tegrakernel/kernel/kernel-4.9/drivers/crypto/ccp/ccp-crypto-sha.c

518 lines
12 KiB
C

/*
* AMD Cryptographic Coprocessor (CCP) SHA crypto API support
*
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include <linux/crypto.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
#include <crypto/scatterwalk.h>
#include "ccp-crypto.h"
static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
{
struct ahash_request *req = ahash_request_cast(async_req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
unsigned int digest_size = crypto_ahash_digestsize(tfm);
if (ret)
goto e_free;
if (rctx->hash_rem) {
/* Save remaining data to buffer */
unsigned int offset = rctx->nbytes - rctx->hash_rem;
scatterwalk_map_and_copy(rctx->buf, rctx->src,
offset, rctx->hash_rem, 0);
rctx->buf_count = rctx->hash_rem;
} else {
rctx->buf_count = 0;
}
/* Update result area if supplied */
if (req->result)
memcpy(req->result, rctx->ctx, digest_size);
e_free:
sg_free_table(&rctx->data_sg);
return ret;
}
static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
unsigned int final)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct scatterlist *sg;
unsigned int block_size =
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
unsigned int sg_count;
gfp_t gfp;
u64 len;
int ret;
len = (u64)rctx->buf_count + (u64)nbytes;
if (!final && (len <= block_size)) {
scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
0, nbytes, 0);
rctx->buf_count += nbytes;
return 0;
}
rctx->src = req->src;
rctx->nbytes = nbytes;
rctx->final = final;
rctx->hash_rem = final ? 0 : len & (block_size - 1);
rctx->hash_cnt = len - rctx->hash_rem;
if (!final && !rctx->hash_rem) {
/* CCP can't do zero length final, so keep some data around */
rctx->hash_cnt -= block_size;
rctx->hash_rem = block_size;
}
/* Initialize the context scatterlist */
sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
sg = NULL;
if (rctx->buf_count && nbytes) {
/* Build the data scatterlist table - allocate enough entries
* for both data pieces (buffer and input data)
*/
gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
sg_count = sg_nents(req->src) + 1;
ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
if (ret)
return ret;
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
if (!sg) {
ret = -EINVAL;
goto e_free;
}
sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
if (!sg) {
ret = -EINVAL;
goto e_free;
}
sg_mark_end(sg);
sg = rctx->data_sg.sgl;
} else if (rctx->buf_count) {
sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
sg = &rctx->buf_sg;
} else if (nbytes) {
sg = req->src;
}
rctx->msg_bits += (rctx->hash_cnt << 3); /* Total in bits */
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
INIT_LIST_HEAD(&rctx->cmd.entry);
rctx->cmd.engine = CCP_ENGINE_SHA;
rctx->cmd.u.sha.type = rctx->type;
rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
switch (rctx->type) {
case CCP_SHA_TYPE_1:
rctx->cmd.u.sha.ctx_len = SHA1_DIGEST_SIZE;
break;
case CCP_SHA_TYPE_224:
rctx->cmd.u.sha.ctx_len = SHA224_DIGEST_SIZE;
break;
case CCP_SHA_TYPE_256:
rctx->cmd.u.sha.ctx_len = SHA256_DIGEST_SIZE;
break;
default:
/* Should never get here */
break;
}
rctx->cmd.u.sha.src = sg;
rctx->cmd.u.sha.src_len = rctx->hash_cnt;
rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
&ctx->u.sha.opad_sg : NULL;
rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
ctx->u.sha.opad_count : 0;
rctx->cmd.u.sha.first = rctx->first;
rctx->cmd.u.sha.final = rctx->final;
rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
rctx->first = 0;
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
return ret;
e_free:
sg_free_table(&rctx->data_sg);
return ret;
}
static int ccp_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct ccp_crypto_ahash_alg *alg =
ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
unsigned int block_size =
crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
memset(rctx, 0, sizeof(*rctx));
rctx->type = alg->type;
rctx->first = 1;
if (ctx->u.sha.key_len) {
/* Buffer the HMAC key for first update */
memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
rctx->buf_count = block_size;
}
return 0;
}
static int ccp_sha_update(struct ahash_request *req)
{
return ccp_do_sha_update(req, req->nbytes, 0);
}
static int ccp_sha_final(struct ahash_request *req)
{
return ccp_do_sha_update(req, 0, 1);
}
static int ccp_sha_finup(struct ahash_request *req)
{
return ccp_do_sha_update(req, req->nbytes, 1);
}
static int ccp_sha_digest(struct ahash_request *req)
{
int ret;
ret = ccp_sha_init(req);
if (ret)
return ret;
return ccp_sha_finup(req);
}
static int ccp_sha_export(struct ahash_request *req, void *out)
{
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct ccp_sha_exp_ctx state;
/* Don't let anything leak to 'out' */
memset(&state, 0, sizeof(state));
state.type = rctx->type;
state.msg_bits = rctx->msg_bits;
state.first = rctx->first;
memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
state.buf_count = rctx->buf_count;
memcpy(state.buf, rctx->buf, sizeof(state.buf));
/* 'out' may not be aligned so memcpy from local variable */
memcpy(out, &state, sizeof(state));
return 0;
}
static int ccp_sha_import(struct ahash_request *req, const void *in)
{
struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct ccp_sha_exp_ctx state;
/* 'in' may not be aligned so memcpy to local variable */
memcpy(&state, in, sizeof(state));
memset(rctx, 0, sizeof(*rctx));
rctx->type = state.type;
rctx->msg_bits = state.msg_bits;
rctx->first = state.first;
memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
rctx->buf_count = state.buf_count;
memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
return 0;
}
static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int key_len)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
SHASH_DESC_ON_STACK(sdesc, shash);
unsigned int block_size = crypto_shash_blocksize(shash);
unsigned int digest_size = crypto_shash_digestsize(shash);
int i, ret;
/* Set to zero until complete */
ctx->u.sha.key_len = 0;
/* Clear key area to provide zero padding for keys smaller
* than the block size
*/
memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
if (key_len > block_size) {
/* Must hash the input key */
sdesc->tfm = shash;
sdesc->flags = crypto_ahash_get_flags(tfm) &
CRYPTO_TFM_REQ_MAY_SLEEP;
ret = crypto_shash_digest(sdesc, key, key_len,
ctx->u.sha.key);
if (ret) {
crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
key_len = digest_size;
} else {
memcpy(ctx->u.sha.key, key, key_len);
}
for (i = 0; i < block_size; i++) {
ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
}
sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
ctx->u.sha.opad_count = block_size;
ctx->u.sha.key_len = key_len;
return 0;
}
static int ccp_sha_cra_init(struct crypto_tfm *tfm)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
ctx->complete = ccp_sha_complete;
ctx->u.sha.key_len = 0;
crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
return 0;
}
static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
{
}
static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
struct crypto_shash *hmac_tfm;
hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
if (IS_ERR(hmac_tfm)) {
pr_warn("could not load driver %s need for HMAC support\n",
alg->child_alg);
return PTR_ERR(hmac_tfm);
}
ctx->u.sha.hmac_tfm = hmac_tfm;
return ccp_sha_cra_init(tfm);
}
static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
if (ctx->u.sha.hmac_tfm)
crypto_free_shash(ctx->u.sha.hmac_tfm);
ccp_sha_cra_exit(tfm);
}
struct ccp_sha_def {
unsigned int version;
const char *name;
const char *drv_name;
enum ccp_sha_type type;
u32 digest_size;
u32 block_size;
};
static struct ccp_sha_def sha_algs[] = {
{
.version = CCP_VERSION(3, 0),
.name = "sha1",
.drv_name = "sha1-ccp",
.type = CCP_SHA_TYPE_1,
.digest_size = SHA1_DIGEST_SIZE,
.block_size = SHA1_BLOCK_SIZE,
},
{
.version = CCP_VERSION(3, 0),
.name = "sha224",
.drv_name = "sha224-ccp",
.type = CCP_SHA_TYPE_224,
.digest_size = SHA224_DIGEST_SIZE,
.block_size = SHA224_BLOCK_SIZE,
},
{
.version = CCP_VERSION(3, 0),
.name = "sha256",
.drv_name = "sha256-ccp",
.type = CCP_SHA_TYPE_256,
.digest_size = SHA256_DIGEST_SIZE,
.block_size = SHA256_BLOCK_SIZE,
},
};
static int ccp_register_hmac_alg(struct list_head *head,
const struct ccp_sha_def *def,
const struct ccp_crypto_ahash_alg *base_alg)
{
struct ccp_crypto_ahash_alg *ccp_alg;
struct ahash_alg *alg;
struct hash_alg_common *halg;
struct crypto_alg *base;
int ret;
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
if (!ccp_alg)
return -ENOMEM;
/* Copy the base algorithm and only change what's necessary */
*ccp_alg = *base_alg;
INIT_LIST_HEAD(&ccp_alg->entry);
strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
alg = &ccp_alg->alg;
alg->setkey = ccp_sha_setkey;
halg = &alg->halg;
base = &halg->base;
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
def->drv_name);
base->cra_init = ccp_hmac_sha_cra_init;
base->cra_exit = ccp_hmac_sha_cra_exit;
ret = crypto_register_ahash(alg);
if (ret) {
pr_err("%s ahash algorithm registration error (%d)\n",
base->cra_name, ret);
kfree(ccp_alg);
return ret;
}
list_add(&ccp_alg->entry, head);
return ret;
}
static int ccp_register_sha_alg(struct list_head *head,
const struct ccp_sha_def *def)
{
struct ccp_crypto_ahash_alg *ccp_alg;
struct ahash_alg *alg;
struct hash_alg_common *halg;
struct crypto_alg *base;
int ret;
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
if (!ccp_alg)
return -ENOMEM;
INIT_LIST_HEAD(&ccp_alg->entry);
ccp_alg->type = def->type;
alg = &ccp_alg->alg;
alg->init = ccp_sha_init;
alg->update = ccp_sha_update;
alg->final = ccp_sha_final;
alg->finup = ccp_sha_finup;
alg->digest = ccp_sha_digest;
alg->export = ccp_sha_export;
alg->import = ccp_sha_import;
halg = &alg->halg;
halg->digestsize = def->digest_size;
halg->statesize = sizeof(struct ccp_sha_exp_ctx);
base = &halg->base;
snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
def->drv_name);
base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK;
base->cra_blocksize = def->block_size;
base->cra_ctxsize = sizeof(struct ccp_ctx);
base->cra_priority = CCP_CRA_PRIORITY;
base->cra_type = &crypto_ahash_type;
base->cra_init = ccp_sha_cra_init;
base->cra_exit = ccp_sha_cra_exit;
base->cra_module = THIS_MODULE;
ret = crypto_register_ahash(alg);
if (ret) {
pr_err("%s ahash algorithm registration error (%d)\n",
base->cra_name, ret);
kfree(ccp_alg);
return ret;
}
list_add(&ccp_alg->entry, head);
ret = ccp_register_hmac_alg(head, def, ccp_alg);
return ret;
}
int ccp_register_sha_algs(struct list_head *head)
{
int i, ret;
unsigned int ccpversion = ccp_version();
for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
if (sha_algs[i].version > ccpversion)
continue;
ret = ccp_register_sha_alg(head, &sha_algs[i]);
if (ret)
return ret;
}
return 0;
}