tegrakernel/kernel/kernel-4.9/drivers/media/i2c/s5k6aa.c

1654 lines
44 KiB
C

/*
* Driver for Samsung S5K6AAFX SXGA 1/6" 1.3M CMOS Image Sensor
* with embedded SoC ISP.
*
* Copyright (C) 2011, Samsung Electronics Co., Ltd.
* Sylwester Nawrocki <s.nawrocki@samsung.com>
*
* Based on a driver authored by Dongsoo Nathaniel Kim.
* Copyright (C) 2009, Dongsoo Nathaniel Kim <dongsoo45.kim@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/media.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <media/media-entity.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-mediabus.h>
#include <media/i2c/s5k6aa.h>
static int debug;
module_param(debug, int, 0644);
#define DRIVER_NAME "S5K6AA"
/* The token to indicate array termination */
#define S5K6AA_TERM 0xffff
#define S5K6AA_OUT_WIDTH_DEF 640
#define S5K6AA_OUT_HEIGHT_DEF 480
#define S5K6AA_WIN_WIDTH_MAX 1280
#define S5K6AA_WIN_HEIGHT_MAX 1024
#define S5K6AA_WIN_WIDTH_MIN 8
#define S5K6AA_WIN_HEIGHT_MIN 8
/*
* H/W register Interface (0xD0000000 - 0xD0000FFF)
*/
#define AHB_MSB_ADDR_PTR 0xfcfc
#define GEN_REG_OFFSH 0xd000
#define REG_CMDWR_ADDRH 0x0028
#define REG_CMDWR_ADDRL 0x002a
#define REG_CMDRD_ADDRH 0x002c
#define REG_CMDRD_ADDRL 0x002e
#define REG_CMDBUF0_ADDR 0x0f12
#define REG_CMDBUF1_ADDR 0x0f10
/*
* Host S/W Register interface (0x70000000 - 0x70002000)
* The value of the two most significant address bytes is 0x7000,
* (HOST_SWIF_OFFS_H). The register addresses below specify 2 LSBs.
*/
#define HOST_SWIF_OFFSH 0x7000
/* Initialization parameters */
/* Master clock frequency in KHz */
#define REG_I_INCLK_FREQ_L 0x01b8
#define REG_I_INCLK_FREQ_H 0x01ba
#define MIN_MCLK_FREQ_KHZ 6000U
#define MAX_MCLK_FREQ_KHZ 27000U
#define REG_I_USE_NPVI_CLOCKS 0x01c6
#define REG_I_USE_NMIPI_CLOCKS 0x01c8
/* Clock configurations, n = 0..2. REG_I_* frequency unit is 4 kHz. */
#define REG_I_OPCLK_4KHZ(n) ((n) * 6 + 0x01cc)
#define REG_I_MIN_OUTRATE_4KHZ(n) ((n) * 6 + 0x01ce)
#define REG_I_MAX_OUTRATE_4KHZ(n) ((n) * 6 + 0x01d0)
#define SYS_PLL_OUT_FREQ (48000000 / 4000)
#define PCLK_FREQ_MIN (24000000 / 4000)
#define PCLK_FREQ_MAX (48000000 / 4000)
#define REG_I_INIT_PARAMS_UPDATED 0x01e0
#define REG_I_ERROR_INFO 0x01e2
/* General purpose parameters */
#define REG_USER_BRIGHTNESS 0x01e4
#define REG_USER_CONTRAST 0x01e6
#define REG_USER_SATURATION 0x01e8
#define REG_USER_SHARPBLUR 0x01ea
#define REG_G_SPEC_EFFECTS 0x01ee
#define REG_G_ENABLE_PREV 0x01f0
#define REG_G_ENABLE_PREV_CHG 0x01f2
#define REG_G_NEW_CFG_SYNC 0x01f8
#define REG_G_PREVZOOM_IN_WIDTH 0x020a
#define REG_G_PREVZOOM_IN_HEIGHT 0x020c
#define REG_G_PREVZOOM_IN_XOFFS 0x020e
#define REG_G_PREVZOOM_IN_YOFFS 0x0210
#define REG_G_INPUTS_CHANGE_REQ 0x021a
#define REG_G_ACTIVE_PREV_CFG 0x021c
#define REG_G_PREV_CFG_CHG 0x021e
#define REG_G_PREV_OPEN_AFTER_CH 0x0220
#define REG_G_PREV_CFG_ERROR 0x0222
/* Preview control section. n = 0...4. */
#define PREG(n, x) ((n) * 0x26 + x)
#define REG_P_OUT_WIDTH(n) PREG(n, 0x0242)
#define REG_P_OUT_HEIGHT(n) PREG(n, 0x0244)
#define REG_P_FMT(n) PREG(n, 0x0246)
#define REG_P_MAX_OUT_RATE(n) PREG(n, 0x0248)
#define REG_P_MIN_OUT_RATE(n) PREG(n, 0x024a)
#define REG_P_PVI_MASK(n) PREG(n, 0x024c)
#define REG_P_CLK_INDEX(n) PREG(n, 0x024e)
#define REG_P_FR_RATE_TYPE(n) PREG(n, 0x0250)
#define FR_RATE_DYNAMIC 0
#define FR_RATE_FIXED 1
#define FR_RATE_FIXED_ACCURATE 2
#define REG_P_FR_RATE_Q_TYPE(n) PREG(n, 0x0252)
#define FR_RATE_Q_BEST_FRRATE 1 /* Binning enabled */
#define FR_RATE_Q_BEST_QUALITY 2 /* Binning disabled */
/* Frame period in 0.1 ms units */
#define REG_P_MAX_FR_TIME(n) PREG(n, 0x0254)
#define REG_P_MIN_FR_TIME(n) PREG(n, 0x0256)
/* Conversion to REG_P_[MAX/MIN]_FR_TIME value; __t: time in us */
#define US_TO_FR_TIME(__t) ((__t) / 100)
#define S5K6AA_MIN_FR_TIME 33300 /* us */
#define S5K6AA_MAX_FR_TIME 650000 /* us */
#define S5K6AA_MAX_HIGHRES_FR_TIME 666 /* x100 us */
/* The below 5 registers are for "device correction" values */
#define REG_P_COLORTEMP(n) PREG(n, 0x025e)
#define REG_P_PREV_MIRROR(n) PREG(n, 0x0262)
/* Extended image property controls */
/* Exposure time in 10 us units */
#define REG_SF_USR_EXPOSURE_L 0x03c6
#define REG_SF_USR_EXPOSURE_H 0x03c8
#define REG_SF_USR_EXPOSURE_CHG 0x03ca
#define REG_SF_USR_TOT_GAIN 0x03cc
#define REG_SF_USR_TOT_GAIN_CHG 0x03ce
#define REG_SF_RGAIN 0x03d0
#define REG_SF_RGAIN_CHG 0x03d2
#define REG_SF_GGAIN 0x03d4
#define REG_SF_GGAIN_CHG 0x03d6
#define REG_SF_BGAIN 0x03d8
#define REG_SF_BGAIN_CHG 0x03da
#define REG_SF_FLICKER_QUANT 0x03dc
#define REG_SF_FLICKER_QUANT_CHG 0x03de
/* Output interface (parallel/MIPI) setup */
#define REG_OIF_EN_MIPI_LANES 0x03fa
#define REG_OIF_EN_PACKETS 0x03fc
#define REG_OIF_CFG_CHG 0x03fe
/* Auto-algorithms enable mask */
#define REG_DBG_AUTOALG_EN 0x0400
#define AALG_ALL_EN_MASK (1 << 0)
#define AALG_AE_EN_MASK (1 << 1)
#define AALG_DIVLEI_EN_MASK (1 << 2)
#define AALG_WB_EN_MASK (1 << 3)
#define AALG_FLICKER_EN_MASK (1 << 5)
#define AALG_FIT_EN_MASK (1 << 6)
#define AALG_WRHW_EN_MASK (1 << 7)
/* Firmware revision information */
#define REG_FW_APIVER 0x012e
#define S5K6AAFX_FW_APIVER 0x0001
#define REG_FW_REVISION 0x0130
/* For now we use only one user configuration register set */
#define S5K6AA_MAX_PRESETS 1
static const char * const s5k6aa_supply_names[] = {
"vdd_core", /* Digital core supply 1.5V (1.4V to 1.6V) */
"vdda", /* Analog power supply 2.8V (2.6V to 3.0V) */
"vdd_reg", /* Regulator input power 1.8V (1.7V to 1.9V)
or 2.8V (2.6V to 3.0) */
"vddio", /* I/O supply 1.8V (1.65V to 1.95V)
or 2.8V (2.5V to 3.1V) */
};
#define S5K6AA_NUM_SUPPLIES ARRAY_SIZE(s5k6aa_supply_names)
enum s5k6aa_gpio_id {
STBY,
RST,
GPIO_NUM,
};
struct s5k6aa_regval {
u16 addr;
u16 val;
};
struct s5k6aa_pixfmt {
u32 code;
u32 colorspace;
/* REG_P_FMT(x) register value */
u16 reg_p_fmt;
};
struct s5k6aa_preset {
/* output pixel format and resolution */
struct v4l2_mbus_framefmt mbus_fmt;
u8 clk_id;
u8 index;
};
struct s5k6aa_ctrls {
struct v4l2_ctrl_handler handler;
/* Auto / manual white balance cluster */
struct v4l2_ctrl *awb;
struct v4l2_ctrl *gain_red;
struct v4l2_ctrl *gain_blue;
struct v4l2_ctrl *gain_green;
/* Mirror cluster */
struct v4l2_ctrl *hflip;
struct v4l2_ctrl *vflip;
/* Auto exposure / manual exposure and gain cluster */
struct v4l2_ctrl *auto_exp;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *gain;
};
struct s5k6aa_interval {
u16 reg_fr_time;
struct v4l2_fract interval;
/* Maximum rectangle for the interval */
struct v4l2_frmsize_discrete size;
};
struct s5k6aa {
struct v4l2_subdev sd;
struct media_pad pad;
enum v4l2_mbus_type bus_type;
u8 mipi_lanes;
int (*s_power)(int enable);
struct regulator_bulk_data supplies[S5K6AA_NUM_SUPPLIES];
struct s5k6aa_gpio gpio[GPIO_NUM];
/* external master clock frequency */
unsigned long mclk_frequency;
/* ISP internal master clock frequency */
u16 clk_fop;
/* output pixel clock frequency range */
u16 pclk_fmin;
u16 pclk_fmax;
unsigned int inv_hflip:1;
unsigned int inv_vflip:1;
/* protects the struct members below */
struct mutex lock;
/* sensor matrix scan window */
struct v4l2_rect ccd_rect;
struct s5k6aa_ctrls ctrls;
struct s5k6aa_preset presets[S5K6AA_MAX_PRESETS];
struct s5k6aa_preset *preset;
const struct s5k6aa_interval *fiv;
unsigned int streaming:1;
unsigned int apply_cfg:1;
unsigned int apply_crop:1;
unsigned int power;
};
static struct s5k6aa_regval s5k6aa_analog_config[] = {
/* Analog settings */
{ 0x112a, 0x0000 }, { 0x1132, 0x0000 },
{ 0x113e, 0x0000 }, { 0x115c, 0x0000 },
{ 0x1164, 0x0000 }, { 0x1174, 0x0000 },
{ 0x1178, 0x0000 }, { 0x077a, 0x0000 },
{ 0x077c, 0x0000 }, { 0x077e, 0x0000 },
{ 0x0780, 0x0000 }, { 0x0782, 0x0000 },
{ 0x0784, 0x0000 }, { 0x0786, 0x0000 },
{ 0x0788, 0x0000 }, { 0x07a2, 0x0000 },
{ 0x07a4, 0x0000 }, { 0x07a6, 0x0000 },
{ 0x07a8, 0x0000 }, { 0x07b6, 0x0000 },
{ 0x07b8, 0x0002 }, { 0x07ba, 0x0004 },
{ 0x07bc, 0x0004 }, { 0x07be, 0x0005 },
{ 0x07c0, 0x0005 }, { S5K6AA_TERM, 0 },
};
/* TODO: Add RGB888 and Bayer format */
static const struct s5k6aa_pixfmt s5k6aa_formats[] = {
{ MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_JPEG, 5 },
/* range 16-240 */
{ MEDIA_BUS_FMT_YUYV8_2X8, V4L2_COLORSPACE_REC709, 6 },
{ MEDIA_BUS_FMT_RGB565_2X8_BE, V4L2_COLORSPACE_JPEG, 0 },
};
static const struct s5k6aa_interval s5k6aa_intervals[] = {
{ 1000, {10000, 1000000}, {1280, 1024} }, /* 10 fps */
{ 666, {15000, 1000000}, {1280, 1024} }, /* 15 fps */
{ 500, {20000, 1000000}, {1280, 720} }, /* 20 fps */
{ 400, {25000, 1000000}, {640, 480} }, /* 25 fps */
{ 333, {33300, 1000000}, {640, 480} }, /* 30 fps */
};
#define S5K6AA_INTERVAL_DEF_INDEX 1 /* 15 fps */
static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct s5k6aa, ctrls.handler)->sd;
}
static inline struct s5k6aa *to_s5k6aa(struct v4l2_subdev *sd)
{
return container_of(sd, struct s5k6aa, sd);
}
/* Set initial values for all preview presets */
static void s5k6aa_presets_data_init(struct s5k6aa *s5k6aa)
{
struct s5k6aa_preset *preset = &s5k6aa->presets[0];
int i;
for (i = 0; i < S5K6AA_MAX_PRESETS; i++) {
preset->mbus_fmt.width = S5K6AA_OUT_WIDTH_DEF;
preset->mbus_fmt.height = S5K6AA_OUT_HEIGHT_DEF;
preset->mbus_fmt.code = s5k6aa_formats[0].code;
preset->index = i;
preset->clk_id = 0;
preset++;
}
s5k6aa->fiv = &s5k6aa_intervals[S5K6AA_INTERVAL_DEF_INDEX];
s5k6aa->preset = &s5k6aa->presets[0];
}
static int s5k6aa_i2c_read(struct i2c_client *client, u16 addr, u16 *val)
{
u8 wbuf[2] = {addr >> 8, addr & 0xFF};
struct i2c_msg msg[2];
u8 rbuf[2];
int ret;
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = 2;
msg[0].buf = wbuf;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = 2;
msg[1].buf = rbuf;
ret = i2c_transfer(client->adapter, msg, 2);
*val = be16_to_cpu(*((__be16 *)rbuf));
v4l2_dbg(3, debug, client, "i2c_read: 0x%04X : 0x%04x\n", addr, *val);
return ret == 2 ? 0 : ret;
}
static int s5k6aa_i2c_write(struct i2c_client *client, u16 addr, u16 val)
{
u8 buf[4] = {addr >> 8, addr & 0xFF, val >> 8, val & 0xFF};
int ret = i2c_master_send(client, buf, 4);
v4l2_dbg(3, debug, client, "i2c_write: 0x%04X : 0x%04x\n", addr, val);
return ret == 4 ? 0 : ret;
}
/* The command register write, assumes Command_Wr_addH = 0x7000. */
static int s5k6aa_write(struct i2c_client *c, u16 addr, u16 val)
{
int ret = s5k6aa_i2c_write(c, REG_CMDWR_ADDRL, addr);
if (ret)
return ret;
return s5k6aa_i2c_write(c, REG_CMDBUF0_ADDR, val);
}
/* The command register read, assumes Command_Rd_addH = 0x7000. */
static int s5k6aa_read(struct i2c_client *client, u16 addr, u16 *val)
{
int ret = s5k6aa_i2c_write(client, REG_CMDRD_ADDRL, addr);
if (ret)
return ret;
return s5k6aa_i2c_read(client, REG_CMDBUF0_ADDR, val);
}
static int s5k6aa_write_array(struct v4l2_subdev *sd,
const struct s5k6aa_regval *msg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
u16 addr_incr = 0;
int ret = 0;
while (msg->addr != S5K6AA_TERM) {
if (addr_incr != 2)
ret = s5k6aa_i2c_write(client, REG_CMDWR_ADDRL,
msg->addr);
if (ret)
break;
ret = s5k6aa_i2c_write(client, REG_CMDBUF0_ADDR, msg->val);
if (ret)
break;
/* Assume that msg->addr is always less than 0xfffc */
addr_incr = (msg + 1)->addr - msg->addr;
msg++;
}
return ret;
}
/* Configure the AHB high address bytes for GTG registers access */
static int s5k6aa_set_ahb_address(struct i2c_client *client)
{
int ret = s5k6aa_i2c_write(client, AHB_MSB_ADDR_PTR, GEN_REG_OFFSH);
if (ret)
return ret;
ret = s5k6aa_i2c_write(client, REG_CMDRD_ADDRH, HOST_SWIF_OFFSH);
if (ret)
return ret;
return s5k6aa_i2c_write(client, REG_CMDWR_ADDRH, HOST_SWIF_OFFSH);
}
/**
* s5k6aa_configure_pixel_clock - apply ISP main clock/PLL configuration
* @s5k6aa: pointer to &struct s5k6aa describing the device
*
* Configure the internal ISP PLL for the required output frequency.
* Locking: called with s5k6aa.lock mutex held.
*/
static int s5k6aa_configure_pixel_clocks(struct s5k6aa *s5k6aa)
{
struct i2c_client *c = v4l2_get_subdevdata(&s5k6aa->sd);
unsigned long fmclk = s5k6aa->mclk_frequency / 1000;
u16 status;
int ret;
if (WARN(fmclk < MIN_MCLK_FREQ_KHZ || fmclk > MAX_MCLK_FREQ_KHZ,
"Invalid clock frequency: %ld\n", fmclk))
return -EINVAL;
s5k6aa->pclk_fmin = PCLK_FREQ_MIN;
s5k6aa->pclk_fmax = PCLK_FREQ_MAX;
s5k6aa->clk_fop = SYS_PLL_OUT_FREQ;
/* External input clock frequency in kHz */
ret = s5k6aa_write(c, REG_I_INCLK_FREQ_H, fmclk >> 16);
if (!ret)
ret = s5k6aa_write(c, REG_I_INCLK_FREQ_L, fmclk & 0xFFFF);
if (!ret)
ret = s5k6aa_write(c, REG_I_USE_NPVI_CLOCKS, 1);
/* Internal PLL frequency */
if (!ret)
ret = s5k6aa_write(c, REG_I_OPCLK_4KHZ(0), s5k6aa->clk_fop);
if (!ret)
ret = s5k6aa_write(c, REG_I_MIN_OUTRATE_4KHZ(0),
s5k6aa->pclk_fmin);
if (!ret)
ret = s5k6aa_write(c, REG_I_MAX_OUTRATE_4KHZ(0),
s5k6aa->pclk_fmax);
if (!ret)
ret = s5k6aa_write(c, REG_I_INIT_PARAMS_UPDATED, 1);
if (!ret)
ret = s5k6aa_read(c, REG_I_ERROR_INFO, &status);
return ret ? ret : (status ? -EINVAL : 0);
}
/* Set horizontal and vertical image flipping */
static int s5k6aa_set_mirror(struct s5k6aa *s5k6aa, int horiz_flip)
{
struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd);
int index = s5k6aa->preset->index;
unsigned int vflip = s5k6aa->ctrls.vflip->val ^ s5k6aa->inv_vflip;
unsigned int flip = (horiz_flip ^ s5k6aa->inv_hflip) | (vflip << 1);
return s5k6aa_write(client, REG_P_PREV_MIRROR(index), flip);
}
/* Configure auto/manual white balance and R/G/B gains */
static int s5k6aa_set_awb(struct s5k6aa *s5k6aa, int awb)
{
struct i2c_client *c = v4l2_get_subdevdata(&s5k6aa->sd);
struct s5k6aa_ctrls *ctrls = &s5k6aa->ctrls;
u16 reg;
int ret = s5k6aa_read(c, REG_DBG_AUTOALG_EN, &reg);
if (!ret && !awb) {
ret = s5k6aa_write(c, REG_SF_RGAIN, ctrls->gain_red->val);
if (!ret)
ret = s5k6aa_write(c, REG_SF_RGAIN_CHG, 1);
if (ret)
return ret;
ret = s5k6aa_write(c, REG_SF_GGAIN, ctrls->gain_green->val);
if (!ret)
ret = s5k6aa_write(c, REG_SF_GGAIN_CHG, 1);
if (ret)
return ret;
ret = s5k6aa_write(c, REG_SF_BGAIN, ctrls->gain_blue->val);
if (!ret)
ret = s5k6aa_write(c, REG_SF_BGAIN_CHG, 1);
}
if (!ret) {
reg = awb ? reg | AALG_WB_EN_MASK : reg & ~AALG_WB_EN_MASK;
ret = s5k6aa_write(c, REG_DBG_AUTOALG_EN, reg);
}
return ret;
}
/* Program FW with exposure time, 'exposure' in us units */
static int s5k6aa_set_user_exposure(struct i2c_client *client, int exposure)
{
unsigned int time = exposure / 10;
int ret = s5k6aa_write(client, REG_SF_USR_EXPOSURE_L, time & 0xffff);
if (!ret)
ret = s5k6aa_write(client, REG_SF_USR_EXPOSURE_H, time >> 16);
if (ret)
return ret;
return s5k6aa_write(client, REG_SF_USR_EXPOSURE_CHG, 1);
}
static int s5k6aa_set_user_gain(struct i2c_client *client, int gain)
{
int ret = s5k6aa_write(client, REG_SF_USR_TOT_GAIN, gain);
if (ret)
return ret;
return s5k6aa_write(client, REG_SF_USR_TOT_GAIN_CHG, 1);
}
/* Set auto/manual exposure and total gain */
static int s5k6aa_set_auto_exposure(struct s5k6aa *s5k6aa, int value)
{
struct i2c_client *c = v4l2_get_subdevdata(&s5k6aa->sd);
unsigned int exp_time = s5k6aa->ctrls.exposure->val;
u16 auto_alg;
int ret = s5k6aa_read(c, REG_DBG_AUTOALG_EN, &auto_alg);
if (ret)
return ret;
v4l2_dbg(1, debug, c, "man_exp: %d, auto_exp: %d, a_alg: 0x%x\n",
exp_time, value, auto_alg);
if (value == V4L2_EXPOSURE_AUTO) {
auto_alg |= AALG_AE_EN_MASK | AALG_DIVLEI_EN_MASK;
} else {
ret = s5k6aa_set_user_exposure(c, exp_time);
if (ret)
return ret;
ret = s5k6aa_set_user_gain(c, s5k6aa->ctrls.gain->val);
if (ret)
return ret;
auto_alg &= ~(AALG_AE_EN_MASK | AALG_DIVLEI_EN_MASK);
}
return s5k6aa_write(c, REG_DBG_AUTOALG_EN, auto_alg);
}
static int s5k6aa_set_anti_flicker(struct s5k6aa *s5k6aa, int value)
{
struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd);
u16 auto_alg;
int ret;
ret = s5k6aa_read(client, REG_DBG_AUTOALG_EN, &auto_alg);
if (ret)
return ret;
if (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) {
auto_alg |= AALG_FLICKER_EN_MASK;
} else {
auto_alg &= ~AALG_FLICKER_EN_MASK;
/* The V4L2_CID_LINE_FREQUENCY control values match
* the register values */
ret = s5k6aa_write(client, REG_SF_FLICKER_QUANT, value);
if (ret)
return ret;
ret = s5k6aa_write(client, REG_SF_FLICKER_QUANT_CHG, 1);
if (ret)
return ret;
}
return s5k6aa_write(client, REG_DBG_AUTOALG_EN, auto_alg);
}
static int s5k6aa_set_colorfx(struct s5k6aa *s5k6aa, int val)
{
struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd);
static const struct v4l2_control colorfx[] = {
{ V4L2_COLORFX_NONE, 0 },
{ V4L2_COLORFX_BW, 1 },
{ V4L2_COLORFX_NEGATIVE, 2 },
{ V4L2_COLORFX_SEPIA, 3 },
{ V4L2_COLORFX_SKY_BLUE, 4 },
{ V4L2_COLORFX_SKETCH, 5 },
};
int i;
for (i = 0; i < ARRAY_SIZE(colorfx); i++) {
if (colorfx[i].id == val)
return s5k6aa_write(client, REG_G_SPEC_EFFECTS,
colorfx[i].value);
}
return -EINVAL;
}
static int s5k6aa_preview_config_status(struct i2c_client *client)
{
u16 error = 0;
int ret = s5k6aa_read(client, REG_G_PREV_CFG_ERROR, &error);
v4l2_dbg(1, debug, client, "error: 0x%x (%d)\n", error, ret);
return ret ? ret : (error ? -EINVAL : 0);
}
static int s5k6aa_get_pixfmt_index(struct s5k6aa *s5k6aa,
struct v4l2_mbus_framefmt *mf)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(s5k6aa_formats); i++)
if (mf->colorspace == s5k6aa_formats[i].colorspace &&
mf->code == s5k6aa_formats[i].code)
return i;
return 0;
}
static int s5k6aa_set_output_framefmt(struct s5k6aa *s5k6aa,
struct s5k6aa_preset *preset)
{
struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd);
int fmt_index = s5k6aa_get_pixfmt_index(s5k6aa, &preset->mbus_fmt);
int ret;
ret = s5k6aa_write(client, REG_P_OUT_WIDTH(preset->index),
preset->mbus_fmt.width);
if (!ret)
ret = s5k6aa_write(client, REG_P_OUT_HEIGHT(preset->index),
preset->mbus_fmt.height);
if (!ret)
ret = s5k6aa_write(client, REG_P_FMT(preset->index),
s5k6aa_formats[fmt_index].reg_p_fmt);
return ret;
}
static int s5k6aa_set_input_params(struct s5k6aa *s5k6aa)
{
struct i2c_client *c = v4l2_get_subdevdata(&s5k6aa->sd);
struct v4l2_rect *r = &s5k6aa->ccd_rect;
int ret;
ret = s5k6aa_write(c, REG_G_PREVZOOM_IN_WIDTH, r->width);
if (!ret)
ret = s5k6aa_write(c, REG_G_PREVZOOM_IN_HEIGHT, r->height);
if (!ret)
ret = s5k6aa_write(c, REG_G_PREVZOOM_IN_XOFFS, r->left);
if (!ret)
ret = s5k6aa_write(c, REG_G_PREVZOOM_IN_YOFFS, r->top);
if (!ret)
ret = s5k6aa_write(c, REG_G_INPUTS_CHANGE_REQ, 1);
if (!ret)
s5k6aa->apply_crop = 0;
return ret;
}
/**
* s5k6aa_configure_video_bus - configure the video output interface
* @s5k6aa: pointer to &struct s5k6aa describing the device
* @bus_type: video bus type: parallel or MIPI-CSI
* @nlanes: number of MIPI lanes to be used (MIPI-CSI only)
*
* Note: Only parallel bus operation has been tested.
*/
static int s5k6aa_configure_video_bus(struct s5k6aa *s5k6aa,
enum v4l2_mbus_type bus_type, int nlanes)
{
struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd);
u16 cfg = 0;
int ret;
/*
* TODO: The sensor is supposed to support BT.601 and BT.656
* but there is nothing indicating how to switch between both
* in the datasheet. For now default BT.601 interface is assumed.
*/
if (bus_type == V4L2_MBUS_CSI2)
cfg = nlanes;
else if (bus_type != V4L2_MBUS_PARALLEL)
return -EINVAL;
ret = s5k6aa_write(client, REG_OIF_EN_MIPI_LANES, cfg);
if (ret)
return ret;
return s5k6aa_write(client, REG_OIF_CFG_CHG, 1);
}
/* This function should be called when switching to new user configuration set*/
static int s5k6aa_new_config_sync(struct i2c_client *client, int timeout,
int cid)
{
unsigned long end = jiffies + msecs_to_jiffies(timeout);
u16 reg = 1;
int ret;
ret = s5k6aa_write(client, REG_G_ACTIVE_PREV_CFG, cid);
if (!ret)
ret = s5k6aa_write(client, REG_G_PREV_CFG_CHG, 1);
if (!ret)
ret = s5k6aa_write(client, REG_G_NEW_CFG_SYNC, 1);
if (timeout == 0)
return ret;
while (ret >= 0 && time_is_after_jiffies(end)) {
ret = s5k6aa_read(client, REG_G_NEW_CFG_SYNC, &reg);
if (!reg)
return 0;
usleep_range(1000, 5000);
}
return ret ? ret : -ETIMEDOUT;
}
/**
* s5k6aa_set_prev_config - write user preview register set
* @s5k6aa: pointer to &struct s5k6aa describing the device
* @preset: s5kaa preset to be applied
*
* Configure output resolution and color fromat, pixel clock
* frequency range, device frame rate type and frame period range.
*/
static int s5k6aa_set_prev_config(struct s5k6aa *s5k6aa,
struct s5k6aa_preset *preset)
{
struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd);
int idx = preset->index;
u16 frame_rate_q;
int ret;
if (s5k6aa->fiv->reg_fr_time >= S5K6AA_MAX_HIGHRES_FR_TIME)
frame_rate_q = FR_RATE_Q_BEST_FRRATE;
else
frame_rate_q = FR_RATE_Q_BEST_QUALITY;
ret = s5k6aa_set_output_framefmt(s5k6aa, preset);
if (!ret)
ret = s5k6aa_write(client, REG_P_MAX_OUT_RATE(idx),
s5k6aa->pclk_fmax);
if (!ret)
ret = s5k6aa_write(client, REG_P_MIN_OUT_RATE(idx),
s5k6aa->pclk_fmin);
if (!ret)
ret = s5k6aa_write(client, REG_P_CLK_INDEX(idx),
preset->clk_id);
if (!ret)
ret = s5k6aa_write(client, REG_P_FR_RATE_TYPE(idx),
FR_RATE_DYNAMIC);
if (!ret)
ret = s5k6aa_write(client, REG_P_FR_RATE_Q_TYPE(idx),
frame_rate_q);
if (!ret)
ret = s5k6aa_write(client, REG_P_MAX_FR_TIME(idx),
s5k6aa->fiv->reg_fr_time + 33);
if (!ret)
ret = s5k6aa_write(client, REG_P_MIN_FR_TIME(idx),
s5k6aa->fiv->reg_fr_time - 33);
if (!ret)
ret = s5k6aa_new_config_sync(client, 250, idx);
if (!ret)
ret = s5k6aa_preview_config_status(client);
if (!ret)
s5k6aa->apply_cfg = 0;
v4l2_dbg(1, debug, client, "Frame interval: %d +/- 3.3ms. (%d)\n",
s5k6aa->fiv->reg_fr_time, ret);
return ret;
}
/**
* s5k6aa_initialize_isp - basic ISP MCU initialization
* @sd: pointer to V4L2 sub-device descriptor
*
* Configure AHB addresses for registers read/write; configure PLLs for
* required output pixel clock. The ISP power supply needs to be already
* enabled, with an optional H/W reset.
* Locking: called with s5k6aa.lock mutex held.
*/
static int s5k6aa_initialize_isp(struct v4l2_subdev *sd)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
int ret;
s5k6aa->apply_crop = 1;
s5k6aa->apply_cfg = 1;
msleep(100);
ret = s5k6aa_set_ahb_address(client);
if (ret)
return ret;
ret = s5k6aa_configure_video_bus(s5k6aa, s5k6aa->bus_type,
s5k6aa->mipi_lanes);
if (ret)
return ret;
ret = s5k6aa_write_array(sd, s5k6aa_analog_config);
if (ret)
return ret;
msleep(20);
return s5k6aa_configure_pixel_clocks(s5k6aa);
}
static int s5k6aa_gpio_set_value(struct s5k6aa *priv, int id, u32 val)
{
if (!gpio_is_valid(priv->gpio[id].gpio))
return 0;
gpio_set_value(priv->gpio[id].gpio, !!val);
return 1;
}
static int s5k6aa_gpio_assert(struct s5k6aa *priv, int id)
{
return s5k6aa_gpio_set_value(priv, id, priv->gpio[id].level);
}
static int s5k6aa_gpio_deassert(struct s5k6aa *priv, int id)
{
return s5k6aa_gpio_set_value(priv, id, !priv->gpio[id].level);
}
static int __s5k6aa_power_on(struct s5k6aa *s5k6aa)
{
int ret;
ret = regulator_bulk_enable(S5K6AA_NUM_SUPPLIES, s5k6aa->supplies);
if (ret)
return ret;
if (s5k6aa_gpio_deassert(s5k6aa, STBY))
usleep_range(150, 200);
if (s5k6aa->s_power)
ret = s5k6aa->s_power(1);
usleep_range(4000, 4000);
if (s5k6aa_gpio_deassert(s5k6aa, RST))
msleep(20);
return ret;
}
static int __s5k6aa_power_off(struct s5k6aa *s5k6aa)
{
int ret;
if (s5k6aa_gpio_assert(s5k6aa, RST))
usleep_range(100, 150);
if (s5k6aa->s_power) {
ret = s5k6aa->s_power(0);
if (ret)
return ret;
}
if (s5k6aa_gpio_assert(s5k6aa, STBY))
usleep_range(50, 100);
s5k6aa->streaming = 0;
return regulator_bulk_disable(S5K6AA_NUM_SUPPLIES, s5k6aa->supplies);
}
/*
* V4L2 subdev core and video operations
*/
static int s5k6aa_set_power(struct v4l2_subdev *sd, int on)
{
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
int ret = 0;
mutex_lock(&s5k6aa->lock);
if (s5k6aa->power == !on) {
if (on) {
ret = __s5k6aa_power_on(s5k6aa);
if (!ret)
ret = s5k6aa_initialize_isp(sd);
} else {
ret = __s5k6aa_power_off(s5k6aa);
}
if (!ret)
s5k6aa->power += on ? 1 : -1;
}
mutex_unlock(&s5k6aa->lock);
if (!on || ret || s5k6aa->power != 1)
return ret;
return v4l2_ctrl_handler_setup(sd->ctrl_handler);
}
static int __s5k6aa_stream(struct s5k6aa *s5k6aa, int enable)
{
struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd);
int ret = 0;
ret = s5k6aa_write(client, REG_G_ENABLE_PREV, enable);
if (!ret)
ret = s5k6aa_write(client, REG_G_ENABLE_PREV_CHG, 1);
if (!ret)
s5k6aa->streaming = enable;
return ret;
}
static int s5k6aa_s_stream(struct v4l2_subdev *sd, int on)
{
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
int ret = 0;
mutex_lock(&s5k6aa->lock);
if (s5k6aa->streaming == !on) {
if (!ret && s5k6aa->apply_cfg)
ret = s5k6aa_set_prev_config(s5k6aa, s5k6aa->preset);
if (s5k6aa->apply_crop)
ret = s5k6aa_set_input_params(s5k6aa);
if (!ret)
ret = __s5k6aa_stream(s5k6aa, !!on);
}
mutex_unlock(&s5k6aa->lock);
return ret;
}
static int s5k6aa_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
mutex_lock(&s5k6aa->lock);
fi->interval = s5k6aa->fiv->interval;
mutex_unlock(&s5k6aa->lock);
return 0;
}
static int __s5k6aa_set_frame_interval(struct s5k6aa *s5k6aa,
struct v4l2_subdev_frame_interval *fi)
{
struct v4l2_mbus_framefmt *mbus_fmt = &s5k6aa->preset->mbus_fmt;
const struct s5k6aa_interval *fiv = &s5k6aa_intervals[0];
unsigned int err, min_err = UINT_MAX;
unsigned int i, fr_time;
if (fi->interval.denominator == 0)
return -EINVAL;
fr_time = fi->interval.numerator * 10000 / fi->interval.denominator;
for (i = 0; i < ARRAY_SIZE(s5k6aa_intervals); i++) {
const struct s5k6aa_interval *iv = &s5k6aa_intervals[i];
if (mbus_fmt->width > iv->size.width ||
mbus_fmt->height > iv->size.height)
continue;
err = abs(iv->reg_fr_time - fr_time);
if (err < min_err) {
fiv = iv;
min_err = err;
}
}
s5k6aa->fiv = fiv;
v4l2_dbg(1, debug, &s5k6aa->sd, "Changed frame interval to %d us\n",
fiv->reg_fr_time * 100);
return 0;
}
static int s5k6aa_s_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
int ret;
v4l2_dbg(1, debug, sd, "Setting %d/%d frame interval\n",
fi->interval.numerator, fi->interval.denominator);
mutex_lock(&s5k6aa->lock);
ret = __s5k6aa_set_frame_interval(s5k6aa, fi);
s5k6aa->apply_cfg = 1;
mutex_unlock(&s5k6aa->lock);
return ret;
}
/*
* V4L2 subdev pad level and video operations
*/
static int s5k6aa_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
const struct s5k6aa_interval *fi;
int ret = 0;
if (fie->index >= ARRAY_SIZE(s5k6aa_intervals))
return -EINVAL;
v4l_bound_align_image(&fie->width, S5K6AA_WIN_WIDTH_MIN,
S5K6AA_WIN_WIDTH_MAX, 1,
&fie->height, S5K6AA_WIN_HEIGHT_MIN,
S5K6AA_WIN_HEIGHT_MAX, 1, 0);
mutex_lock(&s5k6aa->lock);
fi = &s5k6aa_intervals[fie->index];
if (fie->width > fi->size.width || fie->height > fi->size.height)
ret = -EINVAL;
else
fie->interval = fi->interval;
mutex_unlock(&s5k6aa->lock);
return ret;
}
static int s5k6aa_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index >= ARRAY_SIZE(s5k6aa_formats))
return -EINVAL;
code->code = s5k6aa_formats[code->index].code;
return 0;
}
static int s5k6aa_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
int i = ARRAY_SIZE(s5k6aa_formats);
if (fse->index > 0)
return -EINVAL;
while (--i)
if (fse->code == s5k6aa_formats[i].code)
break;
fse->code = s5k6aa_formats[i].code;
fse->min_width = S5K6AA_WIN_WIDTH_MIN;
fse->max_width = S5K6AA_WIN_WIDTH_MAX;
fse->max_height = S5K6AA_WIN_HEIGHT_MIN;
fse->min_height = S5K6AA_WIN_HEIGHT_MAX;
return 0;
}
static struct v4l2_rect *
__s5k6aa_get_crop_rect(struct s5k6aa *s5k6aa, struct v4l2_subdev_pad_config *cfg,
enum v4l2_subdev_format_whence which)
{
if (which == V4L2_SUBDEV_FORMAT_ACTIVE)
return &s5k6aa->ccd_rect;
WARN_ON(which != V4L2_SUBDEV_FORMAT_TRY);
return v4l2_subdev_get_try_crop(&s5k6aa->sd, cfg, 0);
}
static void s5k6aa_try_format(struct s5k6aa *s5k6aa,
struct v4l2_mbus_framefmt *mf)
{
unsigned int index;
v4l_bound_align_image(&mf->width, S5K6AA_WIN_WIDTH_MIN,
S5K6AA_WIN_WIDTH_MAX, 1,
&mf->height, S5K6AA_WIN_HEIGHT_MIN,
S5K6AA_WIN_HEIGHT_MAX, 1, 0);
if (mf->colorspace != V4L2_COLORSPACE_JPEG &&
mf->colorspace != V4L2_COLORSPACE_REC709)
mf->colorspace = V4L2_COLORSPACE_JPEG;
index = s5k6aa_get_pixfmt_index(s5k6aa, mf);
mf->colorspace = s5k6aa_formats[index].colorspace;
mf->code = s5k6aa_formats[index].code;
mf->field = V4L2_FIELD_NONE;
}
static int s5k6aa_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
struct v4l2_mbus_framefmt *mf;
memset(fmt->reserved, 0, sizeof(fmt->reserved));
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
mf = v4l2_subdev_get_try_format(sd, cfg, 0);
fmt->format = *mf;
return 0;
}
mutex_lock(&s5k6aa->lock);
fmt->format = s5k6aa->preset->mbus_fmt;
mutex_unlock(&s5k6aa->lock);
return 0;
}
static int s5k6aa_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
struct s5k6aa_preset *preset = s5k6aa->preset;
struct v4l2_mbus_framefmt *mf;
struct v4l2_rect *crop;
int ret = 0;
mutex_lock(&s5k6aa->lock);
s5k6aa_try_format(s5k6aa, &fmt->format);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
mf = v4l2_subdev_get_try_format(sd, cfg, fmt->pad);
crop = v4l2_subdev_get_try_crop(sd, cfg, 0);
} else {
if (s5k6aa->streaming) {
ret = -EBUSY;
} else {
mf = &preset->mbus_fmt;
crop = &s5k6aa->ccd_rect;
s5k6aa->apply_cfg = 1;
}
}
if (ret == 0) {
struct v4l2_subdev_frame_interval fiv = {
.interval = {0, 1}
};
*mf = fmt->format;
/*
* Make sure the crop window is valid, i.e. its size is
* greater than the output window, as the ISP supports
* only down-scaling.
*/
crop->width = clamp_t(unsigned int, crop->width, mf->width,
S5K6AA_WIN_WIDTH_MAX);
crop->height = clamp_t(unsigned int, crop->height, mf->height,
S5K6AA_WIN_HEIGHT_MAX);
crop->left = clamp_t(unsigned int, crop->left, 0,
S5K6AA_WIN_WIDTH_MAX - crop->width);
crop->top = clamp_t(unsigned int, crop->top, 0,
S5K6AA_WIN_HEIGHT_MAX - crop->height);
/* Reset to minimum possible frame interval */
ret = __s5k6aa_set_frame_interval(s5k6aa, &fiv);
}
mutex_unlock(&s5k6aa->lock);
return ret;
}
static int s5k6aa_get_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
struct v4l2_rect *rect;
if (sel->target != V4L2_SEL_TGT_CROP)
return -EINVAL;
memset(sel->reserved, 0, sizeof(sel->reserved));
mutex_lock(&s5k6aa->lock);
rect = __s5k6aa_get_crop_rect(s5k6aa, cfg, sel->which);
sel->r = *rect;
mutex_unlock(&s5k6aa->lock);
v4l2_dbg(1, debug, sd, "Current crop rectangle: (%d,%d)/%dx%d\n",
rect->left, rect->top, rect->width, rect->height);
return 0;
}
static int s5k6aa_set_selection(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_selection *sel)
{
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
struct v4l2_mbus_framefmt *mf;
unsigned int max_x, max_y;
struct v4l2_rect *crop_r;
if (sel->target != V4L2_SEL_TGT_CROP)
return -EINVAL;
mutex_lock(&s5k6aa->lock);
crop_r = __s5k6aa_get_crop_rect(s5k6aa, cfg, sel->which);
if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
mf = &s5k6aa->preset->mbus_fmt;
s5k6aa->apply_crop = 1;
} else {
mf = v4l2_subdev_get_try_format(sd, cfg, 0);
}
v4l_bound_align_image(&sel->r.width, mf->width,
S5K6AA_WIN_WIDTH_MAX, 1,
&sel->r.height, mf->height,
S5K6AA_WIN_HEIGHT_MAX, 1, 0);
max_x = (S5K6AA_WIN_WIDTH_MAX - sel->r.width) & ~1;
max_y = (S5K6AA_WIN_HEIGHT_MAX - sel->r.height) & ~1;
sel->r.left = clamp_t(unsigned int, sel->r.left, 0, max_x);
sel->r.top = clamp_t(unsigned int, sel->r.top, 0, max_y);
*crop_r = sel->r;
mutex_unlock(&s5k6aa->lock);
v4l2_dbg(1, debug, sd, "Set crop rectangle: (%d,%d)/%dx%d\n",
crop_r->left, crop_r->top, crop_r->width, crop_r->height);
return 0;
}
static const struct v4l2_subdev_pad_ops s5k6aa_pad_ops = {
.enum_mbus_code = s5k6aa_enum_mbus_code,
.enum_frame_size = s5k6aa_enum_frame_size,
.enum_frame_interval = s5k6aa_enum_frame_interval,
.get_fmt = s5k6aa_get_fmt,
.set_fmt = s5k6aa_set_fmt,
.get_selection = s5k6aa_get_selection,
.set_selection = s5k6aa_set_selection,
};
static const struct v4l2_subdev_video_ops s5k6aa_video_ops = {
.g_frame_interval = s5k6aa_g_frame_interval,
.s_frame_interval = s5k6aa_s_frame_interval,
.s_stream = s5k6aa_s_stream,
};
/*
* V4L2 subdev controls
*/
static int s5k6aa_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = ctrl_to_sd(ctrl);
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
int idx, err = 0;
v4l2_dbg(1, debug, sd, "ctrl: 0x%x, value: %d\n", ctrl->id, ctrl->val);
mutex_lock(&s5k6aa->lock);
/*
* If the device is not powered up by the host driver do
* not apply any controls to H/W at this time. Instead
* the controls will be restored right after power-up.
*/
if (s5k6aa->power == 0)
goto unlock;
idx = s5k6aa->preset->index;
switch (ctrl->id) {
case V4L2_CID_AUTO_WHITE_BALANCE:
err = s5k6aa_set_awb(s5k6aa, ctrl->val);
break;
case V4L2_CID_BRIGHTNESS:
err = s5k6aa_write(client, REG_USER_BRIGHTNESS, ctrl->val);
break;
case V4L2_CID_COLORFX:
err = s5k6aa_set_colorfx(s5k6aa, ctrl->val);
break;
case V4L2_CID_CONTRAST:
err = s5k6aa_write(client, REG_USER_CONTRAST, ctrl->val);
break;
case V4L2_CID_EXPOSURE_AUTO:
err = s5k6aa_set_auto_exposure(s5k6aa, ctrl->val);
break;
case V4L2_CID_HFLIP:
err = s5k6aa_set_mirror(s5k6aa, ctrl->val);
if (err)
break;
err = s5k6aa_write(client, REG_G_PREV_CFG_CHG, 1);
break;
case V4L2_CID_POWER_LINE_FREQUENCY:
err = s5k6aa_set_anti_flicker(s5k6aa, ctrl->val);
break;
case V4L2_CID_SATURATION:
err = s5k6aa_write(client, REG_USER_SATURATION, ctrl->val);
break;
case V4L2_CID_SHARPNESS:
err = s5k6aa_write(client, REG_USER_SHARPBLUR, ctrl->val);
break;
case V4L2_CID_WHITE_BALANCE_TEMPERATURE:
err = s5k6aa_write(client, REG_P_COLORTEMP(idx), ctrl->val);
if (err)
break;
err = s5k6aa_write(client, REG_G_PREV_CFG_CHG, 1);
break;
}
unlock:
mutex_unlock(&s5k6aa->lock);
return err;
}
static const struct v4l2_ctrl_ops s5k6aa_ctrl_ops = {
.s_ctrl = s5k6aa_s_ctrl,
};
static int s5k6aa_log_status(struct v4l2_subdev *sd)
{
v4l2_ctrl_handler_log_status(sd->ctrl_handler, sd->name);
return 0;
}
#define V4L2_CID_RED_GAIN (V4L2_CTRL_CLASS_CAMERA | 0x1001)
#define V4L2_CID_GREEN_GAIN (V4L2_CTRL_CLASS_CAMERA | 0x1002)
#define V4L2_CID_BLUE_GAIN (V4L2_CTRL_CLASS_CAMERA | 0x1003)
static const struct v4l2_ctrl_config s5k6aa_ctrls[] = {
{
.ops = &s5k6aa_ctrl_ops,
.id = V4L2_CID_RED_GAIN,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Gain, Red",
.min = 0,
.max = 256,
.def = 127,
.step = 1,
}, {
.ops = &s5k6aa_ctrl_ops,
.id = V4L2_CID_GREEN_GAIN,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Gain, Green",
.min = 0,
.max = 256,
.def = 127,
.step = 1,
}, {
.ops = &s5k6aa_ctrl_ops,
.id = V4L2_CID_BLUE_GAIN,
.type = V4L2_CTRL_TYPE_INTEGER,
.name = "Gain, Blue",
.min = 0,
.max = 256,
.def = 127,
.step = 1,
},
};
static int s5k6aa_initialize_ctrls(struct s5k6aa *s5k6aa)
{
const struct v4l2_ctrl_ops *ops = &s5k6aa_ctrl_ops;
struct s5k6aa_ctrls *ctrls = &s5k6aa->ctrls;
struct v4l2_ctrl_handler *hdl = &ctrls->handler;
int ret = v4l2_ctrl_handler_init(hdl, 16);
if (ret)
return ret;
/* Auto white balance cluster */
ctrls->awb = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTO_WHITE_BALANCE,
0, 1, 1, 1);
ctrls->gain_red = v4l2_ctrl_new_custom(hdl, &s5k6aa_ctrls[0], NULL);
ctrls->gain_green = v4l2_ctrl_new_custom(hdl, &s5k6aa_ctrls[1], NULL);
ctrls->gain_blue = v4l2_ctrl_new_custom(hdl, &s5k6aa_ctrls[2], NULL);
v4l2_ctrl_auto_cluster(4, &ctrls->awb, 0, false);
ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0);
ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0);
v4l2_ctrl_cluster(2, &ctrls->hflip);
ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops,
V4L2_CID_EXPOSURE_AUTO,
V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO);
/* Exposure time: x 1 us */
ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE,
0, 6000000U, 1, 100000U);
/* Total gain: 256 <=> 1x */
ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN,
0, 256, 1, 256);
v4l2_ctrl_auto_cluster(3, &ctrls->auto_exp, 0, false);
v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_POWER_LINE_FREQUENCY,
V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_COLORFX,
V4L2_COLORFX_SKY_BLUE, ~0x6f, V4L2_COLORFX_NONE);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_WHITE_BALANCE_TEMPERATURE,
0, 256, 1, 0);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, -127, 127, 1, 0);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BRIGHTNESS, -127, 127, 1, 0);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST, -127, 127, 1, 0);
v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SHARPNESS, -127, 127, 1, 0);
if (hdl->error) {
ret = hdl->error;
v4l2_ctrl_handler_free(hdl);
return ret;
}
s5k6aa->sd.ctrl_handler = hdl;
return 0;
}
/*
* V4L2 subdev internal operations
*/
static int s5k6aa_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct v4l2_mbus_framefmt *format = v4l2_subdev_get_try_format(sd, fh->pad, 0);
struct v4l2_rect *crop = v4l2_subdev_get_try_crop(sd, fh->pad, 0);
format->colorspace = s5k6aa_formats[0].colorspace;
format->code = s5k6aa_formats[0].code;
format->width = S5K6AA_OUT_WIDTH_DEF;
format->height = S5K6AA_OUT_HEIGHT_DEF;
format->field = V4L2_FIELD_NONE;
crop->width = S5K6AA_WIN_WIDTH_MAX;
crop->height = S5K6AA_WIN_HEIGHT_MAX;
crop->left = 0;
crop->top = 0;
return 0;
}
static int s5k6aa_check_fw_revision(struct s5k6aa *s5k6aa)
{
struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd);
u16 api_ver = 0, fw_rev = 0;
int ret = s5k6aa_set_ahb_address(client);
if (!ret)
ret = s5k6aa_read(client, REG_FW_APIVER, &api_ver);
if (!ret)
ret = s5k6aa_read(client, REG_FW_REVISION, &fw_rev);
if (ret) {
v4l2_err(&s5k6aa->sd, "FW revision check failed!\n");
return ret;
}
v4l2_info(&s5k6aa->sd, "FW API ver.: 0x%X, FW rev.: 0x%X\n",
api_ver, fw_rev);
return api_ver == S5K6AAFX_FW_APIVER ? 0 : -ENODEV;
}
static int s5k6aa_registered(struct v4l2_subdev *sd)
{
struct s5k6aa *s5k6aa = to_s5k6aa(sd);
int ret;
mutex_lock(&s5k6aa->lock);
ret = __s5k6aa_power_on(s5k6aa);
if (!ret) {
msleep(100);
ret = s5k6aa_check_fw_revision(s5k6aa);
__s5k6aa_power_off(s5k6aa);
}
mutex_unlock(&s5k6aa->lock);
return ret;
}
static const struct v4l2_subdev_internal_ops s5k6aa_subdev_internal_ops = {
.registered = s5k6aa_registered,
.open = s5k6aa_open,
};
static const struct v4l2_subdev_core_ops s5k6aa_core_ops = {
.s_power = s5k6aa_set_power,
.log_status = s5k6aa_log_status,
};
static const struct v4l2_subdev_ops s5k6aa_subdev_ops = {
.core = &s5k6aa_core_ops,
.pad = &s5k6aa_pad_ops,
.video = &s5k6aa_video_ops,
};
/*
* GPIO setup
*/
static int s5k6aa_configure_gpios(struct s5k6aa *s5k6aa,
const struct s5k6aa_platform_data *pdata)
{
struct i2c_client *client = v4l2_get_subdevdata(&s5k6aa->sd);
const struct s5k6aa_gpio *gpio;
unsigned long flags;
int ret;
s5k6aa->gpio[STBY].gpio = -EINVAL;
s5k6aa->gpio[RST].gpio = -EINVAL;
gpio = &pdata->gpio_stby;
if (gpio_is_valid(gpio->gpio)) {
flags = (gpio->level ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW)
| GPIOF_EXPORT;
ret = devm_gpio_request_one(&client->dev, gpio->gpio, flags,
"S5K6AA_STBY");
if (ret < 0)
return ret;
s5k6aa->gpio[STBY] = *gpio;
}
gpio = &pdata->gpio_reset;
if (gpio_is_valid(gpio->gpio)) {
flags = (gpio->level ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW)
| GPIOF_EXPORT;
ret = devm_gpio_request_one(&client->dev, gpio->gpio, flags,
"S5K6AA_RST");
if (ret < 0)
return ret;
s5k6aa->gpio[RST] = *gpio;
}
return 0;
}
static int s5k6aa_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
const struct s5k6aa_platform_data *pdata = client->dev.platform_data;
struct v4l2_subdev *sd;
struct s5k6aa *s5k6aa;
int i, ret;
if (pdata == NULL) {
dev_err(&client->dev, "Platform data not specified\n");
return -EINVAL;
}
if (pdata->mclk_frequency == 0) {
dev_err(&client->dev, "MCLK frequency not specified\n");
return -EINVAL;
}
s5k6aa = devm_kzalloc(&client->dev, sizeof(*s5k6aa), GFP_KERNEL);
if (!s5k6aa)
return -ENOMEM;
mutex_init(&s5k6aa->lock);
s5k6aa->mclk_frequency = pdata->mclk_frequency;
s5k6aa->bus_type = pdata->bus_type;
s5k6aa->mipi_lanes = pdata->nlanes;
s5k6aa->s_power = pdata->set_power;
s5k6aa->inv_hflip = pdata->horiz_flip;
s5k6aa->inv_vflip = pdata->vert_flip;
sd = &s5k6aa->sd;
v4l2_i2c_subdev_init(sd, client, &s5k6aa_subdev_ops);
strlcpy(sd->name, DRIVER_NAME, sizeof(sd->name));
sd->internal_ops = &s5k6aa_subdev_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
s5k6aa->pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sd->entity, 1, &s5k6aa->pad);
if (ret)
return ret;
ret = s5k6aa_configure_gpios(s5k6aa, pdata);
if (ret)
goto out_err;
for (i = 0; i < S5K6AA_NUM_SUPPLIES; i++)
s5k6aa->supplies[i].supply = s5k6aa_supply_names[i];
ret = devm_regulator_bulk_get(&client->dev, S5K6AA_NUM_SUPPLIES,
s5k6aa->supplies);
if (ret) {
dev_err(&client->dev, "Failed to get regulators\n");
goto out_err;
}
ret = s5k6aa_initialize_ctrls(s5k6aa);
if (ret)
goto out_err;
s5k6aa_presets_data_init(s5k6aa);
s5k6aa->ccd_rect.width = S5K6AA_WIN_WIDTH_MAX;
s5k6aa->ccd_rect.height = S5K6AA_WIN_HEIGHT_MAX;
s5k6aa->ccd_rect.left = 0;
s5k6aa->ccd_rect.top = 0;
return 0;
out_err:
media_entity_cleanup(&s5k6aa->sd.entity);
return ret;
}
static int s5k6aa_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
v4l2_device_unregister_subdev(sd);
v4l2_ctrl_handler_free(sd->ctrl_handler);
media_entity_cleanup(&sd->entity);
return 0;
}
static const struct i2c_device_id s5k6aa_id[] = {
{ DRIVER_NAME, 0 },
{ },
};
MODULE_DEVICE_TABLE(i2c, s5k6aa_id);
static struct i2c_driver s5k6aa_i2c_driver = {
.driver = {
.name = DRIVER_NAME
},
.probe = s5k6aa_probe,
.remove = s5k6aa_remove,
.id_table = s5k6aa_id,
};
module_i2c_driver(s5k6aa_i2c_driver);
MODULE_DESCRIPTION("Samsung S5K6AA(FX) SXGA camera driver");
MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
MODULE_LICENSE("GPL");