tegrakernel/kernel/kernel-4.9/drivers/infiniband/hw/hfi1/rc.c

2625 lines
69 KiB
C

/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/io.h>
#include <rdma/rdma_vt.h>
#include <rdma/rdmavt_qp.h>
#include "hfi.h"
#include "qp.h"
#include "verbs_txreq.h"
#include "trace.h"
/* cut down ridiculously long IB macro names */
#define OP(x) RC_OP(x)
/**
* hfi1_add_retry_timer - add/start a retry timer
* @qp - the QP
*
* add a retry timer on the QP
*/
static inline void hfi1_add_retry_timer(struct rvt_qp *qp)
{
struct ib_qp *ibqp = &qp->ibqp;
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
lockdep_assert_held(&qp->s_lock);
qp->s_flags |= RVT_S_TIMER;
/* 4.096 usec. * (1 << qp->timeout) */
qp->s_timer.expires = jiffies + qp->timeout_jiffies +
rdi->busy_jiffies;
add_timer(&qp->s_timer);
}
/**
* hfi1_add_rnr_timer - add/start an rnr timer
* @qp - the QP
* @to - timeout in usecs
*
* add an rnr timer on the QP
*/
void hfi1_add_rnr_timer(struct rvt_qp *qp, u32 to)
{
struct hfi1_qp_priv *priv = qp->priv;
lockdep_assert_held(&qp->s_lock);
qp->s_flags |= RVT_S_WAIT_RNR;
priv->s_rnr_timer.expires = jiffies + usecs_to_jiffies(to);
add_timer(&priv->s_rnr_timer);
}
/**
* hfi1_mod_retry_timer - mod a retry timer
* @qp - the QP
*
* Modify a potentially already running retry
* timer
*/
static inline void hfi1_mod_retry_timer(struct rvt_qp *qp)
{
struct ib_qp *ibqp = &qp->ibqp;
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
lockdep_assert_held(&qp->s_lock);
qp->s_flags |= RVT_S_TIMER;
/* 4.096 usec. * (1 << qp->timeout) */
mod_timer(&qp->s_timer, jiffies + qp->timeout_jiffies +
rdi->busy_jiffies);
}
/**
* hfi1_stop_retry_timer - stop a retry timer
* @qp - the QP
*
* stop a retry timer and return if the timer
* had been pending.
*/
static inline int hfi1_stop_retry_timer(struct rvt_qp *qp)
{
int rval = 0;
lockdep_assert_held(&qp->s_lock);
/* Remove QP from retry */
if (qp->s_flags & RVT_S_TIMER) {
qp->s_flags &= ~RVT_S_TIMER;
rval = del_timer(&qp->s_timer);
}
return rval;
}
/**
* hfi1_stop_rc_timers - stop all timers
* @qp - the QP
*
* stop any pending timers
*/
void hfi1_stop_rc_timers(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
lockdep_assert_held(&qp->s_lock);
/* Remove QP from all timers */
if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
del_timer(&qp->s_timer);
del_timer(&priv->s_rnr_timer);
}
}
/**
* hfi1_stop_rnr_timer - stop an rnr timer
* @qp - the QP
*
* stop an rnr timer and return if the timer
* had been pending.
*/
static inline int hfi1_stop_rnr_timer(struct rvt_qp *qp)
{
int rval = 0;
struct hfi1_qp_priv *priv = qp->priv;
lockdep_assert_held(&qp->s_lock);
/* Remove QP from rnr timer */
if (qp->s_flags & RVT_S_WAIT_RNR) {
qp->s_flags &= ~RVT_S_WAIT_RNR;
rval = del_timer(&priv->s_rnr_timer);
}
return rval;
}
/**
* hfi1_del_timers_sync - wait for any timeout routines to exit
* @qp - the QP
*/
void hfi1_del_timers_sync(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
del_timer_sync(&qp->s_timer);
del_timer_sync(&priv->s_rnr_timer);
}
static u32 restart_sge(struct rvt_sge_state *ss, struct rvt_swqe *wqe,
u32 psn, u32 pmtu)
{
u32 len;
len = delta_psn(psn, wqe->psn) * pmtu;
ss->sge = wqe->sg_list[0];
ss->sg_list = wqe->sg_list + 1;
ss->num_sge = wqe->wr.num_sge;
ss->total_len = wqe->length;
hfi1_skip_sge(ss, len, 0);
return wqe->length - len;
}
/**
* make_rc_ack - construct a response packet (ACK, NAK, or RDMA read)
* @dev: the device for this QP
* @qp: a pointer to the QP
* @ohdr: a pointer to the IB header being constructed
* @ps: the xmit packet state
*
* Return 1 if constructed; otherwise, return 0.
* Note that we are in the responder's side of the QP context.
* Note the QP s_lock must be held.
*/
static int make_rc_ack(struct hfi1_ibdev *dev, struct rvt_qp *qp,
struct ib_other_headers *ohdr,
struct hfi1_pkt_state *ps)
{
struct rvt_ack_entry *e;
u32 hwords;
u32 len;
u32 bth0;
u32 bth2;
int middle = 0;
u32 pmtu = qp->pmtu;
struct hfi1_qp_priv *priv = qp->priv;
lockdep_assert_held(&qp->s_lock);
/* Don't send an ACK if we aren't supposed to. */
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
goto bail;
/* header size in 32-bit words LRH+BTH = (8+12)/4. */
hwords = 5;
switch (qp->s_ack_state) {
case OP(RDMA_READ_RESPONSE_LAST):
case OP(RDMA_READ_RESPONSE_ONLY):
e = &qp->s_ack_queue[qp->s_tail_ack_queue];
if (e->rdma_sge.mr) {
rvt_put_mr(e->rdma_sge.mr);
e->rdma_sge.mr = NULL;
}
/* FALLTHROUGH */
case OP(ATOMIC_ACKNOWLEDGE):
/*
* We can increment the tail pointer now that the last
* response has been sent instead of only being
* constructed.
*/
if (++qp->s_tail_ack_queue > HFI1_MAX_RDMA_ATOMIC)
qp->s_tail_ack_queue = 0;
/* FALLTHROUGH */
case OP(SEND_ONLY):
case OP(ACKNOWLEDGE):
/* Check for no next entry in the queue. */
if (qp->r_head_ack_queue == qp->s_tail_ack_queue) {
if (qp->s_flags & RVT_S_ACK_PENDING)
goto normal;
goto bail;
}
e = &qp->s_ack_queue[qp->s_tail_ack_queue];
if (e->opcode == OP(RDMA_READ_REQUEST)) {
/*
* If a RDMA read response is being resent and
* we haven't seen the duplicate request yet,
* then stop sending the remaining responses the
* responder has seen until the requester re-sends it.
*/
len = e->rdma_sge.sge_length;
if (len && !e->rdma_sge.mr) {
qp->s_tail_ack_queue = qp->r_head_ack_queue;
goto bail;
}
/* Copy SGE state in case we need to resend */
ps->s_txreq->mr = e->rdma_sge.mr;
if (ps->s_txreq->mr)
rvt_get_mr(ps->s_txreq->mr);
qp->s_ack_rdma_sge.sge = e->rdma_sge;
qp->s_ack_rdma_sge.num_sge = 1;
qp->s_cur_sge = &qp->s_ack_rdma_sge;
if (len > pmtu) {
len = pmtu;
qp->s_ack_state = OP(RDMA_READ_RESPONSE_FIRST);
} else {
qp->s_ack_state = OP(RDMA_READ_RESPONSE_ONLY);
e->sent = 1;
}
ohdr->u.aeth = hfi1_compute_aeth(qp);
hwords++;
qp->s_ack_rdma_psn = e->psn;
bth2 = mask_psn(qp->s_ack_rdma_psn++);
} else {
/* COMPARE_SWAP or FETCH_ADD */
qp->s_cur_sge = NULL;
len = 0;
qp->s_ack_state = OP(ATOMIC_ACKNOWLEDGE);
ohdr->u.at.aeth = hfi1_compute_aeth(qp);
ib_u64_put(e->atomic_data, &ohdr->u.at.atomic_ack_eth);
hwords += sizeof(ohdr->u.at) / sizeof(u32);
bth2 = mask_psn(e->psn);
e->sent = 1;
}
bth0 = qp->s_ack_state << 24;
break;
case OP(RDMA_READ_RESPONSE_FIRST):
qp->s_ack_state = OP(RDMA_READ_RESPONSE_MIDDLE);
/* FALLTHROUGH */
case OP(RDMA_READ_RESPONSE_MIDDLE):
qp->s_cur_sge = &qp->s_ack_rdma_sge;
ps->s_txreq->mr = qp->s_ack_rdma_sge.sge.mr;
if (ps->s_txreq->mr)
rvt_get_mr(ps->s_txreq->mr);
len = qp->s_ack_rdma_sge.sge.sge_length;
if (len > pmtu) {
len = pmtu;
middle = HFI1_CAP_IS_KSET(SDMA_AHG);
} else {
ohdr->u.aeth = hfi1_compute_aeth(qp);
hwords++;
qp->s_ack_state = OP(RDMA_READ_RESPONSE_LAST);
e = &qp->s_ack_queue[qp->s_tail_ack_queue];
e->sent = 1;
}
bth0 = qp->s_ack_state << 24;
bth2 = mask_psn(qp->s_ack_rdma_psn++);
break;
default:
normal:
/*
* Send a regular ACK.
* Set the s_ack_state so we wait until after sending
* the ACK before setting s_ack_state to ACKNOWLEDGE
* (see above).
*/
qp->s_ack_state = OP(SEND_ONLY);
qp->s_flags &= ~RVT_S_ACK_PENDING;
qp->s_cur_sge = NULL;
if (qp->s_nak_state)
ohdr->u.aeth =
cpu_to_be32((qp->r_msn & HFI1_MSN_MASK) |
(qp->s_nak_state <<
HFI1_AETH_CREDIT_SHIFT));
else
ohdr->u.aeth = hfi1_compute_aeth(qp);
hwords++;
len = 0;
bth0 = OP(ACKNOWLEDGE) << 24;
bth2 = mask_psn(qp->s_ack_psn);
}
qp->s_rdma_ack_cnt++;
qp->s_hdrwords = hwords;
ps->s_txreq->sde = priv->s_sde;
qp->s_cur_size = len;
hfi1_make_ruc_header(qp, ohdr, bth0, bth2, middle, ps);
/* pbc */
ps->s_txreq->hdr_dwords = qp->s_hdrwords + 2;
return 1;
bail:
qp->s_ack_state = OP(ACKNOWLEDGE);
/*
* Ensure s_rdma_ack_cnt changes are committed prior to resetting
* RVT_S_RESP_PENDING
*/
smp_wmb();
qp->s_flags &= ~(RVT_S_RESP_PENDING
| RVT_S_ACK_PENDING
| RVT_S_AHG_VALID);
return 0;
}
/**
* hfi1_make_rc_req - construct a request packet (SEND, RDMA r/w, ATOMIC)
* @qp: a pointer to the QP
*
* Assumes s_lock is held.
*
* Return 1 if constructed; otherwise, return 0.
*/
int hfi1_make_rc_req(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
{
struct hfi1_qp_priv *priv = qp->priv;
struct hfi1_ibdev *dev = to_idev(qp->ibqp.device);
struct ib_other_headers *ohdr;
struct rvt_sge_state *ss;
struct rvt_swqe *wqe;
/* header size in 32-bit words LRH+BTH = (8+12)/4. */
u32 hwords = 5;
u32 len;
u32 bth0 = 0;
u32 bth2;
u32 pmtu = qp->pmtu;
char newreq;
int middle = 0;
int delta;
lockdep_assert_held(&qp->s_lock);
ps->s_txreq = get_txreq(ps->dev, qp);
if (!ps->s_txreq)
goto bail_no_tx;
ohdr = &ps->s_txreq->phdr.hdr.u.oth;
if (qp->remote_ah_attr.ah_flags & IB_AH_GRH)
ohdr = &ps->s_txreq->phdr.hdr.u.l.oth;
/* Sending responses has higher priority over sending requests. */
if ((qp->s_flags & RVT_S_RESP_PENDING) &&
make_rc_ack(dev, qp, ohdr, ps))
return 1;
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK)) {
if (!(ib_rvt_state_ops[qp->state] & RVT_FLUSH_SEND))
goto bail;
/* We are in the error state, flush the work request. */
smp_read_barrier_depends(); /* see post_one_send() */
if (qp->s_last == ACCESS_ONCE(qp->s_head))
goto bail;
/* If DMAs are in progress, we can't flush immediately. */
if (iowait_sdma_pending(&priv->s_iowait)) {
qp->s_flags |= RVT_S_WAIT_DMA;
goto bail;
}
clear_ahg(qp);
wqe = rvt_get_swqe_ptr(qp, qp->s_last);
hfi1_send_complete(qp, wqe, qp->s_last != qp->s_acked ?
IB_WC_SUCCESS : IB_WC_WR_FLUSH_ERR);
/* will get called again */
goto done_free_tx;
}
if (qp->s_flags & (RVT_S_WAIT_RNR | RVT_S_WAIT_ACK))
goto bail;
if (cmp_psn(qp->s_psn, qp->s_sending_hpsn) <= 0) {
if (cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0) {
qp->s_flags |= RVT_S_WAIT_PSN;
goto bail;
}
qp->s_sending_psn = qp->s_psn;
qp->s_sending_hpsn = qp->s_psn - 1;
}
/* Send a request. */
wqe = rvt_get_swqe_ptr(qp, qp->s_cur);
switch (qp->s_state) {
default:
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_NEXT_SEND_OK))
goto bail;
/*
* Resend an old request or start a new one.
*
* We keep track of the current SWQE so that
* we don't reset the "furthest progress" state
* if we need to back up.
*/
newreq = 0;
if (qp->s_cur == qp->s_tail) {
/* Check if send work queue is empty. */
if (qp->s_tail == qp->s_head) {
clear_ahg(qp);
goto bail;
}
/*
* If a fence is requested, wait for previous
* RDMA read and atomic operations to finish.
*/
if ((wqe->wr.send_flags & IB_SEND_FENCE) &&
qp->s_num_rd_atomic) {
qp->s_flags |= RVT_S_WAIT_FENCE;
goto bail;
}
/*
* Local operations are processed immediately
* after all prior requests have completed
*/
if (wqe->wr.opcode == IB_WR_REG_MR ||
wqe->wr.opcode == IB_WR_LOCAL_INV) {
int local_ops = 0;
int err = 0;
if (qp->s_last != qp->s_cur)
goto bail;
if (++qp->s_cur == qp->s_size)
qp->s_cur = 0;
if (++qp->s_tail == qp->s_size)
qp->s_tail = 0;
if (!(wqe->wr.send_flags &
RVT_SEND_COMPLETION_ONLY)) {
err = rvt_invalidate_rkey(
qp,
wqe->wr.ex.invalidate_rkey);
local_ops = 1;
}
hfi1_send_complete(qp, wqe,
err ? IB_WC_LOC_PROT_ERR
: IB_WC_SUCCESS);
if (local_ops)
atomic_dec(&qp->local_ops_pending);
qp->s_hdrwords = 0;
goto done_free_tx;
}
newreq = 1;
qp->s_psn = wqe->psn;
}
/*
* Note that we have to be careful not to modify the
* original work request since we may need to resend
* it.
*/
len = wqe->length;
ss = &qp->s_sge;
bth2 = mask_psn(qp->s_psn);
switch (wqe->wr.opcode) {
case IB_WR_SEND:
case IB_WR_SEND_WITH_IMM:
case IB_WR_SEND_WITH_INV:
/* If no credit, return. */
if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT) &&
cmp_msn(wqe->ssn, qp->s_lsn + 1) > 0) {
qp->s_flags |= RVT_S_WAIT_SSN_CREDIT;
goto bail;
}
if (len > pmtu) {
qp->s_state = OP(SEND_FIRST);
len = pmtu;
break;
}
if (wqe->wr.opcode == IB_WR_SEND) {
qp->s_state = OP(SEND_ONLY);
} else if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) {
qp->s_state = OP(SEND_ONLY_WITH_IMMEDIATE);
/* Immediate data comes after the BTH */
ohdr->u.imm_data = wqe->wr.ex.imm_data;
hwords += 1;
} else {
qp->s_state = OP(SEND_ONLY_WITH_INVALIDATE);
/* Invalidate rkey comes after the BTH */
ohdr->u.ieth = cpu_to_be32(
wqe->wr.ex.invalidate_rkey);
hwords += 1;
}
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
bth0 |= IB_BTH_SOLICITED;
bth2 |= IB_BTH_REQ_ACK;
if (++qp->s_cur == qp->s_size)
qp->s_cur = 0;
break;
case IB_WR_RDMA_WRITE:
if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT))
qp->s_lsn++;
goto no_flow_control;
case IB_WR_RDMA_WRITE_WITH_IMM:
/* If no credit, return. */
if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT) &&
cmp_msn(wqe->ssn, qp->s_lsn + 1) > 0) {
qp->s_flags |= RVT_S_WAIT_SSN_CREDIT;
goto bail;
}
no_flow_control:
put_ib_reth_vaddr(
wqe->rdma_wr.remote_addr,
&ohdr->u.rc.reth);
ohdr->u.rc.reth.rkey =
cpu_to_be32(wqe->rdma_wr.rkey);
ohdr->u.rc.reth.length = cpu_to_be32(len);
hwords += sizeof(struct ib_reth) / sizeof(u32);
if (len > pmtu) {
qp->s_state = OP(RDMA_WRITE_FIRST);
len = pmtu;
break;
}
if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
qp->s_state = OP(RDMA_WRITE_ONLY);
} else {
qp->s_state =
OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE);
/* Immediate data comes after RETH */
ohdr->u.rc.imm_data = wqe->wr.ex.imm_data;
hwords += 1;
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
bth0 |= IB_BTH_SOLICITED;
}
bth2 |= IB_BTH_REQ_ACK;
if (++qp->s_cur == qp->s_size)
qp->s_cur = 0;
break;
case IB_WR_RDMA_READ:
/*
* Don't allow more operations to be started
* than the QP limits allow.
*/
if (newreq) {
if (qp->s_num_rd_atomic >=
qp->s_max_rd_atomic) {
qp->s_flags |= RVT_S_WAIT_RDMAR;
goto bail;
}
qp->s_num_rd_atomic++;
if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT))
qp->s_lsn++;
}
put_ib_reth_vaddr(
wqe->rdma_wr.remote_addr,
&ohdr->u.rc.reth);
ohdr->u.rc.reth.rkey =
cpu_to_be32(wqe->rdma_wr.rkey);
ohdr->u.rc.reth.length = cpu_to_be32(len);
qp->s_state = OP(RDMA_READ_REQUEST);
hwords += sizeof(ohdr->u.rc.reth) / sizeof(u32);
ss = NULL;
len = 0;
bth2 |= IB_BTH_REQ_ACK;
if (++qp->s_cur == qp->s_size)
qp->s_cur = 0;
break;
case IB_WR_ATOMIC_CMP_AND_SWP:
case IB_WR_ATOMIC_FETCH_AND_ADD:
/*
* Don't allow more operations to be started
* than the QP limits allow.
*/
if (newreq) {
if (qp->s_num_rd_atomic >=
qp->s_max_rd_atomic) {
qp->s_flags |= RVT_S_WAIT_RDMAR;
goto bail;
}
qp->s_num_rd_atomic++;
if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT))
qp->s_lsn++;
}
if (wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP) {
qp->s_state = OP(COMPARE_SWAP);
put_ib_ateth_swap(wqe->atomic_wr.swap,
&ohdr->u.atomic_eth);
put_ib_ateth_compare(wqe->atomic_wr.compare_add,
&ohdr->u.atomic_eth);
} else {
qp->s_state = OP(FETCH_ADD);
put_ib_ateth_swap(wqe->atomic_wr.compare_add,
&ohdr->u.atomic_eth);
put_ib_ateth_compare(0, &ohdr->u.atomic_eth);
}
put_ib_ateth_vaddr(wqe->atomic_wr.remote_addr,
&ohdr->u.atomic_eth);
ohdr->u.atomic_eth.rkey = cpu_to_be32(
wqe->atomic_wr.rkey);
hwords += sizeof(struct ib_atomic_eth) / sizeof(u32);
ss = NULL;
len = 0;
bth2 |= IB_BTH_REQ_ACK;
if (++qp->s_cur == qp->s_size)
qp->s_cur = 0;
break;
default:
goto bail;
}
qp->s_sge.sge = wqe->sg_list[0];
qp->s_sge.sg_list = wqe->sg_list + 1;
qp->s_sge.num_sge = wqe->wr.num_sge;
qp->s_sge.total_len = wqe->length;
qp->s_len = wqe->length;
if (newreq) {
qp->s_tail++;
if (qp->s_tail >= qp->s_size)
qp->s_tail = 0;
}
if (wqe->wr.opcode == IB_WR_RDMA_READ)
qp->s_psn = wqe->lpsn + 1;
else
qp->s_psn++;
break;
case OP(RDMA_READ_RESPONSE_FIRST):
/*
* qp->s_state is normally set to the opcode of the
* last packet constructed for new requests and therefore
* is never set to RDMA read response.
* RDMA_READ_RESPONSE_FIRST is used by the ACK processing
* thread to indicate a SEND needs to be restarted from an
* earlier PSN without interfering with the sending thread.
* See restart_rc().
*/
qp->s_len = restart_sge(&qp->s_sge, wqe, qp->s_psn, pmtu);
/* FALLTHROUGH */
case OP(SEND_FIRST):
qp->s_state = OP(SEND_MIDDLE);
/* FALLTHROUGH */
case OP(SEND_MIDDLE):
bth2 = mask_psn(qp->s_psn++);
ss = &qp->s_sge;
len = qp->s_len;
if (len > pmtu) {
len = pmtu;
middle = HFI1_CAP_IS_KSET(SDMA_AHG);
break;
}
if (wqe->wr.opcode == IB_WR_SEND) {
qp->s_state = OP(SEND_LAST);
} else if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) {
qp->s_state = OP(SEND_LAST_WITH_IMMEDIATE);
/* Immediate data comes after the BTH */
ohdr->u.imm_data = wqe->wr.ex.imm_data;
hwords += 1;
} else {
qp->s_state = OP(SEND_LAST_WITH_INVALIDATE);
/* invalidate data comes after the BTH */
ohdr->u.ieth = cpu_to_be32(wqe->wr.ex.invalidate_rkey);
hwords += 1;
}
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
bth0 |= IB_BTH_SOLICITED;
bth2 |= IB_BTH_REQ_ACK;
qp->s_cur++;
if (qp->s_cur >= qp->s_size)
qp->s_cur = 0;
break;
case OP(RDMA_READ_RESPONSE_LAST):
/*
* qp->s_state is normally set to the opcode of the
* last packet constructed for new requests and therefore
* is never set to RDMA read response.
* RDMA_READ_RESPONSE_LAST is used by the ACK processing
* thread to indicate a RDMA write needs to be restarted from
* an earlier PSN without interfering with the sending thread.
* See restart_rc().
*/
qp->s_len = restart_sge(&qp->s_sge, wqe, qp->s_psn, pmtu);
/* FALLTHROUGH */
case OP(RDMA_WRITE_FIRST):
qp->s_state = OP(RDMA_WRITE_MIDDLE);
/* FALLTHROUGH */
case OP(RDMA_WRITE_MIDDLE):
bth2 = mask_psn(qp->s_psn++);
ss = &qp->s_sge;
len = qp->s_len;
if (len > pmtu) {
len = pmtu;
middle = HFI1_CAP_IS_KSET(SDMA_AHG);
break;
}
if (wqe->wr.opcode == IB_WR_RDMA_WRITE) {
qp->s_state = OP(RDMA_WRITE_LAST);
} else {
qp->s_state = OP(RDMA_WRITE_LAST_WITH_IMMEDIATE);
/* Immediate data comes after the BTH */
ohdr->u.imm_data = wqe->wr.ex.imm_data;
hwords += 1;
if (wqe->wr.send_flags & IB_SEND_SOLICITED)
bth0 |= IB_BTH_SOLICITED;
}
bth2 |= IB_BTH_REQ_ACK;
qp->s_cur++;
if (qp->s_cur >= qp->s_size)
qp->s_cur = 0;
break;
case OP(RDMA_READ_RESPONSE_MIDDLE):
/*
* qp->s_state is normally set to the opcode of the
* last packet constructed for new requests and therefore
* is never set to RDMA read response.
* RDMA_READ_RESPONSE_MIDDLE is used by the ACK processing
* thread to indicate a RDMA read needs to be restarted from
* an earlier PSN without interfering with the sending thread.
* See restart_rc().
*/
len = (delta_psn(qp->s_psn, wqe->psn)) * pmtu;
put_ib_reth_vaddr(
wqe->rdma_wr.remote_addr + len,
&ohdr->u.rc.reth);
ohdr->u.rc.reth.rkey =
cpu_to_be32(wqe->rdma_wr.rkey);
ohdr->u.rc.reth.length = cpu_to_be32(wqe->length - len);
qp->s_state = OP(RDMA_READ_REQUEST);
hwords += sizeof(ohdr->u.rc.reth) / sizeof(u32);
bth2 = mask_psn(qp->s_psn) | IB_BTH_REQ_ACK;
qp->s_psn = wqe->lpsn + 1;
ss = NULL;
len = 0;
qp->s_cur++;
if (qp->s_cur == qp->s_size)
qp->s_cur = 0;
break;
}
qp->s_sending_hpsn = bth2;
delta = delta_psn(bth2, wqe->psn);
if (delta && delta % HFI1_PSN_CREDIT == 0)
bth2 |= IB_BTH_REQ_ACK;
if (qp->s_flags & RVT_S_SEND_ONE) {
qp->s_flags &= ~RVT_S_SEND_ONE;
qp->s_flags |= RVT_S_WAIT_ACK;
bth2 |= IB_BTH_REQ_ACK;
}
qp->s_len -= len;
qp->s_hdrwords = hwords;
ps->s_txreq->sde = priv->s_sde;
qp->s_cur_sge = ss;
qp->s_cur_size = len;
hfi1_make_ruc_header(
qp,
ohdr,
bth0 | (qp->s_state << 24),
bth2,
middle,
ps);
/* pbc */
ps->s_txreq->hdr_dwords = qp->s_hdrwords + 2;
return 1;
done_free_tx:
hfi1_put_txreq(ps->s_txreq);
ps->s_txreq = NULL;
return 1;
bail:
hfi1_put_txreq(ps->s_txreq);
bail_no_tx:
ps->s_txreq = NULL;
qp->s_flags &= ~RVT_S_BUSY;
qp->s_hdrwords = 0;
return 0;
}
/**
* hfi1_send_rc_ack - Construct an ACK packet and send it
* @qp: a pointer to the QP
*
* This is called from hfi1_rc_rcv() and handle_receive_interrupt().
* Note that RDMA reads and atomics are handled in the
* send side QP state and send engine.
*/
void hfi1_send_rc_ack(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp,
int is_fecn)
{
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
u64 pbc, pbc_flags = 0;
u16 lrh0;
u16 sc5;
u32 bth0;
u32 hwords;
u32 vl, plen;
struct send_context *sc;
struct pio_buf *pbuf;
struct ib_header hdr;
struct ib_other_headers *ohdr;
unsigned long flags;
/* Don't send ACK or NAK if a RDMA read or atomic is pending. */
if (qp->s_flags & RVT_S_RESP_PENDING)
goto queue_ack;
/* Ensure s_rdma_ack_cnt changes are committed */
smp_read_barrier_depends();
if (qp->s_rdma_ack_cnt)
goto queue_ack;
/* Construct the header */
/* header size in 32-bit words LRH+BTH+AETH = (8+12+4)/4 */
hwords = 6;
if (unlikely(qp->remote_ah_attr.ah_flags & IB_AH_GRH)) {
hwords += hfi1_make_grh(ibp, &hdr.u.l.grh,
&qp->remote_ah_attr.grh, hwords, 0);
ohdr = &hdr.u.l.oth;
lrh0 = HFI1_LRH_GRH;
} else {
ohdr = &hdr.u.oth;
lrh0 = HFI1_LRH_BTH;
}
/* read pkey_index w/o lock (its atomic) */
bth0 = hfi1_get_pkey(ibp, qp->s_pkey_index) | (OP(ACKNOWLEDGE) << 24);
if (qp->s_mig_state == IB_MIG_MIGRATED)
bth0 |= IB_BTH_MIG_REQ;
if (qp->r_nak_state)
ohdr->u.aeth = cpu_to_be32((qp->r_msn & HFI1_MSN_MASK) |
(qp->r_nak_state <<
HFI1_AETH_CREDIT_SHIFT));
else
ohdr->u.aeth = hfi1_compute_aeth(qp);
sc5 = ibp->sl_to_sc[qp->remote_ah_attr.sl];
/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
pbc_flags |= ((!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT);
lrh0 |= (sc5 & 0xf) << 12 | (qp->remote_ah_attr.sl & 0xf) << 4;
hdr.lrh[0] = cpu_to_be16(lrh0);
hdr.lrh[1] = cpu_to_be16(qp->remote_ah_attr.dlid);
hdr.lrh[2] = cpu_to_be16(hwords + SIZE_OF_CRC);
hdr.lrh[3] = cpu_to_be16(ppd->lid | qp->remote_ah_attr.src_path_bits);
ohdr->bth[0] = cpu_to_be32(bth0);
ohdr->bth[1] = cpu_to_be32(qp->remote_qpn);
ohdr->bth[1] |= cpu_to_be32((!!is_fecn) << HFI1_BECN_SHIFT);
ohdr->bth[2] = cpu_to_be32(mask_psn(qp->r_ack_psn));
/* Don't try to send ACKs if the link isn't ACTIVE */
if (driver_lstate(ppd) != IB_PORT_ACTIVE)
return;
sc = rcd->sc;
plen = 2 /* PBC */ + hwords;
vl = sc_to_vlt(ppd->dd, sc5);
pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
pbuf = sc_buffer_alloc(sc, plen, NULL, NULL);
if (!pbuf) {
/*
* We have no room to send at the moment. Pass
* responsibility for sending the ACK to the send engine
* so that when enough buffer space becomes available,
* the ACK is sent ahead of other outgoing packets.
*/
goto queue_ack;
}
trace_ack_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &hdr);
/* write the pbc and data */
ppd->dd->pio_inline_send(ppd->dd, pbuf, pbc, &hdr, hwords);
return;
queue_ack:
spin_lock_irqsave(&qp->s_lock, flags);
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
goto unlock;
this_cpu_inc(*ibp->rvp.rc_qacks);
qp->s_flags |= RVT_S_ACK_PENDING | RVT_S_RESP_PENDING;
qp->s_nak_state = qp->r_nak_state;
qp->s_ack_psn = qp->r_ack_psn;
if (is_fecn)
qp->s_flags |= RVT_S_ECN;
/* Schedule the send engine. */
hfi1_schedule_send(qp);
unlock:
spin_unlock_irqrestore(&qp->s_lock, flags);
}
/**
* reset_psn - reset the QP state to send starting from PSN
* @qp: the QP
* @psn: the packet sequence number to restart at
*
* This is called from hfi1_rc_rcv() to process an incoming RC ACK
* for the given QP.
* Called at interrupt level with the QP s_lock held.
*/
static void reset_psn(struct rvt_qp *qp, u32 psn)
{
u32 n = qp->s_acked;
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, n);
u32 opcode;
lockdep_assert_held(&qp->s_lock);
qp->s_cur = n;
/*
* If we are starting the request from the beginning,
* let the normal send code handle initialization.
*/
if (cmp_psn(psn, wqe->psn) <= 0) {
qp->s_state = OP(SEND_LAST);
goto done;
}
/* Find the work request opcode corresponding to the given PSN. */
opcode = wqe->wr.opcode;
for (;;) {
int diff;
if (++n == qp->s_size)
n = 0;
if (n == qp->s_tail)
break;
wqe = rvt_get_swqe_ptr(qp, n);
diff = cmp_psn(psn, wqe->psn);
if (diff < 0)
break;
qp->s_cur = n;
/*
* If we are starting the request from the beginning,
* let the normal send code handle initialization.
*/
if (diff == 0) {
qp->s_state = OP(SEND_LAST);
goto done;
}
opcode = wqe->wr.opcode;
}
/*
* Set the state to restart in the middle of a request.
* Don't change the s_sge, s_cur_sge, or s_cur_size.
* See hfi1_make_rc_req().
*/
switch (opcode) {
case IB_WR_SEND:
case IB_WR_SEND_WITH_IMM:
qp->s_state = OP(RDMA_READ_RESPONSE_FIRST);
break;
case IB_WR_RDMA_WRITE:
case IB_WR_RDMA_WRITE_WITH_IMM:
qp->s_state = OP(RDMA_READ_RESPONSE_LAST);
break;
case IB_WR_RDMA_READ:
qp->s_state = OP(RDMA_READ_RESPONSE_MIDDLE);
break;
default:
/*
* This case shouldn't happen since its only
* one PSN per req.
*/
qp->s_state = OP(SEND_LAST);
}
done:
qp->s_psn = psn;
/*
* Set RVT_S_WAIT_PSN as rc_complete() may start the timer
* asynchronously before the send engine can get scheduled.
* Doing it in hfi1_make_rc_req() is too late.
*/
if ((cmp_psn(qp->s_psn, qp->s_sending_hpsn) <= 0) &&
(cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0))
qp->s_flags |= RVT_S_WAIT_PSN;
qp->s_flags &= ~RVT_S_AHG_VALID;
}
/*
* Back up requester to resend the last un-ACKed request.
* The QP r_lock and s_lock should be held and interrupts disabled.
*/
static void restart_rc(struct rvt_qp *qp, u32 psn, int wait)
{
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
struct hfi1_ibport *ibp;
lockdep_assert_held(&qp->r_lock);
lockdep_assert_held(&qp->s_lock);
if (qp->s_retry == 0) {
if (qp->s_mig_state == IB_MIG_ARMED) {
hfi1_migrate_qp(qp);
qp->s_retry = qp->s_retry_cnt;
} else if (qp->s_last == qp->s_acked) {
hfi1_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR);
rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
return;
} else { /* need to handle delayed completion */
return;
}
} else {
qp->s_retry--;
}
ibp = to_iport(qp->ibqp.device, qp->port_num);
if (wqe->wr.opcode == IB_WR_RDMA_READ)
ibp->rvp.n_rc_resends++;
else
ibp->rvp.n_rc_resends += delta_psn(qp->s_psn, psn);
qp->s_flags &= ~(RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR |
RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_PSN |
RVT_S_WAIT_ACK);
if (wait)
qp->s_flags |= RVT_S_SEND_ONE;
reset_psn(qp, psn);
}
/*
* This is called from s_timer for missing responses.
*/
void hfi1_rc_timeout(unsigned long arg)
{
struct rvt_qp *qp = (struct rvt_qp *)arg;
struct hfi1_ibport *ibp;
unsigned long flags;
spin_lock_irqsave(&qp->r_lock, flags);
spin_lock(&qp->s_lock);
if (qp->s_flags & RVT_S_TIMER) {
ibp = to_iport(qp->ibqp.device, qp->port_num);
ibp->rvp.n_rc_timeouts++;
qp->s_flags &= ~RVT_S_TIMER;
del_timer(&qp->s_timer);
trace_hfi1_timeout(qp, qp->s_last_psn + 1);
restart_rc(qp, qp->s_last_psn + 1, 1);
hfi1_schedule_send(qp);
}
spin_unlock(&qp->s_lock);
spin_unlock_irqrestore(&qp->r_lock, flags);
}
/*
* This is called from s_timer for RNR timeouts.
*/
void hfi1_rc_rnr_retry(unsigned long arg)
{
struct rvt_qp *qp = (struct rvt_qp *)arg;
unsigned long flags;
spin_lock_irqsave(&qp->s_lock, flags);
hfi1_stop_rnr_timer(qp);
hfi1_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
}
/*
* Set qp->s_sending_psn to the next PSN after the given one.
* This would be psn+1 except when RDMA reads are present.
*/
static void reset_sending_psn(struct rvt_qp *qp, u32 psn)
{
struct rvt_swqe *wqe;
u32 n = qp->s_last;
lockdep_assert_held(&qp->s_lock);
/* Find the work request corresponding to the given PSN. */
for (;;) {
wqe = rvt_get_swqe_ptr(qp, n);
if (cmp_psn(psn, wqe->lpsn) <= 0) {
if (wqe->wr.opcode == IB_WR_RDMA_READ)
qp->s_sending_psn = wqe->lpsn + 1;
else
qp->s_sending_psn = psn + 1;
break;
}
if (++n == qp->s_size)
n = 0;
if (n == qp->s_tail)
break;
}
}
/*
* This should be called with the QP s_lock held and interrupts disabled.
*/
void hfi1_rc_send_complete(struct rvt_qp *qp, struct ib_header *hdr)
{
struct ib_other_headers *ohdr;
struct rvt_swqe *wqe;
struct ib_wc wc;
unsigned i;
u32 opcode;
u32 psn;
lockdep_assert_held(&qp->s_lock);
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND))
return;
/* Find out where the BTH is */
if ((be16_to_cpu(hdr->lrh[0]) & 3) == HFI1_LRH_BTH)
ohdr = &hdr->u.oth;
else
ohdr = &hdr->u.l.oth;
opcode = be32_to_cpu(ohdr->bth[0]) >> 24;
if (opcode >= OP(RDMA_READ_RESPONSE_FIRST) &&
opcode <= OP(ATOMIC_ACKNOWLEDGE)) {
WARN_ON(!qp->s_rdma_ack_cnt);
qp->s_rdma_ack_cnt--;
return;
}
psn = be32_to_cpu(ohdr->bth[2]);
reset_sending_psn(qp, psn);
/*
* Start timer after a packet requesting an ACK has been sent and
* there are still requests that haven't been acked.
*/
if ((psn & IB_BTH_REQ_ACK) && qp->s_acked != qp->s_tail &&
!(qp->s_flags &
(RVT_S_TIMER | RVT_S_WAIT_RNR | RVT_S_WAIT_PSN)) &&
(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK))
hfi1_add_retry_timer(qp);
while (qp->s_last != qp->s_acked) {
u32 s_last;
wqe = rvt_get_swqe_ptr(qp, qp->s_last);
if (cmp_psn(wqe->lpsn, qp->s_sending_psn) >= 0 &&
cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0)
break;
s_last = qp->s_last;
if (++s_last >= qp->s_size)
s_last = 0;
qp->s_last = s_last;
/* see post_send() */
barrier();
for (i = 0; i < wqe->wr.num_sge; i++) {
struct rvt_sge *sge = &wqe->sg_list[i];
rvt_put_mr(sge->mr);
}
/* Post a send completion queue entry if requested. */
if (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) ||
(wqe->wr.send_flags & IB_SEND_SIGNALED)) {
memset(&wc, 0, sizeof(wc));
wc.wr_id = wqe->wr.wr_id;
wc.status = IB_WC_SUCCESS;
wc.opcode = ib_hfi1_wc_opcode[wqe->wr.opcode];
wc.byte_len = wqe->length;
wc.qp = &qp->ibqp;
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.send_cq), &wc, 0);
}
}
/*
* If we were waiting for sends to complete before re-sending,
* and they are now complete, restart sending.
*/
trace_hfi1_sendcomplete(qp, psn);
if (qp->s_flags & RVT_S_WAIT_PSN &&
cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) > 0) {
qp->s_flags &= ~RVT_S_WAIT_PSN;
qp->s_sending_psn = qp->s_psn;
qp->s_sending_hpsn = qp->s_psn - 1;
hfi1_schedule_send(qp);
}
}
static inline void update_last_psn(struct rvt_qp *qp, u32 psn)
{
qp->s_last_psn = psn;
}
/*
* Generate a SWQE completion.
* This is similar to hfi1_send_complete but has to check to be sure
* that the SGEs are not being referenced if the SWQE is being resent.
*/
static struct rvt_swqe *do_rc_completion(struct rvt_qp *qp,
struct rvt_swqe *wqe,
struct hfi1_ibport *ibp)
{
struct ib_wc wc;
unsigned i;
lockdep_assert_held(&qp->s_lock);
/*
* Don't decrement refcount and don't generate a
* completion if the SWQE is being resent until the send
* is finished.
*/
if (cmp_psn(wqe->lpsn, qp->s_sending_psn) < 0 ||
cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) > 0) {
u32 s_last;
for (i = 0; i < wqe->wr.num_sge; i++) {
struct rvt_sge *sge = &wqe->sg_list[i];
rvt_put_mr(sge->mr);
}
s_last = qp->s_last;
if (++s_last >= qp->s_size)
s_last = 0;
qp->s_last = s_last;
/* see post_send() */
barrier();
/* Post a send completion queue entry if requested. */
if (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) ||
(wqe->wr.send_flags & IB_SEND_SIGNALED)) {
memset(&wc, 0, sizeof(wc));
wc.wr_id = wqe->wr.wr_id;
wc.status = IB_WC_SUCCESS;
wc.opcode = ib_hfi1_wc_opcode[wqe->wr.opcode];
wc.byte_len = wqe->length;
wc.qp = &qp->ibqp;
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.send_cq), &wc, 0);
}
} else {
struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
this_cpu_inc(*ibp->rvp.rc_delayed_comp);
/*
* If send progress not running attempt to progress
* SDMA queue.
*/
if (ppd->dd->flags & HFI1_HAS_SEND_DMA) {
struct sdma_engine *engine;
u8 sc5;
/* For now use sc to find engine */
sc5 = ibp->sl_to_sc[qp->remote_ah_attr.sl];
engine = qp_to_sdma_engine(qp, sc5);
sdma_engine_progress_schedule(engine);
}
}
qp->s_retry = qp->s_retry_cnt;
update_last_psn(qp, wqe->lpsn);
/*
* If we are completing a request which is in the process of
* being resent, we can stop re-sending it since we know the
* responder has already seen it.
*/
if (qp->s_acked == qp->s_cur) {
if (++qp->s_cur >= qp->s_size)
qp->s_cur = 0;
qp->s_acked = qp->s_cur;
wqe = rvt_get_swqe_ptr(qp, qp->s_cur);
if (qp->s_acked != qp->s_tail) {
qp->s_state = OP(SEND_LAST);
qp->s_psn = wqe->psn;
}
} else {
if (++qp->s_acked >= qp->s_size)
qp->s_acked = 0;
if (qp->state == IB_QPS_SQD && qp->s_acked == qp->s_cur)
qp->s_draining = 0;
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
}
return wqe;
}
/**
* do_rc_ack - process an incoming RC ACK
* @qp: the QP the ACK came in on
* @psn: the packet sequence number of the ACK
* @opcode: the opcode of the request that resulted in the ACK
*
* This is called from rc_rcv_resp() to process an incoming RC ACK
* for the given QP.
* May be called at interrupt level, with the QP s_lock held.
* Returns 1 if OK, 0 if current operation should be aborted (NAK).
*/
static int do_rc_ack(struct rvt_qp *qp, u32 aeth, u32 psn, int opcode,
u64 val, struct hfi1_ctxtdata *rcd)
{
struct hfi1_ibport *ibp;
enum ib_wc_status status;
struct rvt_swqe *wqe;
int ret = 0;
u32 ack_psn;
int diff;
unsigned long to;
lockdep_assert_held(&qp->s_lock);
/*
* Note that NAKs implicitly ACK outstanding SEND and RDMA write
* requests and implicitly NAK RDMA read and atomic requests issued
* before the NAK'ed request. The MSN won't include the NAK'ed
* request but will include an ACK'ed request(s).
*/
ack_psn = psn;
if (aeth >> 29)
ack_psn--;
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
ibp = to_iport(qp->ibqp.device, qp->port_num);
/*
* The MSN might be for a later WQE than the PSN indicates so
* only complete WQEs that the PSN finishes.
*/
while ((diff = delta_psn(ack_psn, wqe->lpsn)) >= 0) {
/*
* RDMA_READ_RESPONSE_ONLY is a special case since
* we want to generate completion events for everything
* before the RDMA read, copy the data, then generate
* the completion for the read.
*/
if (wqe->wr.opcode == IB_WR_RDMA_READ &&
opcode == OP(RDMA_READ_RESPONSE_ONLY) &&
diff == 0) {
ret = 1;
goto bail_stop;
}
/*
* If this request is a RDMA read or atomic, and the ACK is
* for a later operation, this ACK NAKs the RDMA read or
* atomic. In other words, only a RDMA_READ_LAST or ONLY
* can ACK a RDMA read and likewise for atomic ops. Note
* that the NAK case can only happen if relaxed ordering is
* used and requests are sent after an RDMA read or atomic
* is sent but before the response is received.
*/
if ((wqe->wr.opcode == IB_WR_RDMA_READ &&
(opcode != OP(RDMA_READ_RESPONSE_LAST) || diff != 0)) ||
((wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) &&
(opcode != OP(ATOMIC_ACKNOWLEDGE) || diff != 0))) {
/* Retry this request. */
if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
qp->r_flags |= RVT_R_RDMAR_SEQ;
restart_rc(qp, qp->s_last_psn + 1, 0);
if (list_empty(&qp->rspwait)) {
qp->r_flags |= RVT_R_RSP_SEND;
rvt_get_qp(qp);
list_add_tail(&qp->rspwait,
&rcd->qp_wait_list);
}
}
/*
* No need to process the ACK/NAK since we are
* restarting an earlier request.
*/
goto bail_stop;
}
if (wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
u64 *vaddr = wqe->sg_list[0].vaddr;
*vaddr = val;
}
if (qp->s_num_rd_atomic &&
(wqe->wr.opcode == IB_WR_RDMA_READ ||
wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD)) {
qp->s_num_rd_atomic--;
/* Restart sending task if fence is complete */
if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
!qp->s_num_rd_atomic) {
qp->s_flags &= ~(RVT_S_WAIT_FENCE |
RVT_S_WAIT_ACK);
hfi1_schedule_send(qp);
} else if (qp->s_flags & RVT_S_WAIT_RDMAR) {
qp->s_flags &= ~(RVT_S_WAIT_RDMAR |
RVT_S_WAIT_ACK);
hfi1_schedule_send(qp);
}
}
wqe = do_rc_completion(qp, wqe, ibp);
if (qp->s_acked == qp->s_tail)
break;
}
switch (aeth >> 29) {
case 0: /* ACK */
this_cpu_inc(*ibp->rvp.rc_acks);
if (qp->s_acked != qp->s_tail) {
/*
* We are expecting more ACKs so
* mod the retry timer.
*/
hfi1_mod_retry_timer(qp);
/*
* We can stop re-sending the earlier packets and
* continue with the next packet the receiver wants.
*/
if (cmp_psn(qp->s_psn, psn) <= 0)
reset_psn(qp, psn + 1);
} else {
/* No more acks - kill all timers */
hfi1_stop_rc_timers(qp);
if (cmp_psn(qp->s_psn, psn) <= 0) {
qp->s_state = OP(SEND_LAST);
qp->s_psn = psn + 1;
}
}
if (qp->s_flags & RVT_S_WAIT_ACK) {
qp->s_flags &= ~RVT_S_WAIT_ACK;
hfi1_schedule_send(qp);
}
hfi1_get_credit(qp, aeth);
qp->s_rnr_retry = qp->s_rnr_retry_cnt;
qp->s_retry = qp->s_retry_cnt;
update_last_psn(qp, psn);
return 1;
case 1: /* RNR NAK */
ibp->rvp.n_rnr_naks++;
if (qp->s_acked == qp->s_tail)
goto bail_stop;
if (qp->s_flags & RVT_S_WAIT_RNR)
goto bail_stop;
if (qp->s_rnr_retry == 0) {
status = IB_WC_RNR_RETRY_EXC_ERR;
goto class_b;
}
if (qp->s_rnr_retry_cnt < 7)
qp->s_rnr_retry--;
/* The last valid PSN is the previous PSN. */
update_last_psn(qp, psn - 1);
ibp->rvp.n_rc_resends += delta_psn(qp->s_psn, psn);
reset_psn(qp, psn);
qp->s_flags &= ~(RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_ACK);
hfi1_stop_rc_timers(qp);
to =
ib_hfi1_rnr_table[(aeth >> HFI1_AETH_CREDIT_SHIFT) &
HFI1_AETH_CREDIT_MASK];
hfi1_add_rnr_timer(qp, to);
return 0;
case 3: /* NAK */
if (qp->s_acked == qp->s_tail)
goto bail_stop;
/* The last valid PSN is the previous PSN. */
update_last_psn(qp, psn - 1);
switch ((aeth >> HFI1_AETH_CREDIT_SHIFT) &
HFI1_AETH_CREDIT_MASK) {
case 0: /* PSN sequence error */
ibp->rvp.n_seq_naks++;
/*
* Back up to the responder's expected PSN.
* Note that we might get a NAK in the middle of an
* RDMA READ response which terminates the RDMA
* READ.
*/
restart_rc(qp, psn, 0);
hfi1_schedule_send(qp);
break;
case 1: /* Invalid Request */
status = IB_WC_REM_INV_REQ_ERR;
ibp->rvp.n_other_naks++;
goto class_b;
case 2: /* Remote Access Error */
status = IB_WC_REM_ACCESS_ERR;
ibp->rvp.n_other_naks++;
goto class_b;
case 3: /* Remote Operation Error */
status = IB_WC_REM_OP_ERR;
ibp->rvp.n_other_naks++;
class_b:
if (qp->s_last == qp->s_acked) {
hfi1_send_complete(qp, wqe, status);
rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
}
break;
default:
/* Ignore other reserved NAK error codes */
goto reserved;
}
qp->s_retry = qp->s_retry_cnt;
qp->s_rnr_retry = qp->s_rnr_retry_cnt;
goto bail_stop;
default: /* 2: reserved */
reserved:
/* Ignore reserved NAK codes. */
goto bail_stop;
}
/* cannot be reached */
bail_stop:
hfi1_stop_rc_timers(qp);
return ret;
}
/*
* We have seen an out of sequence RDMA read middle or last packet.
* This ACKs SENDs and RDMA writes up to the first RDMA read or atomic SWQE.
*/
static void rdma_seq_err(struct rvt_qp *qp, struct hfi1_ibport *ibp, u32 psn,
struct hfi1_ctxtdata *rcd)
{
struct rvt_swqe *wqe;
lockdep_assert_held(&qp->s_lock);
/* Remove QP from retry timer */
hfi1_stop_rc_timers(qp);
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
while (cmp_psn(psn, wqe->lpsn) > 0) {
if (wqe->wr.opcode == IB_WR_RDMA_READ ||
wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD)
break;
wqe = do_rc_completion(qp, wqe, ibp);
}
ibp->rvp.n_rdma_seq++;
qp->r_flags |= RVT_R_RDMAR_SEQ;
restart_rc(qp, qp->s_last_psn + 1, 0);
if (list_empty(&qp->rspwait)) {
qp->r_flags |= RVT_R_RSP_SEND;
rvt_get_qp(qp);
list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
}
}
/**
* rc_rcv_resp - process an incoming RC response packet
* @ibp: the port this packet came in on
* @ohdr: the other headers for this packet
* @data: the packet data
* @tlen: the packet length
* @qp: the QP for this packet
* @opcode: the opcode for this packet
* @psn: the packet sequence number for this packet
* @hdrsize: the header length
* @pmtu: the path MTU
*
* This is called from hfi1_rc_rcv() to process an incoming RC response
* packet for the given QP.
* Called at interrupt level.
*/
static void rc_rcv_resp(struct hfi1_ibport *ibp,
struct ib_other_headers *ohdr,
void *data, u32 tlen, struct rvt_qp *qp,
u32 opcode, u32 psn, u32 hdrsize, u32 pmtu,
struct hfi1_ctxtdata *rcd)
{
struct rvt_swqe *wqe;
enum ib_wc_status status;
unsigned long flags;
int diff;
u32 pad;
u32 aeth;
u64 val;
spin_lock_irqsave(&qp->s_lock, flags);
trace_hfi1_ack(qp, psn);
/* Ignore invalid responses. */
smp_read_barrier_depends(); /* see post_one_send */
if (cmp_psn(psn, ACCESS_ONCE(qp->s_next_psn)) >= 0)
goto ack_done;
/* Ignore duplicate responses. */
diff = cmp_psn(psn, qp->s_last_psn);
if (unlikely(diff <= 0)) {
/* Update credits for "ghost" ACKs */
if (diff == 0 && opcode == OP(ACKNOWLEDGE)) {
aeth = be32_to_cpu(ohdr->u.aeth);
if ((aeth >> 29) == 0)
hfi1_get_credit(qp, aeth);
}
goto ack_done;
}
/*
* Skip everything other than the PSN we expect, if we are waiting
* for a reply to a restarted RDMA read or atomic op.
*/
if (qp->r_flags & RVT_R_RDMAR_SEQ) {
if (cmp_psn(psn, qp->s_last_psn + 1) != 0)
goto ack_done;
qp->r_flags &= ~RVT_R_RDMAR_SEQ;
}
if (unlikely(qp->s_acked == qp->s_tail))
goto ack_done;
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
status = IB_WC_SUCCESS;
switch (opcode) {
case OP(ACKNOWLEDGE):
case OP(ATOMIC_ACKNOWLEDGE):
case OP(RDMA_READ_RESPONSE_FIRST):
aeth = be32_to_cpu(ohdr->u.aeth);
if (opcode == OP(ATOMIC_ACKNOWLEDGE))
val = ib_u64_get(&ohdr->u.at.atomic_ack_eth);
else
val = 0;
if (!do_rc_ack(qp, aeth, psn, opcode, val, rcd) ||
opcode != OP(RDMA_READ_RESPONSE_FIRST))
goto ack_done;
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ))
goto ack_op_err;
/*
* If this is a response to a resent RDMA read, we
* have to be careful to copy the data to the right
* location.
*/
qp->s_rdma_read_len = restart_sge(&qp->s_rdma_read_sge,
wqe, psn, pmtu);
goto read_middle;
case OP(RDMA_READ_RESPONSE_MIDDLE):
/* no AETH, no ACK */
if (unlikely(cmp_psn(psn, qp->s_last_psn + 1)))
goto ack_seq_err;
if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ))
goto ack_op_err;
read_middle:
if (unlikely(tlen != (hdrsize + pmtu + 4)))
goto ack_len_err;
if (unlikely(pmtu >= qp->s_rdma_read_len))
goto ack_len_err;
/*
* We got a response so update the timeout.
* 4.096 usec. * (1 << qp->timeout)
*/
qp->s_flags |= RVT_S_TIMER;
mod_timer(&qp->s_timer, jiffies + qp->timeout_jiffies);
if (qp->s_flags & RVT_S_WAIT_ACK) {
qp->s_flags &= ~RVT_S_WAIT_ACK;
hfi1_schedule_send(qp);
}
if (opcode == OP(RDMA_READ_RESPONSE_MIDDLE))
qp->s_retry = qp->s_retry_cnt;
/*
* Update the RDMA receive state but do the copy w/o
* holding the locks and blocking interrupts.
*/
qp->s_rdma_read_len -= pmtu;
update_last_psn(qp, psn);
spin_unlock_irqrestore(&qp->s_lock, flags);
hfi1_copy_sge(&qp->s_rdma_read_sge, data, pmtu, 0, 0);
goto bail;
case OP(RDMA_READ_RESPONSE_ONLY):
aeth = be32_to_cpu(ohdr->u.aeth);
if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd))
goto ack_done;
/* Get the number of bytes the message was padded by. */
pad = (be32_to_cpu(ohdr->bth[0]) >> 20) & 3;
/*
* Check that the data size is >= 0 && <= pmtu.
* Remember to account for ICRC (4).
*/
if (unlikely(tlen < (hdrsize + pad + 4)))
goto ack_len_err;
/*
* If this is a response to a resent RDMA read, we
* have to be careful to copy the data to the right
* location.
*/
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
qp->s_rdma_read_len = restart_sge(&qp->s_rdma_read_sge,
wqe, psn, pmtu);
goto read_last;
case OP(RDMA_READ_RESPONSE_LAST):
/* ACKs READ req. */
if (unlikely(cmp_psn(psn, qp->s_last_psn + 1)))
goto ack_seq_err;
if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ))
goto ack_op_err;
/* Get the number of bytes the message was padded by. */
pad = (be32_to_cpu(ohdr->bth[0]) >> 20) & 3;
/*
* Check that the data size is >= 1 && <= pmtu.
* Remember to account for ICRC (4).
*/
if (unlikely(tlen <= (hdrsize + pad + 4)))
goto ack_len_err;
read_last:
tlen -= hdrsize + pad + 4;
if (unlikely(tlen != qp->s_rdma_read_len))
goto ack_len_err;
aeth = be32_to_cpu(ohdr->u.aeth);
hfi1_copy_sge(&qp->s_rdma_read_sge, data, tlen, 0, 0);
WARN_ON(qp->s_rdma_read_sge.num_sge);
(void)do_rc_ack(qp, aeth, psn,
OP(RDMA_READ_RESPONSE_LAST), 0, rcd);
goto ack_done;
}
ack_op_err:
status = IB_WC_LOC_QP_OP_ERR;
goto ack_err;
ack_seq_err:
rdma_seq_err(qp, ibp, psn, rcd);
goto ack_done;
ack_len_err:
status = IB_WC_LOC_LEN_ERR;
ack_err:
if (qp->s_last == qp->s_acked) {
hfi1_send_complete(qp, wqe, status);
rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
}
ack_done:
spin_unlock_irqrestore(&qp->s_lock, flags);
bail:
return;
}
static inline void rc_defered_ack(struct hfi1_ctxtdata *rcd,
struct rvt_qp *qp)
{
if (list_empty(&qp->rspwait)) {
qp->r_flags |= RVT_R_RSP_NAK;
rvt_get_qp(qp);
list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
}
}
static inline void rc_cancel_ack(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
priv->r_adefered = 0;
if (list_empty(&qp->rspwait))
return;
list_del_init(&qp->rspwait);
qp->r_flags &= ~RVT_R_RSP_NAK;
rvt_put_qp(qp);
}
/**
* rc_rcv_error - process an incoming duplicate or error RC packet
* @ohdr: the other headers for this packet
* @data: the packet data
* @qp: the QP for this packet
* @opcode: the opcode for this packet
* @psn: the packet sequence number for this packet
* @diff: the difference between the PSN and the expected PSN
*
* This is called from hfi1_rc_rcv() to process an unexpected
* incoming RC packet for the given QP.
* Called at interrupt level.
* Return 1 if no more processing is needed; otherwise return 0 to
* schedule a response to be sent.
*/
static noinline int rc_rcv_error(struct ib_other_headers *ohdr, void *data,
struct rvt_qp *qp, u32 opcode, u32 psn,
int diff, struct hfi1_ctxtdata *rcd)
{
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct rvt_ack_entry *e;
unsigned long flags;
u8 i, prev;
int old_req;
trace_hfi1_rcv_error(qp, psn);
if (diff > 0) {
/*
* Packet sequence error.
* A NAK will ACK earlier sends and RDMA writes.
* Don't queue the NAK if we already sent one.
*/
if (!qp->r_nak_state) {
ibp->rvp.n_rc_seqnak++;
qp->r_nak_state = IB_NAK_PSN_ERROR;
/* Use the expected PSN. */
qp->r_ack_psn = qp->r_psn;
/*
* Wait to send the sequence NAK until all packets
* in the receive queue have been processed.
* Otherwise, we end up propagating congestion.
*/
rc_defered_ack(rcd, qp);
}
goto done;
}
/*
* Handle a duplicate request. Don't re-execute SEND, RDMA
* write or atomic op. Don't NAK errors, just silently drop
* the duplicate request. Note that r_sge, r_len, and
* r_rcv_len may be in use so don't modify them.
*
* We are supposed to ACK the earliest duplicate PSN but we
* can coalesce an outstanding duplicate ACK. We have to
* send the earliest so that RDMA reads can be restarted at
* the requester's expected PSN.
*
* First, find where this duplicate PSN falls within the
* ACKs previously sent.
* old_req is true if there is an older response that is scheduled
* to be sent before sending this one.
*/
e = NULL;
old_req = 1;
ibp->rvp.n_rc_dupreq++;
spin_lock_irqsave(&qp->s_lock, flags);
for (i = qp->r_head_ack_queue; ; i = prev) {
if (i == qp->s_tail_ack_queue)
old_req = 0;
if (i)
prev = i - 1;
else
prev = HFI1_MAX_RDMA_ATOMIC;
if (prev == qp->r_head_ack_queue) {
e = NULL;
break;
}
e = &qp->s_ack_queue[prev];
if (!e->opcode) {
e = NULL;
break;
}
if (cmp_psn(psn, e->psn) >= 0) {
if (prev == qp->s_tail_ack_queue &&
cmp_psn(psn, e->lpsn) <= 0)
old_req = 0;
break;
}
}
switch (opcode) {
case OP(RDMA_READ_REQUEST): {
struct ib_reth *reth;
u32 offset;
u32 len;
/*
* If we didn't find the RDMA read request in the ack queue,
* we can ignore this request.
*/
if (!e || e->opcode != OP(RDMA_READ_REQUEST))
goto unlock_done;
/* RETH comes after BTH */
reth = &ohdr->u.rc.reth;
/*
* Address range must be a subset of the original
* request and start on pmtu boundaries.
* We reuse the old ack_queue slot since the requester
* should not back up and request an earlier PSN for the
* same request.
*/
offset = delta_psn(psn, e->psn) * qp->pmtu;
len = be32_to_cpu(reth->length);
if (unlikely(offset + len != e->rdma_sge.sge_length))
goto unlock_done;
if (e->rdma_sge.mr) {
rvt_put_mr(e->rdma_sge.mr);
e->rdma_sge.mr = NULL;
}
if (len != 0) {
u32 rkey = be32_to_cpu(reth->rkey);
u64 vaddr = get_ib_reth_vaddr(reth);
int ok;
ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
IB_ACCESS_REMOTE_READ);
if (unlikely(!ok))
goto unlock_done;
} else {
e->rdma_sge.vaddr = NULL;
e->rdma_sge.length = 0;
e->rdma_sge.sge_length = 0;
}
e->psn = psn;
if (old_req)
goto unlock_done;
qp->s_tail_ack_queue = prev;
break;
}
case OP(COMPARE_SWAP):
case OP(FETCH_ADD): {
/*
* If we didn't find the atomic request in the ack queue
* or the send engine is already backed up to send an
* earlier entry, we can ignore this request.
*/
if (!e || e->opcode != (u8)opcode || old_req)
goto unlock_done;
qp->s_tail_ack_queue = prev;
break;
}
default:
/*
* Ignore this operation if it doesn't request an ACK
* or an earlier RDMA read or atomic is going to be resent.
*/
if (!(psn & IB_BTH_REQ_ACK) || old_req)
goto unlock_done;
/*
* Resend the most recent ACK if this request is
* after all the previous RDMA reads and atomics.
*/
if (i == qp->r_head_ack_queue) {
spin_unlock_irqrestore(&qp->s_lock, flags);
qp->r_nak_state = 0;
qp->r_ack_psn = qp->r_psn - 1;
goto send_ack;
}
/*
* Resend the RDMA read or atomic op which
* ACKs this duplicate request.
*/
qp->s_tail_ack_queue = i;
break;
}
qp->s_ack_state = OP(ACKNOWLEDGE);
qp->s_flags |= RVT_S_RESP_PENDING;
qp->r_nak_state = 0;
hfi1_schedule_send(qp);
unlock_done:
spin_unlock_irqrestore(&qp->s_lock, flags);
done:
return 1;
send_ack:
return 0;
}
void hfi1_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
{
unsigned long flags;
int lastwqe;
spin_lock_irqsave(&qp->s_lock, flags);
lastwqe = rvt_error_qp(qp, err);
spin_unlock_irqrestore(&qp->s_lock, flags);
if (lastwqe) {
struct ib_event ev;
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
}
static inline void update_ack_queue(struct rvt_qp *qp, unsigned n)
{
unsigned next;
next = n + 1;
if (next > HFI1_MAX_RDMA_ATOMIC)
next = 0;
qp->s_tail_ack_queue = next;
qp->s_ack_state = OP(ACKNOWLEDGE);
}
static void log_cca_event(struct hfi1_pportdata *ppd, u8 sl, u32 rlid,
u32 lqpn, u32 rqpn, u8 svc_type)
{
struct opa_hfi1_cong_log_event_internal *cc_event;
unsigned long flags;
if (sl >= OPA_MAX_SLS)
return;
spin_lock_irqsave(&ppd->cc_log_lock, flags);
ppd->threshold_cong_event_map[sl / 8] |= 1 << (sl % 8);
ppd->threshold_event_counter++;
cc_event = &ppd->cc_events[ppd->cc_log_idx++];
if (ppd->cc_log_idx == OPA_CONG_LOG_ELEMS)
ppd->cc_log_idx = 0;
cc_event->lqpn = lqpn & RVT_QPN_MASK;
cc_event->rqpn = rqpn & RVT_QPN_MASK;
cc_event->sl = sl;
cc_event->svc_type = svc_type;
cc_event->rlid = rlid;
/* keep timestamp in units of 1.024 usec */
cc_event->timestamp = ktime_to_ns(ktime_get()) / 1024;
spin_unlock_irqrestore(&ppd->cc_log_lock, flags);
}
void process_becn(struct hfi1_pportdata *ppd, u8 sl, u16 rlid, u32 lqpn,
u32 rqpn, u8 svc_type)
{
struct cca_timer *cca_timer;
u16 ccti, ccti_incr, ccti_timer, ccti_limit;
u8 trigger_threshold;
struct cc_state *cc_state;
unsigned long flags;
if (sl >= OPA_MAX_SLS)
return;
cc_state = get_cc_state(ppd);
if (!cc_state)
return;
/*
* 1) increase CCTI (for this SL)
* 2) select IPG (i.e., call set_link_ipg())
* 3) start timer
*/
ccti_limit = cc_state->cct.ccti_limit;
ccti_incr = cc_state->cong_setting.entries[sl].ccti_increase;
ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
trigger_threshold =
cc_state->cong_setting.entries[sl].trigger_threshold;
spin_lock_irqsave(&ppd->cca_timer_lock, flags);
cca_timer = &ppd->cca_timer[sl];
if (cca_timer->ccti < ccti_limit) {
if (cca_timer->ccti + ccti_incr <= ccti_limit)
cca_timer->ccti += ccti_incr;
else
cca_timer->ccti = ccti_limit;
set_link_ipg(ppd);
}
ccti = cca_timer->ccti;
if (!hrtimer_active(&cca_timer->hrtimer)) {
/* ccti_timer is in units of 1.024 usec */
unsigned long nsec = 1024 * ccti_timer;
hrtimer_start(&cca_timer->hrtimer, ns_to_ktime(nsec),
HRTIMER_MODE_REL);
}
spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
if ((trigger_threshold != 0) && (ccti >= trigger_threshold))
log_cca_event(ppd, sl, rlid, lqpn, rqpn, svc_type);
}
/**
* hfi1_rc_rcv - process an incoming RC packet
* @rcd: the context pointer
* @hdr: the header of this packet
* @rcv_flags: flags relevant to rcv processing
* @data: the packet data
* @tlen: the packet length
* @qp: the QP for this packet
*
* This is called from qp_rcv() to process an incoming RC packet
* for the given QP.
* May be called at interrupt level.
*/
void hfi1_rc_rcv(struct hfi1_packet *packet)
{
struct hfi1_ctxtdata *rcd = packet->rcd;
struct ib_header *hdr = packet->hdr;
u32 rcv_flags = packet->rcv_flags;
void *data = packet->ebuf;
u32 tlen = packet->tlen;
struct rvt_qp *qp = packet->qp;
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct ib_other_headers *ohdr = packet->ohdr;
u32 bth0, opcode;
u32 hdrsize = packet->hlen;
u32 psn;
u32 pad;
struct ib_wc wc;
u32 pmtu = qp->pmtu;
int diff;
struct ib_reth *reth;
unsigned long flags;
int ret, is_fecn = 0;
int copy_last = 0;
u32 rkey;
lockdep_assert_held(&qp->r_lock);
bth0 = be32_to_cpu(ohdr->bth[0]);
if (hfi1_ruc_check_hdr(ibp, hdr, rcv_flags & HFI1_HAS_GRH, qp, bth0))
return;
is_fecn = process_ecn(qp, packet, false);
psn = be32_to_cpu(ohdr->bth[2]);
opcode = (bth0 >> 24) & 0xff;
/*
* Process responses (ACKs) before anything else. Note that the
* packet sequence number will be for something in the send work
* queue rather than the expected receive packet sequence number.
* In other words, this QP is the requester.
*/
if (opcode >= OP(RDMA_READ_RESPONSE_FIRST) &&
opcode <= OP(ATOMIC_ACKNOWLEDGE)) {
rc_rcv_resp(ibp, ohdr, data, tlen, qp, opcode, psn,
hdrsize, pmtu, rcd);
if (is_fecn)
goto send_ack;
return;
}
/* Compute 24 bits worth of difference. */
diff = delta_psn(psn, qp->r_psn);
if (unlikely(diff)) {
if (rc_rcv_error(ohdr, data, qp, opcode, psn, diff, rcd))
return;
goto send_ack;
}
/* Check for opcode sequence errors. */
switch (qp->r_state) {
case OP(SEND_FIRST):
case OP(SEND_MIDDLE):
if (opcode == OP(SEND_MIDDLE) ||
opcode == OP(SEND_LAST) ||
opcode == OP(SEND_LAST_WITH_IMMEDIATE) ||
opcode == OP(SEND_LAST_WITH_INVALIDATE))
break;
goto nack_inv;
case OP(RDMA_WRITE_FIRST):
case OP(RDMA_WRITE_MIDDLE):
if (opcode == OP(RDMA_WRITE_MIDDLE) ||
opcode == OP(RDMA_WRITE_LAST) ||
opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE))
break;
goto nack_inv;
default:
if (opcode == OP(SEND_MIDDLE) ||
opcode == OP(SEND_LAST) ||
opcode == OP(SEND_LAST_WITH_IMMEDIATE) ||
opcode == OP(SEND_LAST_WITH_INVALIDATE) ||
opcode == OP(RDMA_WRITE_MIDDLE) ||
opcode == OP(RDMA_WRITE_LAST) ||
opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE))
goto nack_inv;
/*
* Note that it is up to the requester to not send a new
* RDMA read or atomic operation before receiving an ACK
* for the previous operation.
*/
break;
}
if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
qp_comm_est(qp);
/* OK, process the packet. */
switch (opcode) {
case OP(SEND_FIRST):
ret = hfi1_rvt_get_rwqe(qp, 0);
if (ret < 0)
goto nack_op_err;
if (!ret)
goto rnr_nak;
qp->r_rcv_len = 0;
/* FALLTHROUGH */
case OP(SEND_MIDDLE):
case OP(RDMA_WRITE_MIDDLE):
send_middle:
/* Check for invalid length PMTU or posted rwqe len. */
if (unlikely(tlen != (hdrsize + pmtu + 4)))
goto nack_inv;
qp->r_rcv_len += pmtu;
if (unlikely(qp->r_rcv_len > qp->r_len))
goto nack_inv;
hfi1_copy_sge(&qp->r_sge, data, pmtu, 1, 0);
break;
case OP(RDMA_WRITE_LAST_WITH_IMMEDIATE):
/* consume RWQE */
ret = hfi1_rvt_get_rwqe(qp, 1);
if (ret < 0)
goto nack_op_err;
if (!ret)
goto rnr_nak;
goto send_last_imm;
case OP(SEND_ONLY):
case OP(SEND_ONLY_WITH_IMMEDIATE):
case OP(SEND_ONLY_WITH_INVALIDATE):
ret = hfi1_rvt_get_rwqe(qp, 0);
if (ret < 0)
goto nack_op_err;
if (!ret)
goto rnr_nak;
qp->r_rcv_len = 0;
if (opcode == OP(SEND_ONLY))
goto no_immediate_data;
if (opcode == OP(SEND_ONLY_WITH_INVALIDATE))
goto send_last_inv;
/* FALLTHROUGH for SEND_ONLY_WITH_IMMEDIATE */
case OP(SEND_LAST_WITH_IMMEDIATE):
send_last_imm:
wc.ex.imm_data = ohdr->u.imm_data;
wc.wc_flags = IB_WC_WITH_IMM;
goto send_last;
case OP(SEND_LAST_WITH_INVALIDATE):
send_last_inv:
rkey = be32_to_cpu(ohdr->u.ieth);
if (rvt_invalidate_rkey(qp, rkey))
goto no_immediate_data;
wc.ex.invalidate_rkey = rkey;
wc.wc_flags = IB_WC_WITH_INVALIDATE;
goto send_last;
case OP(RDMA_WRITE_LAST):
copy_last = ibpd_to_rvtpd(qp->ibqp.pd)->user;
/* fall through */
case OP(SEND_LAST):
no_immediate_data:
wc.wc_flags = 0;
wc.ex.imm_data = 0;
send_last:
/* Get the number of bytes the message was padded by. */
pad = (bth0 >> 20) & 3;
/* Check for invalid length. */
/* LAST len should be >= 1 */
if (unlikely(tlen < (hdrsize + pad + 4)))
goto nack_inv;
/* Don't count the CRC. */
tlen -= (hdrsize + pad + 4);
wc.byte_len = tlen + qp->r_rcv_len;
if (unlikely(wc.byte_len > qp->r_len))
goto nack_inv;
hfi1_copy_sge(&qp->r_sge, data, tlen, 1, copy_last);
rvt_put_ss(&qp->r_sge);
qp->r_msn++;
if (!test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags))
break;
wc.wr_id = qp->r_wr_id;
wc.status = IB_WC_SUCCESS;
if (opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE) ||
opcode == OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE))
wc.opcode = IB_WC_RECV_RDMA_WITH_IMM;
else
wc.opcode = IB_WC_RECV;
wc.qp = &qp->ibqp;
wc.src_qp = qp->remote_qpn;
wc.slid = qp->remote_ah_attr.dlid;
/*
* It seems that IB mandates the presence of an SL in a
* work completion only for the UD transport (see section
* 11.4.2 of IBTA Vol. 1).
*
* However, the way the SL is chosen below is consistent
* with the way that IB/qib works and is trying avoid
* introducing incompatibilities.
*
* See also OPA Vol. 1, section 9.7.6, and table 9-17.
*/
wc.sl = qp->remote_ah_attr.sl;
/* zero fields that are N/A */
wc.vendor_err = 0;
wc.pkey_index = 0;
wc.dlid_path_bits = 0;
wc.port_num = 0;
/* Signal completion event if the solicited bit is set. */
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc,
(bth0 & IB_BTH_SOLICITED) != 0);
break;
case OP(RDMA_WRITE_ONLY):
copy_last = 1;
/* fall through */
case OP(RDMA_WRITE_FIRST):
case OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE):
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE)))
goto nack_inv;
/* consume RWQE */
reth = &ohdr->u.rc.reth;
qp->r_len = be32_to_cpu(reth->length);
qp->r_rcv_len = 0;
qp->r_sge.sg_list = NULL;
if (qp->r_len != 0) {
u32 rkey = be32_to_cpu(reth->rkey);
u64 vaddr = get_ib_reth_vaddr(reth);
int ok;
/* Check rkey & NAK */
ok = rvt_rkey_ok(qp, &qp->r_sge.sge, qp->r_len, vaddr,
rkey, IB_ACCESS_REMOTE_WRITE);
if (unlikely(!ok))
goto nack_acc;
qp->r_sge.num_sge = 1;
} else {
qp->r_sge.num_sge = 0;
qp->r_sge.sge.mr = NULL;
qp->r_sge.sge.vaddr = NULL;
qp->r_sge.sge.length = 0;
qp->r_sge.sge.sge_length = 0;
}
if (opcode == OP(RDMA_WRITE_FIRST))
goto send_middle;
else if (opcode == OP(RDMA_WRITE_ONLY))
goto no_immediate_data;
ret = hfi1_rvt_get_rwqe(qp, 1);
if (ret < 0)
goto nack_op_err;
if (!ret) {
/* peer will send again */
rvt_put_ss(&qp->r_sge);
goto rnr_nak;
}
wc.ex.imm_data = ohdr->u.rc.imm_data;
wc.wc_flags = IB_WC_WITH_IMM;
goto send_last;
case OP(RDMA_READ_REQUEST): {
struct rvt_ack_entry *e;
u32 len;
u8 next;
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
goto nack_inv;
next = qp->r_head_ack_queue + 1;
/* s_ack_queue is size HFI1_MAX_RDMA_ATOMIC+1 so use > not >= */
if (next > HFI1_MAX_RDMA_ATOMIC)
next = 0;
spin_lock_irqsave(&qp->s_lock, flags);
if (unlikely(next == qp->s_tail_ack_queue)) {
if (!qp->s_ack_queue[next].sent)
goto nack_inv_unlck;
update_ack_queue(qp, next);
}
e = &qp->s_ack_queue[qp->r_head_ack_queue];
if (e->rdma_sge.mr) {
rvt_put_mr(e->rdma_sge.mr);
e->rdma_sge.mr = NULL;
}
reth = &ohdr->u.rc.reth;
len = be32_to_cpu(reth->length);
if (len) {
u32 rkey = be32_to_cpu(reth->rkey);
u64 vaddr = get_ib_reth_vaddr(reth);
int ok;
/* Check rkey & NAK */
ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr,
rkey, IB_ACCESS_REMOTE_READ);
if (unlikely(!ok))
goto nack_acc_unlck;
/*
* Update the next expected PSN. We add 1 later
* below, so only add the remainder here.
*/
if (len > pmtu)
qp->r_psn += (len - 1) / pmtu;
} else {
e->rdma_sge.mr = NULL;
e->rdma_sge.vaddr = NULL;
e->rdma_sge.length = 0;
e->rdma_sge.sge_length = 0;
}
e->opcode = opcode;
e->sent = 0;
e->psn = psn;
e->lpsn = qp->r_psn;
/*
* We need to increment the MSN here instead of when we
* finish sending the result since a duplicate request would
* increment it more than once.
*/
qp->r_msn++;
qp->r_psn++;
qp->r_state = opcode;
qp->r_nak_state = 0;
qp->r_head_ack_queue = next;
/* Schedule the send engine. */
qp->s_flags |= RVT_S_RESP_PENDING;
hfi1_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
if (is_fecn)
goto send_ack;
return;
}
case OP(COMPARE_SWAP):
case OP(FETCH_ADD): {
struct ib_atomic_eth *ateth;
struct rvt_ack_entry *e;
u64 vaddr;
atomic64_t *maddr;
u64 sdata;
u32 rkey;
u8 next;
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC)))
goto nack_inv;
next = qp->r_head_ack_queue + 1;
if (next > HFI1_MAX_RDMA_ATOMIC)
next = 0;
spin_lock_irqsave(&qp->s_lock, flags);
if (unlikely(next == qp->s_tail_ack_queue)) {
if (!qp->s_ack_queue[next].sent)
goto nack_inv_unlck;
update_ack_queue(qp, next);
}
e = &qp->s_ack_queue[qp->r_head_ack_queue];
if (e->rdma_sge.mr) {
rvt_put_mr(e->rdma_sge.mr);
e->rdma_sge.mr = NULL;
}
ateth = &ohdr->u.atomic_eth;
vaddr = get_ib_ateth_vaddr(ateth);
if (unlikely(vaddr & (sizeof(u64) - 1)))
goto nack_inv_unlck;
rkey = be32_to_cpu(ateth->rkey);
/* Check rkey & NAK */
if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64),
vaddr, rkey,
IB_ACCESS_REMOTE_ATOMIC)))
goto nack_acc_unlck;
/* Perform atomic OP and save result. */
maddr = (atomic64_t *)qp->r_sge.sge.vaddr;
sdata = get_ib_ateth_swap(ateth);
e->atomic_data = (opcode == OP(FETCH_ADD)) ?
(u64)atomic64_add_return(sdata, maddr) - sdata :
(u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr,
get_ib_ateth_compare(ateth),
sdata);
rvt_put_mr(qp->r_sge.sge.mr);
qp->r_sge.num_sge = 0;
e->opcode = opcode;
e->sent = 0;
e->psn = psn;
e->lpsn = psn;
qp->r_msn++;
qp->r_psn++;
qp->r_state = opcode;
qp->r_nak_state = 0;
qp->r_head_ack_queue = next;
/* Schedule the send engine. */
qp->s_flags |= RVT_S_RESP_PENDING;
hfi1_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
if (is_fecn)
goto send_ack;
return;
}
default:
/* NAK unknown opcodes. */
goto nack_inv;
}
qp->r_psn++;
qp->r_state = opcode;
qp->r_ack_psn = psn;
qp->r_nak_state = 0;
/* Send an ACK if requested or required. */
if (psn & IB_BTH_REQ_ACK) {
struct hfi1_qp_priv *priv = qp->priv;
if (packet->numpkt == 0) {
rc_cancel_ack(qp);
goto send_ack;
}
if (priv->r_adefered >= HFI1_PSN_CREDIT) {
rc_cancel_ack(qp);
goto send_ack;
}
if (unlikely(is_fecn)) {
rc_cancel_ack(qp);
goto send_ack;
}
priv->r_adefered++;
rc_defered_ack(rcd, qp);
}
return;
rnr_nak:
qp->r_nak_state = qp->r_min_rnr_timer | IB_RNR_NAK;
qp->r_ack_psn = qp->r_psn;
/* Queue RNR NAK for later */
rc_defered_ack(rcd, qp);
return;
nack_op_err:
hfi1_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
qp->r_nak_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
qp->r_ack_psn = qp->r_psn;
/* Queue NAK for later */
rc_defered_ack(rcd, qp);
return;
nack_inv_unlck:
spin_unlock_irqrestore(&qp->s_lock, flags);
nack_inv:
hfi1_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
qp->r_nak_state = IB_NAK_INVALID_REQUEST;
qp->r_ack_psn = qp->r_psn;
/* Queue NAK for later */
rc_defered_ack(rcd, qp);
return;
nack_acc_unlck:
spin_unlock_irqrestore(&qp->s_lock, flags);
nack_acc:
hfi1_rc_error(qp, IB_WC_LOC_PROT_ERR);
qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
qp->r_ack_psn = qp->r_psn;
send_ack:
hfi1_send_rc_ack(rcd, qp, is_fecn);
}
void hfi1_rc_hdrerr(
struct hfi1_ctxtdata *rcd,
struct ib_header *hdr,
u32 rcv_flags,
struct rvt_qp *qp)
{
int has_grh = rcv_flags & HFI1_HAS_GRH;
struct ib_other_headers *ohdr;
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
int diff;
u32 opcode;
u32 psn, bth0;
/* Check for GRH */
ohdr = &hdr->u.oth;
if (has_grh)
ohdr = &hdr->u.l.oth;
bth0 = be32_to_cpu(ohdr->bth[0]);
if (hfi1_ruc_check_hdr(ibp, hdr, has_grh, qp, bth0))
return;
psn = be32_to_cpu(ohdr->bth[2]);
opcode = (bth0 >> 24) & 0xff;
/* Only deal with RDMA Writes for now */
if (opcode < IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST) {
diff = delta_psn(psn, qp->r_psn);
if (!qp->r_nak_state && diff >= 0) {
ibp->rvp.n_rc_seqnak++;
qp->r_nak_state = IB_NAK_PSN_ERROR;
/* Use the expected PSN. */
qp->r_ack_psn = qp->r_psn;
/*
* Wait to send the sequence
* NAK until all packets
* in the receive queue have
* been processed.
* Otherwise, we end up
* propagating congestion.
*/
rc_defered_ack(rcd, qp);
} /* Out of sequence NAK */
} /* QP Request NAKs */
}