tegrakernel/kernel/kernel-4.9/arch/mips/math-emu/sp_mul.c

167 lines
4.4 KiB
C

/* IEEE754 floating point arithmetic
* single precision
*/
/*
* MIPS floating point support
* Copyright (C) 1994-2000 Algorithmics Ltd.
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "ieee754sp.h"
union ieee754sp ieee754sp_mul(union ieee754sp x, union ieee754sp y)
{
int re;
int rs;
unsigned rm;
unsigned short lxm;
unsigned short hxm;
unsigned short lym;
unsigned short hym;
unsigned lrm;
unsigned hrm;
unsigned t;
unsigned at;
COMPXSP;
COMPYSP;
EXPLODEXSP;
EXPLODEYSP;
ieee754_clearcx();
FLUSHXSP;
FLUSHYSP;
switch (CLPAIR(xc, yc)) {
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
return ieee754sp_nanxcpt(y);
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
return ieee754sp_nanxcpt(x);
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
return y;
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
return x;
/*
* Infinity handling
*/
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
ieee754_setcx(IEEE754_INVALID_OPERATION);
return ieee754sp_indef();
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
return ieee754sp_inf(xs ^ ys);
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
return ieee754sp_zero(xs ^ ys);
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
SPDNORMX;
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
SPDNORMY;
break;
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
SPDNORMX;
break;
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
break;
}
/* rm = xm * ym, re = xe+ye basically */
assert(xm & SP_HIDDEN_BIT);
assert(ym & SP_HIDDEN_BIT);
re = xe + ye;
rs = xs ^ ys;
/* shunt to top of word */
xm <<= 32 - (SP_FBITS + 1);
ym <<= 32 - (SP_FBITS + 1);
/*
* Multiply 32 bits xm, ym to give high 32 bits rm with stickness.
*/
lxm = xm & 0xffff;
hxm = xm >> 16;
lym = ym & 0xffff;
hym = ym >> 16;
lrm = lxm * lym; /* 16 * 16 => 32 */
hrm = hxm * hym; /* 16 * 16 => 32 */
t = lxm * hym; /* 16 * 16 => 32 */
at = lrm + (t << 16);
hrm += at < lrm;
lrm = at;
hrm = hrm + (t >> 16);
t = hxm * lym; /* 16 * 16 => 32 */
at = lrm + (t << 16);
hrm += at < lrm;
lrm = at;
hrm = hrm + (t >> 16);
rm = hrm | (lrm != 0);
/*
* Sticky shift down to normal rounding precision.
*/
if ((int) rm < 0) {
rm = (rm >> (32 - (SP_FBITS + 1 + 3))) |
((rm << (SP_FBITS + 1 + 3)) != 0);
re++;
} else {
rm = (rm >> (32 - (SP_FBITS + 1 + 3 + 1))) |
((rm << (SP_FBITS + 1 + 3 + 1)) != 0);
}
assert(rm & (SP_HIDDEN_BIT << 3));
return ieee754sp_format(rs, re, rm);
}