tegrakernel/kernel/kernel-4.9/drivers/block/ataflop.c

2062 lines
52 KiB
C

/*
* drivers/block/ataflop.c
*
* Copyright (C) 1993 Greg Harp
* Atari Support by Bjoern Brauel, Roman Hodek
*
* Big cleanup Sep 11..14 1994 Roman Hodek:
* - Driver now works interrupt driven
* - Support for two drives; should work, but I cannot test that :-(
* - Reading is done in whole tracks and buffered to speed up things
* - Disk change detection and drive deselecting after motor-off
* similar to TOS
* - Autodetection of disk format (DD/HD); untested yet, because I
* don't have an HD drive :-(
*
* Fixes Nov 13 1994 Martin Schaller:
* - Autodetection works now
* - Support for 5 1/4'' disks
* - Removed drive type (unknown on atari)
* - Do seeks with 8 Mhz
*
* Changes by Andreas Schwab:
* - After errors in multiple read mode try again reading single sectors
* (Feb 1995):
* - Clean up error handling
* - Set blk_size for proper size checking
* - Initialize track register when testing presence of floppy
* - Implement some ioctl's
*
* Changes by Torsten Lang:
* - When probing the floppies we should add the FDCCMDADD_H flag since
* the FDC will otherwise wait forever when no disk is inserted...
*
* ++ Freddi Aschwanden (fa) 20.9.95 fixes for medusa:
* - MFPDELAY() after each FDC access -> atari
* - more/other disk formats
* - DMA to the block buffer directly if we have a 32bit DMA
* - for medusa, the step rate is always 3ms
* - on medusa, use only cache_push()
* Roman:
* - Make disk format numbering independent from minors
* - Let user set max. supported drive type (speeds up format
* detection, saves buffer space)
*
* Roman 10/15/95:
* - implement some more ioctls
* - disk formatting
*
* Andreas 95/12/12:
* - increase gap size at start of track for HD/ED disks
*
* Michael (MSch) 11/07/96:
* - implemented FDSETPRM and FDDEFPRM ioctl
*
* Andreas (97/03/19):
* - implemented missing BLK* ioctls
*
* Things left to do:
* - Formatting
* - Maybe a better strategy for disk change detection (does anyone
* know one?)
*/
#include <linux/module.h>
#include <linux/fd.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/mutex.h>
#include <linux/completion.h>
#include <linux/wait.h>
#include <asm/atafd.h>
#include <asm/atafdreg.h>
#include <asm/atariints.h>
#include <asm/atari_stdma.h>
#include <asm/atari_stram.h>
#define FD_MAX_UNITS 2
#undef DEBUG
static DEFINE_MUTEX(ataflop_mutex);
static struct request *fd_request;
static int fdc_queue;
/* Disk types: DD, HD, ED */
static struct atari_disk_type {
const char *name;
unsigned spt; /* sectors per track */
unsigned blocks; /* total number of blocks */
unsigned fdc_speed; /* fdc_speed setting */
unsigned stretch; /* track doubling ? */
} atari_disk_type[] = {
{ "d360", 9, 720, 0, 0}, /* 0: 360kB diskette */
{ "D360", 9, 720, 0, 1}, /* 1: 360kb in 720k or 1.2MB drive */
{ "D720", 9,1440, 0, 0}, /* 2: 720kb in 720k or 1.2MB drive */
{ "D820", 10,1640, 0, 0}, /* 3: DD disk with 82 tracks/10 sectors */
/* formats above are probed for type DD */
#define MAX_TYPE_DD 3
{ "h1200",15,2400, 3, 0}, /* 4: 1.2MB diskette */
{ "H1440",18,2880, 3, 0}, /* 5: 1.4 MB diskette (HD) */
{ "H1640",20,3280, 3, 0}, /* 6: 1.64MB diskette (fat HD) 82 tr 20 sec */
/* formats above are probed for types DD and HD */
#define MAX_TYPE_HD 6
{ "E2880",36,5760, 3, 0}, /* 7: 2.8 MB diskette (ED) */
{ "E3280",40,6560, 3, 0}, /* 8: 3.2 MB diskette (fat ED) 82 tr 40 sec */
/* formats above are probed for types DD, HD and ED */
#define MAX_TYPE_ED 8
/* types below are never autoprobed */
{ "H1680",21,3360, 3, 0}, /* 9: 1.68MB diskette (fat HD) 80 tr 21 sec */
{ "h410",10,820, 0, 1}, /* 10: 410k diskette 41 tr 10 sec, stretch */
{ "h1476",18,2952, 3, 0}, /* 11: 1.48MB diskette 82 tr 18 sec */
{ "H1722",21,3444, 3, 0}, /* 12: 1.72MB diskette 82 tr 21 sec */
{ "h420",10,840, 0, 1}, /* 13: 420k diskette 42 tr 10 sec, stretch */
{ "H830",10,1660, 0, 0}, /* 14: 820k diskette 83 tr 10 sec */
{ "h1494",18,2952, 3, 0}, /* 15: 1.49MB diskette 83 tr 18 sec */
{ "H1743",21,3486, 3, 0}, /* 16: 1.74MB diskette 83 tr 21 sec */
{ "h880",11,1760, 0, 0}, /* 17: 880k diskette 80 tr 11 sec */
{ "D1040",13,2080, 0, 0}, /* 18: 1.04MB diskette 80 tr 13 sec */
{ "D1120",14,2240, 0, 0}, /* 19: 1.12MB diskette 80 tr 14 sec */
{ "h1600",20,3200, 3, 0}, /* 20: 1.60MB diskette 80 tr 20 sec */
{ "H1760",22,3520, 3, 0}, /* 21: 1.76MB diskette 80 tr 22 sec */
{ "H1920",24,3840, 3, 0}, /* 22: 1.92MB diskette 80 tr 24 sec */
{ "E3200",40,6400, 3, 0}, /* 23: 3.2MB diskette 80 tr 40 sec */
{ "E3520",44,7040, 3, 0}, /* 24: 3.52MB diskette 80 tr 44 sec */
{ "E3840",48,7680, 3, 0}, /* 25: 3.84MB diskette 80 tr 48 sec */
{ "H1840",23,3680, 3, 0}, /* 26: 1.84MB diskette 80 tr 23 sec */
{ "D800",10,1600, 0, 0}, /* 27: 800k diskette 80 tr 10 sec */
};
static int StartDiskType[] = {
MAX_TYPE_DD,
MAX_TYPE_HD,
MAX_TYPE_ED
};
#define TYPE_DD 0
#define TYPE_HD 1
#define TYPE_ED 2
static int DriveType = TYPE_HD;
static DEFINE_SPINLOCK(ataflop_lock);
/* Array for translating minors into disk formats */
static struct {
int index;
unsigned drive_types;
} minor2disktype[] = {
{ 0, TYPE_DD }, /* 1: d360 */
{ 4, TYPE_HD }, /* 2: h1200 */
{ 1, TYPE_DD }, /* 3: D360 */
{ 2, TYPE_DD }, /* 4: D720 */
{ 1, TYPE_DD }, /* 5: h360 = D360 */
{ 2, TYPE_DD }, /* 6: h720 = D720 */
{ 5, TYPE_HD }, /* 7: H1440 */
{ 7, TYPE_ED }, /* 8: E2880 */
/* some PC formats :-) */
{ 8, TYPE_ED }, /* 9: E3280 <- was "CompaQ" == E2880 for PC */
{ 5, TYPE_HD }, /* 10: h1440 = H1440 */
{ 9, TYPE_HD }, /* 11: H1680 */
{ 10, TYPE_DD }, /* 12: h410 */
{ 3, TYPE_DD }, /* 13: H820 <- == D820, 82x10 */
{ 11, TYPE_HD }, /* 14: h1476 */
{ 12, TYPE_HD }, /* 15: H1722 */
{ 13, TYPE_DD }, /* 16: h420 */
{ 14, TYPE_DD }, /* 17: H830 */
{ 15, TYPE_HD }, /* 18: h1494 */
{ 16, TYPE_HD }, /* 19: H1743 */
{ 17, TYPE_DD }, /* 20: h880 */
{ 18, TYPE_DD }, /* 21: D1040 */
{ 19, TYPE_DD }, /* 22: D1120 */
{ 20, TYPE_HD }, /* 23: h1600 */
{ 21, TYPE_HD }, /* 24: H1760 */
{ 22, TYPE_HD }, /* 25: H1920 */
{ 23, TYPE_ED }, /* 26: E3200 */
{ 24, TYPE_ED }, /* 27: E3520 */
{ 25, TYPE_ED }, /* 28: E3840 */
{ 26, TYPE_HD }, /* 29: H1840 */
{ 27, TYPE_DD }, /* 30: D800 */
{ 6, TYPE_HD }, /* 31: H1640 <- was H1600 == h1600 for PC */
};
#define NUM_DISK_MINORS ARRAY_SIZE(minor2disktype)
/*
* Maximum disk size (in kilobytes). This default is used whenever the
* current disk size is unknown.
*/
#define MAX_DISK_SIZE 3280
/*
* MSch: User-provided type information. 'drive' points to
* the respective entry of this array. Set by FDSETPRM ioctls.
*/
static struct atari_disk_type user_params[FD_MAX_UNITS];
/*
* User-provided permanent type information. 'drive' points to
* the respective entry of this array. Set by FDDEFPRM ioctls,
* restored upon disk change by floppy_revalidate() if valid (as seen by
* default_params[].blocks > 0 - a bit in unit[].flags might be used for this?)
*/
static struct atari_disk_type default_params[FD_MAX_UNITS];
/* current info on each unit */
static struct atari_floppy_struct {
int connected; /* !=0 : drive is connected */
int autoprobe; /* !=0 : do autoprobe */
struct atari_disk_type *disktype; /* current type of disk */
int track; /* current head position or -1 if
unknown */
unsigned int steprate; /* steprate setting */
unsigned int wpstat; /* current state of WP signal (for
disk change detection) */
int flags; /* flags */
struct gendisk *disk;
int ref;
int type;
} unit[FD_MAX_UNITS];
#define UD unit[drive]
#define UDT unit[drive].disktype
#define SUD unit[SelectedDrive]
#define SUDT unit[SelectedDrive].disktype
#define FDC_READ(reg) ({ \
/* unsigned long __flags; */ \
unsigned short __val; \
/* local_irq_save(__flags); */ \
dma_wd.dma_mode_status = 0x80 | (reg); \
udelay(25); \
__val = dma_wd.fdc_acces_seccount; \
MFPDELAY(); \
/* local_irq_restore(__flags); */ \
__val & 0xff; \
})
#define FDC_WRITE(reg,val) \
do { \
/* unsigned long __flags; */ \
/* local_irq_save(__flags); */ \
dma_wd.dma_mode_status = 0x80 | (reg); \
udelay(25); \
dma_wd.fdc_acces_seccount = (val); \
MFPDELAY(); \
/* local_irq_restore(__flags); */ \
} while(0)
/* Buffering variables:
* First, there is a DMA buffer in ST-RAM that is used for floppy DMA
* operations. Second, a track buffer is used to cache a whole track
* of the disk to save read operations. These are two separate buffers
* because that allows write operations without clearing the track buffer.
*/
static int MaxSectors[] = {
11, 22, 44
};
static int BufferSize[] = {
15*512, 30*512, 60*512
};
#define BUFFER_SIZE (BufferSize[DriveType])
unsigned char *DMABuffer; /* buffer for writes */
static unsigned long PhysDMABuffer; /* physical address */
static int UseTrackbuffer = -1; /* Do track buffering? */
module_param(UseTrackbuffer, int, 0);
unsigned char *TrackBuffer; /* buffer for reads */
static unsigned long PhysTrackBuffer; /* physical address */
static int BufferDrive, BufferSide, BufferTrack;
static int read_track; /* non-zero if we are reading whole tracks */
#define SECTOR_BUFFER(sec) (TrackBuffer + ((sec)-1)*512)
#define IS_BUFFERED(drive,side,track) \
(BufferDrive == (drive) && BufferSide == (side) && BufferTrack == (track))
/*
* These are global variables, as that's the easiest way to give
* information to interrupts. They are the data used for the current
* request.
*/
static int SelectedDrive = 0;
static int ReqCmd, ReqBlock;
static int ReqSide, ReqTrack, ReqSector, ReqCnt;
static int HeadSettleFlag = 0;
static unsigned char *ReqData, *ReqBuffer;
static int MotorOn = 0, MotorOffTrys;
static int IsFormatting = 0, FormatError;
static int UserSteprate[FD_MAX_UNITS] = { -1, -1 };
module_param_array(UserSteprate, int, NULL, 0);
/* Synchronization of FDC access. */
static volatile int fdc_busy = 0;
static DECLARE_WAIT_QUEUE_HEAD(fdc_wait);
static DECLARE_COMPLETION(format_wait);
static unsigned long changed_floppies = 0xff, fake_change = 0;
#define CHECK_CHANGE_DELAY HZ/2
#define FD_MOTOR_OFF_DELAY (3*HZ)
#define FD_MOTOR_OFF_MAXTRY (10*20)
#define FLOPPY_TIMEOUT (6*HZ)
#define RECALIBRATE_ERRORS 4 /* After this many errors the drive
* will be recalibrated. */
#define MAX_ERRORS 8 /* After this many errors the driver
* will give up. */
/*
* The driver is trying to determine the correct media format
* while Probing is set. fd_rwsec_done() clears it after a
* successful access.
*/
static int Probing = 0;
/* This flag is set when a dummy seek is necessary to make the WP
* status bit accessible.
*/
static int NeedSeek = 0;
#ifdef DEBUG
#define DPRINT(a) printk a
#else
#define DPRINT(a)
#endif
/***************************** Prototypes *****************************/
static void fd_select_side( int side );
static void fd_select_drive( int drive );
static void fd_deselect( void );
static void fd_motor_off_timer( unsigned long dummy );
static void check_change( unsigned long dummy );
static irqreturn_t floppy_irq (int irq, void *dummy);
static void fd_error( void );
static int do_format(int drive, int type, struct atari_format_descr *desc);
static void do_fd_action( int drive );
static void fd_calibrate( void );
static void fd_calibrate_done( int status );
static void fd_seek( void );
static void fd_seek_done( int status );
static void fd_rwsec( void );
static void fd_readtrack_check( unsigned long dummy );
static void fd_rwsec_done( int status );
static void fd_rwsec_done1(int status);
static void fd_writetrack( void );
static void fd_writetrack_done( int status );
static void fd_times_out( unsigned long dummy );
static void finish_fdc( void );
static void finish_fdc_done( int dummy );
static void setup_req_params( int drive );
static void redo_fd_request( void);
static int fd_locked_ioctl(struct block_device *bdev, fmode_t mode, unsigned int
cmd, unsigned long param);
static void fd_probe( int drive );
static int fd_test_drive_present( int drive );
static void config_types( void );
static int floppy_open(struct block_device *bdev, fmode_t mode);
static void floppy_release(struct gendisk *disk, fmode_t mode);
/************************* End of Prototypes **************************/
static DEFINE_TIMER(motor_off_timer, fd_motor_off_timer, 0, 0);
static DEFINE_TIMER(readtrack_timer, fd_readtrack_check, 0, 0);
static DEFINE_TIMER(timeout_timer, fd_times_out, 0, 0);
static DEFINE_TIMER(fd_timer, check_change, 0, 0);
static void fd_end_request_cur(int err)
{
if (!__blk_end_request_cur(fd_request, err))
fd_request = NULL;
}
static inline void start_motor_off_timer(void)
{
mod_timer(&motor_off_timer, jiffies + FD_MOTOR_OFF_DELAY);
MotorOffTrys = 0;
}
static inline void start_check_change_timer( void )
{
mod_timer(&fd_timer, jiffies + CHECK_CHANGE_DELAY);
}
static inline void start_timeout(void)
{
mod_timer(&timeout_timer, jiffies + FLOPPY_TIMEOUT);
}
static inline void stop_timeout(void)
{
del_timer(&timeout_timer);
}
/* Select the side to use. */
static void fd_select_side( int side )
{
unsigned long flags;
/* protect against various other ints mucking around with the PSG */
local_irq_save(flags);
sound_ym.rd_data_reg_sel = 14; /* Select PSG Port A */
sound_ym.wd_data = (side == 0) ? sound_ym.rd_data_reg_sel | 0x01 :
sound_ym.rd_data_reg_sel & 0xfe;
local_irq_restore(flags);
}
/* Select a drive, update the FDC's track register and set the correct
* clock speed for this disk's type.
*/
static void fd_select_drive( int drive )
{
unsigned long flags;
unsigned char tmp;
if (drive == SelectedDrive)
return;
/* protect against various other ints mucking around with the PSG */
local_irq_save(flags);
sound_ym.rd_data_reg_sel = 14; /* Select PSG Port A */
tmp = sound_ym.rd_data_reg_sel;
sound_ym.wd_data = (tmp | DSKDRVNONE) & ~(drive == 0 ? DSKDRV0 : DSKDRV1);
atari_dont_touch_floppy_select = 1;
local_irq_restore(flags);
/* restore track register to saved value */
FDC_WRITE( FDCREG_TRACK, UD.track );
udelay(25);
/* select 8/16 MHz */
if (UDT)
if (ATARIHW_PRESENT(FDCSPEED))
dma_wd.fdc_speed = UDT->fdc_speed;
SelectedDrive = drive;
}
/* Deselect both drives. */
static void fd_deselect( void )
{
unsigned long flags;
/* protect against various other ints mucking around with the PSG */
local_irq_save(flags);
atari_dont_touch_floppy_select = 0;
sound_ym.rd_data_reg_sel=14; /* Select PSG Port A */
sound_ym.wd_data = (sound_ym.rd_data_reg_sel |
(MACH_IS_FALCON ? 3 : 7)); /* no drives selected */
/* On Falcon, the drive B select line is used on the printer port, so
* leave it alone... */
SelectedDrive = -1;
local_irq_restore(flags);
}
/* This timer function deselects the drives when the FDC switched the
* motor off. The deselection cannot happen earlier because the FDC
* counts the index signals, which arrive only if one drive is selected.
*/
static void fd_motor_off_timer( unsigned long dummy )
{
unsigned char status;
if (SelectedDrive < 0)
/* no drive selected, needn't deselect anyone */
return;
if (stdma_islocked())
goto retry;
status = FDC_READ( FDCREG_STATUS );
if (!(status & 0x80)) {
/* motor already turned off by FDC -> deselect drives */
MotorOn = 0;
fd_deselect();
return;
}
/* not yet off, try again */
retry:
/* Test again later; if tested too often, it seems there is no disk
* in the drive and the FDC will leave the motor on forever (or,
* at least until a disk is inserted). So we'll test only twice
* per second from then on...
*/
mod_timer(&motor_off_timer,
jiffies + (MotorOffTrys++ < FD_MOTOR_OFF_MAXTRY ? HZ/20 : HZ/2));
}
/* This function is repeatedly called to detect disk changes (as good
* as possible) and keep track of the current state of the write protection.
*/
static void check_change( unsigned long dummy )
{
static int drive = 0;
unsigned long flags;
unsigned char old_porta;
int stat;
if (++drive > 1 || !UD.connected)
drive = 0;
/* protect against various other ints mucking around with the PSG */
local_irq_save(flags);
if (!stdma_islocked()) {
sound_ym.rd_data_reg_sel = 14;
old_porta = sound_ym.rd_data_reg_sel;
sound_ym.wd_data = (old_porta | DSKDRVNONE) &
~(drive == 0 ? DSKDRV0 : DSKDRV1);
stat = !!(FDC_READ( FDCREG_STATUS ) & FDCSTAT_WPROT);
sound_ym.wd_data = old_porta;
if (stat != UD.wpstat) {
DPRINT(( "wpstat[%d] = %d\n", drive, stat ));
UD.wpstat = stat;
set_bit (drive, &changed_floppies);
}
}
local_irq_restore(flags);
start_check_change_timer();
}
/* Handling of the Head Settling Flag: This flag should be set after each
* seek operation, because we don't use seeks with verify.
*/
static inline void set_head_settle_flag(void)
{
HeadSettleFlag = FDCCMDADD_E;
}
static inline int get_head_settle_flag(void)
{
int tmp = HeadSettleFlag;
HeadSettleFlag = 0;
return( tmp );
}
static inline void copy_buffer(void *from, void *to)
{
ulong *p1 = (ulong *)from, *p2 = (ulong *)to;
int cnt;
for (cnt = 512/4; cnt; cnt--)
*p2++ = *p1++;
}
/* General Interrupt Handling */
static void (*FloppyIRQHandler)( int status ) = NULL;
static irqreturn_t floppy_irq (int irq, void *dummy)
{
unsigned char status;
void (*handler)( int );
handler = xchg(&FloppyIRQHandler, NULL);
if (handler) {
nop();
status = FDC_READ( FDCREG_STATUS );
DPRINT(("FDC irq, status = %02x handler = %08lx\n",status,(unsigned long)handler));
handler( status );
}
else {
DPRINT(("FDC irq, no handler\n"));
}
return IRQ_HANDLED;
}
/* Error handling: If some error happened, retry some times, then
* recalibrate, then try again, and fail after MAX_ERRORS.
*/
static void fd_error( void )
{
if (IsFormatting) {
IsFormatting = 0;
FormatError = 1;
complete(&format_wait);
return;
}
if (!fd_request)
return;
fd_request->errors++;
if (fd_request->errors >= MAX_ERRORS) {
printk(KERN_ERR "fd%d: too many errors.\n", SelectedDrive );
fd_end_request_cur(-EIO);
}
else if (fd_request->errors == RECALIBRATE_ERRORS) {
printk(KERN_WARNING "fd%d: recalibrating\n", SelectedDrive );
if (SelectedDrive != -1)
SUD.track = -1;
}
redo_fd_request();
}
#define SET_IRQ_HANDLER(proc) do { FloppyIRQHandler = (proc); } while(0)
/* ---------- Formatting ---------- */
#define FILL(n,val) \
do { \
memset( p, val, n ); \
p += n; \
} while(0)
static int do_format(int drive, int type, struct atari_format_descr *desc)
{
unsigned char *p;
int sect, nsect;
unsigned long flags;
DPRINT(("do_format( dr=%d tr=%d he=%d offs=%d )\n",
drive, desc->track, desc->head, desc->sect_offset ));
wait_event(fdc_wait, cmpxchg(&fdc_busy, 0, 1) == 0);
local_irq_save(flags);
stdma_lock(floppy_irq, NULL);
atari_turnon_irq( IRQ_MFP_FDC ); /* should be already, just to be sure */
local_irq_restore(flags);
if (type) {
if (--type >= NUM_DISK_MINORS ||
minor2disktype[type].drive_types > DriveType) {
redo_fd_request();
return -EINVAL;
}
type = minor2disktype[type].index;
UDT = &atari_disk_type[type];
}
if (!UDT || desc->track >= UDT->blocks/UDT->spt/2 || desc->head >= 2) {
redo_fd_request();
return -EINVAL;
}
nsect = UDT->spt;
p = TrackBuffer;
/* The track buffer is used for the raw track data, so its
contents become invalid! */
BufferDrive = -1;
/* stop deselect timer */
del_timer( &motor_off_timer );
FILL( 60 * (nsect / 9), 0x4e );
for( sect = 0; sect < nsect; ++sect ) {
FILL( 12, 0 );
FILL( 3, 0xf5 );
*p++ = 0xfe;
*p++ = desc->track;
*p++ = desc->head;
*p++ = (nsect + sect - desc->sect_offset) % nsect + 1;
*p++ = 2;
*p++ = 0xf7;
FILL( 22, 0x4e );
FILL( 12, 0 );
FILL( 3, 0xf5 );
*p++ = 0xfb;
FILL( 512, 0xe5 );
*p++ = 0xf7;
FILL( 40, 0x4e );
}
FILL( TrackBuffer+BUFFER_SIZE-p, 0x4e );
IsFormatting = 1;
FormatError = 0;
ReqTrack = desc->track;
ReqSide = desc->head;
do_fd_action( drive );
wait_for_completion(&format_wait);
redo_fd_request();
return( FormatError ? -EIO : 0 );
}
/* do_fd_action() is the general procedure for a fd request: All
* required parameter settings (drive select, side select, track
* position) are checked and set if needed. For each of these
* parameters and the actual reading or writing exist two functions:
* one that starts the setting (or skips it if possible) and one
* callback for the "done" interrupt. Each done func calls the next
* set function to propagate the request down to fd_rwsec_done().
*/
static void do_fd_action( int drive )
{
DPRINT(("do_fd_action\n"));
if (UseTrackbuffer && !IsFormatting) {
repeat:
if (IS_BUFFERED( drive, ReqSide, ReqTrack )) {
if (ReqCmd == READ) {
copy_buffer( SECTOR_BUFFER(ReqSector), ReqData );
if (++ReqCnt < blk_rq_cur_sectors(fd_request)) {
/* read next sector */
setup_req_params( drive );
goto repeat;
}
else {
/* all sectors finished */
fd_end_request_cur(0);
redo_fd_request();
return;
}
}
else {
/* cmd == WRITE, pay attention to track buffer
* consistency! */
copy_buffer( ReqData, SECTOR_BUFFER(ReqSector) );
}
}
}
if (SelectedDrive != drive)
fd_select_drive( drive );
if (UD.track == -1)
fd_calibrate();
else if (UD.track != ReqTrack << UDT->stretch)
fd_seek();
else if (IsFormatting)
fd_writetrack();
else
fd_rwsec();
}
/* Seek to track 0 if the current track is unknown */
static void fd_calibrate( void )
{
if (SUD.track >= 0) {
fd_calibrate_done( 0 );
return;
}
if (ATARIHW_PRESENT(FDCSPEED))
dma_wd.fdc_speed = 0; /* always seek with 8 Mhz */;
DPRINT(("fd_calibrate\n"));
SET_IRQ_HANDLER( fd_calibrate_done );
/* we can't verify, since the speed may be incorrect */
FDC_WRITE( FDCREG_CMD, FDCCMD_RESTORE | SUD.steprate );
NeedSeek = 1;
MotorOn = 1;
start_timeout();
/* wait for IRQ */
}
static void fd_calibrate_done( int status )
{
DPRINT(("fd_calibrate_done()\n"));
stop_timeout();
/* set the correct speed now */
if (ATARIHW_PRESENT(FDCSPEED))
dma_wd.fdc_speed = SUDT->fdc_speed;
if (status & FDCSTAT_RECNF) {
printk(KERN_ERR "fd%d: restore failed\n", SelectedDrive );
fd_error();
}
else {
SUD.track = 0;
fd_seek();
}
}
/* Seek the drive to the requested track. The drive must have been
* calibrated at some point before this.
*/
static void fd_seek( void )
{
if (SUD.track == ReqTrack << SUDT->stretch) {
fd_seek_done( 0 );
return;
}
if (ATARIHW_PRESENT(FDCSPEED)) {
dma_wd.fdc_speed = 0; /* always seek witch 8 Mhz */
MFPDELAY();
}
DPRINT(("fd_seek() to track %d\n",ReqTrack));
FDC_WRITE( FDCREG_DATA, ReqTrack << SUDT->stretch);
udelay(25);
SET_IRQ_HANDLER( fd_seek_done );
FDC_WRITE( FDCREG_CMD, FDCCMD_SEEK | SUD.steprate );
MotorOn = 1;
set_head_settle_flag();
start_timeout();
/* wait for IRQ */
}
static void fd_seek_done( int status )
{
DPRINT(("fd_seek_done()\n"));
stop_timeout();
/* set the correct speed */
if (ATARIHW_PRESENT(FDCSPEED))
dma_wd.fdc_speed = SUDT->fdc_speed;
if (status & FDCSTAT_RECNF) {
printk(KERN_ERR "fd%d: seek error (to track %d)\n",
SelectedDrive, ReqTrack );
/* we don't know exactly which track we are on now! */
SUD.track = -1;
fd_error();
}
else {
SUD.track = ReqTrack << SUDT->stretch;
NeedSeek = 0;
if (IsFormatting)
fd_writetrack();
else
fd_rwsec();
}
}
/* This does the actual reading/writing after positioning the head
* over the correct track.
*/
static int MultReadInProgress = 0;
static void fd_rwsec( void )
{
unsigned long paddr, flags;
unsigned int rwflag, old_motoron;
unsigned int track;
DPRINT(("fd_rwsec(), Sec=%d, Access=%c\n",ReqSector, ReqCmd == WRITE ? 'w' : 'r' ));
if (ReqCmd == WRITE) {
if (ATARIHW_PRESENT(EXTD_DMA)) {
paddr = virt_to_phys(ReqData);
}
else {
copy_buffer( ReqData, DMABuffer );
paddr = PhysDMABuffer;
}
dma_cache_maintenance( paddr, 512, 1 );
rwflag = 0x100;
}
else {
if (read_track)
paddr = PhysTrackBuffer;
else
paddr = ATARIHW_PRESENT(EXTD_DMA) ?
virt_to_phys(ReqData) : PhysDMABuffer;
rwflag = 0;
}
fd_select_side( ReqSide );
/* Start sector of this operation */
FDC_WRITE( FDCREG_SECTOR, read_track ? 1 : ReqSector );
MFPDELAY();
/* Cheat for track if stretch != 0 */
if (SUDT->stretch) {
track = FDC_READ( FDCREG_TRACK);
MFPDELAY();
FDC_WRITE( FDCREG_TRACK, track >> SUDT->stretch);
}
udelay(25);
/* Setup DMA */
local_irq_save(flags);
dma_wd.dma_lo = (unsigned char)paddr;
MFPDELAY();
paddr >>= 8;
dma_wd.dma_md = (unsigned char)paddr;
MFPDELAY();
paddr >>= 8;
if (ATARIHW_PRESENT(EXTD_DMA))
st_dma_ext_dmahi = (unsigned short)paddr;
else
dma_wd.dma_hi = (unsigned char)paddr;
MFPDELAY();
local_irq_restore(flags);
/* Clear FIFO and switch DMA to correct mode */
dma_wd.dma_mode_status = 0x90 | rwflag;
MFPDELAY();
dma_wd.dma_mode_status = 0x90 | (rwflag ^ 0x100);
MFPDELAY();
dma_wd.dma_mode_status = 0x90 | rwflag;
MFPDELAY();
/* How many sectors for DMA */
dma_wd.fdc_acces_seccount = read_track ? SUDT->spt : 1;
udelay(25);
/* Start operation */
dma_wd.dma_mode_status = FDCSELREG_STP | rwflag;
udelay(25);
SET_IRQ_HANDLER( fd_rwsec_done );
dma_wd.fdc_acces_seccount =
(get_head_settle_flag() |
(rwflag ? FDCCMD_WRSEC : (FDCCMD_RDSEC | (read_track ? FDCCMDADD_M : 0))));
old_motoron = MotorOn;
MotorOn = 1;
NeedSeek = 1;
/* wait for interrupt */
if (read_track) {
/* If reading a whole track, wait about one disk rotation and
* then check if all sectors are read. The FDC will even
* search for the first non-existent sector and need 1 sec to
* recognise that it isn't present :-(
*/
MultReadInProgress = 1;
mod_timer(&readtrack_timer,
/* 1 rot. + 5 rot.s if motor was off */
jiffies + HZ/5 + (old_motoron ? 0 : HZ));
}
start_timeout();
}
static void fd_readtrack_check( unsigned long dummy )
{
unsigned long flags, addr, addr2;
local_irq_save(flags);
if (!MultReadInProgress) {
/* This prevents a race condition that could arise if the
* interrupt is triggered while the calling of this timer
* callback function takes place. The IRQ function then has
* already cleared 'MultReadInProgress' when flow of control
* gets here.
*/
local_irq_restore(flags);
return;
}
/* get the current DMA address */
/* ++ f.a. read twice to avoid being fooled by switcher */
addr = 0;
do {
addr2 = addr;
addr = dma_wd.dma_lo & 0xff;
MFPDELAY();
addr |= (dma_wd.dma_md & 0xff) << 8;
MFPDELAY();
if (ATARIHW_PRESENT( EXTD_DMA ))
addr |= (st_dma_ext_dmahi & 0xffff) << 16;
else
addr |= (dma_wd.dma_hi & 0xff) << 16;
MFPDELAY();
} while(addr != addr2);
if (addr >= PhysTrackBuffer + SUDT->spt*512) {
/* already read enough data, force an FDC interrupt to stop
* the read operation
*/
SET_IRQ_HANDLER( NULL );
MultReadInProgress = 0;
local_irq_restore(flags);
DPRINT(("fd_readtrack_check(): done\n"));
FDC_WRITE( FDCREG_CMD, FDCCMD_FORCI );
udelay(25);
/* No error until now -- the FDC would have interrupted
* otherwise!
*/
fd_rwsec_done1(0);
}
else {
/* not yet finished, wait another tenth rotation */
local_irq_restore(flags);
DPRINT(("fd_readtrack_check(): not yet finished\n"));
mod_timer(&readtrack_timer, jiffies + HZ/5/10);
}
}
static void fd_rwsec_done( int status )
{
DPRINT(("fd_rwsec_done()\n"));
if (read_track) {
del_timer(&readtrack_timer);
if (!MultReadInProgress)
return;
MultReadInProgress = 0;
}
fd_rwsec_done1(status);
}
static void fd_rwsec_done1(int status)
{
unsigned int track;
stop_timeout();
/* Correct the track if stretch != 0 */
if (SUDT->stretch) {
track = FDC_READ( FDCREG_TRACK);
MFPDELAY();
FDC_WRITE( FDCREG_TRACK, track << SUDT->stretch);
}
if (!UseTrackbuffer) {
dma_wd.dma_mode_status = 0x90;
MFPDELAY();
if (!(dma_wd.dma_mode_status & 0x01)) {
printk(KERN_ERR "fd%d: DMA error\n", SelectedDrive );
goto err_end;
}
}
MFPDELAY();
if (ReqCmd == WRITE && (status & FDCSTAT_WPROT)) {
printk(KERN_NOTICE "fd%d: is write protected\n", SelectedDrive );
goto err_end;
}
if ((status & FDCSTAT_RECNF) &&
/* RECNF is no error after a multiple read when the FDC
searched for a non-existent sector! */
!(read_track && FDC_READ(FDCREG_SECTOR) > SUDT->spt)) {
if (Probing) {
if (SUDT > atari_disk_type) {
if (SUDT[-1].blocks > ReqBlock) {
/* try another disk type */
SUDT--;
set_capacity(unit[SelectedDrive].disk,
SUDT->blocks);
} else
Probing = 0;
}
else {
if (SUD.flags & FTD_MSG)
printk(KERN_INFO "fd%d: Auto-detected floppy type %s\n",
SelectedDrive, SUDT->name );
Probing=0;
}
} else {
/* record not found, but not probing. Maybe stretch wrong ? Restart probing */
if (SUD.autoprobe) {
SUDT = atari_disk_type + StartDiskType[DriveType];
set_capacity(unit[SelectedDrive].disk,
SUDT->blocks);
Probing = 1;
}
}
if (Probing) {
if (ATARIHW_PRESENT(FDCSPEED)) {
dma_wd.fdc_speed = SUDT->fdc_speed;
MFPDELAY();
}
setup_req_params( SelectedDrive );
BufferDrive = -1;
do_fd_action( SelectedDrive );
return;
}
printk(KERN_ERR "fd%d: sector %d not found (side %d, track %d)\n",
SelectedDrive, FDC_READ (FDCREG_SECTOR), ReqSide, ReqTrack );
goto err_end;
}
if (status & FDCSTAT_CRC) {
printk(KERN_ERR "fd%d: CRC error (side %d, track %d, sector %d)\n",
SelectedDrive, ReqSide, ReqTrack, FDC_READ (FDCREG_SECTOR) );
goto err_end;
}
if (status & FDCSTAT_LOST) {
printk(KERN_ERR "fd%d: lost data (side %d, track %d, sector %d)\n",
SelectedDrive, ReqSide, ReqTrack, FDC_READ (FDCREG_SECTOR) );
goto err_end;
}
Probing = 0;
if (ReqCmd == READ) {
if (!read_track) {
void *addr;
addr = ATARIHW_PRESENT( EXTD_DMA ) ? ReqData : DMABuffer;
dma_cache_maintenance( virt_to_phys(addr), 512, 0 );
if (!ATARIHW_PRESENT( EXTD_DMA ))
copy_buffer (addr, ReqData);
} else {
dma_cache_maintenance( PhysTrackBuffer, MaxSectors[DriveType] * 512, 0 );
BufferDrive = SelectedDrive;
BufferSide = ReqSide;
BufferTrack = ReqTrack;
copy_buffer (SECTOR_BUFFER (ReqSector), ReqData);
}
}
if (++ReqCnt < blk_rq_cur_sectors(fd_request)) {
/* read next sector */
setup_req_params( SelectedDrive );
do_fd_action( SelectedDrive );
}
else {
/* all sectors finished */
fd_end_request_cur(0);
redo_fd_request();
}
return;
err_end:
BufferDrive = -1;
fd_error();
}
static void fd_writetrack( void )
{
unsigned long paddr, flags;
unsigned int track;
DPRINT(("fd_writetrack() Tr=%d Si=%d\n", ReqTrack, ReqSide ));
paddr = PhysTrackBuffer;
dma_cache_maintenance( paddr, BUFFER_SIZE, 1 );
fd_select_side( ReqSide );
/* Cheat for track if stretch != 0 */
if (SUDT->stretch) {
track = FDC_READ( FDCREG_TRACK);
MFPDELAY();
FDC_WRITE(FDCREG_TRACK,track >> SUDT->stretch);
}
udelay(40);
/* Setup DMA */
local_irq_save(flags);
dma_wd.dma_lo = (unsigned char)paddr;
MFPDELAY();
paddr >>= 8;
dma_wd.dma_md = (unsigned char)paddr;
MFPDELAY();
paddr >>= 8;
if (ATARIHW_PRESENT( EXTD_DMA ))
st_dma_ext_dmahi = (unsigned short)paddr;
else
dma_wd.dma_hi = (unsigned char)paddr;
MFPDELAY();
local_irq_restore(flags);
/* Clear FIFO and switch DMA to correct mode */
dma_wd.dma_mode_status = 0x190;
MFPDELAY();
dma_wd.dma_mode_status = 0x90;
MFPDELAY();
dma_wd.dma_mode_status = 0x190;
MFPDELAY();
/* How many sectors for DMA */
dma_wd.fdc_acces_seccount = BUFFER_SIZE/512;
udelay(40);
/* Start operation */
dma_wd.dma_mode_status = FDCSELREG_STP | 0x100;
udelay(40);
SET_IRQ_HANDLER( fd_writetrack_done );
dma_wd.fdc_acces_seccount = FDCCMD_WRTRA | get_head_settle_flag();
MotorOn = 1;
start_timeout();
/* wait for interrupt */
}
static void fd_writetrack_done( int status )
{
DPRINT(("fd_writetrack_done()\n"));
stop_timeout();
if (status & FDCSTAT_WPROT) {
printk(KERN_NOTICE "fd%d: is write protected\n", SelectedDrive );
goto err_end;
}
if (status & FDCSTAT_LOST) {
printk(KERN_ERR "fd%d: lost data (side %d, track %d)\n",
SelectedDrive, ReqSide, ReqTrack );
goto err_end;
}
complete(&format_wait);
return;
err_end:
fd_error();
}
static void fd_times_out( unsigned long dummy )
{
atari_disable_irq( IRQ_MFP_FDC );
if (!FloppyIRQHandler) goto end; /* int occurred after timer was fired, but
* before we came here... */
SET_IRQ_HANDLER( NULL );
/* If the timeout occurred while the readtrack_check timer was
* active, we need to cancel it, else bad things will happen */
if (UseTrackbuffer)
del_timer( &readtrack_timer );
FDC_WRITE( FDCREG_CMD, FDCCMD_FORCI );
udelay( 25 );
printk(KERN_ERR "floppy timeout\n" );
fd_error();
end:
atari_enable_irq( IRQ_MFP_FDC );
}
/* The (noop) seek operation here is needed to make the WP bit in the
* FDC status register accessible for check_change. If the last disk
* operation would have been a RDSEC, this bit would always read as 0
* no matter what :-( To save time, the seek goes to the track we're
* already on.
*/
static void finish_fdc( void )
{
if (!NeedSeek) {
finish_fdc_done( 0 );
}
else {
DPRINT(("finish_fdc: dummy seek started\n"));
FDC_WRITE (FDCREG_DATA, SUD.track);
SET_IRQ_HANDLER( finish_fdc_done );
FDC_WRITE (FDCREG_CMD, FDCCMD_SEEK);
MotorOn = 1;
start_timeout();
/* we must wait for the IRQ here, because the ST-DMA
is released immediately afterwards and the interrupt
may be delivered to the wrong driver. */
}
}
static void finish_fdc_done( int dummy )
{
unsigned long flags;
DPRINT(("finish_fdc_done entered\n"));
stop_timeout();
NeedSeek = 0;
if (timer_pending(&fd_timer) && time_before(fd_timer.expires, jiffies + 5))
/* If the check for a disk change is done too early after this
* last seek command, the WP bit still reads wrong :-((
*/
mod_timer(&fd_timer, jiffies + 5);
else
start_check_change_timer();
start_motor_off_timer();
local_irq_save(flags);
stdma_release();
fdc_busy = 0;
wake_up( &fdc_wait );
local_irq_restore(flags);
DPRINT(("finish_fdc() finished\n"));
}
/* The detection of disk changes is a dark chapter in Atari history :-(
* Because the "Drive ready" signal isn't present in the Atari
* hardware, one has to rely on the "Write Protect". This works fine,
* as long as no write protected disks are used. TOS solves this
* problem by introducing tri-state logic ("maybe changed") and
* looking at the serial number in block 0. This isn't possible for
* Linux, since the floppy driver can't make assumptions about the
* filesystem used on the disk and thus the contents of block 0. I've
* chosen the method to always say "The disk was changed" if it is
* unsure whether it was. This implies that every open or mount
* invalidates the disk buffers if you work with write protected
* disks. But at least this is better than working with incorrect data
* due to unrecognised disk changes.
*/
static unsigned int floppy_check_events(struct gendisk *disk,
unsigned int clearing)
{
struct atari_floppy_struct *p = disk->private_data;
unsigned int drive = p - unit;
if (test_bit (drive, &fake_change)) {
/* simulated change (e.g. after formatting) */
return DISK_EVENT_MEDIA_CHANGE;
}
if (test_bit (drive, &changed_floppies)) {
/* surely changed (the WP signal changed at least once) */
return DISK_EVENT_MEDIA_CHANGE;
}
if (UD.wpstat) {
/* WP is on -> could be changed: to be sure, buffers should be
* invalidated...
*/
return DISK_EVENT_MEDIA_CHANGE;
}
return 0;
}
static int floppy_revalidate(struct gendisk *disk)
{
struct atari_floppy_struct *p = disk->private_data;
unsigned int drive = p - unit;
if (test_bit(drive, &changed_floppies) ||
test_bit(drive, &fake_change) ||
p->disktype == 0) {
if (UD.flags & FTD_MSG)
printk(KERN_ERR "floppy: clear format %p!\n", UDT);
BufferDrive = -1;
clear_bit(drive, &fake_change);
clear_bit(drive, &changed_floppies);
/* MSch: clearing geometry makes sense only for autoprobe
formats, for 'permanent user-defined' parameter:
restore default_params[] here if flagged valid! */
if (default_params[drive].blocks == 0)
UDT = NULL;
else
UDT = &default_params[drive];
}
return 0;
}
/* This sets up the global variables describing the current request. */
static void setup_req_params( int drive )
{
int block = ReqBlock + ReqCnt;
ReqTrack = block / UDT->spt;
ReqSector = block - ReqTrack * UDT->spt + 1;
ReqSide = ReqTrack & 1;
ReqTrack >>= 1;
ReqData = ReqBuffer + 512 * ReqCnt;
if (UseTrackbuffer)
read_track = (ReqCmd == READ && fd_request->errors == 0);
else
read_track = 0;
DPRINT(("Request params: Si=%d Tr=%d Se=%d Data=%08lx\n",ReqSide,
ReqTrack, ReqSector, (unsigned long)ReqData ));
}
/*
* Round-robin between our available drives, doing one request from each
*/
static struct request *set_next_request(void)
{
struct request_queue *q;
int old_pos = fdc_queue;
struct request *rq = NULL;
do {
q = unit[fdc_queue].disk->queue;
if (++fdc_queue == FD_MAX_UNITS)
fdc_queue = 0;
if (q) {
rq = blk_fetch_request(q);
if (rq)
break;
}
} while (fdc_queue != old_pos);
return rq;
}
static void redo_fd_request(void)
{
int drive, type;
struct atari_floppy_struct *floppy;
DPRINT(("redo_fd_request: fd_request=%p dev=%s fd_request->sector=%ld\n",
fd_request, fd_request ? fd_request->rq_disk->disk_name : "",
fd_request ? blk_rq_pos(fd_request) : 0 ));
IsFormatting = 0;
repeat:
if (!fd_request) {
fd_request = set_next_request();
if (!fd_request)
goto the_end;
}
floppy = fd_request->rq_disk->private_data;
drive = floppy - unit;
type = floppy->type;
if (!UD.connected) {
/* drive not connected */
printk(KERN_ERR "Unknown Device: fd%d\n", drive );
fd_end_request_cur(-EIO);
goto repeat;
}
if (type == 0) {
if (!UDT) {
Probing = 1;
UDT = atari_disk_type + StartDiskType[DriveType];
set_capacity(floppy->disk, UDT->blocks);
UD.autoprobe = 1;
}
}
else {
/* user supplied disk type */
if (--type >= NUM_DISK_MINORS) {
printk(KERN_WARNING "fd%d: invalid disk format", drive );
fd_end_request_cur(-EIO);
goto repeat;
}
if (minor2disktype[type].drive_types > DriveType) {
printk(KERN_WARNING "fd%d: unsupported disk format", drive );
fd_end_request_cur(-EIO);
goto repeat;
}
type = minor2disktype[type].index;
UDT = &atari_disk_type[type];
set_capacity(floppy->disk, UDT->blocks);
UD.autoprobe = 0;
}
if (blk_rq_pos(fd_request) + 1 > UDT->blocks) {
fd_end_request_cur(-EIO);
goto repeat;
}
/* stop deselect timer */
del_timer( &motor_off_timer );
ReqCnt = 0;
ReqCmd = rq_data_dir(fd_request);
ReqBlock = blk_rq_pos(fd_request);
ReqBuffer = bio_data(fd_request->bio);
setup_req_params( drive );
do_fd_action( drive );
return;
the_end:
finish_fdc();
}
void do_fd_request(struct request_queue * q)
{
DPRINT(("do_fd_request for pid %d\n",current->pid));
wait_event(fdc_wait, cmpxchg(&fdc_busy, 0, 1) == 0);
stdma_lock(floppy_irq, NULL);
atari_disable_irq( IRQ_MFP_FDC );
redo_fd_request();
atari_enable_irq( IRQ_MFP_FDC );
}
static int fd_locked_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long param)
{
struct gendisk *disk = bdev->bd_disk;
struct atari_floppy_struct *floppy = disk->private_data;
int drive = floppy - unit;
int type = floppy->type;
struct atari_format_descr fmt_desc;
struct atari_disk_type *dtp;
struct floppy_struct getprm;
int settype;
struct floppy_struct setprm;
void __user *argp = (void __user *)param;
switch (cmd) {
case FDGETPRM:
if (type) {
if (--type >= NUM_DISK_MINORS)
return -ENODEV;
if (minor2disktype[type].drive_types > DriveType)
return -ENODEV;
type = minor2disktype[type].index;
dtp = &atari_disk_type[type];
if (UD.flags & FTD_MSG)
printk (KERN_ERR "floppy%d: found dtp %p name %s!\n",
drive, dtp, dtp->name);
}
else {
if (!UDT)
return -ENXIO;
else
dtp = UDT;
}
memset((void *)&getprm, 0, sizeof(getprm));
getprm.size = dtp->blocks;
getprm.sect = dtp->spt;
getprm.head = 2;
getprm.track = dtp->blocks/dtp->spt/2;
getprm.stretch = dtp->stretch;
if (copy_to_user(argp, &getprm, sizeof(getprm)))
return -EFAULT;
return 0;
}
switch (cmd) {
case FDSETPRM:
case FDDEFPRM:
/*
* MSch 7/96: simple 'set geometry' case: just set the
* 'default' device params (minor == 0).
* Currently, the drive geometry is cleared after each
* disk change and subsequent revalidate()! simple
* implementation of FDDEFPRM: save geometry from a
* FDDEFPRM call and restore it in floppy_revalidate() !
*/
/* get the parameters from user space */
if (floppy->ref != 1 && floppy->ref != -1)
return -EBUSY;
if (copy_from_user(&setprm, argp, sizeof(setprm)))
return -EFAULT;
/*
* first of all: check for floppy change and revalidate,
* or the next access will revalidate - and clear UDT :-(
*/
if (floppy_check_events(disk, 0))
floppy_revalidate(disk);
if (UD.flags & FTD_MSG)
printk (KERN_INFO "floppy%d: setting size %d spt %d str %d!\n",
drive, setprm.size, setprm.sect, setprm.stretch);
/* what if type > 0 here? Overwrite specified entry ? */
if (type) {
/* refuse to re-set a predefined type for now */
redo_fd_request();
return -EINVAL;
}
/*
* type == 0: first look for a matching entry in the type list,
* and set the UD.disktype field to use the perdefined entry.
* TODO: add user-defined format to head of autoprobe list ?
* Useful to include the user-type for future autodetection!
*/
for (settype = 0; settype < NUM_DISK_MINORS; settype++) {
int setidx = 0;
if (minor2disktype[settype].drive_types > DriveType) {
/* skip this one, invalid for drive ... */
continue;
}
setidx = minor2disktype[settype].index;
dtp = &atari_disk_type[setidx];
/* found matching entry ?? */
if ( dtp->blocks == setprm.size
&& dtp->spt == setprm.sect
&& dtp->stretch == setprm.stretch ) {
if (UD.flags & FTD_MSG)
printk (KERN_INFO "floppy%d: setting %s %p!\n",
drive, dtp->name, dtp);
UDT = dtp;
set_capacity(floppy->disk, UDT->blocks);
if (cmd == FDDEFPRM) {
/* save settings as permanent default type */
default_params[drive].name = dtp->name;
default_params[drive].spt = dtp->spt;
default_params[drive].blocks = dtp->blocks;
default_params[drive].fdc_speed = dtp->fdc_speed;
default_params[drive].stretch = dtp->stretch;
}
return 0;
}
}
/* no matching disk type found above - setting user_params */
if (cmd == FDDEFPRM) {
/* set permanent type */
dtp = &default_params[drive];
} else
/* set user type (reset by disk change!) */
dtp = &user_params[drive];
dtp->name = "user format";
dtp->blocks = setprm.size;
dtp->spt = setprm.sect;
if (setprm.sect > 14)
dtp->fdc_speed = 3;
else
dtp->fdc_speed = 0;
dtp->stretch = setprm.stretch;
if (UD.flags & FTD_MSG)
printk (KERN_INFO "floppy%d: blk %d spt %d str %d!\n",
drive, dtp->blocks, dtp->spt, dtp->stretch);
/* sanity check */
if (setprm.track != dtp->blocks/dtp->spt/2 ||
setprm.head != 2) {
redo_fd_request();
return -EINVAL;
}
UDT = dtp;
set_capacity(floppy->disk, UDT->blocks);
return 0;
case FDMSGON:
UD.flags |= FTD_MSG;
return 0;
case FDMSGOFF:
UD.flags &= ~FTD_MSG;
return 0;
case FDSETEMSGTRESH:
return -EINVAL;
case FDFMTBEG:
return 0;
case FDFMTTRK:
if (floppy->ref != 1 && floppy->ref != -1)
return -EBUSY;
if (copy_from_user(&fmt_desc, argp, sizeof(fmt_desc)))
return -EFAULT;
return do_format(drive, type, &fmt_desc);
case FDCLRPRM:
UDT = NULL;
/* MSch: invalidate default_params */
default_params[drive].blocks = 0;
set_capacity(floppy->disk, MAX_DISK_SIZE * 2);
case FDFMTEND:
case FDFLUSH:
/* invalidate the buffer track to force a reread */
BufferDrive = -1;
set_bit(drive, &fake_change);
check_disk_change(bdev);
return 0;
default:
return -EINVAL;
}
}
static int fd_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
int ret;
mutex_lock(&ataflop_mutex);
ret = fd_locked_ioctl(bdev, mode, cmd, arg);
mutex_unlock(&ataflop_mutex);
return ret;
}
/* Initialize the 'unit' variable for drive 'drive' */
static void __init fd_probe( int drive )
{
UD.connected = 0;
UDT = NULL;
if (!fd_test_drive_present( drive ))
return;
UD.connected = 1;
UD.track = 0;
switch( UserSteprate[drive] ) {
case 2:
UD.steprate = FDCSTEP_2;
break;
case 3:
UD.steprate = FDCSTEP_3;
break;
case 6:
UD.steprate = FDCSTEP_6;
break;
case 12:
UD.steprate = FDCSTEP_12;
break;
default: /* should be -1 for "not set by user" */
if (ATARIHW_PRESENT( FDCSPEED ) || MACH_IS_MEDUSA)
UD.steprate = FDCSTEP_3;
else
UD.steprate = FDCSTEP_6;
break;
}
MotorOn = 1; /* from probe restore operation! */
}
/* This function tests the physical presence of a floppy drive (not
* whether a disk is inserted). This is done by issuing a restore
* command, waiting max. 2 seconds (that should be enough to move the
* head across the whole disk) and looking at the state of the "TR00"
* signal. This should now be raised if there is a drive connected
* (and there is no hardware failure :-) Otherwise, the drive is
* declared absent.
*/
static int __init fd_test_drive_present( int drive )
{
unsigned long timeout;
unsigned char status;
int ok;
if (drive >= (MACH_IS_FALCON ? 1 : 2)) return( 0 );
fd_select_drive( drive );
/* disable interrupt temporarily */
atari_turnoff_irq( IRQ_MFP_FDC );
FDC_WRITE (FDCREG_TRACK, 0xff00);
FDC_WRITE( FDCREG_CMD, FDCCMD_RESTORE | FDCCMDADD_H | FDCSTEP_6 );
timeout = jiffies + 2*HZ+HZ/2;
while (time_before(jiffies, timeout))
if (!(st_mfp.par_dt_reg & 0x20))
break;
status = FDC_READ( FDCREG_STATUS );
ok = (status & FDCSTAT_TR00) != 0;
/* force interrupt to abort restore operation (FDC would try
* about 50 seconds!) */
FDC_WRITE( FDCREG_CMD, FDCCMD_FORCI );
udelay(500);
status = FDC_READ( FDCREG_STATUS );
udelay(20);
if (ok) {
/* dummy seek command to make WP bit accessible */
FDC_WRITE( FDCREG_DATA, 0 );
FDC_WRITE( FDCREG_CMD, FDCCMD_SEEK );
while( st_mfp.par_dt_reg & 0x20 )
;
status = FDC_READ( FDCREG_STATUS );
}
atari_turnon_irq( IRQ_MFP_FDC );
return( ok );
}
/* Look how many and which kind of drives are connected. If there are
* floppies, additionally start the disk-change and motor-off timers.
*/
static void __init config_types( void )
{
int drive, cnt = 0;
/* for probing drives, set the FDC speed to 8 MHz */
if (ATARIHW_PRESENT(FDCSPEED))
dma_wd.fdc_speed = 0;
printk(KERN_INFO "Probing floppy drive(s):\n");
for( drive = 0; drive < FD_MAX_UNITS; drive++ ) {
fd_probe( drive );
if (UD.connected) {
printk(KERN_INFO "fd%d\n", drive);
++cnt;
}
}
if (FDC_READ( FDCREG_STATUS ) & FDCSTAT_BUSY) {
/* If FDC is still busy from probing, give it another FORCI
* command to abort the operation. If this isn't done, the FDC
* will interrupt later and its IRQ line stays low, because
* the status register isn't read. And this will block any
* interrupts on this IRQ line :-(
*/
FDC_WRITE( FDCREG_CMD, FDCCMD_FORCI );
udelay(500);
FDC_READ( FDCREG_STATUS );
udelay(20);
}
if (cnt > 0) {
start_motor_off_timer();
if (cnt == 1) fd_select_drive( 0 );
start_check_change_timer();
}
}
/*
* floppy_open check for aliasing (/dev/fd0 can be the same as
* /dev/PS0 etc), and disallows simultaneous access to the same
* drive with different device numbers.
*/
static int floppy_open(struct block_device *bdev, fmode_t mode)
{
struct atari_floppy_struct *p = bdev->bd_disk->private_data;
int type = MINOR(bdev->bd_dev) >> 2;
DPRINT(("fd_open: type=%d\n",type));
if (p->ref && p->type != type)
return -EBUSY;
if (p->ref == -1 || (p->ref && mode & FMODE_EXCL))
return -EBUSY;
if (mode & FMODE_EXCL)
p->ref = -1;
else
p->ref++;
p->type = type;
if (mode & FMODE_NDELAY)
return 0;
if (mode & (FMODE_READ|FMODE_WRITE)) {
check_disk_change(bdev);
if (mode & FMODE_WRITE) {
if (p->wpstat) {
if (p->ref < 0)
p->ref = 0;
else
p->ref--;
return -EROFS;
}
}
}
return 0;
}
static int floppy_unlocked_open(struct block_device *bdev, fmode_t mode)
{
int ret;
mutex_lock(&ataflop_mutex);
ret = floppy_open(bdev, mode);
mutex_unlock(&ataflop_mutex);
return ret;
}
static void floppy_release(struct gendisk *disk, fmode_t mode)
{
struct atari_floppy_struct *p = disk->private_data;
mutex_lock(&ataflop_mutex);
if (p->ref < 0)
p->ref = 0;
else if (!p->ref--) {
printk(KERN_ERR "floppy_release with fd_ref == 0");
p->ref = 0;
}
mutex_unlock(&ataflop_mutex);
}
static const struct block_device_operations floppy_fops = {
.owner = THIS_MODULE,
.open = floppy_unlocked_open,
.release = floppy_release,
.ioctl = fd_ioctl,
.check_events = floppy_check_events,
.revalidate_disk= floppy_revalidate,
};
static struct kobject *floppy_find(dev_t dev, int *part, void *data)
{
int drive = *part & 3;
int type = *part >> 2;
if (drive >= FD_MAX_UNITS || type > NUM_DISK_MINORS)
return NULL;
*part = 0;
return get_disk(unit[drive].disk);
}
static int __init atari_floppy_init (void)
{
int i;
if (!MACH_IS_ATARI)
/* Amiga, Mac, ... don't have Atari-compatible floppy :-) */
return -ENODEV;
if (register_blkdev(FLOPPY_MAJOR,"fd"))
return -EBUSY;
for (i = 0; i < FD_MAX_UNITS; i++) {
unit[i].disk = alloc_disk(1);
if (!unit[i].disk)
goto Enomem;
unit[i].disk->queue = blk_init_queue(do_fd_request,
&ataflop_lock);
if (!unit[i].disk->queue)
goto Enomem;
}
if (UseTrackbuffer < 0)
/* not set by user -> use default: for now, we turn
track buffering off for all Medusas, though it
could be used with ones that have a counter
card. But the test is too hard :-( */
UseTrackbuffer = !MACH_IS_MEDUSA;
/* initialize variables */
SelectedDrive = -1;
BufferDrive = -1;
DMABuffer = atari_stram_alloc(BUFFER_SIZE+512, "ataflop");
if (!DMABuffer) {
printk(KERN_ERR "atari_floppy_init: cannot get dma buffer\n");
goto Enomem;
}
TrackBuffer = DMABuffer + 512;
PhysDMABuffer = atari_stram_to_phys(DMABuffer);
PhysTrackBuffer = virt_to_phys(TrackBuffer);
BufferDrive = BufferSide = BufferTrack = -1;
for (i = 0; i < FD_MAX_UNITS; i++) {
unit[i].track = -1;
unit[i].flags = 0;
unit[i].disk->major = FLOPPY_MAJOR;
unit[i].disk->first_minor = i;
sprintf(unit[i].disk->disk_name, "fd%d", i);
unit[i].disk->fops = &floppy_fops;
unit[i].disk->private_data = &unit[i];
set_capacity(unit[i].disk, MAX_DISK_SIZE * 2);
add_disk(unit[i].disk);
}
blk_register_region(MKDEV(FLOPPY_MAJOR, 0), 256, THIS_MODULE,
floppy_find, NULL, NULL);
printk(KERN_INFO "Atari floppy driver: max. %cD, %strack buffering\n",
DriveType == 0 ? 'D' : DriveType == 1 ? 'H' : 'E',
UseTrackbuffer ? "" : "no ");
config_types();
return 0;
Enomem:
do {
struct gendisk *disk = unit[i].disk;
if (disk) {
if (disk->queue) {
blk_cleanup_queue(disk->queue);
disk->queue = NULL;
}
put_disk(unit[i].disk);
}
} while (i--);
unregister_blkdev(FLOPPY_MAJOR, "fd");
return -ENOMEM;
}
#ifndef MODULE
static int __init atari_floppy_setup(char *str)
{
int ints[3 + FD_MAX_UNITS];
int i;
if (!MACH_IS_ATARI)
return 0;
str = get_options(str, 3 + FD_MAX_UNITS, ints);
if (ints[0] < 1) {
printk(KERN_ERR "ataflop_setup: no arguments!\n" );
return 0;
}
else if (ints[0] > 2+FD_MAX_UNITS) {
printk(KERN_ERR "ataflop_setup: too many arguments\n" );
}
if (ints[1] < 0 || ints[1] > 2)
printk(KERN_ERR "ataflop_setup: bad drive type\n" );
else
DriveType = ints[1];
if (ints[0] >= 2)
UseTrackbuffer = (ints[2] > 0);
for( i = 3; i <= ints[0] && i-3 < FD_MAX_UNITS; ++i ) {
if (ints[i] != 2 && ints[i] != 3 && ints[i] != 6 && ints[i] != 12)
printk(KERN_ERR "ataflop_setup: bad steprate\n" );
else
UserSteprate[i-3] = ints[i];
}
return 1;
}
__setup("floppy=", atari_floppy_setup);
#endif
static void __exit atari_floppy_exit(void)
{
int i;
blk_unregister_region(MKDEV(FLOPPY_MAJOR, 0), 256);
for (i = 0; i < FD_MAX_UNITS; i++) {
struct request_queue *q = unit[i].disk->queue;
del_gendisk(unit[i].disk);
put_disk(unit[i].disk);
blk_cleanup_queue(q);
}
unregister_blkdev(FLOPPY_MAJOR, "fd");
del_timer_sync(&fd_timer);
atari_stram_free( DMABuffer );
}
module_init(atari_floppy_init)
module_exit(atari_floppy_exit)
MODULE_LICENSE("GPL");