tegrakernel/kernel/kernel-4.9/drivers/gpu/drm/amd/amdgpu/amdgpu_cgs.c

1245 lines
32 KiB
C

/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*
*/
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/acpi.h>
#include <drm/drmP.h>
#include <linux/firmware.h>
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "cgs_linux.h"
#include "atom.h"
#include "amdgpu_ucode.h"
struct amdgpu_cgs_device {
struct cgs_device base;
struct amdgpu_device *adev;
};
#define CGS_FUNC_ADEV \
struct amdgpu_device *adev = \
((struct amdgpu_cgs_device *)cgs_device)->adev
static int amdgpu_cgs_gpu_mem_info(struct cgs_device *cgs_device, enum cgs_gpu_mem_type type,
uint64_t *mc_start, uint64_t *mc_size,
uint64_t *mem_size)
{
CGS_FUNC_ADEV;
switch(type) {
case CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB:
case CGS_GPU_MEM_TYPE__VISIBLE_FB:
*mc_start = 0;
*mc_size = adev->mc.visible_vram_size;
*mem_size = adev->mc.visible_vram_size - adev->vram_pin_size;
break;
case CGS_GPU_MEM_TYPE__INVISIBLE_CONTIG_FB:
case CGS_GPU_MEM_TYPE__INVISIBLE_FB:
*mc_start = adev->mc.visible_vram_size;
*mc_size = adev->mc.real_vram_size - adev->mc.visible_vram_size;
*mem_size = *mc_size;
break;
case CGS_GPU_MEM_TYPE__GART_CACHEABLE:
case CGS_GPU_MEM_TYPE__GART_WRITECOMBINE:
*mc_start = adev->mc.gtt_start;
*mc_size = adev->mc.gtt_size;
*mem_size = adev->mc.gtt_size - adev->gart_pin_size;
break;
default:
return -EINVAL;
}
return 0;
}
static int amdgpu_cgs_gmap_kmem(struct cgs_device *cgs_device, void *kmem,
uint64_t size,
uint64_t min_offset, uint64_t max_offset,
cgs_handle_t *kmem_handle, uint64_t *mcaddr)
{
CGS_FUNC_ADEV;
int ret;
struct amdgpu_bo *bo;
struct page *kmem_page = vmalloc_to_page(kmem);
int npages = ALIGN(size, PAGE_SIZE) >> PAGE_SHIFT;
struct sg_table *sg = drm_prime_pages_to_sg(&kmem_page, npages);
ret = amdgpu_bo_create(adev, size, PAGE_SIZE, false,
AMDGPU_GEM_DOMAIN_GTT, 0, sg, NULL, &bo);
if (ret)
return ret;
ret = amdgpu_bo_reserve(bo, false);
if (unlikely(ret != 0))
return ret;
/* pin buffer into GTT */
ret = amdgpu_bo_pin_restricted(bo, AMDGPU_GEM_DOMAIN_GTT,
min_offset, max_offset, mcaddr);
amdgpu_bo_unreserve(bo);
*kmem_handle = (cgs_handle_t)bo;
return ret;
}
static int amdgpu_cgs_gunmap_kmem(struct cgs_device *cgs_device, cgs_handle_t kmem_handle)
{
struct amdgpu_bo *obj = (struct amdgpu_bo *)kmem_handle;
if (obj) {
int r = amdgpu_bo_reserve(obj, false);
if (likely(r == 0)) {
amdgpu_bo_unpin(obj);
amdgpu_bo_unreserve(obj);
}
amdgpu_bo_unref(&obj);
}
return 0;
}
static int amdgpu_cgs_alloc_gpu_mem(struct cgs_device *cgs_device,
enum cgs_gpu_mem_type type,
uint64_t size, uint64_t align,
uint64_t min_offset, uint64_t max_offset,
cgs_handle_t *handle)
{
CGS_FUNC_ADEV;
uint16_t flags = 0;
int ret = 0;
uint32_t domain = 0;
struct amdgpu_bo *obj;
struct ttm_placement placement;
struct ttm_place place;
if (min_offset > max_offset) {
BUG_ON(1);
return -EINVAL;
}
/* fail if the alignment is not a power of 2 */
if (((align != 1) && (align & (align - 1)))
|| size == 0 || align == 0)
return -EINVAL;
switch(type) {
case CGS_GPU_MEM_TYPE__VISIBLE_CONTIG_FB:
case CGS_GPU_MEM_TYPE__VISIBLE_FB:
flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
domain = AMDGPU_GEM_DOMAIN_VRAM;
if (max_offset > adev->mc.real_vram_size)
return -EINVAL;
place.fpfn = min_offset >> PAGE_SHIFT;
place.lpfn = max_offset >> PAGE_SHIFT;
place.flags = TTM_PL_FLAG_WC | TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_VRAM;
break;
case CGS_GPU_MEM_TYPE__INVISIBLE_CONTIG_FB:
case CGS_GPU_MEM_TYPE__INVISIBLE_FB:
flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
domain = AMDGPU_GEM_DOMAIN_VRAM;
if (adev->mc.visible_vram_size < adev->mc.real_vram_size) {
place.fpfn =
max(min_offset, adev->mc.visible_vram_size) >> PAGE_SHIFT;
place.lpfn =
min(max_offset, adev->mc.real_vram_size) >> PAGE_SHIFT;
place.flags = TTM_PL_FLAG_WC | TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_VRAM;
}
break;
case CGS_GPU_MEM_TYPE__GART_CACHEABLE:
domain = AMDGPU_GEM_DOMAIN_GTT;
place.fpfn = min_offset >> PAGE_SHIFT;
place.lpfn = max_offset >> PAGE_SHIFT;
place.flags = TTM_PL_FLAG_CACHED | TTM_PL_FLAG_TT;
break;
case CGS_GPU_MEM_TYPE__GART_WRITECOMBINE:
flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
domain = AMDGPU_GEM_DOMAIN_GTT;
place.fpfn = min_offset >> PAGE_SHIFT;
place.lpfn = max_offset >> PAGE_SHIFT;
place.flags = TTM_PL_FLAG_WC | TTM_PL_FLAG_TT |
TTM_PL_FLAG_UNCACHED;
break;
default:
return -EINVAL;
}
*handle = 0;
placement.placement = &place;
placement.num_placement = 1;
placement.busy_placement = &place;
placement.num_busy_placement = 1;
ret = amdgpu_bo_create_restricted(adev, size, PAGE_SIZE,
true, domain, flags,
NULL, &placement, NULL,
&obj);
if (ret) {
DRM_ERROR("(%d) bo create failed\n", ret);
return ret;
}
*handle = (cgs_handle_t)obj;
return ret;
}
static int amdgpu_cgs_free_gpu_mem(struct cgs_device *cgs_device, cgs_handle_t handle)
{
struct amdgpu_bo *obj = (struct amdgpu_bo *)handle;
if (obj) {
int r = amdgpu_bo_reserve(obj, false);
if (likely(r == 0)) {
amdgpu_bo_kunmap(obj);
amdgpu_bo_unpin(obj);
amdgpu_bo_unreserve(obj);
}
amdgpu_bo_unref(&obj);
}
return 0;
}
static int amdgpu_cgs_gmap_gpu_mem(struct cgs_device *cgs_device, cgs_handle_t handle,
uint64_t *mcaddr)
{
int r;
u64 min_offset, max_offset;
struct amdgpu_bo *obj = (struct amdgpu_bo *)handle;
WARN_ON_ONCE(obj->placement.num_placement > 1);
min_offset = obj->placements[0].fpfn << PAGE_SHIFT;
max_offset = obj->placements[0].lpfn << PAGE_SHIFT;
r = amdgpu_bo_reserve(obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_pin_restricted(obj, AMDGPU_GEM_DOMAIN_GTT,
min_offset, max_offset, mcaddr);
amdgpu_bo_unreserve(obj);
return r;
}
static int amdgpu_cgs_gunmap_gpu_mem(struct cgs_device *cgs_device, cgs_handle_t handle)
{
int r;
struct amdgpu_bo *obj = (struct amdgpu_bo *)handle;
r = amdgpu_bo_reserve(obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_unpin(obj);
amdgpu_bo_unreserve(obj);
return r;
}
static int amdgpu_cgs_kmap_gpu_mem(struct cgs_device *cgs_device, cgs_handle_t handle,
void **map)
{
int r;
struct amdgpu_bo *obj = (struct amdgpu_bo *)handle;
r = amdgpu_bo_reserve(obj, false);
if (unlikely(r != 0))
return r;
r = amdgpu_bo_kmap(obj, map);
amdgpu_bo_unreserve(obj);
return r;
}
static int amdgpu_cgs_kunmap_gpu_mem(struct cgs_device *cgs_device, cgs_handle_t handle)
{
int r;
struct amdgpu_bo *obj = (struct amdgpu_bo *)handle;
r = amdgpu_bo_reserve(obj, false);
if (unlikely(r != 0))
return r;
amdgpu_bo_kunmap(obj);
amdgpu_bo_unreserve(obj);
return r;
}
static uint32_t amdgpu_cgs_read_register(struct cgs_device *cgs_device, unsigned offset)
{
CGS_FUNC_ADEV;
return RREG32(offset);
}
static void amdgpu_cgs_write_register(struct cgs_device *cgs_device, unsigned offset,
uint32_t value)
{
CGS_FUNC_ADEV;
WREG32(offset, value);
}
static uint32_t amdgpu_cgs_read_ind_register(struct cgs_device *cgs_device,
enum cgs_ind_reg space,
unsigned index)
{
CGS_FUNC_ADEV;
switch (space) {
case CGS_IND_REG__MMIO:
return RREG32_IDX(index);
case CGS_IND_REG__PCIE:
return RREG32_PCIE(index);
case CGS_IND_REG__SMC:
return RREG32_SMC(index);
case CGS_IND_REG__UVD_CTX:
return RREG32_UVD_CTX(index);
case CGS_IND_REG__DIDT:
return RREG32_DIDT(index);
case CGS_IND_REG_GC_CAC:
return RREG32_GC_CAC(index);
case CGS_IND_REG__AUDIO_ENDPT:
DRM_ERROR("audio endpt register access not implemented.\n");
return 0;
}
WARN(1, "Invalid indirect register space");
return 0;
}
static void amdgpu_cgs_write_ind_register(struct cgs_device *cgs_device,
enum cgs_ind_reg space,
unsigned index, uint32_t value)
{
CGS_FUNC_ADEV;
switch (space) {
case CGS_IND_REG__MMIO:
return WREG32_IDX(index, value);
case CGS_IND_REG__PCIE:
return WREG32_PCIE(index, value);
case CGS_IND_REG__SMC:
return WREG32_SMC(index, value);
case CGS_IND_REG__UVD_CTX:
return WREG32_UVD_CTX(index, value);
case CGS_IND_REG__DIDT:
return WREG32_DIDT(index, value);
case CGS_IND_REG_GC_CAC:
return WREG32_GC_CAC(index, value);
case CGS_IND_REG__AUDIO_ENDPT:
DRM_ERROR("audio endpt register access not implemented.\n");
return;
}
WARN(1, "Invalid indirect register space");
}
static uint8_t amdgpu_cgs_read_pci_config_byte(struct cgs_device *cgs_device, unsigned addr)
{
CGS_FUNC_ADEV;
uint8_t val;
int ret = pci_read_config_byte(adev->pdev, addr, &val);
if (WARN(ret, "pci_read_config_byte error"))
return 0;
return val;
}
static uint16_t amdgpu_cgs_read_pci_config_word(struct cgs_device *cgs_device, unsigned addr)
{
CGS_FUNC_ADEV;
uint16_t val;
int ret = pci_read_config_word(adev->pdev, addr, &val);
if (WARN(ret, "pci_read_config_word error"))
return 0;
return val;
}
static uint32_t amdgpu_cgs_read_pci_config_dword(struct cgs_device *cgs_device,
unsigned addr)
{
CGS_FUNC_ADEV;
uint32_t val;
int ret = pci_read_config_dword(adev->pdev, addr, &val);
if (WARN(ret, "pci_read_config_dword error"))
return 0;
return val;
}
static void amdgpu_cgs_write_pci_config_byte(struct cgs_device *cgs_device, unsigned addr,
uint8_t value)
{
CGS_FUNC_ADEV;
int ret = pci_write_config_byte(adev->pdev, addr, value);
WARN(ret, "pci_write_config_byte error");
}
static void amdgpu_cgs_write_pci_config_word(struct cgs_device *cgs_device, unsigned addr,
uint16_t value)
{
CGS_FUNC_ADEV;
int ret = pci_write_config_word(adev->pdev, addr, value);
WARN(ret, "pci_write_config_word error");
}
static void amdgpu_cgs_write_pci_config_dword(struct cgs_device *cgs_device, unsigned addr,
uint32_t value)
{
CGS_FUNC_ADEV;
int ret = pci_write_config_dword(adev->pdev, addr, value);
WARN(ret, "pci_write_config_dword error");
}
static int amdgpu_cgs_get_pci_resource(struct cgs_device *cgs_device,
enum cgs_resource_type resource_type,
uint64_t size,
uint64_t offset,
uint64_t *resource_base)
{
CGS_FUNC_ADEV;
if (resource_base == NULL)
return -EINVAL;
switch (resource_type) {
case CGS_RESOURCE_TYPE_MMIO:
if (adev->rmmio_size == 0)
return -ENOENT;
if ((offset + size) > adev->rmmio_size)
return -EINVAL;
*resource_base = adev->rmmio_base;
return 0;
case CGS_RESOURCE_TYPE_DOORBELL:
if (adev->doorbell.size == 0)
return -ENOENT;
if ((offset + size) > adev->doorbell.size)
return -EINVAL;
*resource_base = adev->doorbell.base;
return 0;
case CGS_RESOURCE_TYPE_FB:
case CGS_RESOURCE_TYPE_IO:
case CGS_RESOURCE_TYPE_ROM:
default:
return -EINVAL;
}
}
static const void *amdgpu_cgs_atom_get_data_table(struct cgs_device *cgs_device,
unsigned table, uint16_t *size,
uint8_t *frev, uint8_t *crev)
{
CGS_FUNC_ADEV;
uint16_t data_start;
if (amdgpu_atom_parse_data_header(
adev->mode_info.atom_context, table, size,
frev, crev, &data_start))
return (uint8_t*)adev->mode_info.atom_context->bios +
data_start;
return NULL;
}
static int amdgpu_cgs_atom_get_cmd_table_revs(struct cgs_device *cgs_device, unsigned table,
uint8_t *frev, uint8_t *crev)
{
CGS_FUNC_ADEV;
if (amdgpu_atom_parse_cmd_header(
adev->mode_info.atom_context, table,
frev, crev))
return 0;
return -EINVAL;
}
static int amdgpu_cgs_atom_exec_cmd_table(struct cgs_device *cgs_device, unsigned table,
void *args)
{
CGS_FUNC_ADEV;
return amdgpu_atom_execute_table(
adev->mode_info.atom_context, table, args);
}
static int amdgpu_cgs_create_pm_request(struct cgs_device *cgs_device, cgs_handle_t *request)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_destroy_pm_request(struct cgs_device *cgs_device, cgs_handle_t request)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_set_pm_request(struct cgs_device *cgs_device, cgs_handle_t request,
int active)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_pm_request_clock(struct cgs_device *cgs_device, cgs_handle_t request,
enum cgs_clock clock, unsigned freq)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_pm_request_engine(struct cgs_device *cgs_device, cgs_handle_t request,
enum cgs_engine engine, int powered)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_pm_query_clock_limits(struct cgs_device *cgs_device,
enum cgs_clock clock,
struct cgs_clock_limits *limits)
{
/* TODO */
return 0;
}
static int amdgpu_cgs_set_camera_voltages(struct cgs_device *cgs_device, uint32_t mask,
const uint32_t *voltages)
{
DRM_ERROR("not implemented");
return -EPERM;
}
struct cgs_irq_params {
unsigned src_id;
cgs_irq_source_set_func_t set;
cgs_irq_handler_func_t handler;
void *private_data;
};
static int cgs_set_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
struct cgs_irq_params *irq_params =
(struct cgs_irq_params *)src->data;
if (!irq_params)
return -EINVAL;
if (!irq_params->set)
return -EINVAL;
return irq_params->set(irq_params->private_data,
irq_params->src_id,
type,
(int)state);
}
static int cgs_process_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
struct cgs_irq_params *irq_params =
(struct cgs_irq_params *)source->data;
if (!irq_params)
return -EINVAL;
if (!irq_params->handler)
return -EINVAL;
return irq_params->handler(irq_params->private_data,
irq_params->src_id,
entry->iv_entry);
}
static const struct amdgpu_irq_src_funcs cgs_irq_funcs = {
.set = cgs_set_irq_state,
.process = cgs_process_irq,
};
static int amdgpu_cgs_add_irq_source(struct cgs_device *cgs_device, unsigned src_id,
unsigned num_types,
cgs_irq_source_set_func_t set,
cgs_irq_handler_func_t handler,
void *private_data)
{
CGS_FUNC_ADEV;
int ret = 0;
struct cgs_irq_params *irq_params;
struct amdgpu_irq_src *source =
kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
if (!source)
return -ENOMEM;
irq_params =
kzalloc(sizeof(struct cgs_irq_params), GFP_KERNEL);
if (!irq_params) {
kfree(source);
return -ENOMEM;
}
source->num_types = num_types;
source->funcs = &cgs_irq_funcs;
irq_params->src_id = src_id;
irq_params->set = set;
irq_params->handler = handler;
irq_params->private_data = private_data;
source->data = (void *)irq_params;
ret = amdgpu_irq_add_id(adev, src_id, source);
if (ret) {
kfree(irq_params);
kfree(source);
}
return ret;
}
static int amdgpu_cgs_irq_get(struct cgs_device *cgs_device, unsigned src_id, unsigned type)
{
CGS_FUNC_ADEV;
return amdgpu_irq_get(adev, adev->irq.sources[src_id], type);
}
static int amdgpu_cgs_irq_put(struct cgs_device *cgs_device, unsigned src_id, unsigned type)
{
CGS_FUNC_ADEV;
return amdgpu_irq_put(adev, adev->irq.sources[src_id], type);
}
static int amdgpu_cgs_set_clockgating_state(struct cgs_device *cgs_device,
enum amd_ip_block_type block_type,
enum amd_clockgating_state state)
{
CGS_FUNC_ADEV;
int i, r = -1;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_block_status[i].valid)
continue;
if (adev->ip_blocks[i].type == block_type) {
r = adev->ip_blocks[i].funcs->set_clockgating_state(
(void *)adev,
state);
break;
}
}
return r;
}
static int amdgpu_cgs_set_powergating_state(struct cgs_device *cgs_device,
enum amd_ip_block_type block_type,
enum amd_powergating_state state)
{
CGS_FUNC_ADEV;
int i, r = -1;
for (i = 0; i < adev->num_ip_blocks; i++) {
if (!adev->ip_block_status[i].valid)
continue;
if (adev->ip_blocks[i].type == block_type) {
r = adev->ip_blocks[i].funcs->set_powergating_state(
(void *)adev,
state);
break;
}
}
return r;
}
static uint32_t fw_type_convert(struct cgs_device *cgs_device, uint32_t fw_type)
{
CGS_FUNC_ADEV;
enum AMDGPU_UCODE_ID result = AMDGPU_UCODE_ID_MAXIMUM;
switch (fw_type) {
case CGS_UCODE_ID_SDMA0:
result = AMDGPU_UCODE_ID_SDMA0;
break;
case CGS_UCODE_ID_SDMA1:
result = AMDGPU_UCODE_ID_SDMA1;
break;
case CGS_UCODE_ID_CP_CE:
result = AMDGPU_UCODE_ID_CP_CE;
break;
case CGS_UCODE_ID_CP_PFP:
result = AMDGPU_UCODE_ID_CP_PFP;
break;
case CGS_UCODE_ID_CP_ME:
result = AMDGPU_UCODE_ID_CP_ME;
break;
case CGS_UCODE_ID_CP_MEC:
case CGS_UCODE_ID_CP_MEC_JT1:
result = AMDGPU_UCODE_ID_CP_MEC1;
break;
case CGS_UCODE_ID_CP_MEC_JT2:
if (adev->asic_type == CHIP_TONGA || adev->asic_type == CHIP_POLARIS11
|| adev->asic_type == CHIP_POLARIS10)
result = AMDGPU_UCODE_ID_CP_MEC2;
else
result = AMDGPU_UCODE_ID_CP_MEC1;
break;
case CGS_UCODE_ID_RLC_G:
result = AMDGPU_UCODE_ID_RLC_G;
break;
default:
DRM_ERROR("Firmware type not supported\n");
}
return result;
}
static int amdgpu_cgs_rel_firmware(struct cgs_device *cgs_device, enum cgs_ucode_id type)
{
CGS_FUNC_ADEV;
if ((CGS_UCODE_ID_SMU == type) || (CGS_UCODE_ID_SMU_SK == type)) {
release_firmware(adev->pm.fw);
return 0;
}
/* cannot release other firmware because they are not created by cgs */
return -EINVAL;
}
static uint16_t amdgpu_get_firmware_version(struct cgs_device *cgs_device,
enum cgs_ucode_id type)
{
CGS_FUNC_ADEV;
uint16_t fw_version;
switch (type) {
case CGS_UCODE_ID_SDMA0:
fw_version = adev->sdma.instance[0].fw_version;
break;
case CGS_UCODE_ID_SDMA1:
fw_version = adev->sdma.instance[1].fw_version;
break;
case CGS_UCODE_ID_CP_CE:
fw_version = adev->gfx.ce_fw_version;
break;
case CGS_UCODE_ID_CP_PFP:
fw_version = adev->gfx.pfp_fw_version;
break;
case CGS_UCODE_ID_CP_ME:
fw_version = adev->gfx.me_fw_version;
break;
case CGS_UCODE_ID_CP_MEC:
fw_version = adev->gfx.mec_fw_version;
break;
case CGS_UCODE_ID_CP_MEC_JT1:
fw_version = adev->gfx.mec_fw_version;
break;
case CGS_UCODE_ID_CP_MEC_JT2:
fw_version = adev->gfx.mec_fw_version;
break;
case CGS_UCODE_ID_RLC_G:
fw_version = adev->gfx.rlc_fw_version;
break;
default:
DRM_ERROR("firmware type %d do not have version\n", type);
fw_version = 0;
}
return fw_version;
}
static int amdgpu_cgs_get_firmware_info(struct cgs_device *cgs_device,
enum cgs_ucode_id type,
struct cgs_firmware_info *info)
{
CGS_FUNC_ADEV;
if ((CGS_UCODE_ID_SMU != type) && (CGS_UCODE_ID_SMU_SK != type)) {
uint64_t gpu_addr;
uint32_t data_size;
const struct gfx_firmware_header_v1_0 *header;
enum AMDGPU_UCODE_ID id;
struct amdgpu_firmware_info *ucode;
id = fw_type_convert(cgs_device, type);
ucode = &adev->firmware.ucode[id];
if (ucode->fw == NULL)
return -EINVAL;
gpu_addr = ucode->mc_addr;
header = (const struct gfx_firmware_header_v1_0 *)ucode->fw->data;
data_size = le32_to_cpu(header->header.ucode_size_bytes);
if ((type == CGS_UCODE_ID_CP_MEC_JT1) ||
(type == CGS_UCODE_ID_CP_MEC_JT2)) {
gpu_addr += le32_to_cpu(header->jt_offset) << 2;
data_size = le32_to_cpu(header->jt_size) << 2;
}
info->mc_addr = gpu_addr;
info->image_size = data_size;
info->version = (uint16_t)le32_to_cpu(header->header.ucode_version);
info->fw_version = amdgpu_get_firmware_version(cgs_device, type);
info->feature_version = (uint16_t)le32_to_cpu(header->ucode_feature_version);
} else {
char fw_name[30] = {0};
int err = 0;
uint32_t ucode_size;
uint32_t ucode_start_address;
const uint8_t *src;
const struct smc_firmware_header_v1_0 *hdr;
if (!adev->pm.fw) {
switch (adev->asic_type) {
case CHIP_TOPAZ:
if (((adev->pdev->device == 0x6900) && (adev->pdev->revision == 0x81)) ||
((adev->pdev->device == 0x6900) && (adev->pdev->revision == 0x83)) ||
((adev->pdev->device == 0x6907) && (adev->pdev->revision == 0x87)))
strcpy(fw_name, "amdgpu/topaz_k_smc.bin");
else
strcpy(fw_name, "amdgpu/topaz_smc.bin");
break;
case CHIP_TONGA:
if (((adev->pdev->device == 0x6939) && (adev->pdev->revision == 0xf1)) ||
((adev->pdev->device == 0x6938) && (adev->pdev->revision == 0xf1)))
strcpy(fw_name, "amdgpu/tonga_k_smc.bin");
else
strcpy(fw_name, "amdgpu/tonga_smc.bin");
break;
case CHIP_FIJI:
strcpy(fw_name, "amdgpu/fiji_smc.bin");
break;
case CHIP_POLARIS11:
if (type == CGS_UCODE_ID_SMU)
strcpy(fw_name, "amdgpu/polaris11_smc.bin");
else if (type == CGS_UCODE_ID_SMU_SK)
strcpy(fw_name, "amdgpu/polaris11_smc_sk.bin");
break;
case CHIP_POLARIS10:
if (type == CGS_UCODE_ID_SMU)
strcpy(fw_name, "amdgpu/polaris10_smc.bin");
else if (type == CGS_UCODE_ID_SMU_SK)
strcpy(fw_name, "amdgpu/polaris10_smc_sk.bin");
break;
default:
DRM_ERROR("SMC firmware not supported\n");
return -EINVAL;
}
err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
if (err) {
DRM_ERROR("Failed to request firmware\n");
return err;
}
err = amdgpu_ucode_validate(adev->pm.fw);
if (err) {
DRM_ERROR("Failed to load firmware \"%s\"", fw_name);
release_firmware(adev->pm.fw);
adev->pm.fw = NULL;
return err;
}
}
hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
amdgpu_ucode_print_smc_hdr(&hdr->header);
adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);
ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes);
ucode_start_address = le32_to_cpu(hdr->ucode_start_addr);
src = (const uint8_t *)(adev->pm.fw->data +
le32_to_cpu(hdr->header.ucode_array_offset_bytes));
info->version = adev->pm.fw_version;
info->image_size = ucode_size;
info->ucode_start_address = ucode_start_address;
info->kptr = (void *)src;
}
return 0;
}
static int amdgpu_cgs_query_system_info(struct cgs_device *cgs_device,
struct cgs_system_info *sys_info)
{
CGS_FUNC_ADEV;
if (NULL == sys_info)
return -ENODEV;
if (sizeof(struct cgs_system_info) != sys_info->size)
return -ENODEV;
switch (sys_info->info_id) {
case CGS_SYSTEM_INFO_ADAPTER_BDF_ID:
sys_info->value = adev->pdev->devfn | (adev->pdev->bus->number << 8);
break;
case CGS_SYSTEM_INFO_PCIE_GEN_INFO:
sys_info->value = adev->pm.pcie_gen_mask;
break;
case CGS_SYSTEM_INFO_PCIE_MLW:
sys_info->value = adev->pm.pcie_mlw_mask;
break;
case CGS_SYSTEM_INFO_PCIE_DEV:
sys_info->value = adev->pdev->device;
break;
case CGS_SYSTEM_INFO_PCIE_REV:
sys_info->value = adev->pdev->revision;
break;
case CGS_SYSTEM_INFO_CG_FLAGS:
sys_info->value = adev->cg_flags;
break;
case CGS_SYSTEM_INFO_PG_FLAGS:
sys_info->value = adev->pg_flags;
break;
case CGS_SYSTEM_INFO_GFX_CU_INFO:
sys_info->value = adev->gfx.cu_info.number;
break;
case CGS_SYSTEM_INFO_GFX_SE_INFO:
sys_info->value = adev->gfx.config.max_shader_engines;
break;
case CGS_SYSTEM_INFO_PCIE_SUB_SYS_ID:
sys_info->value = adev->pdev->subsystem_device;
break;
case CGS_SYSTEM_INFO_PCIE_SUB_SYS_VENDOR_ID:
sys_info->value = adev->pdev->subsystem_vendor;
break;
default:
return -ENODEV;
}
return 0;
}
static int amdgpu_cgs_get_active_displays_info(struct cgs_device *cgs_device,
struct cgs_display_info *info)
{
CGS_FUNC_ADEV;
struct amdgpu_crtc *amdgpu_crtc;
struct drm_device *ddev = adev->ddev;
struct drm_crtc *crtc;
uint32_t line_time_us, vblank_lines;
struct cgs_mode_info *mode_info;
if (info == NULL)
return -EINVAL;
mode_info = info->mode_info;
if (adev->mode_info.num_crtc && adev->mode_info.mode_config_initialized) {
list_for_each_entry(crtc,
&ddev->mode_config.crtc_list, head) {
amdgpu_crtc = to_amdgpu_crtc(crtc);
if (crtc->enabled) {
info->active_display_mask |= (1 << amdgpu_crtc->crtc_id);
info->display_count++;
}
if (mode_info != NULL &&
crtc->enabled && amdgpu_crtc->enabled &&
amdgpu_crtc->hw_mode.clock) {
line_time_us = (amdgpu_crtc->hw_mode.crtc_htotal * 1000) /
amdgpu_crtc->hw_mode.clock;
vblank_lines = amdgpu_crtc->hw_mode.crtc_vblank_end -
amdgpu_crtc->hw_mode.crtc_vdisplay +
(amdgpu_crtc->v_border * 2);
mode_info->vblank_time_us = vblank_lines * line_time_us;
mode_info->refresh_rate = drm_mode_vrefresh(&amdgpu_crtc->hw_mode);
mode_info->ref_clock = adev->clock.spll.reference_freq;
mode_info = NULL;
}
}
}
return 0;
}
static int amdgpu_cgs_notify_dpm_enabled(struct cgs_device *cgs_device, bool enabled)
{
CGS_FUNC_ADEV;
adev->pm.dpm_enabled = enabled;
return 0;
}
/** \brief evaluate acpi namespace object, handle or pathname must be valid
* \param cgs_device
* \param info input/output arguments for the control method
* \return status
*/
#if defined(CONFIG_ACPI)
static int amdgpu_cgs_acpi_eval_object(struct cgs_device *cgs_device,
struct cgs_acpi_method_info *info)
{
CGS_FUNC_ADEV;
acpi_handle handle;
struct acpi_object_list input;
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *params, *obj;
uint8_t name[5] = {'\0'};
struct cgs_acpi_method_argument *argument;
uint32_t i, count;
acpi_status status;
int result;
handle = ACPI_HANDLE(&adev->pdev->dev);
if (!handle)
return -ENODEV;
memset(&input, 0, sizeof(struct acpi_object_list));
/* validate input info */
if (info->size != sizeof(struct cgs_acpi_method_info))
return -EINVAL;
input.count = info->input_count;
if (info->input_count > 0) {
if (info->pinput_argument == NULL)
return -EINVAL;
argument = info->pinput_argument;
for (i = 0; i < info->input_count; i++) {
if (((argument->type == ACPI_TYPE_STRING) ||
(argument->type == ACPI_TYPE_BUFFER)) &&
(argument->pointer == NULL))
return -EINVAL;
argument++;
}
}
if (info->output_count > 0) {
if (info->poutput_argument == NULL)
return -EINVAL;
argument = info->poutput_argument;
for (i = 0; i < info->output_count; i++) {
if (((argument->type == ACPI_TYPE_STRING) ||
(argument->type == ACPI_TYPE_BUFFER))
&& (argument->pointer == NULL))
return -EINVAL;
argument++;
}
}
/* The path name passed to acpi_evaluate_object should be null terminated */
if ((info->field & CGS_ACPI_FIELD_METHOD_NAME) != 0) {
strncpy(name, (char *)&(info->name), sizeof(uint32_t));
name[4] = '\0';
}
/* parse input parameters */
if (input.count > 0) {
input.pointer = params =
kzalloc(sizeof(union acpi_object) * input.count, GFP_KERNEL);
if (params == NULL)
return -EINVAL;
argument = info->pinput_argument;
for (i = 0; i < input.count; i++) {
params->type = argument->type;
switch (params->type) {
case ACPI_TYPE_INTEGER:
params->integer.value = argument->value;
break;
case ACPI_TYPE_STRING:
params->string.length = argument->data_length;
params->string.pointer = argument->pointer;
break;
case ACPI_TYPE_BUFFER:
params->buffer.length = argument->data_length;
params->buffer.pointer = argument->pointer;
break;
default:
break;
}
params++;
argument++;
}
}
/* parse output info */
count = info->output_count;
argument = info->poutput_argument;
/* evaluate the acpi method */
status = acpi_evaluate_object(handle, name, &input, &output);
if (ACPI_FAILURE(status)) {
result = -EIO;
goto free_input;
}
/* return the output info */
obj = output.pointer;
if (count > 1) {
if ((obj->type != ACPI_TYPE_PACKAGE) ||
(obj->package.count != count)) {
result = -EIO;
goto free_obj;
}
params = obj->package.elements;
} else
params = obj;
if (params == NULL) {
result = -EIO;
goto free_obj;
}
for (i = 0; i < count; i++) {
if (argument->type != params->type) {
result = -EIO;
goto free_obj;
}
switch (params->type) {
case ACPI_TYPE_INTEGER:
argument->value = params->integer.value;
break;
case ACPI_TYPE_STRING:
if ((params->string.length != argument->data_length) ||
(params->string.pointer == NULL)) {
result = -EIO;
goto free_obj;
}
strncpy(argument->pointer,
params->string.pointer,
params->string.length);
break;
case ACPI_TYPE_BUFFER:
if (params->buffer.pointer == NULL) {
result = -EIO;
goto free_obj;
}
memcpy(argument->pointer,
params->buffer.pointer,
argument->data_length);
break;
default:
break;
}
argument++;
params++;
}
result = 0;
free_obj:
kfree(obj);
free_input:
kfree((void *)input.pointer);
return result;
}
#else
static int amdgpu_cgs_acpi_eval_object(struct cgs_device *cgs_device,
struct cgs_acpi_method_info *info)
{
return -EIO;
}
#endif
static int amdgpu_cgs_call_acpi_method(struct cgs_device *cgs_device,
uint32_t acpi_method,
uint32_t acpi_function,
void *pinput, void *poutput,
uint32_t output_count,
uint32_t input_size,
uint32_t output_size)
{
struct cgs_acpi_method_argument acpi_input[2] = { {0}, {0} };
struct cgs_acpi_method_argument acpi_output = {0};
struct cgs_acpi_method_info info = {0};
acpi_input[0].type = CGS_ACPI_TYPE_INTEGER;
acpi_input[0].data_length = sizeof(uint32_t);
acpi_input[0].value = acpi_function;
acpi_input[1].type = CGS_ACPI_TYPE_BUFFER;
acpi_input[1].data_length = input_size;
acpi_input[1].pointer = pinput;
acpi_output.type = CGS_ACPI_TYPE_BUFFER;
acpi_output.data_length = output_size;
acpi_output.pointer = poutput;
info.size = sizeof(struct cgs_acpi_method_info);
info.field = CGS_ACPI_FIELD_METHOD_NAME | CGS_ACPI_FIELD_INPUT_ARGUMENT_COUNT;
info.input_count = 2;
info.name = acpi_method;
info.pinput_argument = acpi_input;
info.output_count = output_count;
info.poutput_argument = &acpi_output;
return amdgpu_cgs_acpi_eval_object(cgs_device, &info);
}
static const struct cgs_ops amdgpu_cgs_ops = {
amdgpu_cgs_gpu_mem_info,
amdgpu_cgs_gmap_kmem,
amdgpu_cgs_gunmap_kmem,
amdgpu_cgs_alloc_gpu_mem,
amdgpu_cgs_free_gpu_mem,
amdgpu_cgs_gmap_gpu_mem,
amdgpu_cgs_gunmap_gpu_mem,
amdgpu_cgs_kmap_gpu_mem,
amdgpu_cgs_kunmap_gpu_mem,
amdgpu_cgs_read_register,
amdgpu_cgs_write_register,
amdgpu_cgs_read_ind_register,
amdgpu_cgs_write_ind_register,
amdgpu_cgs_read_pci_config_byte,
amdgpu_cgs_read_pci_config_word,
amdgpu_cgs_read_pci_config_dword,
amdgpu_cgs_write_pci_config_byte,
amdgpu_cgs_write_pci_config_word,
amdgpu_cgs_write_pci_config_dword,
amdgpu_cgs_get_pci_resource,
amdgpu_cgs_atom_get_data_table,
amdgpu_cgs_atom_get_cmd_table_revs,
amdgpu_cgs_atom_exec_cmd_table,
amdgpu_cgs_create_pm_request,
amdgpu_cgs_destroy_pm_request,
amdgpu_cgs_set_pm_request,
amdgpu_cgs_pm_request_clock,
amdgpu_cgs_pm_request_engine,
amdgpu_cgs_pm_query_clock_limits,
amdgpu_cgs_set_camera_voltages,
amdgpu_cgs_get_firmware_info,
amdgpu_cgs_rel_firmware,
amdgpu_cgs_set_powergating_state,
amdgpu_cgs_set_clockgating_state,
amdgpu_cgs_get_active_displays_info,
amdgpu_cgs_notify_dpm_enabled,
amdgpu_cgs_call_acpi_method,
amdgpu_cgs_query_system_info,
};
static const struct cgs_os_ops amdgpu_cgs_os_ops = {
amdgpu_cgs_add_irq_source,
amdgpu_cgs_irq_get,
amdgpu_cgs_irq_put
};
struct cgs_device *amdgpu_cgs_create_device(struct amdgpu_device *adev)
{
struct amdgpu_cgs_device *cgs_device =
kmalloc(sizeof(*cgs_device), GFP_KERNEL);
if (!cgs_device) {
DRM_ERROR("Couldn't allocate CGS device structure\n");
return NULL;
}
cgs_device->base.ops = &amdgpu_cgs_ops;
cgs_device->base.os_ops = &amdgpu_cgs_os_ops;
cgs_device->adev = adev;
return (struct cgs_device *)cgs_device;
}
void amdgpu_cgs_destroy_device(struct cgs_device *cgs_device)
{
kfree(cgs_device);
}