tegrakernel/kernel/kernel-4.9/arch/powerpc/include/asm/book3s/32/pgtable.h

484 lines
15 KiB
C

#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
#include <asm-generic/pgtable-nopmd.h>
#include <asm/book3s/32/hash.h>
/* And here we include common definitions */
#include <asm/pte-common.h>
/*
* The normal case is that PTEs are 32-bits and we have a 1-page
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
*
* For any >32-bit physical address platform, we can use the following
* two level page table layout where the pgdir is 8KB and the MS 13 bits
* are an index to the second level table. The combined pgdir/pmd first
* level has 2048 entries and the second level has 512 64-bit PTE entries.
* -Matt
*/
/* PGDIR_SHIFT determines what a top-level page table entry can map */
#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PTRS_PER_PTE (1 << PTE_SHIFT)
#define PTRS_PER_PMD 1
#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
/*
* This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
* value (for now) on others, from where we can start layout kernel
* virtual space that goes below PKMAP and FIXMAP
*/
#ifdef CONFIG_HIGHMEM
#define KVIRT_TOP PKMAP_BASE
#else
#define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */
#endif
/*
* ioremap_bot starts at that address. Early ioremaps move down from there,
* until mem_init() at which point this becomes the top of the vmalloc
* and ioremap space
*/
#ifdef CONFIG_NOT_COHERENT_CACHE
#define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
#else
#define IOREMAP_TOP KVIRT_TOP
#endif
/*
* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 16MB value just means that there will be a 64MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*
* We no longer map larger than phys RAM with the BATs so we don't have
* to worry about the VMALLOC_OFFSET causing problems. We do have to worry
* about clashes between our early calls to ioremap() that start growing down
* from ioremap_base being run into the VM area allocations (growing upwards
* from VMALLOC_START). For this reason we have ioremap_bot to check when
* we actually run into our mappings setup in the early boot with the VM
* system. This really does become a problem for machines with good amounts
* of RAM. -- Cort
*/
#define VMALLOC_OFFSET (0x1000000) /* 16M */
#ifdef PPC_PIN_SIZE
#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#else
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#endif
#define VMALLOC_END ioremap_bot
#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/threads.h>
#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
extern unsigned long ioremap_bot;
/*
* entries per page directory level: our page-table tree is two-level, so
* we don't really have any PMD directory.
*/
#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_SHIFT)
#define PGD_TABLE_SIZE (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
(unsigned long long)pte_val(e))
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/*
* Bits in a linux-style PTE. These match the bits in the
* (hardware-defined) PowerPC PTE as closely as possible.
*/
#define pte_clear(mm, addr, ptep) \
do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
static inline void pmd_clear(pmd_t *pmdp)
{
*pmdp = __pmd(0);
}
/*
* When flushing the tlb entry for a page, we also need to flush the hash
* table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
*/
extern int flush_hash_pages(unsigned context, unsigned long va,
unsigned long pmdval, int count);
/* Add an HPTE to the hash table */
extern void add_hash_page(unsigned context, unsigned long va,
unsigned long pmdval);
/* Flush an entry from the TLB/hash table */
extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
unsigned long address);
/*
* PTE updates. This function is called whenever an existing
* valid PTE is updated. This does -not- include set_pte_at()
* which nowadays only sets a new PTE.
*
* Depending on the type of MMU, we may need to use atomic updates
* and the PTE may be either 32 or 64 bit wide. In the later case,
* when using atomic updates, only the low part of the PTE is
* accessed atomically.
*
* In addition, on 44x, we also maintain a global flag indicating
* that an executable user mapping was modified, which is needed
* to properly flush the virtually tagged instruction cache of
* those implementations.
*/
#ifndef CONFIG_PTE_64BIT
static inline unsigned long pte_update(pte_t *p,
unsigned long clr,
unsigned long set)
{
unsigned long old, tmp;
__asm__ __volatile__("\
1: lwarx %0,0,%3\n\
andc %1,%0,%4\n\
or %1,%1,%5\n"
PPC405_ERR77(0,%3)
" stwcx. %1,0,%3\n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*p)
: "r" (p), "r" (clr), "r" (set), "m" (*p)
: "cc" );
return old;
}
#else /* CONFIG_PTE_64BIT */
static inline unsigned long long pte_update(pte_t *p,
unsigned long clr,
unsigned long set)
{
unsigned long long old;
unsigned long tmp;
__asm__ __volatile__("\
1: lwarx %L0,0,%4\n\
lwzx %0,0,%3\n\
andc %1,%L0,%5\n\
or %1,%1,%6\n"
PPC405_ERR77(0,%3)
" stwcx. %1,0,%4\n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*p)
: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
: "cc" );
return old;
}
#endif /* CONFIG_PTE_64BIT */
/*
* 2.6 calls this without flushing the TLB entry; this is wrong
* for our hash-based implementation, we fix that up here.
*/
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
{
unsigned long old;
old = pte_update(ptep, _PAGE_ACCESSED, 0);
if (old & _PAGE_HASHPTE) {
unsigned long ptephys = __pa(ptep) & PAGE_MASK;
flush_hash_pages(context, addr, ptephys, 1);
}
return (old & _PAGE_ACCESSED) != 0;
}
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO);
}
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
ptep_set_wrprotect(mm, addr, ptep);
}
static inline void __ptep_set_access_flags(struct mm_struct *mm,
pte_t *ptep, pte_t entry)
{
unsigned long set = pte_val(entry) &
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
unsigned long clr = ~pte_val(entry) & _PAGE_RO;
pte_update(ptep, clr, set);
}
#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
/*
* Note that on Book E processors, the pmd contains the kernel virtual
* (lowmem) address of the pte page. The physical address is less useful
* because everything runs with translation enabled (even the TLB miss
* handler). On everything else the pmd contains the physical address
* of the pte page. -- paulus
*/
#ifndef CONFIG_BOOKE
#define pmd_page_vaddr(pmd) \
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd) \
pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
#else
#define pmd_page_vaddr(pmd) \
((unsigned long) (pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd) \
pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
#endif
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in a page-table-directory */
#define pgd_index(address) ((address) >> PGDIR_SHIFT)
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
/* Find an entry in the third-level page table.. */
#define pte_index(address) \
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, addr) \
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
#define pte_offset_map(dir, addr) \
((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
#define pte_unmap(pte) kunmap_atomic(pte)
/*
* Encode and decode a swap entry.
* Note that the bits we use in a PTE for representing a swap entry
* must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
* -- paulus
*/
#define __swp_type(entry) ((entry).val & 0x1f)
#define __swp_offset(entry) ((entry).val >> 5)
#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
#ifndef CONFIG_PPC_4K_PAGES
void pgtable_cache_init(void);
#else
/*
* No page table caches to initialise
*/
#define pgtable_cache_init() do { } while (0)
#endif
extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
pmd_t **pmdp);
/* Generic accessors to PTE bits */
static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
static inline int pte_present(pte_t pte)
{
return pte_val(pte) & _PAGE_PRESENT;
}
/* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
* long for now.
*/
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
{
return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
pgprot_val(pgprot));
}
static inline unsigned long pte_pfn(pte_t pte)
{
return pte_val(pte) >> PTE_RPN_SHIFT;
}
/* Generic modifiers for PTE bits */
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_RW);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_DIRTY);
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
}
static inline pte_t pte_mkwrite(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_RW);
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SPECIAL);
}
static inline pte_t pte_mkhuge(pte_t pte)
{
return pte;
}
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}
/* This low level function performs the actual PTE insertion
* Setting the PTE depends on the MMU type and other factors. It's
* an horrible mess that I'm not going to try to clean up now but
* I'm keeping it in one place rather than spread around
*/
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int percpu)
{
#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
* helper pte_update() which does an atomic update. We need to do that
* because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
* per-CPU PTE such as a kmap_atomic, we do a simple update preserving
* the hash bits instead (ie, same as the non-SMP case)
*/
if (percpu)
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
| (pte_val(pte) & ~_PAGE_HASHPTE));
else
pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
/* Second case is 32-bit with 64-bit PTE. In this case, we
* can just store as long as we do the two halves in the right order
* with a barrier in between. This is possible because we take care,
* in the hash code, to pre-invalidate if the PTE was already hashed,
* which synchronizes us with any concurrent invalidation.
* In the percpu case, we also fallback to the simple update preserving
* the hash bits
*/
if (percpu) {
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
| (pte_val(pte) & ~_PAGE_HASHPTE));
return;
}
if (pte_val(*ptep) & _PAGE_HASHPTE)
flush_hash_entry(mm, ptep, addr);
__asm__ __volatile__("\
stw%X0 %2,%0\n\
eieio\n\
stw%X1 %L2,%1"
: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
: "r" (pte) : "memory");
#elif defined(CONFIG_PPC_STD_MMU_32)
/* Third case is 32-bit hash table in UP mode, we need to preserve
* the _PAGE_HASHPTE bit since we may not have invalidated the previous
* translation in the hash yet (done in a subsequent flush_tlb_xxx())
* and see we need to keep track that this PTE needs invalidating
*/
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
| (pte_val(pte) & ~_PAGE_HASHPTE));
#else
#error "Not supported "
#endif
}
/*
* Macro to mark a page protection value as "uncacheable".
*/
#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
_PAGE_WRITETHRU)
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_NO_CACHE | _PAGE_GUARDED);
}
#define pgprot_noncached_wc pgprot_noncached_wc
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_NO_CACHE);
}
#define pgprot_cached pgprot_cached
static inline pgprot_t pgprot_cached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_COHERENT);
}
#define pgprot_cached_wthru pgprot_cached_wthru
static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_COHERENT | _PAGE_WRITETHRU);
}
#define pgprot_cached_noncoherent pgprot_cached_noncoherent
static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
{
return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
}
#define pgprot_writecombine pgprot_writecombine
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
{
return pgprot_noncached_wc(prot);
}
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */