2937 lines
77 KiB
C
2937 lines
77 KiB
C
/*
|
|
* SWIOTLB-based DMA API implementation
|
|
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
* Author: Catalin Marinas <catalin.marinas@arm.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "%s():%d: " fmt, __func__, __LINE__
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/genalloc.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/list.h>
|
|
#include <linux/init.h>
|
|
#include <linux/device.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/io.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/cma.h>
|
|
#include <linux/dma-attrs.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/memory.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/dma-iommu.h>
|
|
#include <linux/dma-iommu.h>
|
|
#include <asm/dma-contiguous.h>
|
|
|
|
#include "mm.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/dmadebug.h>
|
|
|
|
#define ENABLE_IOMMU_DMA_OPS 0
|
|
#define ENABLE_IOMMU_DMA_OPS_NOTIFIER 0
|
|
#define ENABLE_IOMMU_SETUP_DMA_OPS 0
|
|
|
|
#ifndef CONFIG_DMA_API_DEBUG
|
|
char *__weak debug_dma_platformdata(struct device *dev)
|
|
{
|
|
/* empty string by default */
|
|
static char buf[1];
|
|
|
|
return buf;
|
|
}
|
|
#endif
|
|
|
|
static int dma_get_ioprot(unsigned long attrs,
|
|
enum dma_data_direction dir, bool coherent);
|
|
|
|
struct iommu_dma_cookie {
|
|
struct iova_domain iovad;
|
|
struct list_head msi_page_list;
|
|
spinlock_t msi_lock;
|
|
};
|
|
|
|
inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
|
|
{
|
|
return &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
|
|
}
|
|
|
|
dma_addr_t __iommu_dma_alloc_iova(struct iommu_domain *domain, size_t size,
|
|
dma_addr_t dma_limit, bool size_aligned);
|
|
|
|
void __iommu_dma_free_iova(struct iova_domain *iovad,
|
|
dma_addr_t iova, size_t size);
|
|
|
|
static void arm__free_iova(struct device *dev,
|
|
dma_addr_t addr, size_t size)
|
|
{
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
struct iommu_domain *domain = mapping->domain;
|
|
struct iova_domain *iovad = cookie_iovad(domain);
|
|
|
|
__iommu_dma_free_iova(iovad, addr, size);
|
|
}
|
|
|
|
|
|
dma_addr_t arm__alloc_iova_at(struct device *dev, dma_addr_t dma_handle,
|
|
size_t size)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
struct iommu_domain *domain;
|
|
struct iova_domain *iovad;
|
|
size_t len = PAGE_ALIGN(size);
|
|
dma_addr_t limit_addr;
|
|
|
|
domain = iommu_get_domain_for_dev(dev);
|
|
if (!domain) {
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
|
domain = mapping->domain;
|
|
if (!domain)
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
iovad = domain->iova_cookie;
|
|
if (!iovad)
|
|
return DMA_ERROR_CODE;
|
|
|
|
/* limit addr is inclusive. */
|
|
limit_addr = dma_handle + iova_align(iovad, size) -
|
|
iovad->granule;
|
|
|
|
dma_addr = __iommu_dma_alloc_iova(domain, len, limit_addr, false);
|
|
|
|
if (!dma_addr)
|
|
return DMA_ERROR_CODE;
|
|
|
|
if (dma_addr != dma_handle) {
|
|
pr_err("iova alloc don't match, dh=%pad, da=%pad\n",
|
|
&dma_handle, &dma_addr);
|
|
__iommu_dma_free_iova(iovad, dma_addr, len);
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
return dma_addr;
|
|
}
|
|
|
|
struct dma_map_ops arm_dma_ops;
|
|
|
|
enum dma_operation {
|
|
ALLOC_OR_FREE = 1,
|
|
ATOMIC_ALLOC_OR_FREE,
|
|
MAP_OR_UNMAP,
|
|
CPU_MAP_OR_UNMAP
|
|
};
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
#define NULL_DEV "null_dev"
|
|
struct iommu_usage {
|
|
struct device *dev;
|
|
struct list_head recordlist;
|
|
};
|
|
|
|
struct null_device {
|
|
char const *dev_name;
|
|
atomic64_t map_size;
|
|
atomic64_t atomic_alloc_size;
|
|
atomic64_t alloc_size;
|
|
atomic64_t cpu_map_size;
|
|
};
|
|
|
|
static struct null_device *dev_is_null;
|
|
static LIST_HEAD(iommu_rlist_head);
|
|
static size_t dmastats_alloc_or_map(struct device *dev, size_t size,
|
|
const int type);
|
|
static size_t dmastats_free_or_unmap(struct device *dev, size_t size,
|
|
const int type);
|
|
static void add_value(struct dma_iommu_mapping *iu, size_t size,
|
|
const int type);
|
|
static void sub_value(struct dma_iommu_mapping *device_ref, size_t size,
|
|
const int type);
|
|
#else
|
|
#define dmastats_alloc_or_map(dev, size, type)
|
|
#define dmastats_free_or_unmap(dev, size, type)
|
|
#endif
|
|
|
|
static struct page **__alloc_buffer_pages(struct device *dev, size_t size,
|
|
gfp_t gfp, unsigned long attrs);
|
|
static int __free_buffer_pages(struct device *dev, struct page **pages,
|
|
size_t size, unsigned long attrs);
|
|
static struct page **__get_pages(void *cpu_addr, unsigned long attrs);
|
|
|
|
struct dma_map_ops *dma_ops;
|
|
EXPORT_SYMBOL(dma_ops);
|
|
|
|
static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
|
|
bool coherent)
|
|
{
|
|
if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
|
|
return pgprot_writecombine(prot);
|
|
return prot;
|
|
}
|
|
|
|
static struct gen_pool *atomic_pool;
|
|
static struct page **atomic_pool_pages;
|
|
|
|
static size_t atomic_pool_size = SZ_1M;
|
|
|
|
static int __init early_coherent_pool(char *p)
|
|
{
|
|
atomic_pool_size = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("coherent_pool", early_coherent_pool);
|
|
|
|
static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
|
|
{
|
|
unsigned long val;
|
|
void *ptr = NULL;
|
|
|
|
if (!atomic_pool) {
|
|
WARN(1, "coherent pool not initialised!\n");
|
|
return NULL;
|
|
}
|
|
|
|
val = gen_pool_alloc(atomic_pool, size);
|
|
if (val) {
|
|
phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
|
|
|
|
*ret_page = phys_to_page(phys);
|
|
ptr = (void *)val;
|
|
memset(ptr, 0, size);
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static bool __in_atomic_pool(void *start, size_t size)
|
|
{
|
|
if (!atomic_pool)
|
|
return false;
|
|
|
|
return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
|
|
}
|
|
|
|
static int __free_from_pool(void *start, size_t size)
|
|
{
|
|
if (!__in_atomic_pool(start, size))
|
|
return 0;
|
|
|
|
gen_pool_free(atomic_pool, (unsigned long)start, size);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
static void *___alloc_from_pool(struct device *dev, size_t size,
|
|
struct page **ret_page, gfp_t flags)
|
|
{
|
|
struct dma_iommu_mapping *mapping;
|
|
void *ptr = __alloc_from_pool(size, ret_page, flags);
|
|
|
|
mapping = to_dma_iommu_mapping(dev);
|
|
if (ptr && mapping)
|
|
dmastats_alloc_or_map(dev, size, ATOMIC_ALLOC_OR_FREE);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static int ___free_from_pool(struct device *dev, void *start, size_t size)
|
|
{
|
|
int ret = __free_from_pool(start, size);
|
|
|
|
if (ret)
|
|
dmastats_free_or_unmap(dev, size, ATOMIC_ALLOC_OR_FREE);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define __free_from_pool(start, size) \
|
|
___free_from_pool(dev, start, size)
|
|
|
|
#define __alloc_from_pool(size, ret_page, flags) \
|
|
___alloc_from_pool(dev, size, ret_page, flags)
|
|
#endif
|
|
|
|
#ifdef CONFIG_SWIOTLB
|
|
static void *__dma_alloc_coherent(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags,
|
|
unsigned long attrs)
|
|
{
|
|
if (dev == NULL) {
|
|
WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_ZONE_DMA) &&
|
|
dev->coherent_dma_mask <= DMA_BIT_MASK(32))
|
|
flags |= GFP_DMA;
|
|
if (IS_ENABLED(CONFIG_DMA_CMA) && (gfpflags_allow_blocking(flags))) {
|
|
struct page *page;
|
|
void *addr;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
|
|
get_order(size));
|
|
if (!page)
|
|
return NULL;
|
|
|
|
*dma_handle = phys_to_dma(dev, page_to_phys(page));
|
|
addr = page_address(page);
|
|
memset(addr, 0, size);
|
|
return addr;
|
|
}
|
|
return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
|
|
}
|
|
|
|
static void __dma_free_coherent(struct device *dev, size_t size,
|
|
void *vaddr, dma_addr_t dma_handle,
|
|
unsigned long attrs)
|
|
{
|
|
bool freed;
|
|
phys_addr_t paddr = dma_to_phys(dev, dma_handle);
|
|
|
|
if (dev == NULL) {
|
|
WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
|
|
return;
|
|
}
|
|
|
|
freed = dma_release_from_contiguous(dev,
|
|
phys_to_page(paddr),
|
|
size >> PAGE_SHIFT);
|
|
if (!freed)
|
|
swiotlb_free_coherent(dev, size, vaddr, dma_handle);
|
|
}
|
|
|
|
static void *__dma_alloc_noncoherent(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags,
|
|
unsigned long attrs)
|
|
{
|
|
struct page *page;
|
|
void *ptr, *coherent_ptr;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (!gfpflags_allow_blocking(flags)) {
|
|
struct page *page = NULL;
|
|
void *addr = __alloc_from_pool(size, &page, flags);
|
|
|
|
if (addr)
|
|
*dma_handle = phys_to_dma(dev, page_to_phys(page));
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
|
|
if (!ptr)
|
|
goto no_mem;
|
|
|
|
/* remove any dirty cache lines on the kernel alias */
|
|
__dma_flush_area(ptr, size);
|
|
|
|
/* create a coherent mapping */
|
|
page = virt_to_page(ptr);
|
|
coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
|
|
__get_dma_pgprot(attrs,
|
|
__pgprot(PROT_NORMAL_NC), false),
|
|
NULL);
|
|
if (!coherent_ptr)
|
|
goto no_map;
|
|
|
|
return coherent_ptr;
|
|
|
|
no_map:
|
|
__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
|
|
no_mem:
|
|
*dma_handle = DMA_ERROR_CODE;
|
|
return NULL;
|
|
}
|
|
|
|
static void __dma_free_noncoherent(struct device *dev, size_t size,
|
|
void *vaddr, dma_addr_t dma_handle,
|
|
unsigned long attrs)
|
|
{
|
|
void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
|
|
|
|
if (__free_from_pool(vaddr, size))
|
|
return;
|
|
vunmap(vaddr);
|
|
__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
|
|
}
|
|
|
|
static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
dma_addr_t dev_addr;
|
|
|
|
dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
|
|
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
|
|
|
return dev_addr;
|
|
}
|
|
|
|
|
|
static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
|
swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
|
|
}
|
|
|
|
static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i, ret;
|
|
|
|
ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
|
|
for_each_sg(sgl, sg, ret, i)
|
|
__dma_map_area_no_dsb(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
|
sg->length, dir);
|
|
dsb(sy);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __swiotlb_unmap_sg_attrs(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
__dma_unmap_area_no_dsb(
|
|
phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
|
sg->length, dir);
|
|
dsb(sy);
|
|
swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
|
|
}
|
|
|
|
static void __swiotlb_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t dev_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
|
swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
|
|
}
|
|
|
|
static void __swiotlb_sync_single_for_device(struct device *dev,
|
|
dma_addr_t dev_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
|
|
__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
|
|
}
|
|
|
|
static void __swiotlb_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
__dma_unmap_area_no_dsb(
|
|
phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
|
sg->length, dir);
|
|
dsb(sy);
|
|
swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
|
|
}
|
|
|
|
static void __swiotlb_sync_sg_for_device(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
__dma_map_area_no_dsb(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
|
|
sg->length, dir);
|
|
dsb(sy);
|
|
}
|
|
|
|
/* vma->vm_page_prot must be set appropriately before calling this function */
|
|
static int __dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size)
|
|
{
|
|
int ret = -ENXIO;
|
|
unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
|
|
PAGE_SHIFT;
|
|
unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
|
|
unsigned long off = vma->vm_pgoff;
|
|
|
|
if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
|
|
ret = remap_pfn_range(vma, vma->vm_start,
|
|
pfn + off,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __swiotlb_mmap_noncoherent(struct device *dev,
|
|
struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, false);
|
|
return __dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
|
|
}
|
|
|
|
static int __swiotlb_mmap_coherent(struct device *dev,
|
|
struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
/* Just use whatever page_prot attributes were specified */
|
|
return __dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
|
|
}
|
|
|
|
struct dma_map_ops noncoherent_swiotlb_dma_ops = {
|
|
.alloc = __dma_alloc_noncoherent,
|
|
.free = __dma_free_noncoherent,
|
|
.mmap = __swiotlb_mmap_noncoherent,
|
|
.map_page = __swiotlb_map_page,
|
|
.unmap_page = __swiotlb_unmap_page,
|
|
.map_sg = __swiotlb_map_sg_attrs,
|
|
.unmap_sg = __swiotlb_unmap_sg_attrs,
|
|
.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
|
|
.sync_single_for_device = __swiotlb_sync_single_for_device,
|
|
.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
|
|
.sync_sg_for_device = __swiotlb_sync_sg_for_device,
|
|
.dma_supported = swiotlb_dma_supported,
|
|
.mapping_error = swiotlb_dma_mapping_error,
|
|
};
|
|
EXPORT_SYMBOL(noncoherent_swiotlb_dma_ops);
|
|
|
|
struct dma_map_ops coherent_swiotlb_dma_ops = {
|
|
.alloc = __dma_alloc_coherent,
|
|
.free = __dma_free_coherent,
|
|
.mmap = __swiotlb_mmap_coherent,
|
|
.map_page = swiotlb_map_page,
|
|
.unmap_page = swiotlb_unmap_page,
|
|
.map_sg = swiotlb_map_sg_attrs,
|
|
.unmap_sg = swiotlb_unmap_sg_attrs,
|
|
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
|
|
.sync_single_for_device = swiotlb_sync_single_for_device,
|
|
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
|
|
.sync_sg_for_device = swiotlb_sync_sg_for_device,
|
|
.dma_supported = swiotlb_dma_supported,
|
|
.mapping_error = swiotlb_dma_mapping_error,
|
|
};
|
|
EXPORT_SYMBOL(coherent_swiotlb_dma_ops);
|
|
|
|
extern int swiotlb_late_init_with_default_size(size_t default_size);
|
|
|
|
#endif /* CONFIG_SWIOTLB */
|
|
|
|
static int __init atomic_pool_init(void)
|
|
{
|
|
pgprot_t prot = __pgprot(PROT_NORMAL_NC);
|
|
unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
|
|
struct page *page;
|
|
struct page **pages = NULL;
|
|
void *addr;
|
|
unsigned int pool_size_order = get_order(atomic_pool_size);
|
|
|
|
if (dev_get_cma_area(NULL))
|
|
page = dma_alloc_from_contiguous(NULL, nr_pages,
|
|
pool_size_order);
|
|
else
|
|
page = alloc_pages(GFP_DMA, pool_size_order);
|
|
|
|
if (page) {
|
|
int ret, i = 0;
|
|
void *page_addr = page_address(page);
|
|
|
|
memset(page_addr, 0, atomic_pool_size);
|
|
__dma_flush_area(page_addr, atomic_pool_size);
|
|
|
|
atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
|
|
if (!atomic_pool)
|
|
goto free_page;
|
|
|
|
pages = kmalloc(sizeof(struct page *) << pool_size_order,
|
|
GFP_KERNEL);
|
|
if (!pages)
|
|
goto free_page;
|
|
|
|
for (; i < nr_pages; i++)
|
|
pages[i] = page + i;
|
|
|
|
addr = dma_common_pages_remap(pages, atomic_pool_size,
|
|
VM_USERMAP,
|
|
prot, atomic_pool_init);
|
|
|
|
if (!addr)
|
|
goto destroy_genpool;
|
|
|
|
ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
|
|
page_to_phys(page),
|
|
atomic_pool_size, -1);
|
|
if (ret)
|
|
goto remove_mapping;
|
|
|
|
atomic_pool_pages = pages;
|
|
gen_pool_set_algo(atomic_pool,
|
|
gen_pool_first_fit_order_align,
|
|
(void *)PAGE_SHIFT);
|
|
|
|
pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
|
|
atomic_pool_size / 1024);
|
|
return 0;
|
|
}
|
|
goto out;
|
|
|
|
remove_mapping:
|
|
dma_common_free_remap(addr, atomic_pool_size,
|
|
VM_USERMAP);
|
|
destroy_genpool:
|
|
gen_pool_destroy(atomic_pool);
|
|
atomic_pool = NULL;
|
|
kfree(pages);
|
|
free_page:
|
|
if (!dma_release_from_contiguous(NULL, page, nr_pages))
|
|
__free_pages(page, pool_size_order);
|
|
out:
|
|
pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
|
|
atomic_pool_size / 1024);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/********************************************
|
|
* The following APIs are for dummy DMA ops *
|
|
********************************************/
|
|
|
|
static void *__dummy_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *dma_handle, gfp_t flags,
|
|
unsigned long attrs)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static void __dummy_free(struct device *dev, size_t size,
|
|
void *vaddr, dma_addr_t dma_handle,
|
|
unsigned long attrs)
|
|
{
|
|
}
|
|
|
|
static int __dummy_mmap(struct device *dev,
|
|
struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
return -ENXIO;
|
|
}
|
|
|
|
static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
}
|
|
|
|
static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void __dummy_unmap_sg(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
}
|
|
|
|
static void __dummy_sync_single(struct device *dev,
|
|
dma_addr_t dev_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
}
|
|
|
|
static void __dummy_sync_sg(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
}
|
|
|
|
static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int __dummy_dma_supported(struct device *hwdev, u64 mask)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct dma_map_ops dummy_dma_ops = {
|
|
.alloc = __dummy_alloc,
|
|
.free = __dummy_free,
|
|
.mmap = __dummy_mmap,
|
|
.map_page = __dummy_map_page,
|
|
.unmap_page = __dummy_unmap_page,
|
|
.map_sg = __dummy_map_sg,
|
|
.unmap_sg = __dummy_unmap_sg,
|
|
.sync_single_for_cpu = __dummy_sync_single,
|
|
.sync_single_for_device = __dummy_sync_single,
|
|
.sync_sg_for_cpu = __dummy_sync_sg,
|
|
.sync_sg_for_device = __dummy_sync_sg,
|
|
.mapping_error = __dummy_mapping_error,
|
|
.dma_supported = __dummy_dma_supported,
|
|
};
|
|
EXPORT_SYMBOL(dummy_dma_ops);
|
|
|
|
#ifdef CONFIG_SWIOTLB
|
|
static int __init swiotlb_late_init(void)
|
|
{
|
|
size_t swiotlb_size = min(SZ_64M, MAX_ORDER_NR_PAGES << PAGE_SHIFT);
|
|
|
|
dma_ops = &noncoherent_swiotlb_dma_ops;
|
|
|
|
return swiotlb_late_init_with_default_size(swiotlb_size);
|
|
}
|
|
#endif /* CONFIG_SWIOTLB */
|
|
|
|
static int __init arm64_dma_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
dma_ops = &arm_dma_ops;
|
|
#ifdef CONFIG_SWIOTLB
|
|
ret |= swiotlb_late_init();
|
|
#endif /* CONFIG_SWIOTLB */
|
|
ret |= atomic_pool_init();
|
|
|
|
return ret;
|
|
}
|
|
arch_initcall(arm64_dma_init);
|
|
|
|
|
|
#ifdef CONFIG_IOMMU_DMA
|
|
#include <linux/dma-iommu.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/amba/bus.h>
|
|
|
|
#define UL_ATR(a) (a)
|
|
|
|
static void flush_sg(struct device *dev, struct sg_table *sgt)
|
|
{
|
|
struct scatterlist *s;
|
|
int i = 0;
|
|
int nents = sgt->orig_nents;
|
|
|
|
for_each_sg(sgt->sgl, s, nents, i) {
|
|
__dma_flush_area(sg_virt(s), s->length);
|
|
}
|
|
}
|
|
|
|
static void *__iommu_alloc_attrs(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp,
|
|
unsigned long attrs)
|
|
{
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
int ioprot = dma_get_ioprot(attrs, DMA_BIDIRECTIONAL, coherent);
|
|
size_t iosize = size;
|
|
void *addr;
|
|
|
|
/* Following is a work-around (a.k.a. hack) to prevent pages
|
|
* with __GFP_COMP being passed to split_page() which cannot
|
|
* handle them. The real problem is that this flag probably
|
|
* should be 0 on ARM as it is not supported on this
|
|
* platform--see CONFIG_HUGETLB_PAGE.
|
|
*/
|
|
gfp &= ~(__GFP_COMP);
|
|
|
|
if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
|
|
return NULL;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (gfpflags_allow_blocking(gfp)) {
|
|
struct page **pages;
|
|
pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
|
|
|
|
pages = iommu_dma_alloc(dev, iosize, gfp, UL_ATR(attrs),
|
|
ioprot, handle, flush_sg);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
trace_dmadebug_alloc_attrs(dev, *handle, size, pages[0]);
|
|
|
|
if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
|
|
return pages;
|
|
|
|
addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
|
|
__builtin_return_address(0));
|
|
if (!addr)
|
|
iommu_dma_free(dev, pages, iosize, handle, attrs);
|
|
} else {
|
|
struct page *page;
|
|
/*
|
|
* In atomic context we can't remap anything, so we'll only
|
|
* get the virtually contiguous buffer we need by way of a
|
|
* physically contiguous allocation.
|
|
*/
|
|
if (coherent) {
|
|
page = alloc_pages(gfp, get_order(size));
|
|
addr = page ? page_address(page) : NULL;
|
|
} else {
|
|
addr = __alloc_from_pool(size, &page, gfp);
|
|
}
|
|
if (!addr)
|
|
return NULL;
|
|
|
|
*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
|
|
if (iommu_dma_mapping_error(dev, *handle)) {
|
|
if (coherent)
|
|
__free_pages(page, get_order(size));
|
|
else
|
|
__free_from_pool(addr, size);
|
|
addr = NULL;
|
|
} else
|
|
trace_dmadebug_alloc_attrs(dev, *handle, size, page);
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, unsigned long attrs)
|
|
{
|
|
size_t iosize = size;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
trace_dmadebug_free_attrs(dev, handle, size, NULL);
|
|
|
|
/*
|
|
* @cpu_addr will be one of 3 things depending on how it was allocated:
|
|
* - A remapped array of pages from iommu_dma_alloc(), for all
|
|
* non-atomic allocations.
|
|
* - A non-cacheable alias from the atomic pool, for atomic
|
|
* allocations by non-coherent devices.
|
|
* - A normal lowmem address, for atomic allocations by
|
|
* coherent devices.
|
|
* Hence how dodgy the below logic looks...
|
|
*/
|
|
if (__in_atomic_pool(cpu_addr, size)) {
|
|
iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
|
|
__free_from_pool(cpu_addr, size);
|
|
} else if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
|
|
iommu_dma_free(dev, (struct page **)cpu_addr, iosize,
|
|
&handle, attrs);
|
|
} else if (is_vmalloc_addr(cpu_addr)){
|
|
struct vm_struct *area = find_vm_area(cpu_addr);
|
|
|
|
if (WARN_ON(!area || !area->pages))
|
|
return;
|
|
iommu_dma_free(dev, area->pages, iosize, &handle, attrs);
|
|
dma_common_free_remap(cpu_addr, size, VM_USERMAP);
|
|
} else {
|
|
iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
|
|
__free_pages(virt_to_page(cpu_addr), get_order(size));
|
|
}
|
|
}
|
|
|
|
static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
struct vm_struct *area;
|
|
int ret;
|
|
|
|
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
|
|
is_device_dma_coherent(dev));
|
|
|
|
if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
area = find_vm_area(cpu_addr);
|
|
if (WARN_ON(!area || !area->pages))
|
|
return -ENXIO;
|
|
|
|
return iommu_dma_mmap(area->pages, size, vma);
|
|
}
|
|
|
|
static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
|
|
void *cpu_addr, dma_addr_t dma_addr,
|
|
size_t size, unsigned long attrs)
|
|
{
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
struct vm_struct *area = find_vm_area(cpu_addr);
|
|
|
|
if (WARN_ON(!area || !area->pages))
|
|
return -ENXIO;
|
|
|
|
return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
static void __iommu_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t dev_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t phys;
|
|
|
|
if (is_device_dma_coherent(dev))
|
|
return;
|
|
|
|
phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
|
|
__dma_unmap_area(phys_to_virt(phys), size, dir);
|
|
}
|
|
|
|
static void __iommu_sync_single_for_device(struct device *dev,
|
|
dma_addr_t dev_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
phys_addr_t phys;
|
|
|
|
if (is_device_dma_coherent(dev))
|
|
return;
|
|
|
|
phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
|
|
__dma_map_area(phys_to_virt(phys), size, dir);
|
|
}
|
|
|
|
static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
int prot = dma_get_ioprot(attrs, dir, coherent);
|
|
dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
|
|
|
|
if (!iommu_dma_mapping_error(dev, dev_addr) &&
|
|
(UL_ATR(attrs) & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__iommu_sync_single_for_device(dev, dev_addr, size, dir);
|
|
|
|
trace_dmadebug_map_page(dev, dev_addr + offset, size, page);
|
|
return dev_addr;
|
|
}
|
|
|
|
static dma_addr_t arm_iommu_map_at(struct device *dev, dma_addr_t dma_addr,
|
|
phys_addr_t phys, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs);
|
|
|
|
#if ENABLE_IOMMU_DMA_OPS
|
|
static dma_addr_t __iommu_map_at(struct device *dev, dma_addr_t dma_addr,
|
|
phys_addr_t phys, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
int prot = dma_get_ioprot(attrs, dir, coherent);
|
|
|
|
return iommu_dma_map_at(dev, dma_addr, phys, size, prot);
|
|
}
|
|
#endif
|
|
|
|
|
|
static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
|
|
size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
if ((UL_ATR(attrs) & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
|
|
|
|
trace_dmadebug_unmap_page(dev, dev_addr, size,
|
|
phys_to_page(iommu_iova_to_phys(iommu_get_domain_for_dev(dev),
|
|
dev_addr)));
|
|
iommu_dma_unmap_page(dev, dev_addr, size, dir, UL_ATR(attrs));
|
|
}
|
|
|
|
static void __iommu_sync_sg_for_cpu(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
if (is_device_dma_coherent(dev))
|
|
return;
|
|
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
__dma_unmap_area_no_dsb(sg_virt(sg), sg->length, dir);
|
|
dsb(sy);
|
|
}
|
|
|
|
static void __iommu_sync_sg_for_device(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
if (is_device_dma_coherent(dev))
|
|
return;
|
|
|
|
for_each_sg(sgl, sg, nelems, i)
|
|
__dma_map_area_no_dsb(sg_virt(sg), sg->length, dir);
|
|
dsb(sy);
|
|
}
|
|
|
|
static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
|
|
int nelems, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
|
|
if ((UL_ATR(attrs) & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
|
|
|
|
return iommu_dma_map_sg(dev, sgl, nelems,
|
|
dma_get_ioprot(attrs, dir, coherent));
|
|
}
|
|
|
|
static void __iommu_unmap_sg_attrs(struct device *dev,
|
|
struct scatterlist *sgl, int nelems,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
if ((UL_ATR(attrs) & DMA_ATTR_SKIP_CPU_SYNC) == 0)
|
|
__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
|
|
|
|
iommu_dma_unmap_sg(dev, sgl, nelems, dir, UL_ATR(attrs));
|
|
}
|
|
|
|
static struct dma_map_ops iommu_dma_ops = {
|
|
.alloc = __iommu_alloc_attrs,
|
|
.free = __iommu_free_attrs,
|
|
.mmap = __iommu_mmap_attrs,
|
|
.get_sgtable = __iommu_get_sgtable,
|
|
.map_page = __iommu_map_page,
|
|
.unmap_page = __iommu_unmap_page,
|
|
.map_sg = __iommu_map_sg_attrs,
|
|
.unmap_sg = __iommu_unmap_sg_attrs,
|
|
.sync_single_for_cpu = __iommu_sync_single_for_cpu,
|
|
.sync_single_for_device = __iommu_sync_single_for_device,
|
|
.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
|
|
.sync_sg_for_device = __iommu_sync_sg_for_device,
|
|
.dma_supported = iommu_dma_supported,
|
|
.mapping_error = iommu_dma_mapping_error,
|
|
|
|
.map_at = arm_iommu_map_at,
|
|
};
|
|
|
|
#if ENABLE_IOMMU_DMA_OPS_NOTIFIER
|
|
/*
|
|
* TODO: Right now __iommu_setup_dma_ops() gets called too early to do
|
|
* everything it needs to - the device is only partially created and the
|
|
* IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
|
|
* need this delayed attachment dance. Once IOMMU probe ordering is sorted
|
|
* to move the arch_setup_dma_ops() call later, all the notifier bits below
|
|
* become unnecessary, and will go away.
|
|
*/
|
|
struct iommu_dma_notifier_data {
|
|
struct list_head list;
|
|
struct device *dev;
|
|
const struct iommu_ops *ops;
|
|
u64 dma_base;
|
|
u64 size;
|
|
};
|
|
static LIST_HEAD(iommu_dma_masters);
|
|
static DEFINE_MUTEX(iommu_dma_notifier_lock);
|
|
|
|
/*
|
|
* Temporarily "borrow" a domain feature flag to to tell if we had to resort
|
|
* to creating our own domain here, in case we need to clean it up again.
|
|
*/
|
|
#define __IOMMU_DOMAIN_FAKE_DEFAULT (1U << 31)
|
|
|
|
static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
|
|
u64 dma_base, u64 size)
|
|
{
|
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
|
|
|
/*
|
|
* Best case: The device is either part of a group which was
|
|
* already attached to a domain in a previous call, or it's
|
|
* been put in a default DMA domain by the IOMMU core.
|
|
*/
|
|
if (!domain) {
|
|
/*
|
|
* Urgh. The IOMMU core isn't going to do default domains
|
|
* for non-PCI devices anyway, until it has some means of
|
|
* abstracting the entirely implementation-specific
|
|
* sideband data/SoC topology/unicorn dust that may or
|
|
* may not differentiate upstream masters.
|
|
* So until then, HORRIBLE HACKS!
|
|
*/
|
|
domain = ops->domain_alloc(IOMMU_DOMAIN_DMA);
|
|
if (!domain)
|
|
goto out_no_domain;
|
|
|
|
domain->ops = ops;
|
|
domain->type = IOMMU_DOMAIN_DMA | __IOMMU_DOMAIN_FAKE_DEFAULT;
|
|
|
|
if (iommu_attach_device(domain, dev))
|
|
goto out_put_domain;
|
|
}
|
|
|
|
if (iommu_dma_init_domain(domain, dma_base, size, dev))
|
|
goto out_detach;
|
|
|
|
dev->archdata.dma_ops = &iommu_dma_ops;
|
|
return true;
|
|
|
|
out_detach:
|
|
iommu_detach_device(domain, dev);
|
|
out_put_domain:
|
|
if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
|
|
iommu_domain_free(domain);
|
|
out_no_domain:
|
|
pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
|
|
dev_name(dev));
|
|
return false;
|
|
}
|
|
|
|
static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
|
|
u64 dma_base, u64 size)
|
|
{
|
|
struct iommu_dma_notifier_data *iommudata;
|
|
|
|
iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
|
|
if (!iommudata)
|
|
return;
|
|
|
|
iommudata->dev = dev;
|
|
iommudata->ops = ops;
|
|
iommudata->dma_base = dma_base;
|
|
iommudata->size = size;
|
|
|
|
mutex_lock(&iommu_dma_notifier_lock);
|
|
list_add(&iommudata->list, &iommu_dma_masters);
|
|
mutex_unlock(&iommu_dma_notifier_lock);
|
|
}
|
|
|
|
static int __iommu_attach_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct iommu_dma_notifier_data *master, *tmp;
|
|
|
|
if (action != BUS_NOTIFY_ADD_DEVICE)
|
|
return 0;
|
|
|
|
mutex_lock(&iommu_dma_notifier_lock);
|
|
list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
|
|
if (do_iommu_attach(master->dev, master->ops,
|
|
master->dma_base, master->size)) {
|
|
list_del(&master->list);
|
|
kfree(master);
|
|
}
|
|
}
|
|
mutex_unlock(&iommu_dma_notifier_lock);
|
|
return 0;
|
|
}
|
|
|
|
int register_iommu_dma_ops_notifier(struct bus_type *bus)
|
|
{
|
|
struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
|
|
int ret;
|
|
|
|
if (!nb)
|
|
return -ENOMEM;
|
|
/*
|
|
* The device must be attached to a domain before the driver probe
|
|
* routine gets a chance to start allocating DMA buffers. However,
|
|
* the IOMMU driver also needs a chance to configure the iommu_group
|
|
* via its add_device callback first, so we need to make the attach
|
|
* happen between those two points. Since the IOMMU core uses a bus
|
|
* notifier with default priority for add_device, do the same but
|
|
* with a lower priority to ensure the appropriate ordering.
|
|
*/
|
|
nb->notifier_call = __iommu_attach_notifier;
|
|
nb->priority = -100;
|
|
|
|
ret = bus_register_notifier(bus, nb);
|
|
if (ret) {
|
|
pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
|
|
bus->name);
|
|
kfree(nb);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#endif /* ENABLE_IOMMU_DMA_OPS_NOTIFIER */
|
|
|
|
static int __init __iommu_dma_init(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
ret = iommu_dma_init();
|
|
#if ENABLE_IOMMU_DMA_OPS_NOTIFIER
|
|
if (!ret)
|
|
ret = register_iommu_dma_ops_notifier(&platform_bus_type);
|
|
if (!ret)
|
|
ret = register_iommu_dma_ops_notifier(&amba_bustype);
|
|
#endif
|
|
return ret;
|
|
}
|
|
arch_initcall(__iommu_dma_init);
|
|
|
|
void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
|
|
const struct iommu_ops *ops)
|
|
{
|
|
#if ENABLE_IOMMU_DMA_OPS_NOTIFIER
|
|
struct iommu_group *group;
|
|
|
|
if (!ops)
|
|
return;
|
|
/*
|
|
* TODO: As a concession to the future, we're ready to handle being
|
|
* called both early and late (i.e. after bus_add_device). Once all
|
|
* the platform bus code is reworked to call us late and the notifier
|
|
* junk above goes away, move the body of do_iommu_attach here.
|
|
*/
|
|
group = iommu_group_get(dev);
|
|
if (group) {
|
|
do_iommu_attach(dev, ops, dma_base, size);
|
|
iommu_group_put(group);
|
|
} else {
|
|
queue_iommu_attach(dev, ops, dma_base, size);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#else
|
|
|
|
void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
|
|
struct iommu_ops *iommu)
|
|
{ }
|
|
|
|
#endif /* CONFIG_IOMMU_DMA */
|
|
|
|
struct dma_map_ops arm_coherent_dma_ops;
|
|
void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
|
|
const struct iommu_ops *iommu, bool coherent)
|
|
{
|
|
if (!dev->archdata.dma_ops) {
|
|
if (!coherent)
|
|
dev->archdata.dma_ops = &arm_dma_ops;
|
|
else
|
|
dev->archdata.dma_ops = &arm_coherent_dma_ops;
|
|
}
|
|
dev->archdata.dma_coherent = coherent;
|
|
dev->archdata.dma_noncontig =
|
|
of_property_read_bool(dev->of_node, "dma-noncontig");
|
|
|
|
#if ENABLE_IOMMU_SETUP_DMA_OPS
|
|
if (!dev->archdata.dma_ops)
|
|
dev->archdata.dma_ops = &swiotlb_dma_ops;
|
|
|
|
__iommu_setup_dma_ops(dev, dma_base, size, iommu);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_IOMMU_DMA
|
|
void arch_teardown_dma_ops(struct device *dev)
|
|
{
|
|
#if ENABLE_IOMMU_SETUP_DMA_OPS
|
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
|
|
|
if (domain) {
|
|
iommu_detach_device(domain, dev);
|
|
if (domain->type & __IOMMU_DOMAIN_FAKE_DEFAULT)
|
|
iommu_domain_free(domain);
|
|
}
|
|
|
|
dev->archdata.dma_ops = NULL;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
*FIXME: from arm
|
|
*/
|
|
/*
|
|
* The DMA API is built upon the notion of "buffer ownership". A buffer
|
|
* is either exclusively owned by the CPU (and therefore may be accessed
|
|
* by it) or exclusively owned by the DMA device. These helper functions
|
|
* represent the transitions between these two ownership states.
|
|
*
|
|
* Note, however, that on later ARMs, this notion does not work due to
|
|
* speculative prefetches. We model our approach on the assumption that
|
|
* the CPU does do speculative prefetches, which means we clean caches
|
|
* before transfers and delay cache invalidation until transfer completion.
|
|
*
|
|
*/
|
|
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
|
|
size_t, enum dma_data_direction);
|
|
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
|
|
size_t, enum dma_data_direction);
|
|
|
|
__weak void dma_qualify_ioprot(enum dma_data_direction dir,
|
|
unsigned long *ioprot) {}
|
|
__weak void dma_marshal_handle(enum dma_data_direction dir, dma_addr_t *handle) {}
|
|
__weak void dma_unmarshal_handle(enum dma_data_direction dir, dma_addr_t *handle) {}
|
|
|
|
/**
|
|
* arm_dma_map_page - map a portion of a page for streaming DMA
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @page: page that buffer resides in
|
|
* @offset: offset into page for start of buffer
|
|
* @size: size of buffer to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Ensure that any data held in the cache is appropriately discarded
|
|
* or written back.
|
|
*
|
|
* The device owns this memory once this call has completed. The CPU
|
|
* can regain ownership by calling dma_unmap_page().
|
|
*/
|
|
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
dma_addr_t handle;
|
|
|
|
if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
|
|
__dma_page_cpu_to_dev(page, offset, size, dir & DMA_NONE);
|
|
|
|
handle = __pfn_to_phys(page_to_pfn(page)) + offset;
|
|
|
|
dma_marshal_handle(dir, &handle);
|
|
|
|
return handle;
|
|
}
|
|
|
|
static dma_addr_t arm_coherent_dma_map_page(struct device *dev,
|
|
struct page *page, unsigned long offset, size_t size,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
dma_addr_t handle = __pfn_to_phys(page_to_pfn(page)) + offset;
|
|
|
|
dma_marshal_handle(dir, &handle);
|
|
|
|
return handle;
|
|
}
|
|
|
|
/**
|
|
* arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @handle: DMA address of buffer
|
|
* @size: size of buffer (same as passed to dma_map_page)
|
|
* @dir: DMA transfer direction (same as passed to dma_map_page)
|
|
*
|
|
* Unmap a page streaming mode DMA translation. The handle and size
|
|
* must match what was provided in the previous dma_map_page() call.
|
|
* All other usages are undefined.
|
|
*
|
|
* After this call, reads by the CPU to the buffer are guaranteed to see
|
|
* whatever the device wrote there.
|
|
*/
|
|
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
|
|
size_t size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
dma_unmarshal_handle(dir, &handle);
|
|
|
|
if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
|
|
__dma_page_dev_to_cpu(pfn_to_page(__phys_to_pfn(handle)),
|
|
handle & ~PAGE_MASK, size, dir & DMA_NONE);
|
|
}
|
|
|
|
static void arm_dma_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
unsigned int offset = handle & (PAGE_SIZE - 1);
|
|
struct page *page = pfn_to_page(__phys_to_pfn(handle-offset));
|
|
|
|
__dma_page_dev_to_cpu(page, offset, size, dir);
|
|
}
|
|
|
|
static void arm_dma_sync_single_for_device(struct device *dev,
|
|
dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
unsigned int offset = handle & (PAGE_SIZE - 1);
|
|
struct page *page = pfn_to_page(__phys_to_pfn(handle-offset));
|
|
|
|
__dma_page_cpu_to_dev(page, offset, size, dir);
|
|
}
|
|
|
|
struct dma_map_ops arm_dma_ops = {
|
|
.alloc = arm_dma_alloc,
|
|
.free = arm_dma_free,
|
|
.mmap = arm_dma_mmap,
|
|
.get_sgtable = arm_dma_get_sgtable,
|
|
.map_page = arm_dma_map_page,
|
|
.unmap_page = arm_dma_unmap_page,
|
|
.map_sg = arm_dma_map_sg,
|
|
.unmap_sg = arm_dma_unmap_sg,
|
|
.sync_single_for_cpu = arm_dma_sync_single_for_cpu,
|
|
.sync_single_for_device = arm_dma_sync_single_for_device,
|
|
.sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
|
|
.sync_sg_for_device = arm_dma_sync_sg_for_device,
|
|
.set_dma_mask = arm_dma_set_mask,
|
|
.mapping_error = arm_dma_mapping_error,
|
|
.dma_supported = arm_dma_supported,
|
|
};
|
|
EXPORT_SYMBOL(arm_dma_ops);
|
|
|
|
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
|
|
static void arm_coherent_dma_free(struct device *dev, size_t size,
|
|
void *cpu_addr, dma_addr_t handle, unsigned long attrs);
|
|
|
|
struct dma_map_ops arm_coherent_dma_ops = {
|
|
.alloc = arm_coherent_dma_alloc,
|
|
.free = arm_coherent_dma_free,
|
|
.mmap = arm_dma_mmap,
|
|
.get_sgtable = arm_dma_get_sgtable,
|
|
.map_page = arm_coherent_dma_map_page,
|
|
.map_sg = arm_dma_map_sg,
|
|
.set_dma_mask = arm_dma_set_mask,
|
|
.mapping_error = arm_dma_mapping_error,
|
|
.dma_supported = arm_dma_supported,
|
|
};
|
|
EXPORT_SYMBOL(arm_coherent_dma_ops);
|
|
|
|
static u64 get_coherent_dma_mask(struct device *dev)
|
|
{
|
|
u64 mask = (u64)arm_dma_limit;
|
|
|
|
if (dev) {
|
|
mask = dev->coherent_dma_mask;
|
|
|
|
/*
|
|
* Sanity check the DMA mask - it must be non-zero, and
|
|
* must be able to be satisfied by a DMA allocation.
|
|
*/
|
|
if (mask == 0) {
|
|
dev_dbg(dev, "coherent DMA mask is unset\n");
|
|
return 0;
|
|
}
|
|
|
|
if ((~mask) & (u64)arm_dma_limit) {
|
|
dev_warn(dev, "coherent DMA mask %#llx is smaller "
|
|
"than system GFP_DMA mask %#llx\n",
|
|
mask, (u64)arm_dma_limit);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
static void __dma_clear_buffer(struct page *page, size_t size, bool coherent)
|
|
{
|
|
void *ptr;
|
|
/*
|
|
* Ensure that the allocated pages are zeroed, and that any data
|
|
* lurking in the kernel direct-mapped region is invalidated.
|
|
*/
|
|
ptr = page_address(page);
|
|
if (ptr) {
|
|
memset(ptr, 0, size);
|
|
if (!coherent)
|
|
__dma_flush_area(ptr, size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a DMA buffer for 'dev' of size 'size' using the
|
|
* specified gfp mask. Note that 'size' must be page aligned.
|
|
*/
|
|
static struct page *__dma_alloc_buffer(struct device *dev,
|
|
size_t size, gfp_t gfp)
|
|
{
|
|
unsigned long order = get_order(size);
|
|
struct page *page, *p, *e;
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
|
|
page = alloc_pages(gfp, order);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
/*
|
|
* Now split the huge page and free the excess pages
|
|
*/
|
|
split_page(page, order);
|
|
for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order);
|
|
p < e; p++)
|
|
__free_page(p);
|
|
|
|
__dma_clear_buffer(page, size, coherent);
|
|
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Free a DMA buffer. 'size' must be page aligned.
|
|
*/
|
|
static void __dma_free_buffer(struct page *page, size_t size)
|
|
{
|
|
struct page *e = page + (size >> PAGE_SHIFT);
|
|
|
|
while (page < e) {
|
|
__free_page(page);
|
|
page++;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
static void *__alloc_from_contiguous(struct device *dev, size_t size,
|
|
pgprot_t prot, struct page **ret_page);
|
|
|
|
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
|
|
pgprot_t prot, struct page **ret_page,
|
|
const void *caller);
|
|
|
|
static void *
|
|
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
|
|
const void *caller)
|
|
{
|
|
struct vm_struct *area;
|
|
unsigned long addr;
|
|
|
|
/*
|
|
* DMA allocation can be mapped to user space, so lets
|
|
* set VM_USERMAP flags too.
|
|
*/
|
|
area = get_vm_area_caller(size, VM_USERMAP,
|
|
caller);
|
|
if (!area)
|
|
return NULL;
|
|
addr = (unsigned long)area->addr;
|
|
area->phys_addr = __pfn_to_phys(page_to_pfn(page));
|
|
|
|
if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
|
|
vunmap((void *)addr);
|
|
return NULL;
|
|
}
|
|
return (void *)addr;
|
|
}
|
|
|
|
static void __dma_free_remap(void *cpu_addr, size_t size)
|
|
{
|
|
unsigned int flags = VM_USERMAP;
|
|
struct vm_struct *area = find_vm_area(cpu_addr);
|
|
|
|
if (!area || (area->flags & flags) != flags) {
|
|
WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
|
|
return;
|
|
}
|
|
unmap_kernel_range((unsigned long)cpu_addr, size);
|
|
vunmap(cpu_addr);
|
|
}
|
|
|
|
struct dma_contig_early_reserve {
|
|
phys_addr_t base;
|
|
unsigned long size;
|
|
};
|
|
|
|
static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
|
|
|
|
static int dma_mmu_remap_num __initdata;
|
|
|
|
void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
|
|
{
|
|
dma_mmu_remap[dma_mmu_remap_num].base = base;
|
|
dma_mmu_remap[dma_mmu_remap_num].size = size;
|
|
dma_mmu_remap_num++;
|
|
}
|
|
|
|
void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
|
|
phys_addr_t size, pgprot_t prot);
|
|
|
|
void __init dma_contiguous_remap(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < dma_mmu_remap_num; i++) {
|
|
unsigned long addr;
|
|
phys_addr_t start = dma_mmu_remap[i].base;
|
|
phys_addr_t end = start + dma_mmu_remap[i].size;
|
|
|
|
if (start >= end)
|
|
continue;
|
|
|
|
for (addr = start; addr < end; addr += PAGE_SIZE)
|
|
create_mapping_noalloc(addr, __phys_to_virt(addr),
|
|
PAGE_SIZE, PAGE_KERNEL);
|
|
}
|
|
}
|
|
|
|
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
|
|
pgprot_t prot, struct page **ret_page,
|
|
const void *caller)
|
|
{
|
|
struct page *page;
|
|
void *ptr;
|
|
|
|
page = __dma_alloc_buffer(dev, size, gfp);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
|
|
if (!ptr) {
|
|
__dma_free_buffer(page, size);
|
|
return NULL;
|
|
}
|
|
|
|
*ret_page = page;
|
|
return ptr;
|
|
}
|
|
|
|
static void *__alloc_from_contiguous(struct device *dev, size_t size,
|
|
pgprot_t prot, struct page **ret_page)
|
|
{
|
|
unsigned long order = get_order(size);
|
|
size_t count = size >> PAGE_SHIFT;
|
|
struct page *page;
|
|
|
|
page = dma_alloc_from_contiguous(dev, count, order);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
*ret_page = page;
|
|
return page_address(page);
|
|
}
|
|
|
|
static void __free_from_contiguous(struct device *dev, struct page *page,
|
|
size_t size)
|
|
{
|
|
dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
|
|
}
|
|
|
|
#define nommu() 0
|
|
|
|
#else /* !CONFIG_MMU */
|
|
|
|
#define nommu() 1
|
|
|
|
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
|
|
#define __alloc_from_pool(size, ret_page) NULL
|
|
#define __alloc_from_contiguous(dev, size, prot, ret) NULL
|
|
#define __free_from_pool(cpu_addr, size) 0
|
|
#define __free_from_contiguous(dev, page, size) do { } while (0)
|
|
#define __dma_free_remap(cpu_addr, size) do { } while (0)
|
|
|
|
#endif /* CONFIG_MMU */
|
|
|
|
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
|
|
struct page **ret_page)
|
|
{
|
|
struct page *page;
|
|
|
|
page = __dma_alloc_buffer(dev, size, gfp);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
*ret_page = page;
|
|
return page_address(page);
|
|
}
|
|
|
|
static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
|
|
gfp_t gfp, pgprot_t prot, bool is_coherent,
|
|
unsigned long attrs, const void *caller)
|
|
{
|
|
u64 mask = get_coherent_dma_mask(dev);
|
|
struct page *page = NULL;
|
|
struct page **pages = NULL;
|
|
void *addr = NULL;
|
|
bool noncontig = is_device_dma_noncontig(dev) &&
|
|
!dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs) &&
|
|
gfpflags_allow_blocking(gfp);
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
u64 limit = (mask + 1) & ~mask;
|
|
|
|
if (limit && size >= limit) {
|
|
dev_warn(dev, "coherent allocation too big (requested %#zx mask %#llx)\n",
|
|
size, mask);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
if (!mask)
|
|
return NULL;
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
if (mask == (u64)arm_dma_limit) {
|
|
if ((gfp & GFP_ZONEMASK) != GFP_DMA &&
|
|
(gfp & GFP_ZONEMASK) != 0) {
|
|
dev_warn(dev, "Invalid GFP flags(%x) passed. "
|
|
"GFP_DMA should only be set.",
|
|
gfp & GFP_ZONEMASK);
|
|
return NULL;
|
|
}
|
|
gfp |= GFP_DMA;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Following is a work-around (a.k.a. hack) to prevent pages
|
|
* with __GFP_COMP being passed to split_page() which cannot
|
|
* handle them. The real problem is that this flag probably
|
|
* should be 0 on ARM as it is not supported on this
|
|
* platform; see CONFIG_HUGETLBFS.
|
|
*/
|
|
gfp &= ~(__GFP_COMP);
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (noncontig)
|
|
pages = __alloc_buffer_pages(dev, size, gfp, attrs);
|
|
else if (nommu())
|
|
addr = __alloc_simple_buffer(dev, size, gfp, &page);
|
|
else if (!gfpflags_allow_blocking(gfp))
|
|
addr = __alloc_from_pool(size, &page, gfp);
|
|
else if (size == PAGE_SIZE || !IS_ENABLED(CONFIG_CMA))
|
|
addr = __alloc_remap_buffer(dev, size, gfp, prot,
|
|
&page, caller);
|
|
else
|
|
addr = __alloc_from_contiguous(dev, size, prot, &page);
|
|
|
|
if (noncontig && !pages)
|
|
return NULL;
|
|
if (!noncontig && !addr)
|
|
return NULL;
|
|
|
|
*handle = __pfn_to_phys(page_to_pfn(page));
|
|
|
|
if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
|
|
if (noncontig) {
|
|
return pages;
|
|
} else {
|
|
int i;
|
|
int count = (size >> PAGE_SHIFT);
|
|
int array_size = count * sizeof(struct page *);
|
|
struct page **pages;
|
|
|
|
if (array_size <= PAGE_SIZE)
|
|
pages = kzalloc(array_size, GFP_KERNEL);
|
|
else
|
|
pages = vzalloc(array_size);
|
|
for (i = 0; i < count; i++)
|
|
pages[i] = page + i;
|
|
return pages;
|
|
}
|
|
} else {
|
|
if (noncontig) {
|
|
addr = dma_common_pages_remap(pages, size, VM_USERMAP,
|
|
prot, __builtin_return_address(0));
|
|
if (!addr)
|
|
__free_buffer_pages(dev, pages, size, attrs);
|
|
}
|
|
return addr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA-coherent memory space and return both the kernel remapped
|
|
* virtual and bus address for that space.
|
|
*/
|
|
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
|
|
gfp_t gfp, unsigned long attrs)
|
|
{
|
|
pgprot_t prot = __get_dma_pgprot(attrs, PG_PROT_KERNEL, false);
|
|
void *memory;
|
|
|
|
if (dma_alloc_from_coherent_attr(dev, size, handle, &memory, attrs))
|
|
return memory;
|
|
|
|
return __dma_alloc(dev, size, handle, gfp, prot, false,
|
|
attrs, __builtin_return_address(0));
|
|
}
|
|
|
|
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
|
|
{
|
|
pgprot_t prot = __get_dma_pgprot(attrs, PG_PROT_KERNEL, true);
|
|
void *memory;
|
|
|
|
if (dma_alloc_from_coherent_attr(dev, size, handle, &memory, attrs))
|
|
return memory;
|
|
|
|
return __dma_alloc(dev, size, handle, gfp, prot, true,
|
|
attrs, __builtin_return_address(0));
|
|
}
|
|
|
|
/*
|
|
* Create userspace mapping for the DMA-coherent memory.
|
|
*/
|
|
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
int ret = -ENXIO;
|
|
#ifdef CONFIG_MMU
|
|
unsigned long nr_vma_pages =
|
|
(vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
unsigned long pfn = __phys_to_pfn(dma_addr);
|
|
unsigned long off = vma->vm_pgoff;
|
|
|
|
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, false);
|
|
|
|
if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
|
|
ret = remap_pfn_range(vma, vma->vm_start,
|
|
pfn + off,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot);
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Free a buffer as defined by the above mapping.
|
|
*/
|
|
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, unsigned long attrs,
|
|
bool is_coherent)
|
|
{
|
|
struct page *page = pfn_to_page(__phys_to_pfn(handle));
|
|
bool noncontig = is_device_dma_noncontig(dev) &&
|
|
!dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs);
|
|
|
|
if (dma_release_from_coherent_attr(dev, size, cpu_addr,
|
|
attrs, handle))
|
|
return;
|
|
|
|
if (noncontig) {
|
|
struct page **pages = __get_pages(cpu_addr, attrs);
|
|
size = PAGE_ALIGN(size);
|
|
if (__free_from_pool(cpu_addr, size))
|
|
return;
|
|
if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
|
|
unmap_kernel_range((unsigned long)cpu_addr, size);
|
|
vunmap(cpu_addr);
|
|
}
|
|
__free_buffer_pages(dev, pages, size, attrs);
|
|
return;
|
|
}
|
|
|
|
if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
|
|
int count = size >> PAGE_SHIFT;
|
|
int array_size = count * sizeof(struct page *);
|
|
struct page **pages = (struct page **)cpu_addr;
|
|
|
|
cpu_addr = (void *)page_address(pages[0]);
|
|
if (array_size <= PAGE_SIZE)
|
|
kfree(pages);
|
|
else
|
|
vfree(pages);
|
|
}
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (nommu()) {
|
|
__dma_free_buffer(page, size);
|
|
} else if (__free_from_pool(cpu_addr, size)) {
|
|
return;
|
|
} else if (size == PAGE_SIZE || !IS_ENABLED(CONFIG_CMA)) {
|
|
__dma_free_remap(cpu_addr, size);
|
|
__dma_free_buffer(page, size);
|
|
} else {
|
|
/*
|
|
* Non-atomic allocations cannot be freed with IRQs disabled
|
|
*/
|
|
WARN_ON(irqs_disabled());
|
|
__free_from_contiguous(dev, page, size);
|
|
}
|
|
}
|
|
|
|
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, unsigned long attrs)
|
|
{
|
|
__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
|
|
}
|
|
|
|
static void arm_coherent_dma_free(struct device *dev, size_t size,
|
|
void *cpu_addr, dma_addr_t handle,
|
|
unsigned long attrs)
|
|
{
|
|
__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
|
|
}
|
|
|
|
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
|
|
void *cpu_addr, dma_addr_t handle, size_t size,
|
|
unsigned long attrs)
|
|
{
|
|
bool noncontig = is_device_dma_noncontig(dev) &&
|
|
!dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs);
|
|
if (noncontig) {
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
struct page **pages = __get_pages(cpu_addr, attrs);
|
|
|
|
if (!pages) {
|
|
dump_stack();
|
|
pr_warn("No pages\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
|
|
GFP_KERNEL);
|
|
} else {
|
|
struct page *page = pfn_to_page(__phys_to_pfn(handle));
|
|
int ret;
|
|
|
|
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
|
|
if (unlikely(ret)) {
|
|
pr_warn("sg_alloc_table failed\n");
|
|
return ret;
|
|
}
|
|
|
|
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void dma_cache_maint_page(struct page *page, unsigned long offset,
|
|
size_t size, enum dma_data_direction dir,
|
|
void (*op)(const void *, size_t, int))
|
|
{
|
|
op(page_address(page) + offset, size, dir);
|
|
}
|
|
|
|
/*
|
|
* Make an area consistent for devices.
|
|
* Note: Drivers should NOT use this function directly, as it will break
|
|
* platforms with CONFIG_DMABOUNCE.
|
|
* Use the driver DMA support - see dma-mapping.h (dma_sync_*)
|
|
*/
|
|
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
dma_cache_maint_page(page, off, size, dir, __dma_map_area);
|
|
}
|
|
|
|
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
dma_cache_maint_page(page, off, size, dir, __dma_unmap_area);
|
|
|
|
/*
|
|
* Mark the D-cache clean for this page to avoid extra flushing.
|
|
*/
|
|
if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
|
|
set_bit(PG_dcache_clean, &page->flags);
|
|
}
|
|
|
|
/**
|
|
* arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Map a set of buffers described by scatterlist in streaming mode for DMA.
|
|
* This is the scatter-gather version of the dma_map_single interface.
|
|
* Here the scatter gather list elements are each tagged with the
|
|
* appropriate dma address and length. They are obtained via
|
|
* sg_dma_{address,length}.
|
|
*
|
|
* Device ownership issues as mentioned for dma_map_single are the same
|
|
* here.
|
|
*/
|
|
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
int i, j;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
#ifdef CONFIG_NEED_SG_DMA_LENGTH
|
|
s->dma_length = s->length;
|
|
#endif
|
|
s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
|
|
s->length, dir, attrs);
|
|
if (dma_mapping_error(dev, s->dma_address))
|
|
goto bad_mapping;
|
|
}
|
|
return nents;
|
|
|
|
bad_mapping:
|
|
for_each_sg(sg, s, i, j)
|
|
ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s),
|
|
dir, attrs);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to unmap (same as was passed to dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*
|
|
* Unmap a set of streaming mode DMA translations. Again, CPU access
|
|
* rules concerning calls here are the same as for dma_unmap_single().
|
|
*/
|
|
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s),
|
|
dir, attrs);
|
|
}
|
|
|
|
/**
|
|
* arm_dma_sync_sg_for_cpu
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
|
|
dir);
|
|
}
|
|
|
|
/**
|
|
* arm_dma_sync_sg_for_device
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
|
|
dir);
|
|
}
|
|
|
|
int arm_dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
if (mask < (u64)arm_dma_limit)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int arm_dma_set_mask(struct device *dev, u64 dma_mask)
|
|
{
|
|
if (!dev->dma_mask || !dma_supported(dev, dma_mask))
|
|
return -EIO;
|
|
|
|
*dev->dma_mask = dma_mask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int arm_dma_mapping_error(struct device *dev, dma_addr_t dev_addr)
|
|
{
|
|
return dev_addr == DMA_ERROR_CODE;
|
|
}
|
|
|
|
#if defined(CONFIG_ARM_DMA_USE_IOMMU)
|
|
|
|
static LIST_HEAD(iommu_mapping_list);
|
|
static DEFINE_SPINLOCK(iommu_mapping_list_lock);
|
|
|
|
#if defined(CONFIG_DMA_API_DEBUG)
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
static dma_addr_t bit_to_addr(size_t pos, dma_addr_t base)
|
|
{
|
|
return base + pos * (1 << PAGE_SHIFT);
|
|
}
|
|
|
|
static void seq_print_dma_areas(struct seq_file *s, void *bitmap,
|
|
dma_addr_t base, size_t bits)
|
|
{
|
|
/* one bit = one (page + order) sized block */
|
|
size_t pos = find_first_bit(bitmap, bits), end;
|
|
|
|
for (; pos < bits; pos = find_next_bit(bitmap, bits, end + 1)) {
|
|
dma_addr_t start_addr, end_addr;
|
|
|
|
end = find_next_zero_bit(bitmap, bits, pos);
|
|
start_addr = bit_to_addr(pos, base);
|
|
end_addr = bit_to_addr(end, base) - 1;
|
|
seq_printf(s, " %pa-%pa pages=%zu\n",
|
|
&start_addr, &end_addr, end - pos);
|
|
}
|
|
}
|
|
|
|
static void seq_print_mapping(struct seq_file *s,
|
|
struct dma_iommu_mapping *mapping)
|
|
{
|
|
int i;
|
|
size_t mapping_size = mapping->bits << PAGE_SHIFT;
|
|
|
|
seq_printf(s, " memory map: base=%pa size=%zu domain=%p\n",
|
|
&mapping->base, (size_t)(mapping->end - mapping->base),
|
|
mapping->domain);
|
|
|
|
for (i = 0; i < mapping->nr_bitmaps; i++)
|
|
seq_print_dma_areas(s, mapping->bitmaps[i],
|
|
mapping->base + mapping_size * i, mapping->bits);
|
|
}
|
|
|
|
static void debug_dma_seq_print_mappings(struct seq_file *s)
|
|
{
|
|
struct dma_iommu_mapping *mapping;
|
|
int i = 0;
|
|
|
|
list_for_each_entry(mapping, &iommu_mapping_list, list) {
|
|
seq_printf(s, "Map %d (%p):\n", i, mapping);
|
|
seq_print_mapping(s, mapping);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
static int dump_iommu_mappings(struct seq_file *s, void *data)
|
|
{
|
|
debug_dma_seq_print_mappings(s);
|
|
return 0;
|
|
}
|
|
|
|
static int dump_iommu_mappings_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, dump_iommu_mappings, NULL);
|
|
}
|
|
|
|
static const struct file_operations dump_iommu_mappings_fops = {
|
|
.open = dump_iommu_mappings_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
#endif /* CONFIG_DMA_API_DEBUG */
|
|
|
|
void dma_debugfs_platform_info(struct dentry *dent)
|
|
{
|
|
#ifdef CONFIG_DEBUG_FS
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
debugfs_create_file("dump_mappings", S_IRUGO, dent, NULL,
|
|
&dump_iommu_mappings_fops);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#else /* !CONFIG_ARM_DMA_USE_IOMMU */
|
|
static inline void dma_debugfs_platform_info(struct dentry *dent)
|
|
{
|
|
}
|
|
#endif /* !CONFIG_ARM_DMA_USE_IOMMU */
|
|
|
|
#if defined(CONFIG_DMA_API_DEBUG)
|
|
static inline void dma_debug_platform(void)
|
|
{
|
|
struct dentry *dent;
|
|
|
|
dent = debugfs_create_dir("dma-api", NULL);
|
|
if (dent)
|
|
dma_debugfs_platform_info(dent);
|
|
}
|
|
#else /* !CONFIG_DMA_API_DEBUG */
|
|
static void dma_debug_platform(void)
|
|
{
|
|
}
|
|
#endif /* !CONFIG_DMA_API_DEBUG */
|
|
|
|
|
|
#define PREALLOC_DMA_DEBUG_ENTRIES 4096
|
|
|
|
static int __init dma_debug_do_init(void)
|
|
{
|
|
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
|
|
dma_debug_platform();
|
|
return 0;
|
|
}
|
|
fs_initcall(dma_debug_do_init);
|
|
|
|
#ifdef CONFIG_ARM_DMA_USE_IOMMU
|
|
|
|
/* IOMMU */
|
|
|
|
static unsigned int prefetch_page_count = 1;
|
|
static unsigned int gap_page_count = 1;
|
|
|
|
#define PF_PAGES_SIZE (prefetch_page_count << PAGE_SHIFT)
|
|
#define PG_PAGES (prefetch_page_count + gap_page_count)
|
|
|
|
static struct page *iova_gap_pages;
|
|
static phys_addr_t iova_gap_phys;
|
|
|
|
static int __init iova_gap_pages_init(void)
|
|
{
|
|
unsigned long order = get_order(PF_PAGES_SIZE);
|
|
|
|
iova_gap_pages = alloc_pages(GFP_KERNEL, order);
|
|
if (WARN_ON(!iova_gap_pages)) {
|
|
prefetch_page_count = 0;
|
|
return 0;
|
|
}
|
|
|
|
__dma_clear_buffer(iova_gap_pages, PAGE_SIZE << order, false);
|
|
iova_gap_phys = page_to_phys(iova_gap_pages);
|
|
return 0;
|
|
}
|
|
core_initcall(iova_gap_pages_init);
|
|
|
|
static void iommu_mapping_list_add(struct dma_iommu_mapping *mapping)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu_mapping_list_lock, flags);
|
|
list_add_tail(&mapping->list, &iommu_mapping_list);
|
|
spin_unlock_irqrestore(&iommu_mapping_list_lock, flags);
|
|
}
|
|
|
|
static void iommu_mapping_list_del(struct dma_iommu_mapping *mapping)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&iommu_mapping_list_lock, flags);
|
|
list_del(&mapping->list);
|
|
spin_unlock_irqrestore(&iommu_mapping_list_lock, flags);
|
|
}
|
|
|
|
static inline int iommu_get_num_pf_pages(struct dma_iommu_mapping *mapping,
|
|
unsigned long attrs)
|
|
{
|
|
/* XXX: give priority to DMA_ATTR_SKIP_IOVA_GAP */
|
|
if (dma_get_attr(DMA_ATTR_SKIP_IOVA_GAP, attrs))
|
|
return 0;
|
|
|
|
/* XXX: currently we support only 1 prefetch page */
|
|
WARN_ON(mapping->num_pf_page > prefetch_page_count);
|
|
|
|
return mapping->num_pf_page;
|
|
}
|
|
|
|
static inline size_t iommu_get_size_pf_pages(struct dma_iommu_mapping *mapping,
|
|
unsigned long attrs)
|
|
{
|
|
return iommu_get_num_pf_pages(mapping, attrs) << PAGE_SHIFT;
|
|
}
|
|
|
|
static inline int iommu_gap_pg_count(struct dma_iommu_mapping *mapping,
|
|
unsigned long attrs)
|
|
{
|
|
if (dma_get_attr(DMA_ATTR_SKIP_IOVA_GAP, attrs))
|
|
return 0;
|
|
|
|
return mapping->gap_page ? gap_page_count : 0;
|
|
}
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
static size_t _iommu_unmap(struct dma_iommu_mapping *mapping,
|
|
unsigned long iova, size_t bytes)
|
|
{
|
|
unsigned long start, offs, end;
|
|
u32 bitmap_index, bitmap_last_index;
|
|
dma_addr_t bitmap_base;
|
|
size_t mapping_size = mapping->bits << PAGE_SHIFT;
|
|
int i;
|
|
|
|
bitmap_index = (u32)((iova - mapping->base) / mapping_size);
|
|
bitmap_last_index = DIV_ROUND_UP(iova + bytes - mapping->base,
|
|
mapping_size);
|
|
bitmap_base = mapping->base + mapping_size * bitmap_index;
|
|
|
|
if ((iova < mapping->base) || bitmap_index > mapping->extensions ||
|
|
bitmap_last_index > mapping->extensions) {
|
|
WARN(1, "trying to unmap invalid iova\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
offs = (iova - bitmap_base) >> PAGE_SHIFT;
|
|
end = offs + (PAGE_ALIGN(bytes) >> PAGE_SHIFT);
|
|
/*
|
|
* [offs, end) is the portion of the requested region for unmap
|
|
* that falls into current bitmap.
|
|
* NOTE: This logic can't guarantee detection at the first faulty unmap
|
|
* unless the page 'end' is free. IOW this will work always when you
|
|
* enable gap pages.
|
|
*/
|
|
for (i = bitmap_index; i < bitmap_last_index;
|
|
i++, offs = 0, end -= mapping->bits) {
|
|
start = find_next_zero_bit(mapping->bitmaps[i],
|
|
min_t(u32, mapping->bits, end),
|
|
offs);
|
|
if ((start >= offs) && (start < end)) {
|
|
WARN(1, "trying to unmap already unmapped area\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return iommu_unmap(mapping->domain, iova, bytes);
|
|
}
|
|
#else
|
|
#define _iommu_unmap(mapping, iova, bytes) \
|
|
iommu_unmap(mapping->domain, iova, bytes)
|
|
#endif
|
|
|
|
static int dma_get_ioprot(unsigned long attrs,
|
|
enum dma_data_direction dir, bool coherent)
|
|
{
|
|
unsigned long ioprot;
|
|
|
|
#if ENABLE_IOMMU_DMA_OPS
|
|
ioprot = dma_direction_to_prot(dir, coherent);
|
|
#else
|
|
ioprot = IOMMU_READ | IOMMU_WRITE;
|
|
if (dma_get_attr(DMA_ATTR_READ_ONLY, (unsigned long)attrs))
|
|
ioprot &= ~IOMMU_WRITE;
|
|
else if (dma_get_attr(DMA_ATTR_WRITE_ONLY, (unsigned long)attrs))
|
|
ioprot &= ~IOMMU_READ;
|
|
|
|
if (coherent)
|
|
ioprot |= IOMMU_CACHE;
|
|
#endif
|
|
dma_qualify_ioprot(dir, &ioprot);
|
|
|
|
return ioprot;
|
|
}
|
|
|
|
static int pg_iommu_map(struct dma_iommu_mapping *mapping, unsigned long iova,
|
|
phys_addr_t phys, size_t len, unsigned long prot,
|
|
enum dma_data_direction dir, bool coherent)
|
|
{
|
|
int err;
|
|
unsigned long attrs = (unsigned long)prot;
|
|
struct iommu_domain *domain = mapping->domain;
|
|
bool need_prefetch_page = !!iommu_get_num_pf_pages(mapping, attrs);
|
|
unsigned long ioprot = dma_get_ioprot(attrs, dir, coherent);
|
|
|
|
if (need_prefetch_page) {
|
|
err = iommu_map(domain, iova + len, iova_gap_phys,
|
|
PF_PAGES_SIZE, ioprot);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = iommu_map(domain, iova, phys, len, ioprot);
|
|
if (err && need_prefetch_page)
|
|
_iommu_unmap(mapping, iova + len, PF_PAGES_SIZE);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* __alloc_buffer_pages - Allocates a buffer of pages to be mapped into
|
|
* IOVA space. Used by IOVA alloc for all allocations or DMA alloc
|
|
* when non-contiguous memory is needed.
|
|
*/
|
|
static struct page **__alloc_buffer_pages(struct device *dev, size_t size,
|
|
gfp_t gfp, unsigned long attrs)
|
|
{
|
|
struct page **pages;
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
int count = size >> PAGE_SHIFT;
|
|
int array_size = count * sizeof(struct page *);
|
|
int i = 0;
|
|
|
|
if (array_size <= PAGE_SIZE)
|
|
pages = kzalloc(array_size, GFP_KERNEL);
|
|
else
|
|
pages = vzalloc(array_size);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
|
|
{
|
|
unsigned long order = get_order(size);
|
|
struct page *page;
|
|
|
|
page = dma_alloc_from_contiguous(dev, count, order);
|
|
if (!page)
|
|
goto error;
|
|
|
|
for (i = 0; i < count; i++)
|
|
pages[i] = page + i;
|
|
|
|
dmastats_alloc_or_map(dev, size, ALLOC_OR_FREE);
|
|
return pages;
|
|
}
|
|
|
|
/*
|
|
* IOMMU can map any pages, so himem can also be used here
|
|
*/
|
|
if (!(gfp & GFP_DMA) && !(gfp & GFP_DMA32))
|
|
gfp |= __GFP_HIGHMEM;
|
|
|
|
gfp |= __GFP_NOWARN;
|
|
|
|
while (count) {
|
|
int j, order = __fls(count);
|
|
|
|
pages[i] = alloc_pages(gfp, order);
|
|
while (!pages[i] && order)
|
|
pages[i] = alloc_pages(gfp, --order);
|
|
if (!pages[i])
|
|
goto error;
|
|
|
|
if (order) {
|
|
split_page(pages[i], order);
|
|
j = 1 << order;
|
|
while (--j)
|
|
pages[i + j] = pages[i] + j;
|
|
}
|
|
|
|
__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent);
|
|
i += 1 << order;
|
|
count -= 1 << order;
|
|
}
|
|
|
|
dmastats_alloc_or_map(dev, size, ALLOC_OR_FREE);
|
|
return pages;
|
|
error:
|
|
while (i--)
|
|
if (pages[i])
|
|
__free_pages(pages[i], 0);
|
|
if (array_size <= PAGE_SIZE)
|
|
kfree(pages);
|
|
else
|
|
vfree(pages);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* __free_buffer_pages: frees the buffer previously allocated by
|
|
* __alloc_buffer_pages
|
|
*/
|
|
static int __free_buffer_pages(struct device *dev, struct page **pages,
|
|
size_t size, unsigned long attrs)
|
|
{
|
|
int count = size >> PAGE_SHIFT;
|
|
int array_size = count * sizeof(struct page *);
|
|
int i;
|
|
|
|
if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
|
|
dma_release_from_contiguous(dev, pages[0], count);
|
|
} else {
|
|
for (i = 0; i < count; i++)
|
|
if (pages[i])
|
|
__free_pages(pages[i], 0);
|
|
}
|
|
|
|
if (array_size <= PAGE_SIZE)
|
|
kfree(pages);
|
|
else
|
|
vfree(pages);
|
|
|
|
dmastats_free_or_unmap(dev, size, ALLOC_OR_FREE);
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
#define __iommu_alloc_remap(pages, size, gfp, prot, caller) \
|
|
___iommu_alloc_remap(dev, pages, size, gfp, prot, caller)
|
|
static void *
|
|
___iommu_alloc_remap(struct device *dev, struct page **pages, size_t size,
|
|
gfp_t gfp, pgprot_t prot, const void *caller)
|
|
{
|
|
void *ptr = __iommu_alloc_remap(pages, size, gfp, prot, caller);
|
|
|
|
if (ptr)
|
|
dmastats_alloc_or_map(dev, size, CPU_MAP_OR_UNMAP);
|
|
return ptr;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* __get_pages: returns the list of pages associated with a given address
|
|
* that had previously been allocated by __alloc_buffer_pages
|
|
*/
|
|
static struct page **__get_pages(void *cpu_addr, unsigned long attrs)
|
|
{
|
|
struct vm_struct *area;
|
|
int offset = 0;
|
|
|
|
if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) {
|
|
phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool,
|
|
(unsigned long)cpu_addr);
|
|
struct gen_pool_chunk *chunk;
|
|
|
|
rcu_read_lock();
|
|
/* NOTE: this works as only a single chunk is present
|
|
* for atomic pool
|
|
*/
|
|
chunk = list_first_or_null_rcu(&atomic_pool->chunks,
|
|
struct gen_pool_chunk,
|
|
next_chunk);
|
|
phys -= chunk->phys_addr;
|
|
rcu_read_unlock();
|
|
offset = phys >> PAGE_SHIFT;
|
|
return atomic_pool_pages + offset;
|
|
}
|
|
|
|
if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
|
|
return cpu_addr;
|
|
|
|
area = find_vm_area(cpu_addr);
|
|
if (area)
|
|
return &area->pages[offset];
|
|
return NULL;
|
|
}
|
|
|
|
static dma_addr_t arm_iommu_map_page_at(struct device *dev, struct page *page,
|
|
dma_addr_t dma_addr, unsigned long offset, size_t size,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
int ret, len = PAGE_ALIGN(size + offset);
|
|
bool coherent = is_device_dma_coherent(dev);
|
|
|
|
if (!coherent && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
|
|
__dma_page_cpu_to_dev(page, offset, size, dir);
|
|
|
|
ret = pg_iommu_map(mapping, dma_addr,
|
|
page_to_phys(page), len, (ulong)attrs,
|
|
dir, coherent);
|
|
if (ret < 0)
|
|
return DMA_ERROR_CODE;
|
|
|
|
trace_dmadebug_map_page(dev, dma_addr, size, page);
|
|
return dma_addr + offset;
|
|
}
|
|
|
|
static dma_addr_t arm_iommu_map_at(struct device *dev, dma_addr_t dma_addr,
|
|
phys_addr_t phys, size_t size,
|
|
enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
dma_addr_t iova, ret;
|
|
|
|
iova = dma_addr;
|
|
ret = arm__alloc_iova_at(dev, iova, size);
|
|
|
|
if (iova == -ENXIO) {
|
|
/* Linear map request is out side iova window.
|
|
* It usually happens when an SMMU client need to
|
|
* access physcial memory and IOVA range is not overlapping
|
|
* with it. The client would need mapping to be able to access
|
|
* desired phys memory. Map request should be carried out even
|
|
* without successful IOVA allocation.
|
|
*/
|
|
iova = dma_addr;
|
|
} else if (ret == DMA_ERROR_CODE) {
|
|
return ret;
|
|
} else if (iova != dma_addr) {
|
|
arm__free_iova(dev, ret, size);
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
return arm_iommu_map_page_at(dev, phys_to_page(phys), iova,
|
|
0, size, dir, attrs);
|
|
}
|
|
|
|
|
|
bool device_is_iommuable(struct device *dev)
|
|
{
|
|
return (dev->archdata.dma_ops == &iommu_dma_ops);
|
|
}
|
|
EXPORT_SYMBOL(device_is_iommuable);
|
|
|
|
/* __alloc_iova_at() is broken with extensions enabled.
|
|
* Disable the extensions till it is fixed.
|
|
*/
|
|
#define DISABLE_EXTENSIONS 1
|
|
|
|
/**
|
|
* arm_iommu_create_mapping
|
|
* @bus: pointer to the bus holding the client device (for IOMMU calls)
|
|
* @base: start address of the valid IO address space
|
|
* @size: maximum size of the valid IO address space
|
|
*
|
|
* Creates a mapping structure which holds information about used/unused
|
|
* IO address ranges, which is required to perform memory allocation and
|
|
* mapping with IOMMU aware functions.
|
|
*
|
|
* The client device need to be attached to the mapping with
|
|
* arm_iommu_attach_device function.
|
|
*/
|
|
struct dma_iommu_mapping *
|
|
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
|
|
{
|
|
struct dma_iommu_mapping *mapping;
|
|
struct iommu_domain *domain;
|
|
int err = -ENOMEM;
|
|
|
|
mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
|
|
if (!mapping)
|
|
goto err;
|
|
|
|
mapping->base = base;
|
|
mapping->end = base + size;
|
|
|
|
spin_lock_init(&mapping->lock);
|
|
|
|
mapping->domain = iommu_domain_alloc(bus);
|
|
if (!mapping->domain)
|
|
goto err4;
|
|
|
|
domain = mapping->domain;
|
|
domain->geometry.aperture_start = base;
|
|
domain->geometry.aperture_end = base + size;
|
|
domain->geometry.force_aperture = 1;
|
|
|
|
kref_init(&mapping->kref);
|
|
|
|
iommu_mapping_list_add(mapping);
|
|
return mapping;
|
|
err4:
|
|
kfree(mapping);
|
|
err:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void release_iommu_mapping(struct kref *kref)
|
|
{
|
|
struct dma_iommu_mapping *mapping =
|
|
container_of(kref, struct dma_iommu_mapping, kref);
|
|
|
|
iommu_mapping_list_del(mapping);
|
|
iommu_domain_free(mapping->domain);
|
|
kfree(mapping);
|
|
}
|
|
|
|
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
|
|
{
|
|
if (mapping)
|
|
kref_put(&mapping->kref, release_iommu_mapping);
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_attach_device
|
|
* @dev: valid struct device pointer
|
|
* @mapping: io address space mapping structure (returned from
|
|
* arm_iommu_create_mapping)
|
|
*
|
|
* Attaches specified io address space mapping to the provided device,
|
|
* this replaces the dma operations (dma_map_ops pointer) with the
|
|
* IOMMU aware version. More than one client might be attached to
|
|
* the same io address space mapping.
|
|
*/
|
|
int arm_iommu_attach_device(struct device *dev,
|
|
struct dma_iommu_mapping *mapping)
|
|
{
|
|
int err;
|
|
struct dma_map_ops *org_ops;
|
|
struct dma_iommu_mapping *org_map;
|
|
struct iommu_domain *domain;
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
struct iommu_usage *device_ref;
|
|
|
|
device_ref = kzalloc(sizeof(*device_ref), GFP_KERNEL);
|
|
if (!device_ref)
|
|
return -ENOMEM;
|
|
|
|
device_ref->dev = dev;
|
|
list_add(&device_ref->recordlist, &iommu_rlist_head);
|
|
#endif
|
|
|
|
org_ops = get_dma_ops(dev);
|
|
set_dma_ops(dev, &iommu_dma_ops);
|
|
|
|
org_map = dev->archdata.mapping;
|
|
dev->archdata.mapping = mapping;
|
|
|
|
err = iommu_attach_device(mapping->domain, dev);
|
|
if (err) {
|
|
set_dma_ops(dev, org_ops);
|
|
dev->archdata.mapping = org_map;
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
list_del(&device_ref->recordlist);
|
|
kfree(device_ref);
|
|
#endif
|
|
return err;
|
|
}
|
|
|
|
domain = mapping->domain;
|
|
if (!iommu_get_dma_cookie(domain)) {
|
|
if (iommu_dma_init_domain(domain,
|
|
domain->geometry.aperture_start,
|
|
domain->geometry.aperture_end -
|
|
domain->geometry.aperture_start, dev))
|
|
pr_err("iommu_dma_init_domain failed, %s\n",
|
|
dev_name(dev));
|
|
}
|
|
|
|
|
|
kref_get(&mapping->kref);
|
|
|
|
pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_detach_device
|
|
* @dev: valid struct device pointer
|
|
*
|
|
* Detaches the provided device from a previously attached map.
|
|
* This voids the dma operations (dma_map_ops pointer)
|
|
*/
|
|
void arm_iommu_detach_device(struct device *dev)
|
|
{
|
|
struct dma_iommu_mapping *mapping;
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
struct iommu_usage *device_ref, *tmp;
|
|
#endif
|
|
|
|
mapping = to_dma_iommu_mapping(dev);
|
|
if (!mapping) {
|
|
dev_warn(dev, "Not attached\n");
|
|
return;
|
|
}
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
list_for_each_entry_safe(device_ref, tmp, &iommu_rlist_head,
|
|
recordlist) {
|
|
if (dev == device_ref->dev) {
|
|
list_del(&device_ref->recordlist);
|
|
kfree(device_ref);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
iommu_detach_device(mapping->domain, dev);
|
|
kref_put(&mapping->kref, release_iommu_mapping);
|
|
mapping = NULL;
|
|
set_dma_ops(dev, NULL);
|
|
|
|
pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
static void
|
|
add_value(struct dma_iommu_mapping *device_ref, size_t size, const int type)
|
|
{
|
|
switch (type) {
|
|
case ALLOC_OR_FREE:
|
|
atomic64_add(size, &device_ref->alloc_size);
|
|
break;
|
|
case ATOMIC_ALLOC_OR_FREE:
|
|
atomic64_add(size, &device_ref->atomic_alloc_size);
|
|
break;
|
|
case MAP_OR_UNMAP:
|
|
atomic64_add(size, &device_ref->map_size);
|
|
break;
|
|
case CPU_MAP_OR_UNMAP:
|
|
atomic64_add(size, &device_ref->cpu_map_size);
|
|
break;
|
|
default:
|
|
pr_info("Invalid argument in function %s\n", __func__);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sub_value(struct dma_iommu_mapping *device_ref, size_t size, const int type)
|
|
{
|
|
switch (type) {
|
|
case ALLOC_OR_FREE:
|
|
atomic64_sub(size, &device_ref->alloc_size);
|
|
break;
|
|
case ATOMIC_ALLOC_OR_FREE:
|
|
atomic64_sub(size, &device_ref->atomic_alloc_size);
|
|
break;
|
|
case MAP_OR_UNMAP:
|
|
atomic64_sub(size, &device_ref->map_size);
|
|
break;
|
|
case CPU_MAP_OR_UNMAP:
|
|
atomic64_sub(size, &device_ref->cpu_map_size);
|
|
break;
|
|
default:
|
|
pr_info("Invalid argument in function %s\n", __func__);
|
|
}
|
|
}
|
|
|
|
static size_t
|
|
dmastats_alloc_or_map(struct device *dev, size_t size, const int type)
|
|
{
|
|
struct dma_iommu_mapping *mapping;
|
|
|
|
mapping = to_dma_iommu_mapping(dev);
|
|
if (mapping)
|
|
add_value(mapping, size, type);
|
|
else
|
|
atomic64_add(size, &dev_is_null->alloc_size);
|
|
return 0;
|
|
}
|
|
|
|
static size_t dmastats_free_or_unmap(struct device *dev, size_t size,
|
|
const int type)
|
|
{
|
|
struct dma_iommu_mapping *mapping;
|
|
|
|
mapping = to_dma_iommu_mapping(dev);
|
|
if (mapping)
|
|
sub_value(mapping, size, type);
|
|
else
|
|
atomic64_sub(size, &dev_is_null->alloc_size);
|
|
return 0;
|
|
}
|
|
|
|
static int dmastats_debug_show(struct seq_file *s, void *data)
|
|
{
|
|
struct iommu_usage *device_ref = NULL, *tmp;
|
|
size_t alloc_size = 0, map_size = 0;
|
|
size_t atomic_alloc_size = 0, cpu_map_size = 0;
|
|
struct dma_iommu_mapping *mapping;
|
|
|
|
seq_printf(s, "%-24s %18s %18s %18s %18s\n", "DEV_NAME", "ALLOCATED",
|
|
"ATOMIC_ALLOCATED", "MAPPED", "CPU_MAPPED");
|
|
list_for_each_entry_safe(device_ref, tmp, &iommu_rlist_head,
|
|
recordlist) {
|
|
mapping = to_dma_iommu_mapping(device_ref->dev);
|
|
alloc_size += atomic64_read(&mapping->alloc_size);
|
|
map_size += atomic64_read(&mapping->map_size);
|
|
atomic_alloc_size += atomic64_read(&mapping->atomic_alloc_size);
|
|
cpu_map_size += atomic64_read(&mapping->cpu_map_size);
|
|
|
|
seq_printf(s, "%-24s %18ld %18ld %18ld %18ld\n",
|
|
dev_name(device_ref->dev),
|
|
atomic64_read(&mapping->alloc_size),
|
|
atomic64_read(&mapping->atomic_alloc_size),
|
|
atomic64_read(&mapping->map_size),
|
|
atomic64_read(&mapping->cpu_map_size));
|
|
}
|
|
|
|
alloc_size += atomic64_read(&dev_is_null->alloc_size);
|
|
map_size += atomic64_read(&dev_is_null->map_size);
|
|
atomic_alloc_size += atomic64_read(&dev_is_null->atomic_alloc_size);
|
|
cpu_map_size += atomic64_read(&dev_is_null->cpu_map_size);
|
|
|
|
seq_printf(s, "%-24s %18ld %18ld %18ld %18ld\n",
|
|
dev_is_null->dev_name,
|
|
atomic64_read(&dev_is_null->alloc_size),
|
|
atomic64_read(&dev_is_null->atomic_alloc_size),
|
|
atomic64_read(&dev_is_null->map_size),
|
|
atomic64_read(&dev_is_null->cpu_map_size));
|
|
|
|
seq_printf(s, "\n%-24s %18zu %18zu %18zu %18zu\n", "Total",
|
|
alloc_size, atomic_alloc_size, map_size, cpu_map_size);
|
|
return 0;
|
|
}
|
|
|
|
static int dmastats_debug_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, dmastats_debug_show, NULL);
|
|
}
|
|
|
|
static const struct file_operations debug_dmastats_fops = {
|
|
.open = dmastats_debug_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
static int __init dmastats_debug_init(void)
|
|
{
|
|
struct dentry *rootdir, *ret;
|
|
|
|
rootdir = debugfs_create_dir("dma", NULL);
|
|
if (!rootdir) {
|
|
pr_err("Failed to create dma directory!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = debugfs_create_file("usage", S_IRUGO, rootdir, NULL,
|
|
&debug_dmastats_fops);
|
|
if (!ret) {
|
|
pr_err("Failed to create usage debug file!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dev_is_null = kzalloc(sizeof(*dev_is_null), GFP_KERNEL);
|
|
if (!dev_is_null)
|
|
return -ENOMEM;
|
|
|
|
dev_is_null->dev_name = NULL_DEV;
|
|
return 0;
|
|
}
|
|
|
|
static void __exit dmastats_debug_exit(void)
|
|
{
|
|
struct iommu_usage *device_ref = NULL, *tmp;
|
|
|
|
list_for_each_entry_safe(device_ref, tmp, &iommu_rlist_head,
|
|
recordlist) {
|
|
list_del(&device_ref->recordlist);
|
|
kfree(device_ref);
|
|
}
|
|
|
|
kfree(dev_is_null);
|
|
}
|
|
|
|
late_initcall(dmastats_debug_init);
|
|
module_exit(dmastats_debug_exit);
|
|
#endif
|