490 lines
12 KiB
C
490 lines
12 KiB
C
/*
|
|
* Lockless get_user_pages_fast for x86
|
|
*
|
|
* Copyright (C) 2008 Nick Piggin
|
|
* Copyright (C) 2008 Novell Inc.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmstat.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/memremap.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
static inline pte_t gup_get_pte(pte_t *ptep)
|
|
{
|
|
#ifndef CONFIG_X86_PAE
|
|
return READ_ONCE(*ptep);
|
|
#else
|
|
/*
|
|
* With get_user_pages_fast, we walk down the pagetables without taking
|
|
* any locks. For this we would like to load the pointers atomically,
|
|
* but that is not possible (without expensive cmpxchg8b) on PAE. What
|
|
* we do have is the guarantee that a pte will only either go from not
|
|
* present to present, or present to not present or both -- it will not
|
|
* switch to a completely different present page without a TLB flush in
|
|
* between; something that we are blocking by holding interrupts off.
|
|
*
|
|
* Setting ptes from not present to present goes:
|
|
* ptep->pte_high = h;
|
|
* smp_wmb();
|
|
* ptep->pte_low = l;
|
|
*
|
|
* And present to not present goes:
|
|
* ptep->pte_low = 0;
|
|
* smp_wmb();
|
|
* ptep->pte_high = 0;
|
|
*
|
|
* We must ensure here that the load of pte_low sees l iff pte_high
|
|
* sees h. We load pte_high *after* loading pte_low, which ensures we
|
|
* don't see an older value of pte_high. *Then* we recheck pte_low,
|
|
* which ensures that we haven't picked up a changed pte high. We might
|
|
* have got rubbish values from pte_low and pte_high, but we are
|
|
* guaranteed that pte_low will not have the present bit set *unless*
|
|
* it is 'l'. And get_user_pages_fast only operates on present ptes, so
|
|
* we're safe.
|
|
*
|
|
* gup_get_pte should not be used or copied outside gup.c without being
|
|
* very careful -- it does not atomically load the pte or anything that
|
|
* is likely to be useful for you.
|
|
*/
|
|
pte_t pte;
|
|
|
|
retry:
|
|
pte.pte_low = ptep->pte_low;
|
|
smp_rmb();
|
|
pte.pte_high = ptep->pte_high;
|
|
smp_rmb();
|
|
if (unlikely(pte.pte_low != ptep->pte_low))
|
|
goto retry;
|
|
|
|
return pte;
|
|
#endif
|
|
}
|
|
|
|
static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
|
|
{
|
|
while ((*nr) - nr_start) {
|
|
struct page *page = pages[--(*nr)];
|
|
|
|
ClearPageReferenced(page);
|
|
put_page(page);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 'pteval' can come from a pte, pmd or pud. We only check
|
|
* _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
|
|
* same value on all 3 types.
|
|
*/
|
|
static inline int pte_allows_gup(unsigned long pteval, int write)
|
|
{
|
|
unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
|
|
|
|
if (write)
|
|
need_pte_bits |= _PAGE_RW;
|
|
|
|
if ((pteval & need_pte_bits) != need_pte_bits)
|
|
return 0;
|
|
|
|
/* Check memory protection keys permissions. */
|
|
if (!__pkru_allows_pkey(pte_flags_pkey(pteval), write))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Return the compund head page with ref appropriately incremented,
|
|
* or NULL if that failed.
|
|
*/
|
|
static inline struct page *try_get_compound_head(struct page *page, int refs)
|
|
{
|
|
struct page *head = compound_head(page);
|
|
if (WARN_ON_ONCE(page_ref_count(head) < 0))
|
|
return NULL;
|
|
if (unlikely(!page_cache_add_speculative(head, refs)))
|
|
return NULL;
|
|
return head;
|
|
}
|
|
|
|
/*
|
|
* The performance critical leaf functions are made noinline otherwise gcc
|
|
* inlines everything into a single function which results in too much
|
|
* register pressure.
|
|
*/
|
|
static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
struct dev_pagemap *pgmap = NULL;
|
|
int nr_start = *nr;
|
|
pte_t *ptep;
|
|
|
|
ptep = pte_offset_map(&pmd, addr);
|
|
do {
|
|
pte_t pte = gup_get_pte(ptep);
|
|
struct page *head, *page;
|
|
|
|
/* Similar to the PMD case, NUMA hinting must take slow path */
|
|
if (pte_protnone(pte)) {
|
|
pte_unmap(ptep);
|
|
return 0;
|
|
}
|
|
|
|
if (!pte_allows_gup(pte_val(pte), write)) {
|
|
pte_unmap(ptep);
|
|
return 0;
|
|
}
|
|
|
|
if (pte_devmap(pte)) {
|
|
pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
|
|
if (unlikely(!pgmap)) {
|
|
undo_dev_pagemap(nr, nr_start, pages);
|
|
pte_unmap(ptep);
|
|
return 0;
|
|
}
|
|
} else if (pte_special(pte)) {
|
|
pte_unmap(ptep);
|
|
return 0;
|
|
}
|
|
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
page = pte_page(pte);
|
|
|
|
head = try_get_compound_head(page, 1);
|
|
if (!head) {
|
|
put_dev_pagemap(pgmap);
|
|
pte_unmap(ptep);
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(pte_val(pte) != pte_val(*ptep))) {
|
|
put_page(head);
|
|
put_dev_pagemap(pgmap);
|
|
pte_unmap(ptep);
|
|
return 0;
|
|
}
|
|
|
|
put_dev_pagemap(pgmap);
|
|
SetPageReferenced(page);
|
|
pages[*nr] = page;
|
|
(*nr)++;
|
|
|
|
} while (ptep++, addr += PAGE_SIZE, addr != end);
|
|
pte_unmap(ptep - 1);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline void get_head_page_multiple(struct page *page, int nr)
|
|
{
|
|
VM_BUG_ON_PAGE(page != compound_head(page), page);
|
|
VM_BUG_ON_PAGE(page_count(page) == 0, page);
|
|
page_ref_add(page, nr);
|
|
SetPageReferenced(page);
|
|
}
|
|
|
|
static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
|
|
unsigned long end, struct page **pages, int *nr)
|
|
{
|
|
int nr_start = *nr;
|
|
unsigned long pfn = pmd_pfn(pmd);
|
|
struct dev_pagemap *pgmap = NULL;
|
|
|
|
pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
|
|
do {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
pgmap = get_dev_pagemap(pfn, pgmap);
|
|
if (unlikely(!pgmap)) {
|
|
undo_dev_pagemap(nr, nr_start, pages);
|
|
return 0;
|
|
}
|
|
if (unlikely(!try_get_page(page))) {
|
|
put_dev_pagemap(pgmap);
|
|
return 0;
|
|
}
|
|
SetPageReferenced(page);
|
|
pages[*nr] = page;
|
|
put_dev_pagemap(pgmap);
|
|
(*nr)++;
|
|
pfn++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
return 1;
|
|
}
|
|
|
|
static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
struct page *head, *page;
|
|
int refs;
|
|
|
|
if (!pte_allows_gup(pmd_val(pmd), write))
|
|
return 0;
|
|
|
|
VM_BUG_ON(!pfn_valid(pmd_pfn(pmd)));
|
|
if (pmd_devmap(pmd))
|
|
return __gup_device_huge_pmd(pmd, addr, end, pages, nr);
|
|
|
|
/* hugepages are never "special" */
|
|
VM_BUG_ON(pmd_flags(pmd) & _PAGE_SPECIAL);
|
|
|
|
refs = 0;
|
|
head = pmd_page(pmd);
|
|
if (WARN_ON_ONCE(page_ref_count(head) <= 0))
|
|
return 0;
|
|
page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
|
|
do {
|
|
VM_BUG_ON_PAGE(compound_head(page) != head, page);
|
|
pages[*nr] = page;
|
|
(*nr)++;
|
|
page++;
|
|
refs++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
get_head_page_multiple(head, refs);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
|
|
int write, struct page **pages, int *nr)
|
|
{
|
|
unsigned long next;
|
|
pmd_t *pmdp;
|
|
|
|
pmdp = pmd_offset(&pud, addr);
|
|
do {
|
|
pmd_t pmd = *pmdp;
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none(pmd))
|
|
return 0;
|
|
if (unlikely(pmd_large(pmd) || !pmd_present(pmd))) {
|
|
/*
|
|
* NUMA hinting faults need to be handled in the GUP
|
|
* slowpath for accounting purposes and so that they
|
|
* can be serialised against THP migration.
|
|
*/
|
|
if (pmd_protnone(pmd))
|
|
return 0;
|
|
if (!gup_huge_pmd(pmd, addr, next, write, pages, nr))
|
|
return 0;
|
|
} else {
|
|
if (!gup_pte_range(pmd, addr, next, write, pages, nr))
|
|
return 0;
|
|
}
|
|
} while (pmdp++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static noinline int gup_huge_pud(pud_t pud, unsigned long addr,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
struct page *head, *page;
|
|
int refs;
|
|
|
|
if (!pte_allows_gup(pud_val(pud), write))
|
|
return 0;
|
|
/* hugepages are never "special" */
|
|
VM_BUG_ON(pud_flags(pud) & _PAGE_SPECIAL);
|
|
VM_BUG_ON(!pfn_valid(pud_pfn(pud)));
|
|
|
|
refs = 0;
|
|
head = pud_page(pud);
|
|
if (WARN_ON_ONCE(page_ref_count(head) <= 0))
|
|
return 0;
|
|
page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
|
|
do {
|
|
VM_BUG_ON_PAGE(compound_head(page) != head, page);
|
|
pages[*nr] = page;
|
|
(*nr)++;
|
|
page++;
|
|
refs++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
get_head_page_multiple(head, refs);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
|
|
int write, struct page **pages, int *nr)
|
|
{
|
|
unsigned long next;
|
|
pud_t *pudp;
|
|
|
|
pudp = pud_offset(&pgd, addr);
|
|
do {
|
|
pud_t pud = *pudp;
|
|
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none(pud))
|
|
return 0;
|
|
if (unlikely(pud_large(pud))) {
|
|
if (!gup_huge_pud(pud, addr, next, write, pages, nr))
|
|
return 0;
|
|
} else {
|
|
if (!gup_pmd_range(pud, addr, next, write, pages, nr))
|
|
return 0;
|
|
}
|
|
} while (pudp++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Like get_user_pages_fast() except its IRQ-safe in that it won't fall
|
|
* back to the regular GUP.
|
|
*/
|
|
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
|
|
struct page **pages)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long addr, len, end;
|
|
unsigned long next;
|
|
unsigned long flags;
|
|
pgd_t *pgdp;
|
|
int nr = 0;
|
|
|
|
start &= PAGE_MASK;
|
|
addr = start;
|
|
len = (unsigned long) nr_pages << PAGE_SHIFT;
|
|
end = start + len;
|
|
if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
|
|
(void __user *)start, len)))
|
|
return 0;
|
|
|
|
/*
|
|
* XXX: batch / limit 'nr', to avoid large irq off latency
|
|
* needs some instrumenting to determine the common sizes used by
|
|
* important workloads (eg. DB2), and whether limiting the batch size
|
|
* will decrease performance.
|
|
*
|
|
* It seems like we're in the clear for the moment. Direct-IO is
|
|
* the main guy that batches up lots of get_user_pages, and even
|
|
* they are limited to 64-at-a-time which is not so many.
|
|
*/
|
|
/*
|
|
* This doesn't prevent pagetable teardown, but does prevent
|
|
* the pagetables and pages from being freed on x86.
|
|
*
|
|
* So long as we atomically load page table pointers versus teardown
|
|
* (which we do on x86, with the above PAE exception), we can follow the
|
|
* address down to the the page and take a ref on it.
|
|
*/
|
|
local_irq_save(flags);
|
|
pgdp = pgd_offset(mm, addr);
|
|
do {
|
|
pgd_t pgd = *pgdp;
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none(pgd))
|
|
break;
|
|
if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
|
|
break;
|
|
} while (pgdp++, addr = next, addr != end);
|
|
local_irq_restore(flags);
|
|
|
|
return nr;
|
|
}
|
|
|
|
/**
|
|
* get_user_pages_fast() - pin user pages in memory
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @write: whether pages will be written to
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long.
|
|
*
|
|
* Attempt to pin user pages in memory without taking mm->mmap_sem.
|
|
* If not successful, it will fall back to taking the lock and
|
|
* calling get_user_pages().
|
|
*
|
|
* Returns number of pages pinned. This may be fewer than the number
|
|
* requested. If nr_pages is 0 or negative, returns 0. If no pages
|
|
* were pinned, returns -errno.
|
|
*/
|
|
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
|
|
struct page **pages)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long addr, len, end;
|
|
unsigned long next;
|
|
pgd_t *pgdp;
|
|
int nr = 0;
|
|
|
|
start &= PAGE_MASK;
|
|
addr = start;
|
|
len = (unsigned long) nr_pages << PAGE_SHIFT;
|
|
|
|
end = start + len;
|
|
if (end < start)
|
|
goto slow_irqon;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (end >> __VIRTUAL_MASK_SHIFT)
|
|
goto slow_irqon;
|
|
#endif
|
|
|
|
/*
|
|
* XXX: batch / limit 'nr', to avoid large irq off latency
|
|
* needs some instrumenting to determine the common sizes used by
|
|
* important workloads (eg. DB2), and whether limiting the batch size
|
|
* will decrease performance.
|
|
*
|
|
* It seems like we're in the clear for the moment. Direct-IO is
|
|
* the main guy that batches up lots of get_user_pages, and even
|
|
* they are limited to 64-at-a-time which is not so many.
|
|
*/
|
|
/*
|
|
* This doesn't prevent pagetable teardown, but does prevent
|
|
* the pagetables and pages from being freed on x86.
|
|
*
|
|
* So long as we atomically load page table pointers versus teardown
|
|
* (which we do on x86, with the above PAE exception), we can follow the
|
|
* address down to the the page and take a ref on it.
|
|
*/
|
|
local_irq_disable();
|
|
pgdp = pgd_offset(mm, addr);
|
|
do {
|
|
pgd_t pgd = *pgdp;
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none(pgd))
|
|
goto slow;
|
|
if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
|
|
goto slow;
|
|
} while (pgdp++, addr = next, addr != end);
|
|
local_irq_enable();
|
|
|
|
VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT);
|
|
return nr;
|
|
|
|
{
|
|
int ret;
|
|
|
|
slow:
|
|
local_irq_enable();
|
|
slow_irqon:
|
|
/* Try to get the remaining pages with get_user_pages */
|
|
start += nr << PAGE_SHIFT;
|
|
pages += nr;
|
|
|
|
ret = get_user_pages_unlocked(start,
|
|
(end - start) >> PAGE_SHIFT,
|
|
pages, write ? FOLL_WRITE : 0);
|
|
|
|
/* Have to be a bit careful with return values */
|
|
if (nr > 0) {
|
|
if (ret < 0)
|
|
ret = nr;
|
|
else
|
|
ret += nr;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
}
|