DMA index array.
* Dongle will DMA the entire array (if DMA_INDX feature is enabled).
* See dhd_prot_dma_indx_init()
*/
static void
dhd_prot_dma_indx_set(dhd_pub_t *dhd, uint16 new_index, uint8 type, uint16 ringid)
{
uint8 *ptr;
uint16 offset;
dhd_prot_t *prot = dhd->prot;
switch (type) {
case H2D_DMA_INDX_WR_UPD:
ptr = (uint8 *)(prot->h2d_dma_indx_wr_buf.va);
offset = DHD_H2D_RING_OFFSET(ringid);
break;
case D2H_DMA_INDX_RD_UPD:
ptr = (uint8 *)(prot->d2h_dma_indx_rd_buf.va);
offset = DHD_D2H_RING_OFFSET(ringid);
break;
default:
DHD_ERROR(("%s: Invalid option for DMAing read/write index\n",
__FUNCTION__));
return;
}
ASSERT(prot->rw_index_sz != 0);
ptr += offset * prot->rw_index_sz;
*(uint16*)ptr = htol16(new_index);
OSL_CACHE_FLUSH((void *)ptr, prot->rw_index_sz);
DHD_TRACE(("%s: data %d type %d ringid %d ptr 0x%p offset %d\n",
__FUNCTION__, new_index, type, ringid, ptr, offset));
} /* dhd_prot_dma_indx_set */
/**
* dhd_prot_dma_indx_get - Fetch a WR or RD index from the dongle DMA-ed index
* array.
* Dongle DMAes an entire array to host memory (if the feature is enabled).
* See dhd_prot_dma_indx_init()
*/
static uint16
dhd_prot_dma_indx_get(dhd_pub_t *dhd, uint8 type, uint16 ringid)
{
uint8 *ptr;
uint16 data;
uint16 offset;
dhd_prot_t *prot = dhd->prot;
switch (type) {
case H2D_DMA_INDX_WR_UPD:
ptr = (uint8 *)(prot->h2d_dma_indx_wr_buf.va);
offset = DHD_H2D_RING_OFFSET(ringid);
break;
case H2D_DMA_INDX_RD_UPD:
ptr = (uint8 *)(prot->h2d_dma_indx_rd_buf.va);
offset = DHD_H2D_RING_OFFSET(ringid);
break;
case D2H_DMA_INDX_WR_UPD:
ptr = (uint8 *)(prot->d2h_dma_indx_wr_buf.va);
offset = DHD_D2H_RING_OFFSET(ringid);
break;
case D2H_DMA_INDX_RD_UPD:
ptr = (uint8 *)(prot->d2h_dma_indx_rd_buf.va);
offset = DHD_D2H_RING_OFFSET(ringid);
break;
default:
DHD_ERROR(("%s: Invalid option for DMAing read/write index\n",
__FUNCTION__));
return 0;
}
ASSERT(prot->rw_index_sz != 0);
ptr += offset * prot->rw_index_sz;
OSL_CACHE_INV((void *)ptr, prot->rw_index_sz);
data = LTOH16(*((uint16*)ptr));
DHD_TRACE(("%s: data %d type %d ringid %d ptr 0x%p offset %d\n",
__FUNCTION__, data, type, ringid, ptr, offset));
return (data);
} /* dhd_prot_dma_indx_get */
/**
* An array of DMA read/write indices, containing information about host rings, can be maintained
* either in host memory or in device memory, dependent on preprocessor options. This function is,
* dependent on these options, called during driver initialization. It reserves and initializes
* blocks of DMA'able host memory containing an array of DMA read or DMA write indices. The physical
* address of these host memory blocks are communicated to the dongle later on. By reading this host
* memory, the dongle learns about the state of the host rings.
*/
static INLINE int
dhd_prot_dma_indx_alloc(dhd_pub_t *dhd, uint8 type,
dhd_dma_buf_t *dma_buf, uint32 bufsz)
{
int rc;
if ((dma_buf->len == bufsz) || (dma_buf->va != NULL))
return BCME_OK;
rc = dhd_dma_buf_alloc(dhd, dma_buf, bufsz);
return rc;
}
int
dhd_prot_dma_indx_init(dhd_pub_t *dhd, uint32 rw_index_sz, uint8 type, uint32 length)
{
uint32 bufsz;
dhd_prot_t *prot = dhd->prot;
dhd_dma_buf_t *dma_buf;
if (prot == NULL) {
DHD_ERROR(("prot is not inited\n"));
return BCME_ERROR;
}
/* Dongle advertizes 2B or 4B RW index size */
ASSERT(rw_index_sz != 0);
prot->rw_index_sz = rw_index_sz;
bufsz = rw_index_sz * length;
switch (type) {
case H2D_DMA_INDX_WR_BUF:
dma_buf = &prot->h2d_dma_indx_wr_buf;
if (dhd_prot_dma_indx_alloc(dhd, type, dma_buf, bufsz)) {
goto ret_no_mem;
}
DHD_ERROR(("H2D DMA WR INDX : array size %d = %d * %d\n",
dma_buf->len, rw_index_sz, length));
break;
case H2D_DMA_INDX_RD_BUF:
dma_buf = &prot->h2d_dma_indx_rd_buf;
if (dhd_prot_dma_indx_alloc(dhd, type, dma_buf, bufsz)) {
goto ret_no_mem;
}
DHD_ERROR(("H2D DMA RD INDX : array size %d = %d * %d\n",
dma_buf->len, rw_index_sz, length));
break;
case D2H_DMA_INDX_WR_BUF:
dma_buf = &prot->d2h_dma_indx_wr_buf;
if (dhd_prot_dma_indx_alloc(dhd, type, dma_buf, bufsz)) {
goto ret_no_mem;
}
DHD_ERROR(("D2H DMA WR INDX : array size %d = %d * %d\n",
dma_buf->len, rw_index_sz, length));
break;
case D2H_DMA_INDX_RD_BUF:
dma_buf = &prot->d2h_dma_indx_rd_buf;
if (dhd_prot_dma_indx_alloc(dhd, type, dma_buf, bufsz)) {
goto ret_no_mem;
}
DHD_ERROR(("D2H DMA RD INDX : array size %d = %d * %d\n",
dma_buf->len, rw_index_sz, length));
break;
default:
DHD_ERROR(("%s: Unexpected option\n", __FUNCTION__));
return BCME_BADOPTION;
}
return BCME_OK;
ret_no_mem:
DHD_ERROR(("%s: dhd_prot_dma_indx_alloc type %d buf_sz %d failure\n",
__FUNCTION__, type, bufsz));
return BCME_NOMEM;
} /* dhd_prot_dma_indx_init */
/**
* Called on checking for 'completion' messages from the dongle. Returns next host buffer to read
* from, or NULL if there are no more messages to read.
*/
static uint8*
dhd_prot_get_read_addr(dhd_pub_t *dhd, msgbuf_ring_t *ring, uint32 *available_len)
{
uint16 wr;
uint16 rd;
uint16 depth;
uint16 items;
void *read_addr = NULL; /* address of next msg to be read in ring */
uint16 d2h_wr = 0;
DHD_TRACE(("%s: d2h_dma_indx_rd_buf %p, d2h_dma_indx_wr_buf %p\n",
__FUNCTION__, (uint32 *)(dhd->prot->d2h_dma_indx_rd_buf.va),
(uint32 *)(dhd->prot->d2h_dma_indx_wr_buf.va)));
/* Remember the read index in a variable.
* This is becuase ring->rd gets updated in the end of this function
* So if we have to print the exact read index from which the
* message is read its not possible.
*/
ring->curr_rd = ring->rd;
/* update write pointer */
if (DMA_INDX_ENAB(dhd->dma_d2h_ring_upd_support)) {
/* DMAing write/read indices supported */
d2h_wr = dhd_prot_dma_indx_get(dhd, D2H_DMA_INDX_WR_UPD, ring->idx);
ring->wr = d2h_wr;
} else {
dhd_bus_cmn_readshared(dhd->bus, &(ring->wr), RING_WR_UPD, ring->idx);
}
wr = ring->wr;
rd = ring->rd;
depth = ring->max_items;
/* check for avail space, in number of ring items */
items = READ_AVAIL_SPACE(wr, rd, depth);
if (items == 0) {
return NULL;
}
ASSERT(items < ring->max_items);
/*
* Note that there are builds where Assert translates to just printk
* so, even if we had hit this condition we would never halt. Now
* dhd_prot_process_msgtype can get into an big loop if this
* happens.
*/
if (items >= ring->max_items) {
DHD_ERROR(("\r\n======================= \r\n"));
DHD_ERROR(("%s(): ring %p, ring->name %s, ring->max_items %d, items %d \r\n",
__FUNCTION__, ring, ring->name, ring->max_items, items));
DHD_ERROR(("wr: %d, rd: %d, depth: %d \r\n", wr, rd, depth));
DHD_ERROR(("dhd->busstate %d bus->suspended %d bus->wait_for_d3_ack %d \r\n",
dhd->busstate, dhd->bus->suspended, dhd->bus->wait_for_d3_ack));
DHD_ERROR(("\r\n======================= \r\n"));
*available_len = 0;
return NULL;
}
/* if space is available, calculate address to be read */
read_addr = (char*)ring->dma_buf.va + (rd * ring->item_len);
/* update read pointer */
if ((ring->rd + items) >= ring->max_items) {
ring->rd = 0;
} else {
ring->rd += items;
}
ASSERT(ring->rd < ring->max_items);
/* convert items to bytes : available_len must be 32bits */
*available_len = (uint32)(items * ring->item_len);
OSL_CACHE_INV(read_addr, *available_len);
/* return read address */
return read_addr;
} /* dhd_prot_get_read_addr */
/** Creates a flow ring and informs dongle of this event */
int
dhd_prot_flow_ring_create(dhd_pub_t *dhd, flow_ring_node_t *flow_ring_node)
{
tx_flowring_create_request_t *flow_create_rqst;
msgbuf_ring_t *flow_ring;
dhd_prot_t *prot = dhd->prot;
unsigned long flags;
uint16 alloced = 0;
msgbuf_ring_t *ctrl_ring = &prot->h2dring_ctrl_subn;
/* Fetch a pre-initialized msgbuf_ring from the flowring pool */
flow_ring = dhd_prot_flowrings_pool_fetch(dhd, flow_ring_node->flowid);
if (flow_ring == NULL) {
DHD_ERROR(("%s: dhd_prot_flowrings_pool_fetch TX Flowid %d failed\n",
__FUNCTION__, flow_ring_node->flowid));
return BCME_NOMEM;
}
DHD_GENERAL_LOCK(dhd, flags);
/* Request for ctrl_ring buffer space */
flow_create_rqst = (tx_flowring_create_request_t *)
dhd_prot_alloc_ring_space(dhd, ctrl_ring, 1, &alloced, FALSE);
if (flow_create_rqst == NULL) {
dhd_prot_flowrings_pool_release(dhd, flow_ring_node->flowid, flow_ring);
DHD_ERROR(("%s: Flow Create Req flowid %d - failure ring space\n",
__FUNCTION__, flow_ring_node->flowid));
DHD_GENERAL_UNLOCK(dhd, flags);
return BCME_NOMEM;
}
flow_ring_node->prot_info = (void *)flow_ring;
/* Common msg buf hdr */
flow_create_rqst->msg.msg_type = MSG_TYPE_FLOW_RING_CREATE;
flow_create_rqst->msg.if_id = (uint8)flow_ring_node->flow_info.ifindex;
flow_create_rqst->msg.request_id = htol32(0); /* TBD */
flow_create_rqst->msg.epoch = ctrl_ring->seqnum % H2D_EPOCH_MODULO;
ctrl_ring->seqnum++;
/* Update flow create message */
flow_create_rqst->tid = flow_ring_node->flow_info.tid;
flow_create_rqst->flow_ring_id = htol16((uint16)flow_ring_node->flowid);
memcpy(flow_create_rqst->sa, flow_ring_node->flow_info.sa, sizeof(flow_create_rqst->sa));
memcpy(flow_create_rqst->da, flow_ring_node->flow_info.da, sizeof(flow_create_rqst->da));
/* CAUTION: ring::base_addr already in Little Endian */
flow_create_rqst->flow_ring_ptr.low_addr = flow_ring->base_addr.low_addr;
flow_create_rqst->flow_ring_ptr.high_addr = flow_ring->base_addr.high_addr;
flow_create_rqst->max_items = htol16(H2DRING_TXPOST_MAX_ITEM);
flow_create_rqst->len_item = htol16(H2DRING_TXPOST_ITEMSIZE);
DHD_ERROR(("%s: Send Flow Create Req flow ID %d for peer " MACDBG
" prio %d ifindex %d\n", __FUNCTION__, flow_ring_node->flowid,
MAC2STRDBG(flow_ring_node->flow_info.da), flow_ring_node->flow_info.tid,
flow_ring_node->flow_info.ifindex));
/* Update the flow_ring's WRITE index */
if (DMA_INDX_ENAB(dhd->dma_h2d_ring_upd_support)) {
dhd_prot_dma_indx_set(dhd, flow_ring->wr,
H2D_DMA_INDX_WR_UPD, flow_ring->idx);
} else {
dhd_bus_cmn_writeshared(dhd->bus, &(flow_ring->wr),
sizeof(uint16), RING_WR_UPD, flow_ring->idx);
}
/* update control subn ring's WR index and ring doorbell to dongle */
dhd_prot_ring_write_complete(dhd, ctrl_ring, flow_create_rqst, 1);
DHD_GENERAL_UNLOCK(dhd, flags);
return BCME_OK;
} /* dhd_prot_flow_ring_create */
/** called on receiving MSG_TYPE_FLOW_RING_CREATE_CMPLT message from dongle */
static void
dhd_prot_flow_ring_create_response_process(dhd_pub_t *dhd, void *msg)
{
tx_flowring_create_response_t *flow_create_resp = (tx_flowring_create_response_t *)msg;
DHD_ERROR(("%s: Flow Create Response status = %d Flow %d\n", __FUNCTION__,
ltoh16(flow_create_resp->cmplt.status),
ltoh16(flow_create_resp->cmplt.flow_ring_id)));
dhd_bus_flow_ring_create_response(dhd->bus,
ltoh16(flow_create_resp->cmplt.flow_ring_id),
ltoh16(flow_create_resp->cmplt.status));
}
/** called on e.g. flow ring delete */
void dhd_prot_clean_flow_ring(dhd_pub_t *dhd, void *msgbuf_flow_info)
{
msgbuf_ring_t *flow_ring = (msgbuf_ring_t *)msgbuf_flow_info;
dhd_prot_ring_detach(dhd, flow_ring);
DHD_INFO(("%s Cleaning up Flow \n", __FUNCTION__));
}
void dhd_prot_print_flow_ring(dhd_pub_t *dhd, void *msgbuf_flow_info,
struct bcmstrbuf *strbuf, const char * fmt)
{
const char *default_fmt = "RD %d WR %d BASE(VA) %p BASE(PA) %x:%x SIZE %d\n";
msgbuf_ring_t *flow_ring = (msgbuf_ring_t *)msgbuf_flow_info;
uint16 rd, wr;
uint32 dma_buf_len = flow_ring->max_items * flow_ring->item_len;
if (fmt == NULL) {
fmt = default_fmt;
}
dhd_bus_cmn_readshared(dhd->bus, &rd, RING_RD_UPD, flow_ring->idx);
dhd_bus_cmn_readshared(dhd->bus, &wr, RING_WR_UPD, flow_ring->idx);
bcm_bprintf(strbuf, fmt, rd, wr, flow_ring->dma_buf.va,
ltoh32(flow_ring->base_addr.high_addr),
ltoh32(flow_ring->base_addr.low_addr), dma_buf_len);
}
void dhd_prot_print_info(dhd_pub_t *dhd, struct bcmstrbuf *strbuf)
{
dhd_prot_t *prot = dhd->prot;
bcm_bprintf(strbuf,
"%8s %4s %4s %5s %17s %17s %7s\n",
"Type", "RBP", "RD", "WR", "BASE(VA)", "BASE(PA)", "SIZE");
bcm_bprintf(strbuf, "%8s %4s", "CtrlPost", "NA");
dhd_prot_print_flow_ring(dhd, &prot->h2dring_ctrl_subn, strbuf,
"%5d %5d %17p %8x:%8x %7d\n");
bcm_bprintf(strbuf, "%8s %4s", "CtrlCpl", "NA");
dhd_prot_print_flow_ring(dhd, &prot->d2hring_ctrl_cpln, strbuf,
"%5d %5d %17p %8x:%8x %7d\n");
bcm_bprintf(strbuf, "%8s %4d", "RxPost", prot->rxbufpost);
dhd_prot_print_flow_ring(dhd, &prot->h2dring_rxp_subn, strbuf,
"%5d %5d %17p %8x:%8x %7d\n");
bcm_bprintf(strbuf, "%8s %4s", "RxCpl", "NA");
dhd_prot_print_flow_ring(dhd, &prot->d2hring_rx_cpln, strbuf,
"%5d %5d %17p %8x:%8x %7d\n");
bcm_bprintf(strbuf, "%8s %4s", "TxCpl", "NA");
dhd_prot_print_flow_ring(dhd, &prot->d2hring_tx_cpln, strbuf,
"%5d %5d %17p %8x:%8x %7d\n");
bcm_bprintf(strbuf, "active_tx_count %d pktidmap_avail %d\n",
dhd->prot->active_tx_count,
DHD_PKTID_AVAIL(dhd->prot->pktid_map_handle));
}
int
dhd_prot_flow_ring_delete(dhd_pub_t *dhd, flow_ring_node_t *flow_ring_node)
{
tx_flowring_delete_request_t *flow_delete_rqst;
dhd_prot_t *prot = dhd->prot;
unsigned long flags;
uint16 alloced = 0;
msgbuf_ring_t *ring = &prot->h2dring_ctrl_subn;
DHD_GENERAL_LOCK(dhd, flags);
/* Request for ring buffer space */
flow_delete_rqst = (tx_flowring_delete_request_t *)
dhd_prot_alloc_ring_space(dhd, ring, 1, &alloced, FALSE);
if (flow_delete_rqst == NULL) {
DHD_GENERAL_UNLOCK(dhd, flags);
DHD_ERROR(("%s: Flow Delete Req - failure ring space\n", __FUNCTION__));
return BCME_NOMEM;
}
/* Common msg buf hdr */
flow_delete_rqst->msg.msg_type = MSG_TYPE_FLOW_RING_DELETE;
flow_delete_rqst->msg.if_id = (uint8)flow_ring_node->flow_info.ifindex;
flow_delete_rqst->msg.request_id = htol32(0); /* TBD */
flow_delete_rqst->msg.epoch = ring->seqnum % H2D_EPOCH_MODULO;
ring->seqnum++;
/* Update Delete info */
flow_delete_rqst->flow_ring_id = htol16((uint16)flow_ring_node->flowid);
flow_delete_rqst->reason = htol16(BCME_OK);
DHD_ERROR(("%s: Send Flow Delete Req RING ID %d for peer " MACDBG
" prio %d ifindex %d\n", __FUNCTION__, flow_ring_node->flowid,
MAC2STRDBG(flow_ring_node->flow_info.da), flow_ring_node->flow_info.tid,
flow_ring_node->flow_info.ifindex));
/* update ring's WR index and ring doorbell to dongle */
dhd_prot_ring_write_complete(dhd, ring, flow_delete_rqst, 1);
DHD_GENERAL_UNLOCK(dhd, flags);
return BCME_OK;
}
static void
dhd_prot_flow_ring_delete_response_process(dhd_pub_t *dhd, void *msg)
{
tx_flowring_delete_response_t *flow_delete_resp = (tx_flowring_delete_response_t *)msg;
DHD_ERROR(("%s: Flow Delete Response status = %d Flow %d\n", __FUNCTION__,
flow_delete_resp->cmplt.status, flow_delete_resp->cmplt.flow_ring_id));
dhd_bus_flow_ring_delete_response(dhd->bus, flow_delete_resp->cmplt.flow_ring_id,
flow_delete_resp->cmplt.status);
}
int
dhd_prot_flow_ring_flush(dhd_pub_t *dhd, flow_ring_node_t *flow_ring_node)
{
tx_flowring_flush_request_t *flow_flush_rqst;
dhd_prot_t *prot = dhd->prot;
unsigned long flags;
uint16 alloced = 0;
msgbuf_ring_t *ring = &prot->h2dring_ctrl_subn;
DHD_GENERAL_LOCK(dhd, flags);
/* Request for ring buffer space */
flow_flush_rqst = (tx_flowring_flush_request_t *)
dhd_prot_alloc_ring_space(dhd, ring, 1, &alloced, FALSE);
if (flow_flush_rqst == NULL) {
DHD_GENERAL_UNLOCK(dhd, flags);
DHD_ERROR(("%s: Flow Flush Req - failure ring space\n", __FUNCTION__));
return BCME_NOMEM;
}
/* Common msg buf hdr */
flow_flush_rqst->msg.msg_type = MSG_TYPE_FLOW_RING_FLUSH;
flow_flush_rqst->msg.if_id = (uint8)flow_ring_node->flow_info.ifindex;
flow_flush_rqst->msg.request_id = htol32(0); /* TBD */
flow_flush_rqst->msg.epoch = ring->seqnum % H2D_EPOCH_MODULO;
ring->seqnum++;
flow_flush_rqst->flow_ring_id = htol16((uint16)flow_ring_node->flowid);
flow_flush_rqst->reason = htol16(BCME_OK);
DHD_INFO(("%s: Send Flow Flush Req\n", __FUNCTION__));
/* update ring's WR index and ring doorbell to dongle */
dhd_prot_ring_write_complete(dhd, ring, flow_flush_rqst, 1);
DHD_GENERAL_UNLOCK(dhd, flags);
return BCME_OK;
} /* dhd_prot_flow_ring_flush */
static void
dhd_prot_flow_ring_flush_response_process(dhd_pub_t *dhd, void *msg)
{
tx_flowring_flush_response_t *flow_flush_resp = (tx_flowring_flush_response_t *)msg;
DHD_INFO(("%s: Flow Flush Response status = %d\n", __FUNCTION__,
flow_flush_resp->cmplt.status));
dhd_bus_flow_ring_flush_response(dhd->bus, flow_flush_resp->cmplt.flow_ring_id,
flow_flush_resp->cmplt.status);
}
/**
* Request dongle to configure soft doorbells for D2H rings. Host populated soft
* doorbell information is transferred to dongle via the d2h ring config control
* message.
*/
void
dhd_msgbuf_ring_config_d2h_soft_doorbell(dhd_pub_t *dhd)
{
#if defined(DHD_D2H_SOFT_DOORBELL_SUPPORT)
uint16 ring_idx;
uint8 *msg_next;
void *msg_start;
uint16 alloced = 0;
unsigned long flags;
dhd_prot_t *prot = dhd->prot;
ring_config_req_t *ring_config_req;
bcmpcie_soft_doorbell_t *soft_doorbell;
msgbuf_ring_t *ctrl_ring = &prot->h2dring_ctrl_subn;
const uint16 d2h_rings = BCMPCIE_D2H_COMMON_MSGRINGS;
/* Claim space for d2h_ring number of d2h_ring_config_req_t messages */
DHD_GENERAL_LOCK(dhd, flags);
msg_start = dhd_prot_alloc_ring_space(dhd, ctrl_ring, d2h_rings, &alloced, TRUE);
if (msg_start == NULL) {
DHD_ERROR(("%s Msgbuf no space for %d D2H ring config soft doorbells\n",
__FUNCTION__, d2h_rings));
DHD_GENERAL_UNLOCK(dhd, flags);
return;
}
msg_next = (uint8*)msg_start;
for (ring_idx = 0; ring_idx < d2h_rings; ring_idx++) {
/* position the ring_config_req into the ctrl subm ring */
ring_config_req = (ring_config_req_t *)msg_next;
/* Common msg header */
ring_config_req->msg.msg_type = MSG_TYPE_D2H_RING_CONFIG;
ring_config_req->msg.if_id = 0;
ring_config_req->msg.flags = 0;
ring_config_req->msg.epoch = ctrl_ring->seqnum % H2D_EPOCH_MODULO;
ctrl_ring->seqnum++;
ring_config_req->msg.request_id = htol32(DHD_FAKE_PKTID); /* unused */
/* Ring Config subtype and d2h ring_id */
ring_config_req->subtype = htol16(D2H_RING_CONFIG_SUBTYPE_SOFT_DOORBELL);
ring_config_req->ring_id = htol16(DHD_D2H_RINGID(ring_idx));
/* Host soft doorbell configuration */
soft_doorbell = &prot->soft_doorbell[ring_idx];
ring_config_req->soft_doorbell.value = htol32(soft_doorbell->value);
ring_config_req->soft_doorbell.haddr.high =
htol32(soft_doorbell->haddr.high);
ring_config_req->soft_doorbell.haddr.low =
htol32(soft_doorbell->haddr.low);
ring_config_req->soft_doorbell.items = htol16(soft_doorbell->items);
ring_config_req->soft_doorbell.msecs = htol16(soft_doorbell->msecs);
DHD_INFO(("%s: Soft doorbell haddr 0x%08x 0x%08x value 0x%08x\n",
__FUNCTION__, ring_config_req->soft_doorbell.haddr.high,
ring_config_req->soft_doorbell.haddr.low,
ring_config_req->soft_doorbell.value));
msg_next = msg_next + ctrl_ring->item_len;
}
/* update control subn ring's WR index and ring doorbell to dongle */
dhd_prot_ring_write_complete(dhd, ctrl_ring, msg_start, d2h_rings);
DHD_GENERAL_UNLOCK(dhd, flags);
#endif /* DHD_D2H_SOFT_DOORBELL_SUPPORT */
}
static void
dhd_prot_d2h_ring_config_cmplt_process(dhd_pub_t *dhd, void *msg)
{
DHD_INFO(("%s: Ring Config Response - status %d ringid %d\n",
__FUNCTION__, ltoh16(((ring_config_resp_t *)msg)->compl_hdr.status),
ltoh16(((ring_config_resp_t *)msg)->compl_hdr.flow_ring_id)));
}
int
dhd_prot_debug_info_print(dhd_pub_t *dhd)
{
dhd_prot_t *prot = dhd->prot;
msgbuf_ring_t *ring;
uint16 rd, wr;
uint32 intstatus = 0;
uint32 intmask = 0;
uint32 mbintstatus = 0;
uint32 d2h_mb_data = 0;
uint32 dma_buf_len;
DHD_ERROR(("\n ------- DUMPING IOCTL RING RD WR Pointers ------- \r\n"));
ring = &prot->h2dring_ctrl_subn;
dma_buf_len = ring->max_items * ring->item_len;
DHD_ERROR(("CtrlPost: Mem Info: BASE(VA) %p BASE(PA) %x:%x SIZE %d \r\n",
ring->dma_buf.va, ltoh32(ring->base_addr.high_addr),
ltoh32(ring->base_addr.low_addr), dma_buf_len));
DHD_ERROR(("CtrlPost: From Host mem: RD: %d WR %d \r\n", ring->rd, ring->wr));
dhd_bus_cmn_readshared(dhd->bus, &rd, RING_RD_UPD, ring->idx);
dhd_bus_cmn_readshared(dhd->bus, &wr, RING_WR_UPD, ring->idx);
DHD_ERROR(("CtrlPost: From Shared Mem: RD: %d WR %d \r\n", rd, wr));
ring = &prot->d2hring_ctrl_cpln;
dma_buf_len = ring->max_items * ring->item_len;
DHD_ERROR(("CtrlCpl: Mem Info: BASE(VA) %p BASE(PA) %x:%x SIZE %d \r\n",
ring->dma_buf.va, ltoh32(ring->base_addr.high_addr),
ltoh32(ring->base_addr.low_addr), dma_buf_len));
DHD_ERROR(("CtrlCpl: From Host mem: RD: %d WR %d \r\n", ring->rd, ring->wr));
dhd_bus_cmn_readshared(dhd->bus, &rd, RING_RD_UPD, ring->idx);
dhd_bus_cmn_readshared(dhd->bus, &wr, RING_WR_UPD, ring->idx);
DHD_ERROR(("CtrlCpl: From Shared Mem: RD: %d WR %d \r\n", rd, wr));
DHD_ERROR(("CtrlCpl: Expected seq num: %d \r\n", ring->seqnum));
intstatus = si_corereg(dhd->bus->sih, dhd->bus->sih->buscoreidx, PCIMailBoxInt, 0, 0);
intmask = si_corereg(dhd->bus->sih, dhd->bus->sih->buscoreidx, PCIMailBoxMask, 0, 0);
mbintstatus = si_corereg(dhd->bus->sih, dhd->bus->sih->buscoreidx, PCID2H_MailBox, 0, 0);
dhd_bus_cmn_readshared(dhd->bus, &d2h_mb_data, D2H_MB_DATA, 0);
DHD_ERROR(("\n ------- DUMPING INTR Status and Masks ------- \r\n"));
DHD_ERROR(("intstatus=0x%x intmask=0x%x mbintstatus=0x%x\n,",
intstatus, intmask, mbintstatus));
DHD_ERROR(("d2h_mb_data=0x%x def_intmask=0x%x \r\n", d2h_mb_data, dhd->bus->def_intmask));
return 0;
}
int
dhd_prot_ringupd_dump(dhd_pub_t *dhd, struct bcmstrbuf *b)
{
uint32 *ptr;
uint32 value;
uint32 i;
uint32 max_h2d_queues = dhd_bus_max_h2d_queues(dhd->bus);
OSL_CACHE_INV((void *)dhd->prot->d2h_dma_indx_wr_buf.va,
dhd->prot->d2h_dma_indx_wr_buf.len);
ptr = (uint32 *)(dhd->prot->d2h_dma_indx_wr_buf.va);
bcm_bprintf(b, "\n max_tx_queues %d\n", max_h2d_queues);
bcm_bprintf(b, "\nRPTR block H2D common rings, 0x%04x\n", ptr);
value = ltoh32(*ptr);
bcm_bprintf(b, "\tH2D CTRL: value 0x%04x\n", value);
ptr++;
value = ltoh32(*ptr);
bcm_bprintf(b, "\tH2D RXPOST: value 0x%04x\n", value);
ptr++;
bcm_bprintf(b, "RPTR block Flow rings , 0x%04x\n", ptr);
for (i = BCMPCIE_H2D_COMMON_MSGRINGS; i < max_h2d_queues; i++) {
value = ltoh32(*ptr);
bcm_bprintf(b, "\tflowring ID %d: value 0x%04x\n", i, value);
ptr++;
}
OSL_CACHE_INV((void *)dhd->prot->h2d_dma_indx_rd_buf.va,
dhd->prot->h2d_dma_indx_rd_buf.len);
ptr = (uint32 *)(dhd->prot->h2d_dma_indx_rd_buf.va);
bcm_bprintf(b, "\nWPTR block D2H common rings, 0x%04x\n", ptr);
value = ltoh32(*ptr);
bcm_bprintf(b, "\tD2H CTRLCPLT: value 0x%04x\n", value);
ptr++;
value = ltoh32(*ptr);
bcm_bprintf(b, "\tD2H TXCPLT: value 0x%04x\n", value);
ptr++;
value = ltoh32(*ptr);
bcm_bprintf(b, "\tD2H RXCPLT: value 0x%04x\n", value);
return 0;
}
uint32
dhd_prot_metadata_dbg_set(dhd_pub_t *dhd, bool val)
{
dhd_prot_t *prot = dhd->prot;
#if DHD_DBG_SHOW_METADATA
prot->metadata_dbg = val;
#endif
return (uint32)prot->metadata_dbg;
}
uint32
dhd_prot_metadata_dbg_get(dhd_pub_t *dhd)
{
dhd_prot_t *prot = dhd->prot;
return (uint32)prot->metadata_dbg;
}
uint32
dhd_prot_metadatalen_set(dhd_pub_t *dhd, uint32 val, bool rx)
{
dhd_prot_t *prot = dhd->prot;
if (rx)
prot->rx_metadata_offset = (uint16)val;
else
prot->tx_metadata_offset = (uint16)val;
return dhd_prot_metadatalen_get(dhd, rx);
}
uint32
dhd_prot_metadatalen_get(dhd_pub_t *dhd, bool rx)
{
dhd_prot_t *prot = dhd->prot;
if (rx)
return prot->rx_metadata_offset;
else
return prot->tx_metadata_offset;
}
/** optimization to write "n" tx items at a time to ring */
uint32
dhd_prot_txp_threshold(dhd_pub_t *dhd, bool set, uint32 val)
{
dhd_prot_t *prot = dhd->prot;
if (set)
prot->txp_threshold = (uint16)val;
val = prot->txp_threshold;
return val;
}
#ifdef DHD_RX_CHAINING
static INLINE void BCMFASTPATH
dhd_rxchain_reset(rxchain_info_t *rxchain)
{
rxchain->pkt_count = 0;
}
static void BCMFASTPATH
dhd_rxchain_frame(dhd_pub_t *dhd, void *pkt, uint ifidx)
{
uint8 *eh;
uint8 prio;
dhd_prot_t *prot = dhd->prot;
rxchain_info_t *rxchain = &prot->rxchain;
ASSERT(!PKTISCHAINED(pkt));
ASSERT(PKTCLINK(pkt) == NULL);
ASSERT(PKTCGETATTR(pkt) == 0);
eh = PKTDATA(dhd->osh, pkt);
prio = IP_TOS46(eh + ETHER_HDR_LEN) >> IPV4_TOS_PREC_SHIFT;
if (rxchain->pkt_count && !(PKT_CTF_CHAINABLE(dhd, ifidx, eh, prio, rxchain->h_sa,
rxchain->h_da, rxchain->h_prio))) {
/* Different flow - First release the existing chain */
dhd_rxchain_commit(dhd);
}
/* For routers, with HNDCTF, link the packets using PKTSETCLINK, */
/* so that the chain can be handed off to CTF bridge as is. */
if (rxchain->pkt_count == 0) {
/* First packet in chain */
rxchain->pkthead = rxchain->pkttail = pkt;
/* Keep a copy of ptr to ether_da, ether_sa and prio */
rxchain->h_da = ((struct ether_header *)eh)->ether_dhost;
rxchain->h_sa = ((struct ether_header *)eh)->ether_shost;
rxchain->h_prio = prio;
rxchain->ifidx = ifidx;
rxchain->pkt_count++;
} else {
/* Same flow - keep chaining */
PKTSETCLINK(rxchain->pkttail, pkt);
rxchain->pkttail = pkt;
rxchain->pkt_count++;
}
if ((!ETHER_ISMULTI(rxchain->h_da)) &&
((((struct ether_header *)eh)->ether_type == HTON16(ETHER_TYPE_IP)) ||
(((struct ether_header *)eh)->ether_type == HTON16(ETHER_TYPE_IPV6)))) {
PKTSETCHAINED(dhd->osh, pkt);
PKTCINCRCNT(rxchain->pkthead);
PKTCADDLEN(rxchain->pkthead, PKTLEN(dhd->osh, pkt));
} else {
dhd_rxchain_commit(dhd);
return;
}
/* If we have hit the max chain length, dispatch the chain and reset */
if (rxchain->pkt_count >= DHD_PKT_CTF_MAX_CHAIN_LEN) {
dhd_rxchain_commit(dhd);
}
}
static void BCMFASTPATH
dhd_rxchain_commit(dhd_pub_t *dhd)
{
dhd_prot_t *prot = dhd->prot;
rxchain_info_t *rxchain = &prot->rxchain;
if (rxchain->pkt_count == 0)
return;
/* Release the packets to dhd_linux */
dhd_bus_rx_frame(dhd->bus, rxchain->pkthead, rxchain->ifidx, rxchain->pkt_count);
/* Reset the chain */
dhd_rxchain_reset(rxchain);
}
#endif /* DHD_RX_CHAINING */