tegrakernel/kernel/nvidia/drivers/video/tegra/nvmap/nvmap_dmabuf.c

784 lines
20 KiB
C

/*
* dma_buf exporter for nvmap
*
* Copyright (c) 2012-2018, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#define pr_fmt(fmt) "nvmap: %s() " fmt, __func__
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/export.h>
#include <linux/nvmap.h>
#include <linux/dma-buf.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/atomic.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/stringify.h>
#include <linux/of.h>
#include <linux/platform/tegra/tegra_fd.h>
#include <linux/version.h>
#include <linux/iommu.h>
#include <trace/events/nvmap.h>
#include "nvmap_priv.h"
#include "nvmap_ioctl.h"
/**
* List node for maps of nvmap handles via the dma_buf API. These store the
* necessary info for stashing mappings.
*
* @iommu_domain Domain for which this SGT is valid - for supporting multi-asid.
* @dir DMA direction.
* @sgt The scatter gather table to stash.
* @refs Reference counting.
* @maps_entry Entry on a given attachment's list of maps.
* @stash_entry Entry on the stash list.
* @owner The owner of this struct. There can be only one.
*/
struct nvmap_handle_sgt {
struct iommu_domain *domain;
enum dma_data_direction dir;
struct sg_table *sgt;
struct device *dev;
atomic_t refs;
struct list_head maps_entry;
struct list_head stash_entry; /* lock the stash before accessing. */
struct nvmap_handle_info *owner;
} ____cacheline_aligned_in_smp;
static DEFINE_MUTEX(nvmap_stashed_maps_lock);
static LIST_HEAD(nvmap_stashed_maps);
static struct kmem_cache *handle_sgt_cache;
static struct dma_buf_ops nvmap_dma_buf_ops;
static bool nvmap_attach_handle_same_asid(struct dma_buf_attachment *attach,
struct nvmap_handle_sgt *nvmap_sgt)
{
return iommu_get_domain_for_dev(attach->dev) == nvmap_sgt->domain;
}
/*
* Initialize a kmem cache for allocating nvmap_handle_sgt's.
*/
int nvmap_dmabuf_stash_init(void)
{
handle_sgt_cache = KMEM_CACHE(nvmap_handle_sgt, 0);
if (IS_ERR_OR_NULL(handle_sgt_cache)) {
pr_err("Failed to make kmem cache for nvmap_handle_sgt.\n");
return -ENOMEM;
}
return 0;
}
static int nvmap_dmabuf_attach(struct dma_buf *dmabuf, struct device *dev,
struct dma_buf_attachment *attach)
{
struct nvmap_handle_info *info = dmabuf->priv;
trace_nvmap_dmabuf_attach(dmabuf, dev);
dev_dbg(dev, "%s() 0x%p\n", __func__, info->handle);
return 0;
}
static void nvmap_dmabuf_detach(struct dma_buf *dmabuf,
struct dma_buf_attachment *attach)
{
struct nvmap_handle_info *info = dmabuf->priv;
trace_nvmap_dmabuf_detach(dmabuf, attach->dev);
dev_dbg(attach->dev, "%s() 0x%p\n", __func__, info->handle);
}
/*
* Make sure this mapping is no longer stashed - this corresponds to a "hit". If
* the mapping is not stashed this is just a no-op.
*/
static void __nvmap_dmabuf_del_stash(struct nvmap_handle_sgt *nvmap_sgt)
{
mutex_lock(&nvmap_stashed_maps_lock);
if (list_empty(&nvmap_sgt->stash_entry)) {
mutex_unlock(&nvmap_stashed_maps_lock);
return;
}
pr_debug("Removing map from stash.\n");
list_del_init(&nvmap_sgt->stash_entry);
mutex_unlock(&nvmap_stashed_maps_lock);
}
static inline bool access_vpr_phys(struct device *dev)
{
if (!device_is_iommuable(dev))
return true;
/*
* Assumes gpu nodes always have DT entry, this is valid as device
* specifying access-vpr-phys will do so through its DT entry.
*/
if (!dev->of_node)
return false;
return !!of_find_property(dev->of_node, "access-vpr-phys", NULL);
}
/*
* Free an sgt completely. This will bypass the ref count. This also requires
* the nvmap_sgt's owner's lock is already taken.
*/
static void __nvmap_dmabuf_free_sgt_locked(struct nvmap_handle_sgt *nvmap_sgt)
{
struct nvmap_handle_info *info = nvmap_sgt->owner;
DEFINE_DMA_ATTRS(attrs);
list_del(&nvmap_sgt->maps_entry);
if (!(nvmap_dev->dynamic_dma_map_mask & info->handle->heap_type)) {
sg_dma_address(nvmap_sgt->sgt->sgl) = 0;
} else if (info->handle->heap_type == NVMAP_HEAP_CARVEOUT_VPR &&
access_vpr_phys(nvmap_sgt->dev)) {
sg_dma_address(nvmap_sgt->sgt->sgl) = 0;
} else {
dma_set_attr(DMA_ATTR_SKIP_IOVA_GAP, __DMA_ATTR(attrs));
dma_set_attr(DMA_ATTR_SKIP_CPU_SYNC, __DMA_ATTR(attrs));
dma_unmap_sg_attrs(nvmap_sgt->dev,
nvmap_sgt->sgt->sgl, nvmap_sgt->sgt->nents,
nvmap_sgt->dir, __DMA_ATTR(attrs));
}
__nvmap_free_sg_table(NULL, info->handle, nvmap_sgt->sgt);
WARN(atomic_read(&nvmap_sgt->refs), "nvmap: Freeing reffed SGT!");
kmem_cache_free(handle_sgt_cache, nvmap_sgt);
}
/*
* Evict an entry from the IOVA stash. This does not do anything to the actual
* mapping itself - this merely takes the passed nvmap_sgt out of the stash
* and decrements the necessary cache stats.
*/
static void __nvmap_dmabuf_evict_stash_locked(
struct nvmap_handle_sgt *nvmap_sgt)
{
if (!list_empty(&nvmap_sgt->stash_entry))
list_del_init(&nvmap_sgt->stash_entry);
}
/*
* Locks the stash before doing the eviction.
*/
static void __nvmap_dmabuf_evict_stash(struct nvmap_handle_sgt *nvmap_sgt)
{
mutex_lock(&nvmap_stashed_maps_lock);
__nvmap_dmabuf_evict_stash_locked(nvmap_sgt);
mutex_unlock(&nvmap_stashed_maps_lock);
}
/*
* Prepare an SGT for potential stashing later on.
*/
static int __nvmap_dmabuf_prep_sgt_locked(struct dma_buf_attachment *attach,
enum dma_data_direction dir,
struct sg_table *sgt)
{
struct nvmap_handle_sgt *nvmap_sgt;
struct nvmap_handle_info *info = attach->dmabuf->priv;
pr_debug("Prepping SGT.\n");
nvmap_sgt = kmem_cache_alloc(handle_sgt_cache, GFP_KERNEL);
if (IS_ERR_OR_NULL(nvmap_sgt)) {
pr_err("Prepping SGT failed.\n");
return -ENOMEM;
}
nvmap_sgt->domain = iommu_get_domain_for_dev(attach->dev);
nvmap_sgt->dir = dir;
nvmap_sgt->sgt = sgt;
nvmap_sgt->dev = attach->dev;
nvmap_sgt->owner = info;
INIT_LIST_HEAD(&nvmap_sgt->stash_entry);
atomic_set(&nvmap_sgt->refs, 1);
list_add(&nvmap_sgt->maps_entry, &info->maps);
return 0;
}
/*
* Called when an SGT is no longer being used by a device. This will not
* necessarily free the SGT - instead it may stash the SGT.
*/
static void __nvmap_dmabuf_stash_sgt_locked(struct dma_buf_attachment *attach,
enum dma_data_direction dir,
struct sg_table *sgt)
{
struct nvmap_handle_sgt *nvmap_sgt;
struct nvmap_handle_info *info = attach->dmabuf->priv;
pr_debug("Stashing SGT - if necessary.\n");
list_for_each_entry(nvmap_sgt, &info->maps, maps_entry) {
if (nvmap_sgt->sgt == sgt) {
if (!atomic_sub_and_test(1, &nvmap_sgt->refs))
goto done;
__nvmap_dmabuf_free_sgt_locked(nvmap_sgt);
goto done;
}
}
done:
return;
}
/*
* Checks if there is already a map for this attachment. If so increment the
* ref count on said map and return the associated sg_table. Otherwise return
* NULL.
*
* If it turns out there is a map, this also checks to see if the map needs to
* be removed from the stash - if so, the map is removed.
*/
static struct sg_table *__nvmap_dmabuf_get_sgt_locked(
struct dma_buf_attachment *attach, enum dma_data_direction dir)
{
struct nvmap_handle_sgt *nvmap_sgt;
struct sg_table *sgt = NULL;
struct nvmap_handle_info *info = attach->dmabuf->priv;
pr_debug("Getting SGT from stash.\n");
list_for_each_entry(nvmap_sgt, &info->maps, maps_entry) {
if (!nvmap_attach_handle_same_asid(attach, nvmap_sgt))
continue;
/* We have a hit. */
pr_debug("Stash hit (%s)!\n", dev_name(attach->dev));
sgt = nvmap_sgt->sgt;
atomic_inc(&nvmap_sgt->refs);
__nvmap_dmabuf_del_stash(nvmap_sgt);
break;
}
return sgt;
}
/*
* If stashing is disabled then the stash related ops become no-ops.
*/
struct sg_table *_nvmap_dmabuf_map_dma_buf(
struct dma_buf_attachment *attach, enum dma_data_direction dir)
{
struct nvmap_handle_info *info = attach->dmabuf->priv;
int ents = 0;
struct sg_table *sgt;
DEFINE_DMA_ATTRS(attrs);
trace_nvmap_dmabuf_map_dma_buf(attach->dmabuf, attach->dev);
nvmap_lru_reset(info->handle);
mutex_lock(&info->maps_lock);
atomic_inc(&info->handle->pin);
sgt = __nvmap_dmabuf_get_sgt_locked(attach, dir);
if (sgt)
goto cache_hit;
sgt = __nvmap_sg_table(NULL, info->handle);
if (IS_ERR(sgt)) {
atomic_dec(&info->handle->pin);
mutex_unlock(&info->maps_lock);
return sgt;
}
if (!info->handle->alloc) {
goto err_map;
} else if (!(nvmap_dev->dynamic_dma_map_mask &
info->handle->heap_type)) {
sg_dma_address(sgt->sgl) = info->handle->carveout->base;
} else if (info->handle->heap_type == NVMAP_HEAP_CARVEOUT_VPR &&
access_vpr_phys(attach->dev)) {
sg_dma_address(sgt->sgl) = 0;
} else {
dma_set_attr(DMA_ATTR_SKIP_IOVA_GAP, __DMA_ATTR(attrs));
dma_set_attr(DMA_ATTR_SKIP_CPU_SYNC, __DMA_ATTR(attrs));
ents = dma_map_sg_attrs(attach->dev, sgt->sgl,
sgt->nents, dir, __DMA_ATTR(attrs));
if (ents <= 0)
goto err_map;
}
if (__nvmap_dmabuf_prep_sgt_locked(attach, dir, sgt)) {
WARN(1, "No mem to prep sgt.\n");
goto err_prep;
}
cache_hit:
attach->priv = sgt;
mutex_unlock(&info->maps_lock);
return sgt;
err_prep:
dma_unmap_sg_attrs(attach->dev, sgt->sgl, sgt->nents, dir, __DMA_ATTR(attrs));
err_map:
__nvmap_free_sg_table(NULL, info->handle, sgt);
atomic_dec(&info->handle->pin);
mutex_unlock(&info->maps_lock);
return ERR_PTR(-ENOMEM);
}
__weak struct sg_table *nvmap_dmabuf_map_dma_buf(
struct dma_buf_attachment *attach, enum dma_data_direction dir)
{
return _nvmap_dmabuf_map_dma_buf(attach, dir);
}
void _nvmap_dmabuf_unmap_dma_buf(struct dma_buf_attachment *attach,
struct sg_table *sgt,
enum dma_data_direction dir)
{
struct nvmap_handle_info *info = attach->dmabuf->priv;
trace_nvmap_dmabuf_unmap_dma_buf(attach->dmabuf, attach->dev);
mutex_lock(&info->maps_lock);
if (!atomic_add_unless(&info->handle->pin, -1, 0)) {
mutex_unlock(&info->maps_lock);
WARN(1, "Unpinning handle that has yet to be pinned!\n");
return;
}
__nvmap_dmabuf_stash_sgt_locked(attach, dir, sgt);
mutex_unlock(&info->maps_lock);
}
__weak void nvmap_dmabuf_unmap_dma_buf(struct dma_buf_attachment *attach,
struct sg_table *sgt,
enum dma_data_direction dir)
{
_nvmap_dmabuf_unmap_dma_buf(attach, sgt, dir);
}
static void nvmap_dmabuf_release(struct dma_buf *dmabuf)
{
struct nvmap_handle_info *info = dmabuf->priv;
struct nvmap_handle_sgt *nvmap_sgt;
trace_nvmap_dmabuf_release(info->handle->owner ?
info->handle->owner->name : "unknown",
info->handle,
dmabuf);
mutex_lock(&info->handle->lock);
BUG_ON(dmabuf != info->handle->dmabuf);
info->handle->dmabuf = NULL;
mutex_unlock(&info->handle->lock);
mutex_lock(&info->maps_lock);
while (!list_empty(&info->maps)) {
nvmap_sgt = list_first_entry(&info->maps,
struct nvmap_handle_sgt,
maps_entry);
__nvmap_dmabuf_evict_stash(nvmap_sgt);
__nvmap_dmabuf_free_sgt_locked(nvmap_sgt);
}
mutex_unlock(&info->maps_lock);
nvmap_handle_put(info->handle);
kfree(info);
}
static int nvmap_dmabuf_begin_cpu_access(struct dma_buf *dmabuf,
size_t start, size_t len,
enum dma_data_direction dir)
{
struct nvmap_handle_info *info = dmabuf->priv;
trace_nvmap_dmabuf_begin_cpu_access(dmabuf, start, len);
return __nvmap_do_cache_maint(NULL, info->handle, start, start + len,
NVMAP_CACHE_OP_WB_INV, false);
}
static void nvmap_dmabuf_end_cpu_access(struct dma_buf *dmabuf,
size_t start, size_t len,
enum dma_data_direction dir)
{
struct nvmap_handle_info *info = dmabuf->priv;
trace_nvmap_dmabuf_end_cpu_access(dmabuf, start, len);
__nvmap_do_cache_maint(NULL, info->handle,
start, start + len,
NVMAP_CACHE_OP_WB, false);
}
static void *nvmap_dmabuf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
{
struct nvmap_handle_info *info = dmabuf->priv;
trace_nvmap_dmabuf_kmap(dmabuf);
return __nvmap_kmap(info->handle, page_num);
}
static void nvmap_dmabuf_kunmap(struct dma_buf *dmabuf,
unsigned long page_num, void *addr)
{
struct nvmap_handle_info *info = dmabuf->priv;
trace_nvmap_dmabuf_kunmap(dmabuf);
__nvmap_kunmap(info->handle, page_num, addr);
}
static void *nvmap_dmabuf_kmap_atomic(struct dma_buf *dmabuf,
unsigned long page_num)
{
WARN(1, "%s() can't be called from atomic\n", __func__);
return NULL;
}
int __nvmap_map(struct nvmap_handle *h, struct vm_area_struct *vma)
{
struct nvmap_vma_priv *priv;
h = nvmap_handle_get(h);
if (!h)
return -EINVAL;
if (!(h->heap_type & nvmap_dev->cpu_access_mask)) {
nvmap_handle_put(h);
return -EPERM;
}
/*
* If the handle is RO and RW mapping is requested, then
* return error.
*/
if (h->from_va && h->is_ro && (vma->vm_flags & VM_WRITE)) {
nvmap_handle_put(h);
return -EPERM;
}
/*
* Don't allow mmap on VPR memory as it would be mapped
* as device memory. User space shouldn't be accessing
* device memory.
*/
if (h->heap_type == NVMAP_HEAP_CARVEOUT_VPR) {
nvmap_handle_put(h);
return -EPERM;
}
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv) {
nvmap_handle_put(h);
return -ENOMEM;
}
priv->handle = h;
vma->vm_flags |= VM_SHARED | VM_DONTEXPAND |
VM_DONTDUMP | VM_DONTCOPY |
(h->heap_pgalloc ? 0 : VM_PFNMAP);
vma->vm_ops = &nvmap_vma_ops;
BUG_ON(vma->vm_private_data != NULL);
vma->vm_private_data = priv;
vma->vm_page_prot = nvmap_pgprot(h, vma->vm_page_prot);
nvmap_vma_open(vma);
return 0;
}
static int nvmap_dmabuf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
{
struct nvmap_handle_info *info = dmabuf->priv;
trace_nvmap_dmabuf_mmap(dmabuf);
return __nvmap_map(info->handle, vma);
}
static void *nvmap_dmabuf_vmap(struct dma_buf *dmabuf)
{
struct nvmap_handle_info *info = dmabuf->priv;
trace_nvmap_dmabuf_vmap(dmabuf);
return __nvmap_mmap(info->handle);
}
static void nvmap_dmabuf_vunmap(struct dma_buf *dmabuf, void *vaddr)
{
struct nvmap_handle_info *info = dmabuf->priv;
trace_nvmap_dmabuf_vunmap(dmabuf);
__nvmap_munmap(info->handle, vaddr);
}
static int nvmap_dmabuf_set_private(struct dma_buf *dmabuf,
struct device *dev, void *priv, void (*delete)(void *priv))
{
struct nvmap_handle_info *info = dmabuf->priv;
struct nvmap_handle *handle = info->handle;
struct nvmap_handle_dmabuf_priv *curr = NULL;
int ret = 0;
mutex_lock(&handle->lock);
list_for_each_entry(curr, &handle->dmabuf_priv, list) {
if (curr->dev == dev) {
ret = -EEXIST;
goto unlock;
}
}
curr = kmalloc(sizeof(*curr), GFP_KERNEL);
if (!curr) {
ret = -ENOMEM;
goto unlock;
}
curr->priv = priv;
curr->dev = dev;
curr->priv_release = delete;
list_add_tail(&curr->list, &handle->dmabuf_priv);
unlock:
mutex_unlock(&handle->lock);
return ret;
}
static void *nvmap_dmabuf_get_private(struct dma_buf *dmabuf,
struct device *dev)
{
void *priv = NULL;
struct nvmap_handle_info *info = dmabuf->priv;
struct nvmap_handle *handle = info->handle;
struct nvmap_handle_dmabuf_priv *curr = NULL;
mutex_lock(&handle->lock);
list_for_each_entry(curr, &handle->dmabuf_priv, list) {
if (curr->dev == dev) {
priv = curr->priv;
goto unlock;
}
}
unlock:
mutex_unlock(&handle->lock);
return priv;
}
static struct dma_buf_ops nvmap_dma_buf_ops = {
.attach = nvmap_dmabuf_attach,
.detach = nvmap_dmabuf_detach,
.map_dma_buf = nvmap_dmabuf_map_dma_buf,
.unmap_dma_buf = nvmap_dmabuf_unmap_dma_buf,
.release = nvmap_dmabuf_release,
.begin_cpu_access = nvmap_dmabuf_begin_cpu_access,
.end_cpu_access = nvmap_dmabuf_end_cpu_access,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)
.map_atomic = nvmap_dmabuf_kmap_atomic,
.map = nvmap_dmabuf_kmap,
.unmap = nvmap_dmabuf_kunmap,
#else
.kmap_atomic = nvmap_dmabuf_kmap_atomic,
.kmap = nvmap_dmabuf_kmap,
.kunmap = nvmap_dmabuf_kunmap,
#endif
.mmap = nvmap_dmabuf_mmap,
.vmap = nvmap_dmabuf_vmap,
.vunmap = nvmap_dmabuf_vunmap,
.set_drvdata = nvmap_dmabuf_set_private,
.get_drvdata = nvmap_dmabuf_get_private,
};
bool dmabuf_is_nvmap(struct dma_buf *dmabuf)
{
return dmabuf->ops == &nvmap_dma_buf_ops;
}
EXPORT_SYMBOL(dmabuf_is_nvmap);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)
static struct dma_buf *__dma_buf_export(struct nvmap_handle_info *info,
size_t size, bool ro_buf)
{
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
exp_info.priv = info;
exp_info.ops = &nvmap_dma_buf_ops;
exp_info.size = size;
if (ro_buf) {
exp_info.flags = O_RDONLY;
} else {
exp_info.flags = O_RDWR;
}
exp_info.exp_flags = DMABUF_CAN_DEFER_UNMAP |
DMABUF_SKIP_CACHE_SYNC;
return dma_buf_export(&exp_info);
}
#else
#define __dma_buf_export(info, size) \
dma_buf_export(info, &nvmap_dma_buf_ops, size, O_RDWR, NULL)
#endif
/*
* Make a dmabuf object for an nvmap handle.
*/
struct dma_buf *__nvmap_make_dmabuf(struct nvmap_client *client,
struct nvmap_handle *handle, bool ro_buf)
{
int err;
struct dma_buf *dmabuf;
struct nvmap_handle_info *info;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
err = -ENOMEM;
goto err_nomem;
}
info->handle = handle;
INIT_LIST_HEAD(&info->maps);
mutex_init(&info->maps_lock);
dmabuf = __dma_buf_export(info, handle->size, ro_buf);
if (IS_ERR(dmabuf)) {
err = PTR_ERR(dmabuf);
goto err_export;
}
nvmap_handle_get(handle);
trace_nvmap_make_dmabuf(client->name, handle, dmabuf);
return dmabuf;
err_export:
kfree(info);
err_nomem:
return ERR_PTR(err);
}
int __nvmap_dmabuf_fd(struct nvmap_client *client,
struct dma_buf *dmabuf, int flags)
{
int start_fd = CONFIG_NVMAP_FD_START;
#ifdef CONFIG_NVMAP_DEFER_FD_RECYCLE
if (client->next_fd < CONFIG_NVMAP_FD_START)
client->next_fd = CONFIG_NVMAP_FD_START;
start_fd = client->next_fd++;
if (client->next_fd >= CONFIG_NVMAP_DEFER_FD_RECYCLE_MAX_FD)
client->next_fd = CONFIG_NVMAP_FD_START;
#endif
if (!dmabuf || !dmabuf->file)
return -EINVAL;
/* Allocate fd from start_fd(>=1024) onwards to overcome
* __FD_SETSIZE limitation issue for select(),
* pselect() syscalls.
*/
return tegra_alloc_fd(current->files, start_fd, flags);
}
int nvmap_get_dmabuf_fd(struct nvmap_client *client, struct nvmap_handle *h)
{
int fd;
struct dma_buf *dmabuf;
dmabuf = __nvmap_dmabuf_export(client, h);
if (IS_ERR(dmabuf))
return PTR_ERR(dmabuf);
fd = __nvmap_dmabuf_fd(client, dmabuf, O_CLOEXEC);
if (IS_ERR_VALUE((uintptr_t)fd))
dma_buf_put(dmabuf);
return fd;
}
struct dma_buf *__nvmap_dmabuf_export(struct nvmap_client *client,
struct nvmap_handle *handle)
{
struct dma_buf *buf;
handle = nvmap_handle_get(handle);
if (!handle)
return ERR_PTR(-EINVAL);
buf = handle->dmabuf;
if (WARN(!buf, "Attempting to get a freed dma_buf!\n")) {
nvmap_handle_put(handle);
return NULL;
}
get_dma_buf(buf);
/*
* Don't want to take out refs on the handle here.
*/
nvmap_handle_put(handle);
return handle->dmabuf;
}
EXPORT_SYMBOL(__nvmap_dmabuf_export);
/*
* Returns the nvmap handle ID associated with the passed dma_buf's fd. This
* does not affect the ref count of the dma_buf.
* NOTE: Callers of this utility function must invoke nvmap_handle_put after
* using the returned nvmap_handle. Call to nvmap_handle_get is required in
* this utility function to avoid race conditions in code where nvmap_handle
* returned by this function is freed concurrently while the caller is still
* using it.
*/
struct nvmap_handle *nvmap_handle_get_from_dmabuf_fd(
struct nvmap_client *client, int fd)
{
struct nvmap_handle *handle = ERR_PTR(-EINVAL);
struct dma_buf *dmabuf;
struct nvmap_handle_info *info;
dmabuf = dma_buf_get(fd);
if (IS_ERR(dmabuf))
return ERR_CAST(dmabuf);
if (dmabuf_is_nvmap(dmabuf)) {
info = dmabuf->priv;
handle = info->handle;
if (!nvmap_handle_get(handle))
handle = ERR_PTR(-EINVAL);
}
dma_buf_put(dmabuf);
return handle;
}
/*
* Duplicates a generic dma_buf fd. nvmap dma_buf fd has to be duplicated
* using existing code paths to preserve memory accounting behavior, so this
* function returns -EINVAL on dma_buf fds created by nvmap.
*/
int nvmap_dmabuf_duplicate_gen_fd(struct nvmap_client *client,
struct dma_buf *dmabuf)
{
int ret = 0;
if (dmabuf_is_nvmap(dmabuf)) {
ret = -EINVAL;
goto error;
}
ret = __nvmap_dmabuf_fd(client, dmabuf, O_CLOEXEC);
if (ret < 0)
goto error;
return ret;
error:
dma_buf_put(dmabuf);
return ret;
}