tegrakernel/kernel/nvidia/drivers/platform/tegra/tegra-ivc.c

921 lines
24 KiB
C

/*
* Inter-VM Communication
*
* Copyright (C) 2014-2016, NVIDIA CORPORATION. All rights reserved.
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*
*/
#include <linux/tegra-ivc.h>
#include <linux/tegra-ivc-instance.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/err.h>
#include <asm/compiler.h>
#ifdef CONFIG_SMP
static inline void ivc_rmb(void)
{
smp_rmb();
}
static inline void ivc_wmb(void)
{
smp_wmb();
}
static inline void ivc_mb(void)
{
smp_mb();
}
#else
static inline void ivc_rmb(void)
{
rmb();
}
static inline void ivc_wmb(void)
{
wmb();
}
static inline void ivc_mb(void)
{
mb();
}
#endif
/*
* IVC channel reset protocol.
*
* Each end uses its tx_channel.state to indicate its synchronization state.
*/
enum ivc_state {
/*
* This value is zero for backwards compatibility with services that
* assume channels to be initially zeroed. Such channels are in an
* initially valid state, but cannot be asynchronously reset, and must
* maintain a valid state at all times.
*
* The transmitting end can enter the established state from the sync or
* ack state when it observes the receiving endpoint in the ack or
* established state, indicating that has cleared the counters in our
* rx_channel.
*/
ivc_state_established = 0,
/*
* If an endpoint is observed in the sync state, the remote endpoint is
* allowed to clear the counters it owns asynchronously with respect to
* the current endpoint. Therefore, the current endpoint is no longer
* allowed to communicate.
*/
ivc_state_sync,
/*
* When the transmitting end observes the receiving end in the sync
* state, it can clear the w_count and r_count and transition to the ack
* state. If the remote endpoint observes us in the ack state, it can
* return to the established state once it has cleared its counters.
*/
ivc_state_ack
};
/*
* This structure is divided into two-cache aligned parts, the first is only
* written through the tx_channel pointer, while the second is only written
* through the rx_channel pointer. This delineates ownership of the cache lines,
* which is critical to performance and necessary in non-cache coherent
* implementations.
*/
struct ivc_channel_header {
union {
struct {
/* fields owned by the transmitting end */
uint32_t w_count;
uint32_t state;
};
uint8_t w_align[IVC_ALIGN];
};
union {
/* fields owned by the receiving end */
uint32_t r_count;
uint8_t r_align[IVC_ALIGN];
};
};
static inline void ivc_invalidate_counter(struct ivc *ivc,
dma_addr_t handle)
{
if (!ivc->peer_device)
return;
dma_sync_single_for_cpu(ivc->peer_device, handle, IVC_ALIGN,
DMA_FROM_DEVICE);
}
static inline void ivc_flush_counter(struct ivc *ivc, dma_addr_t handle)
{
if (!ivc->peer_device)
return;
dma_sync_single_for_device(ivc->peer_device, handle, IVC_ALIGN,
DMA_TO_DEVICE);
}
static inline int ivc_channel_empty(struct ivc *ivc,
struct ivc_channel_header *ch)
{
/*
* This function performs multiple checks on the same values with
* security implications, so create snapshots with ACCESS_ONCE() to
* ensure that these checks use the same values.
*/
uint32_t w_count = ACCESS_ONCE(ch->w_count);
uint32_t r_count = ACCESS_ONCE(ch->r_count);
/*
* Perform an over-full check to prevent denial of service attacks where
* a server could be easily fooled into believing that there's an
* extremely large number of frames ready, since receivers are not
* expected to check for full or over-full conditions.
*
* Although the channel isn't empty, this is an invalid case caused by
* a potentially malicious peer, so returning empty is safer, because it
* gives the impression that the channel has gone silent.
*/
if (w_count - r_count > ivc->nframes)
return 1;
return w_count == r_count;
}
static inline int ivc_channel_full(struct ivc *ivc,
struct ivc_channel_header *ch)
{
/*
* Invalid cases where the counters indicate that the queue is over
* capacity also appear full.
*/
return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count)
>= ivc->nframes;
}
static inline uint32_t ivc_channel_avail_count(struct ivc *ivc,
struct ivc_channel_header *ch)
{
/*
* This function isn't expected to be used in scenarios where an
* over-full situation can lead to denial of service attacks. See the
* comment in ivc_channel_empty() for an explanation about special
* over-full considerations.
*/
return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count);
}
static inline void ivc_advance_tx(struct ivc *ivc)
{
ACCESS_ONCE(ivc->tx_channel->w_count) =
ACCESS_ONCE(ivc->tx_channel->w_count) + 1;
if (ivc->w_pos == ivc->nframes - 1)
ivc->w_pos = 0;
else
ivc->w_pos++;
}
static inline void ivc_advance_rx(struct ivc *ivc)
{
ACCESS_ONCE(ivc->rx_channel->r_count) =
ACCESS_ONCE(ivc->rx_channel->r_count) + 1;
if (ivc->r_pos == ivc->nframes - 1)
ivc->r_pos = 0;
else
ivc->r_pos++;
}
static inline int ivc_check_read(struct ivc *ivc)
{
/*
* tx_channel->state is set locally, so it is not synchronized with
* state from the remote peer. The remote peer cannot reset its
* transmit counters until we've acknowledged its synchronization
* request, so no additional synchronization is required because an
* asynchronous transition of rx_channel->state to ivc_state_ack is not
* allowed.
*/
if (ivc->tx_channel->state != ivc_state_established)
return -ECONNRESET;
/*
* Avoid unnecessary invalidations when performing repeated accesses to
* an IVC channel by checking the old queue pointers first.
* Synchronization is only necessary when these pointers indicate empty
* or full.
*/
if (!ivc_channel_empty(ivc, ivc->rx_channel))
return 0;
ivc_invalidate_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, w_count));
return ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0;
}
static inline int ivc_check_write(struct ivc *ivc)
{
if (ivc->tx_channel->state != ivc_state_established)
return -ECONNRESET;
if (!ivc_channel_full(ivc, ivc->tx_channel))
return 0;
ivc_invalidate_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, r_count));
return ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0;
}
int tegra_ivc_can_read(struct ivc *ivc)
{
return ivc_check_read(ivc) == 0;
}
EXPORT_SYMBOL(tegra_ivc_can_read);
int tegra_ivc_can_write(struct ivc *ivc)
{
return ivc_check_write(ivc) == 0;
}
EXPORT_SYMBOL(tegra_ivc_can_write);
int tegra_ivc_tx_empty(struct ivc *ivc)
{
ivc_invalidate_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, r_count));
return ivc_channel_empty(ivc, ivc->tx_channel);
}
EXPORT_SYMBOL(tegra_ivc_tx_empty);
uint32_t tegra_ivc_tx_frames_available(struct ivc *ivc)
{
ivc_invalidate_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, r_count));
return ivc->nframes - (ACCESS_ONCE(ivc->tx_channel->w_count) -
ACCESS_ONCE(ivc->tx_channel->r_count));
}
EXPORT_SYMBOL(tegra_ivc_tx_frames_available);
static void *ivc_frame_pointer(struct ivc *ivc, struct ivc_channel_header *ch,
uint32_t frame)
{
BUG_ON(frame >= ivc->nframes);
return (void *)((uintptr_t)(ch + 1) + ivc->frame_size * frame);
}
static inline dma_addr_t ivc_frame_handle(struct ivc *ivc,
dma_addr_t channel_handle, uint32_t frame)
{
BUG_ON(!ivc->peer_device);
BUG_ON(frame >= ivc->nframes);
return channel_handle + sizeof(struct ivc_channel_header) +
ivc->frame_size * frame;
}
static inline void ivc_invalidate_frame(struct ivc *ivc,
dma_addr_t channel_handle, unsigned frame, int offset, int len)
{
if (!ivc->peer_device)
return;
dma_sync_single_for_cpu(ivc->peer_device,
ivc_frame_handle(ivc, channel_handle, frame) + offset,
len, DMA_FROM_DEVICE);
}
static inline void ivc_flush_frame(struct ivc *ivc, dma_addr_t channel_handle,
unsigned frame, int offset, int len)
{
if (!ivc->peer_device)
return;
dma_sync_single_for_device(ivc->peer_device,
ivc_frame_handle(ivc, channel_handle, frame) + offset,
len, DMA_TO_DEVICE);
}
static int ivc_read_frame(struct ivc *ivc, void *buf, void __user *user_buf,
size_t max_read)
{
const void *src;
int result;
BUG_ON(buf && user_buf);
if (max_read > ivc->frame_size)
return -E2BIG;
result = ivc_check_read(ivc);
if (result)
return result;
/*
* Order observation of w_pos potentially indicating new data before
* data read.
*/
ivc_rmb();
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, 0, max_read);
src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
/*
* When compiled with optimizations, different versions of this
* function should be inlined into tegra_ivc_read_frame() or
* tegra_ivc_read_frame_user(). This should ensure that the user
* version does not add overhead to the kernel version.
*/
if (buf) {
memcpy(buf, src, max_read);
} else if (user_buf) {
if (copy_to_user(user_buf, src, max_read))
return -EFAULT;
} else
BUG();
ivc_advance_rx(ivc);
ivc_flush_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, r_count));
/*
* Ensure our write to r_pos occurs before our read from w_pos.
*/
ivc_mb();
/*
* Notify only upon transition from full to non-full.
* The available count can only asynchronously increase, so the
* worst possible side-effect will be a spurious notification.
*/
ivc_invalidate_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, w_count));
if (ivc_channel_avail_count(ivc, ivc->rx_channel) == ivc->nframes - 1)
ivc->notify(ivc);
return (int)max_read;
}
int tegra_ivc_read(struct ivc *ivc, void *buf, size_t max_read)
{
return ivc_read_frame(ivc, buf, NULL, max_read);
}
EXPORT_SYMBOL(tegra_ivc_read);
int tegra_ivc_read_user(struct ivc *ivc, void __user *buf, size_t max_read)
{
return ivc_read_frame(ivc, NULL, buf, max_read);
}
EXPORT_SYMBOL(tegra_ivc_read_user);
/* peek in the next rx buffer at offset off, the count bytes */
int tegra_ivc_read_peek(struct ivc *ivc, void *buf, size_t off, size_t count)
{
const void *src;
int result;
if (off > ivc->frame_size || off + count > ivc->frame_size)
return -E2BIG;
result = ivc_check_read(ivc);
if (result)
return result;
/*
* Order observation of w_pos potentially indicating new data before
* data read.
*/
ivc_rmb();
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, off, count);
src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
memcpy(buf, (void *)((uintptr_t)src + off), count);
/* note, no interrupt is generated */
return (int)count;
}
EXPORT_SYMBOL(tegra_ivc_read_peek);
/* directly peek at the next frame rx'ed */
void *tegra_ivc_read_get_next_frame(struct ivc *ivc)
{
int result = ivc_check_read(ivc);
if (result)
return ERR_PTR(result);
/*
* Order observation of w_pos potentially indicating new data before
* data read.
*/
ivc_rmb();
ivc_invalidate_frame(ivc, ivc->rx_handle, ivc->r_pos, 0,
ivc->frame_size);
return ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
}
EXPORT_SYMBOL(tegra_ivc_read_get_next_frame);
int tegra_ivc_read_advance(struct ivc *ivc)
{
/*
* No read barriers or synchronization here: the caller is expected to
* have already observed the channel non-empty. This check is just to
* catch programming errors.
*/
int result = ivc_check_read(ivc);
if (result)
return result;
ivc_advance_rx(ivc);
ivc_flush_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, r_count));
/*
* Ensure our write to r_pos occurs before our read from w_pos.
*/
ivc_mb();
/*
* Notify only upon transition from full to non-full.
* The available count can only asynchronously increase, so the
* worst possible side-effect will be a spurious notification.
*/
ivc_invalidate_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, w_count));
if (ivc_channel_avail_count(ivc, ivc->rx_channel) == ivc->nframes - 1)
ivc->notify(ivc);
return 0;
}
EXPORT_SYMBOL(tegra_ivc_read_advance);
static int ivc_write_frame(struct ivc *ivc, const void *buf,
const void __user *user_buf, size_t size)
{
void *p;
int result;
BUG_ON(buf && user_buf);
if (size > ivc->frame_size)
return -E2BIG;
result = ivc_check_write(ivc);
if (result)
return result;
p = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
/*
* When compiled with optimizations, different versions of this
* function should be inlined into tegra_ivc_write_frame() or
* tegra_ivc_write_frame_user(). This should ensure that the user
* version does not add overhead to the kernel version.
*/
if (buf) {
memcpy(p, buf, size);
} else if (user_buf) {
if (copy_from_user(p, user_buf, size))
return -EFAULT;
} else
BUG();
memset(p + size, 0, ivc->frame_size - size);
ivc_flush_frame(ivc, ivc->tx_handle, ivc->w_pos, 0, size);
/*
* Ensure that updated data is visible before the w_pos counter
* indicates that it is ready.
*/
ivc_wmb();
ivc_advance_tx(ivc);
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
/*
* Ensure our write to w_pos occurs before our read from r_pos.
*/
ivc_mb();
/*
* Notify only upon transition from empty to non-empty.
* The available count can only asynchronously decrease, so the
* worst possible side-effect will be a spurious notification.
*/
ivc_invalidate_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, r_count));
if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
ivc->notify(ivc);
return (int)size;
}
int tegra_ivc_write(struct ivc *ivc, const void *buf, size_t size)
{
return ivc_write_frame(ivc, buf, NULL, size);
}
EXPORT_SYMBOL(tegra_ivc_write);
int tegra_ivc_write_user(struct ivc *ivc, const void __user *user_buf,
size_t size)
{
return ivc_write_frame(ivc, NULL, user_buf, size);
}
EXPORT_SYMBOL(tegra_ivc_write_user);
/* poke in the next tx buffer at offset off, the count bytes */
int tegra_ivc_write_poke(struct ivc *ivc, const void *buf, size_t off,
size_t count)
{
void *dest;
int result;
if (off > ivc->frame_size || off + count > ivc->frame_size)
return -E2BIG;
result = ivc_check_write(ivc);
if (result)
return result;
dest = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
memcpy(dest + off, buf, count);
return (int)count;
}
EXPORT_SYMBOL(tegra_ivc_write_poke);
/* directly poke at the next frame to be tx'ed */
void *tegra_ivc_write_get_next_frame(struct ivc *ivc)
{
int result = ivc_check_write(ivc);
if (result)
return ERR_PTR(result);
return ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
}
EXPORT_SYMBOL(tegra_ivc_write_get_next_frame);
/* advance the tx buffer */
int tegra_ivc_write_advance(struct ivc *ivc)
{
int result = ivc_check_write(ivc);
if (result)
return result;
ivc_flush_frame(ivc, ivc->tx_handle, ivc->w_pos, 0, ivc->frame_size);
/*
* Order any possible stores to the frame before update of w_pos.
*/
ivc_wmb();
ivc_advance_tx(ivc);
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
/*
* Ensure our write to w_pos occurs before our read from r_pos.
*/
ivc_mb();
/*
* Notify only upon transition from empty to non-empty.
* The available count can only asynchronously decrease, so the
* worst possible side-effect will be a spurious notification.
*/
ivc_invalidate_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, r_count));
if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
ivc->notify(ivc);
return 0;
}
EXPORT_SYMBOL(tegra_ivc_write_advance);
void tegra_ivc_channel_reset(struct ivc *ivc)
{
ivc->tx_channel->state = ivc_state_sync;
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
ivc->notify(ivc);
}
EXPORT_SYMBOL(tegra_ivc_channel_reset);
/*
* ===============================================================
* IVC State Transition Table - see tegra_ivc_channel_notified()
* ===============================================================
*
* local remote action
* ----- ------ -----------------------------------
* SYNC EST <none>
* SYNC ACK reset counters; move to EST; notify
* SYNC SYNC reset counters; move to ACK; notify
* ACK EST move to EST; notify
* ACK ACK move to EST; notify
* ACK SYNC reset counters; move to ACK; notify
* EST EST <none>
* EST ACK <none>
* EST SYNC reset counters; move to ACK; notify
*
* ===============================================================
*/
int tegra_ivc_channel_notified(struct ivc *ivc)
{
enum ivc_state peer_state;
/* Copy the receiver's state out of shared memory. */
ivc_invalidate_counter(ivc, ivc->rx_handle +
offsetof(struct ivc_channel_header, w_count));
peer_state = ACCESS_ONCE(ivc->rx_channel->state);
if (peer_state == ivc_state_sync) {
/*
* Order observation of ivc_state_sync before stores clearing
* tx_channel.
*/
ivc_rmb();
/*
* Reset tx_channel counters. The remote end is in the SYNC
* state and won't make progress until we change our state,
* so the counters are not in use at this time.
*/
ivc->tx_channel->w_count = 0;
ivc->rx_channel->r_count = 0;
ivc->w_pos = 0;
ivc->r_pos = 0;
/*
* Ensure that counters appear cleared before new state can be
* observed.
*/
ivc_wmb();
/*
* Move to ACK state. We have just cleared our counters, so it
* is now safe for the remote end to start using these values.
*/
ivc->tx_channel->state = ivc_state_ack;
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else if (ivc->tx_channel->state == ivc_state_sync &&
peer_state == ivc_state_ack) {
/*
* Order observation of ivc_state_sync before stores clearing
* tx_channel.
*/
ivc_rmb();
/*
* Reset tx_channel counters. The remote end is in the ACK
* state and won't make progress until we change our state,
* so the counters are not in use at this time.
*/
ivc->tx_channel->w_count = 0;
ivc->rx_channel->r_count = 0;
ivc->w_pos = 0;
ivc->r_pos = 0;
/*
* Ensure that counters appear cleared before new state can be
* observed.
*/
ivc_wmb();
/*
* Move to ESTABLISHED state. We know that the remote end has
* already cleared its counters, so it is safe to start
* writing/reading on this channel.
*/
ivc->tx_channel->state = ivc_state_established;
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else if (ivc->tx_channel->state == ivc_state_ack) {
/*
* At this point, we have observed the peer to be in either
* the ACK or ESTABLISHED state. Next, order observation of
* peer state before storing to tx_channel.
*/
ivc_rmb();
/*
* Move to ESTABLISHED state. We know that we have previously
* cleared our counters, and we know that the remote end has
* cleared its counters, so it is safe to start writing/reading
* on this channel.
*/
ivc->tx_channel->state = ivc_state_established;
ivc_flush_counter(ivc, ivc->tx_handle +
offsetof(struct ivc_channel_header, w_count));
/*
* Notify remote end to observe state transition.
*/
ivc->notify(ivc);
} else {
/*
* There is no need to handle any further action. Either the
* channel is already fully established, or we are waiting for
* the remote end to catch up with our current state. Refer
* to the diagram in "IVC State Transition Table" above.
*/
}
return ivc->tx_channel->state == ivc_state_established ? 0 : -EAGAIN;
}
EXPORT_SYMBOL(tegra_ivc_channel_notified);
/*
* Temporary routine for re-synchronizing the channel across a reboot.
*/
int tegra_ivc_channel_sync(struct ivc *ivc)
{
if ((ivc == NULL) || (ivc->nframes == 0)) {
return -EINVAL;
} else {
ivc->w_pos = ivc->tx_channel->w_count % ivc->nframes;
ivc->r_pos = ivc->rx_channel->r_count % ivc->nframes;
}
return 0;
}
EXPORT_SYMBOL(tegra_ivc_channel_sync);
size_t tegra_ivc_align(size_t size)
{
return (size + (IVC_ALIGN - 1)) & ~(IVC_ALIGN - 1);
}
EXPORT_SYMBOL(tegra_ivc_align);
unsigned tegra_ivc_total_queue_size(unsigned queue_size)
{
if (queue_size & (IVC_ALIGN - 1)) {
pr_err("%s: queue_size (%u) must be %u-byte aligned\n",
__func__, queue_size, IVC_ALIGN);
return 0;
}
return queue_size + sizeof(struct ivc_channel_header);
}
EXPORT_SYMBOL(tegra_ivc_total_queue_size);
static int check_ivc_params(uintptr_t queue_base1, uintptr_t queue_base2,
unsigned nframes, unsigned frame_size)
{
BUG_ON(offsetof(struct ivc_channel_header, w_count) & (IVC_ALIGN - 1));
BUG_ON(offsetof(struct ivc_channel_header, r_count) & (IVC_ALIGN - 1));
BUG_ON(sizeof(struct ivc_channel_header) & (IVC_ALIGN - 1));
if ((uint64_t)nframes * (uint64_t)frame_size >= 0x100000000) {
pr_err("nframes * frame_size overflows\n");
return -EINVAL;
}
/*
* The headers must at least be aligned enough for counters
* to be accessed atomically.
*/
if (queue_base1 & (IVC_ALIGN - 1)) {
pr_err("ivc channel start not aligned: %lx\n", queue_base1);
return -EINVAL;
}
if (queue_base2 & (IVC_ALIGN - 1)) {
pr_err("ivc channel start not aligned: %lx\n", queue_base2);
return -EINVAL;
}
if (frame_size & (IVC_ALIGN - 1)) {
pr_err("frame size not adequately aligned: %u\n", frame_size);
return -EINVAL;
}
if (queue_base1 < queue_base2) {
if (queue_base1 + frame_size * nframes > queue_base2) {
pr_err("queue regions overlap: %lx + %x, %x\n",
queue_base1, frame_size,
frame_size * nframes);
return -EINVAL;
}
} else {
if (queue_base2 + frame_size * nframes > queue_base1) {
pr_err("queue regions overlap: %lx + %x, %x\n",
queue_base2, frame_size,
frame_size * nframes);
return -EINVAL;
}
}
return 0;
}
static int tegra_ivc_init_body(struct ivc *ivc, uintptr_t rx_base,
dma_addr_t rx_handle, uintptr_t tx_base, dma_addr_t tx_handle,
unsigned nframes, unsigned frame_size,
struct device *peer_device, void (*notify)(struct ivc *))
{
size_t queue_size;
int result = check_ivc_params(rx_base, tx_base, nframes, frame_size);
if (result)
return result;
BUG_ON(!ivc);
BUG_ON(!notify);
queue_size = tegra_ivc_total_queue_size(nframes * frame_size);
/*
* All sizes that can be returned by communication functions should
* fit in an int.
*/
if (frame_size > INT_MAX)
return -E2BIG;
ivc->rx_channel = (struct ivc_channel_header *)rx_base;
ivc->tx_channel = (struct ivc_channel_header *)tx_base;
if (peer_device) {
if (rx_handle != DMA_ERROR_CODE) {
ivc->rx_handle = rx_handle;
ivc->tx_handle = tx_handle;
} else {
ivc->rx_handle = dma_map_single(peer_device,
ivc->rx_channel, queue_size, DMA_BIDIRECTIONAL);
if (ivc->rx_handle == DMA_ERROR_CODE)
return -ENOMEM;
ivc->tx_handle = dma_map_single(peer_device,
ivc->tx_channel, queue_size, DMA_BIDIRECTIONAL);
if (ivc->tx_handle == DMA_ERROR_CODE) {
dma_unmap_single(peer_device, ivc->rx_handle,
queue_size, DMA_BIDIRECTIONAL);
return -ENOMEM;
}
}
}
ivc->notify = notify;
ivc->frame_size = frame_size;
ivc->nframes = nframes;
ivc->peer_device = peer_device;
/*
* These values aren't necessarily correct until the channel has been
* reset.
*/
ivc->w_pos = 0;
ivc->r_pos = 0;
return 0;
}
int tegra_ivc_init(struct ivc *ivc, uintptr_t rx_base, uintptr_t tx_base,
unsigned nframes, unsigned frame_size,
struct device *peer_device, void (*notify)(struct ivc *))
{
return tegra_ivc_init_body(ivc, rx_base, DMA_ERROR_CODE, tx_base,
DMA_ERROR_CODE, nframes, frame_size, peer_device, notify);
}
EXPORT_SYMBOL(tegra_ivc_init);
int tegra_ivc_init_with_dma_handle(struct ivc *ivc, uintptr_t rx_base,
dma_addr_t rx_handle, uintptr_t tx_base, dma_addr_t tx_handle,
unsigned nframes, unsigned frame_size,
struct device *peer_device, void (*notify)(struct ivc *))
{
return tegra_ivc_init_body(ivc, rx_base, rx_handle, tx_base,
tx_handle, nframes, frame_size, peer_device, notify);
}
EXPORT_SYMBOL(tegra_ivc_init_with_dma_handle);