tegrakernel/kernel/kernel-4.9/arch/powerpc/include/asm/book3s/64/radix.h

298 lines
8.4 KiB
C

#ifndef _ASM_POWERPC_PGTABLE_RADIX_H
#define _ASM_POWERPC_PGTABLE_RADIX_H
#ifndef __ASSEMBLY__
#include <asm/cmpxchg.h>
#endif
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/book3s/64/radix-64k.h>
#else
#include <asm/book3s/64/radix-4k.h>
#endif
#ifndef __ASSEMBLY__
#include <asm/book3s/64/tlbflush-radix.h>
#include <asm/cpu_has_feature.h>
#endif
/* An empty PTE can still have a R or C writeback */
#define RADIX_PTE_NONE_MASK (_PAGE_DIRTY | _PAGE_ACCESSED)
/* Bits to set in a RPMD/RPUD/RPGD */
#define RADIX_PMD_VAL_BITS (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE)
#define RADIX_PUD_VAL_BITS (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE)
#define RADIX_PGD_VAL_BITS (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE)
/* Don't have anything in the reserved bits and leaf bits */
#define RADIX_PMD_BAD_BITS 0x60000000000000e0UL
#define RADIX_PUD_BAD_BITS 0x60000000000000e0UL
#define RADIX_PGD_BAD_BITS 0x60000000000000e0UL
/*
* Size of EA range mapped by our pagetables.
*/
#define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \
RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT)
#define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE)
/*
* We support 52 bit address space, Use top bit for kernel
* virtual mapping. Also make sure kernel fit in the top
* quadrant.
*
* +------------------+
* +------------------+ Kernel virtual map (0xc008000000000000)
* | |
* | |
* | |
* 0b11......+------------------+ Kernel linear map (0xc....)
* | |
* | 2 quadrant |
* | |
* 0b10......+------------------+
* | |
* | 1 quadrant |
* | |
* 0b01......+------------------+
* | |
* | 0 quadrant |
* | |
* 0b00......+------------------+
*
*
* 3rd quadrant expanded:
* +------------------------------+
* | |
* | |
* | |
* +------------------------------+ Kernel IO map end (0xc010000000000000)
* | |
* | |
* | 1/2 of virtual map |
* | |
* | |
* +------------------------------+ Kernel IO map start
* | |
* | 1/4 of virtual map |
* | |
* +------------------------------+ Kernel vmemap start
* | |
* | 1/4 of virtual map |
* | |
* +------------------------------+ Kernel virt start (0xc008000000000000)
* | |
* | |
* | |
* +------------------------------+ Kernel linear (0xc.....)
*/
#define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000)
#define RADIX_KERN_VIRT_SIZE ASM_CONST(0x0008000000000000)
/*
* The vmalloc space starts at the beginning of that region, and
* occupies a quarter of it on radix config.
* (we keep a quarter for the virtual memmap)
*/
#define RADIX_VMALLOC_START RADIX_KERN_VIRT_START
#define RADIX_VMALLOC_SIZE (RADIX_KERN_VIRT_SIZE >> 2)
#define RADIX_VMALLOC_END (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE)
/*
* Defines the address of the vmemap area, in its own region on
* hash table CPUs.
*/
#define RADIX_VMEMMAP_BASE (RADIX_VMALLOC_END)
#ifndef __ASSEMBLY__
#define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE)
#define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE)
#define RADIX_PUD_TABLE_SIZE (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE)
#define RADIX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr,
unsigned long set)
{
pte_t pte;
unsigned long old_pte, new_pte;
do {
pte = READ_ONCE(*ptep);
old_pte = pte_val(pte);
new_pte = (old_pte | set) & ~clr;
} while (!pte_xchg(ptep, __pte(old_pte), __pte(new_pte)));
return old_pte;
}
static inline unsigned long radix__pte_update(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, unsigned long clr,
unsigned long set,
int huge)
{
unsigned long old_pte;
if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
unsigned long new_pte;
old_pte = __radix_pte_update(ptep, ~0, 0);
asm volatile("ptesync" : : : "memory");
/*
* new value of pte
*/
new_pte = (old_pte | set) & ~clr;
/*
* For now let's do heavy pid flush
* radix__flush_tlb_page_psize(mm, addr, mmu_virtual_psize);
*/
radix__flush_tlb_mm(mm);
__radix_pte_update(ptep, 0, new_pte);
} else
old_pte = __radix_pte_update(ptep, clr, set);
asm volatile("ptesync" : : : "memory");
if (!huge)
assert_pte_locked(mm, addr);
return old_pte;
}
/*
* Set the dirty and/or accessed bits atomically in a linux PTE, this
* function doesn't need to invalidate tlb.
*/
static inline void radix__ptep_set_access_flags(struct mm_struct *mm,
pte_t *ptep, pte_t entry)
{
unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
_PAGE_RW | _PAGE_EXEC);
if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
unsigned long old_pte, new_pte;
old_pte = __radix_pte_update(ptep, ~0, 0);
asm volatile("ptesync" : : : "memory");
/*
* new value of pte
*/
new_pte = old_pte | set;
/*
* For now let's do heavy pid flush
* radix__flush_tlb_page_psize(mm, addr, mmu_virtual_psize);
*/
radix__flush_tlb_mm(mm);
__radix_pte_update(ptep, 0, new_pte);
} else
__radix_pte_update(ptep, 0, set);
asm volatile("ptesync" : : : "memory");
}
static inline int radix__pte_same(pte_t pte_a, pte_t pte_b)
{
return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0);
}
static inline int radix__pte_none(pte_t pte)
{
return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0;
}
static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int percpu)
{
*ptep = pte;
asm volatile("ptesync" : : : "memory");
}
static inline int radix__pmd_bad(pmd_t pmd)
{
return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS);
}
static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0);
}
static inline int radix__pud_bad(pud_t pud)
{
return !!(pud_val(pud) & RADIX_PUD_BAD_BITS);
}
static inline int radix__pgd_bad(pgd_t pgd)
{
return !!(pgd_val(pgd) & RADIX_PGD_BAD_BITS);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int radix__pmd_trans_huge(pmd_t pmd)
{
return !!(pmd_val(pmd) & _PAGE_PTE);
}
static inline pmd_t radix__pmd_mkhuge(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | _PAGE_PTE);
}
static inline void radix__pmdp_huge_split_prepare(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
/* Nothing to do for radix. */
return;
}
extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, unsigned long clr,
unsigned long set);
extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable);
extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp);
extern int radix__has_transparent_hugepage(void);
#endif
extern int __meminit radix__vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys);
extern void radix__vmemmap_remove_mapping(unsigned long start,
unsigned long page_size);
extern int radix__map_kernel_page(unsigned long ea, unsigned long pa,
pgprot_t flags, unsigned int psz);
static inline unsigned long radix__get_tree_size(void)
{
unsigned long rts_field;
/*
* We support 52 bits, hence:
* DD1 52-28 = 24, 0b11000
* Others 52-31 = 21, 0b10101
* RTS encoding details
* bits 0 - 3 of rts -> bits 6 - 8 unsigned long
* bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
*/
if (cpu_has_feature(CPU_FTR_POWER9_DD1))
rts_field = (0x3UL << 61);
else {
rts_field = (0x5UL << 5); /* 6 - 8 bits */
rts_field |= (0x2UL << 61);
}
return rts_field;
}
#endif /* __ASSEMBLY__ */
#endif