899 lines
24 KiB
C
899 lines
24 KiB
C
/*
|
||
* Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
|
||
*
|
||
* The data sheet for this device can be found at:
|
||
* http://wiki.laptop.org/go/Datasheets
|
||
*
|
||
* Copyright © 2006 Red Hat, Inc.
|
||
* Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
|
||
*/
|
||
|
||
#define DEBUG
|
||
|
||
#include <linux/device.h>
|
||
#undef DEBUG
|
||
#include <linux/mtd/mtd.h>
|
||
#include <linux/mtd/nand.h>
|
||
#include <linux/mtd/partitions.h>
|
||
#include <linux/rslib.h>
|
||
#include <linux/pci.h>
|
||
#include <linux/delay.h>
|
||
#include <linux/interrupt.h>
|
||
#include <linux/dma-mapping.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/module.h>
|
||
#include <asm/io.h>
|
||
|
||
#define CAFE_NAND_CTRL1 0x00
|
||
#define CAFE_NAND_CTRL2 0x04
|
||
#define CAFE_NAND_CTRL3 0x08
|
||
#define CAFE_NAND_STATUS 0x0c
|
||
#define CAFE_NAND_IRQ 0x10
|
||
#define CAFE_NAND_IRQ_MASK 0x14
|
||
#define CAFE_NAND_DATA_LEN 0x18
|
||
#define CAFE_NAND_ADDR1 0x1c
|
||
#define CAFE_NAND_ADDR2 0x20
|
||
#define CAFE_NAND_TIMING1 0x24
|
||
#define CAFE_NAND_TIMING2 0x28
|
||
#define CAFE_NAND_TIMING3 0x2c
|
||
#define CAFE_NAND_NONMEM 0x30
|
||
#define CAFE_NAND_ECC_RESULT 0x3C
|
||
#define CAFE_NAND_DMA_CTRL 0x40
|
||
#define CAFE_NAND_DMA_ADDR0 0x44
|
||
#define CAFE_NAND_DMA_ADDR1 0x48
|
||
#define CAFE_NAND_ECC_SYN01 0x50
|
||
#define CAFE_NAND_ECC_SYN23 0x54
|
||
#define CAFE_NAND_ECC_SYN45 0x58
|
||
#define CAFE_NAND_ECC_SYN67 0x5c
|
||
#define CAFE_NAND_READ_DATA 0x1000
|
||
#define CAFE_NAND_WRITE_DATA 0x2000
|
||
|
||
#define CAFE_GLOBAL_CTRL 0x3004
|
||
#define CAFE_GLOBAL_IRQ 0x3008
|
||
#define CAFE_GLOBAL_IRQ_MASK 0x300c
|
||
#define CAFE_NAND_RESET 0x3034
|
||
|
||
/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
|
||
#define CTRL1_CHIPSELECT (1<<19)
|
||
|
||
struct cafe_priv {
|
||
struct nand_chip nand;
|
||
struct pci_dev *pdev;
|
||
void __iomem *mmio;
|
||
struct rs_control *rs;
|
||
uint32_t ctl1;
|
||
uint32_t ctl2;
|
||
int datalen;
|
||
int nr_data;
|
||
int data_pos;
|
||
int page_addr;
|
||
dma_addr_t dmaaddr;
|
||
unsigned char *dmabuf;
|
||
};
|
||
|
||
static int usedma = 1;
|
||
module_param(usedma, int, 0644);
|
||
|
||
static int skipbbt = 0;
|
||
module_param(skipbbt, int, 0644);
|
||
|
||
static int debug = 0;
|
||
module_param(debug, int, 0644);
|
||
|
||
static int regdebug = 0;
|
||
module_param(regdebug, int, 0644);
|
||
|
||
static int checkecc = 1;
|
||
module_param(checkecc, int, 0644);
|
||
|
||
static unsigned int numtimings;
|
||
static int timing[3];
|
||
module_param_array(timing, int, &numtimings, 0644);
|
||
|
||
static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
|
||
|
||
/* Hrm. Why isn't this already conditional on something in the struct device? */
|
||
#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
|
||
|
||
/* Make it easier to switch to PIO if we need to */
|
||
#define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
|
||
#define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
|
||
|
||
static int cafe_device_ready(struct mtd_info *mtd)
|
||
{
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
|
||
uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
|
||
|
||
cafe_writel(cafe, irqs, NAND_IRQ);
|
||
|
||
cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
|
||
result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
|
||
cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
|
||
{
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
|
||
if (usedma)
|
||
memcpy(cafe->dmabuf + cafe->datalen, buf, len);
|
||
else
|
||
memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
|
||
|
||
cafe->datalen += len;
|
||
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
|
||
len, cafe->datalen);
|
||
}
|
||
|
||
static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
|
||
{
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
|
||
if (usedma)
|
||
memcpy(buf, cafe->dmabuf + cafe->datalen, len);
|
||
else
|
||
memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
|
||
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
|
||
len, cafe->datalen);
|
||
cafe->datalen += len;
|
||
}
|
||
|
||
static uint8_t cafe_read_byte(struct mtd_info *mtd)
|
||
{
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
uint8_t d;
|
||
|
||
cafe_read_buf(mtd, &d, 1);
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
|
||
|
||
return d;
|
||
}
|
||
|
||
static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
|
||
int column, int page_addr)
|
||
{
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
int adrbytes = 0;
|
||
uint32_t ctl1;
|
||
uint32_t doneint = 0x80000000;
|
||
|
||
cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
|
||
command, column, page_addr);
|
||
|
||
if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
|
||
/* Second half of a command we already calculated */
|
||
cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
|
||
ctl1 = cafe->ctl1;
|
||
cafe->ctl2 &= ~(1<<30);
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
|
||
cafe->ctl1, cafe->nr_data);
|
||
goto do_command;
|
||
}
|
||
/* Reset ECC engine */
|
||
cafe_writel(cafe, 0, NAND_CTRL2);
|
||
|
||
/* Emulate NAND_CMD_READOOB on large-page chips */
|
||
if (mtd->writesize > 512 &&
|
||
command == NAND_CMD_READOOB) {
|
||
column += mtd->writesize;
|
||
command = NAND_CMD_READ0;
|
||
}
|
||
|
||
/* FIXME: Do we need to send read command before sending data
|
||
for small-page chips, to position the buffer correctly? */
|
||
|
||
if (column != -1) {
|
||
cafe_writel(cafe, column, NAND_ADDR1);
|
||
adrbytes = 2;
|
||
if (page_addr != -1)
|
||
goto write_adr2;
|
||
} else if (page_addr != -1) {
|
||
cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
|
||
page_addr >>= 16;
|
||
write_adr2:
|
||
cafe_writel(cafe, page_addr, NAND_ADDR2);
|
||
adrbytes += 2;
|
||
if (mtd->size > mtd->writesize << 16)
|
||
adrbytes++;
|
||
}
|
||
|
||
cafe->data_pos = cafe->datalen = 0;
|
||
|
||
/* Set command valid bit, mask in the chip select bit */
|
||
ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
|
||
|
||
/* Set RD or WR bits as appropriate */
|
||
if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
|
||
ctl1 |= (1<<26); /* rd */
|
||
/* Always 5 bytes, for now */
|
||
cafe->datalen = 4;
|
||
/* And one address cycle -- even for STATUS, since the controller doesn't work without */
|
||
adrbytes = 1;
|
||
} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
|
||
command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
|
||
ctl1 |= 1<<26; /* rd */
|
||
/* For now, assume just read to end of page */
|
||
cafe->datalen = mtd->writesize + mtd->oobsize - column;
|
||
} else if (command == NAND_CMD_SEQIN)
|
||
ctl1 |= 1<<25; /* wr */
|
||
|
||
/* Set number of address bytes */
|
||
if (adrbytes)
|
||
ctl1 |= ((adrbytes-1)|8) << 27;
|
||
|
||
if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
|
||
/* Ignore the first command of a pair; the hardware
|
||
deals with them both at once, later */
|
||
cafe->ctl1 = ctl1;
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
|
||
cafe->ctl1, cafe->datalen);
|
||
return;
|
||
}
|
||
/* RNDOUT and READ0 commands need a following byte */
|
||
if (command == NAND_CMD_RNDOUT)
|
||
cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
|
||
else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
|
||
cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
|
||
|
||
do_command:
|
||
cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
|
||
cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
|
||
|
||
/* NB: The datasheet lies -- we really should be subtracting 1 here */
|
||
cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
|
||
cafe_writel(cafe, 0x90000000, NAND_IRQ);
|
||
if (usedma && (ctl1 & (3<<25))) {
|
||
uint32_t dmactl = 0xc0000000 + cafe->datalen;
|
||
/* If WR or RD bits set, set up DMA */
|
||
if (ctl1 & (1<<26)) {
|
||
/* It's a read */
|
||
dmactl |= (1<<29);
|
||
/* ... so it's done when the DMA is done, not just
|
||
the command. */
|
||
doneint = 0x10000000;
|
||
}
|
||
cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
|
||
}
|
||
cafe->datalen = 0;
|
||
|
||
if (unlikely(regdebug)) {
|
||
int i;
|
||
printk("About to write command %08x to register 0\n", ctl1);
|
||
for (i=4; i< 0x5c; i+=4)
|
||
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
|
||
}
|
||
|
||
cafe_writel(cafe, ctl1, NAND_CTRL1);
|
||
/* Apply this short delay always to ensure that we do wait tWB in
|
||
* any case on any machine. */
|
||
ndelay(100);
|
||
|
||
if (1) {
|
||
int c;
|
||
uint32_t irqs;
|
||
|
||
for (c = 500000; c != 0; c--) {
|
||
irqs = cafe_readl(cafe, NAND_IRQ);
|
||
if (irqs & doneint)
|
||
break;
|
||
udelay(1);
|
||
if (!(c % 100000))
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
|
||
cpu_relax();
|
||
}
|
||
cafe_writel(cafe, doneint, NAND_IRQ);
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
|
||
command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
|
||
}
|
||
|
||
WARN_ON(cafe->ctl2 & (1<<30));
|
||
|
||
switch (command) {
|
||
|
||
case NAND_CMD_CACHEDPROG:
|
||
case NAND_CMD_PAGEPROG:
|
||
case NAND_CMD_ERASE1:
|
||
case NAND_CMD_ERASE2:
|
||
case NAND_CMD_SEQIN:
|
||
case NAND_CMD_RNDIN:
|
||
case NAND_CMD_STATUS:
|
||
case NAND_CMD_RNDOUT:
|
||
cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
|
||
return;
|
||
}
|
||
nand_wait_ready(mtd);
|
||
cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
|
||
}
|
||
|
||
static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
|
||
{
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
|
||
cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
|
||
|
||
/* Mask the appropriate bit into the stored value of ctl1
|
||
which will be used by cafe_nand_cmdfunc() */
|
||
if (chipnr)
|
||
cafe->ctl1 |= CTRL1_CHIPSELECT;
|
||
else
|
||
cafe->ctl1 &= ~CTRL1_CHIPSELECT;
|
||
}
|
||
|
||
static irqreturn_t cafe_nand_interrupt(int irq, void *id)
|
||
{
|
||
struct mtd_info *mtd = id;
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
|
||
cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
|
||
if (!irqs)
|
||
return IRQ_NONE;
|
||
|
||
cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
|
||
return IRQ_HANDLED;
|
||
}
|
||
|
||
static void cafe_nand_bug(struct mtd_info *mtd)
|
||
{
|
||
BUG();
|
||
}
|
||
|
||
static int cafe_nand_write_oob(struct mtd_info *mtd,
|
||
struct nand_chip *chip, int page)
|
||
{
|
||
int status = 0;
|
||
|
||
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
|
||
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
||
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
||
status = chip->waitfunc(mtd, chip);
|
||
|
||
return status & NAND_STATUS_FAIL ? -EIO : 0;
|
||
}
|
||
|
||
/* Don't use -- use nand_read_oob_std for now */
|
||
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
||
int page)
|
||
{
|
||
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
|
||
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
||
return 0;
|
||
}
|
||
/**
|
||
* cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
|
||
* @mtd: mtd info structure
|
||
* @chip: nand chip info structure
|
||
* @buf: buffer to store read data
|
||
* @oob_required: caller expects OOB data read to chip->oob_poi
|
||
*
|
||
* The hw generator calculates the error syndrome automatically. Therefore
|
||
* we need a special oob layout and handling.
|
||
*/
|
||
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
||
uint8_t *buf, int oob_required, int page)
|
||
{
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
unsigned int max_bitflips = 0;
|
||
|
||
cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
|
||
cafe_readl(cafe, NAND_ECC_RESULT),
|
||
cafe_readl(cafe, NAND_ECC_SYN01));
|
||
|
||
chip->read_buf(mtd, buf, mtd->writesize);
|
||
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
||
|
||
if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
|
||
unsigned short syn[8], pat[4];
|
||
int pos[4];
|
||
u8 *oob = chip->oob_poi;
|
||
int i, n;
|
||
|
||
for (i=0; i<8; i+=2) {
|
||
uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
|
||
syn[i] = cafe->rs->index_of[tmp & 0xfff];
|
||
syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
|
||
}
|
||
|
||
n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
|
||
pat);
|
||
|
||
for (i = 0; i < n; i++) {
|
||
int p = pos[i];
|
||
|
||
/* The 12-bit symbols are mapped to bytes here */
|
||
|
||
if (p > 1374) {
|
||
/* out of range */
|
||
n = -1374;
|
||
} else if (p == 0) {
|
||
/* high four bits do not correspond to data */
|
||
if (pat[i] > 0xff)
|
||
n = -2048;
|
||
else
|
||
buf[0] ^= pat[i];
|
||
} else if (p == 1365) {
|
||
buf[2047] ^= pat[i] >> 4;
|
||
oob[0] ^= pat[i] << 4;
|
||
} else if (p > 1365) {
|
||
if ((p & 1) == 1) {
|
||
oob[3*p/2 - 2048] ^= pat[i] >> 4;
|
||
oob[3*p/2 - 2047] ^= pat[i] << 4;
|
||
} else {
|
||
oob[3*p/2 - 2049] ^= pat[i] >> 8;
|
||
oob[3*p/2 - 2048] ^= pat[i];
|
||
}
|
||
} else if ((p & 1) == 1) {
|
||
buf[3*p/2] ^= pat[i] >> 4;
|
||
buf[3*p/2 + 1] ^= pat[i] << 4;
|
||
} else {
|
||
buf[3*p/2 - 1] ^= pat[i] >> 8;
|
||
buf[3*p/2] ^= pat[i];
|
||
}
|
||
}
|
||
|
||
if (n < 0) {
|
||
dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
|
||
cafe_readl(cafe, NAND_ADDR2) * 2048);
|
||
for (i = 0; i < 0x5c; i += 4)
|
||
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
|
||
mtd->ecc_stats.failed++;
|
||
} else {
|
||
dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
|
||
mtd->ecc_stats.corrected += n;
|
||
max_bitflips = max_t(unsigned int, max_bitflips, n);
|
||
}
|
||
}
|
||
|
||
return max_bitflips;
|
||
}
|
||
|
||
static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
|
||
struct mtd_oob_region *oobregion)
|
||
{
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
|
||
if (section)
|
||
return -ERANGE;
|
||
|
||
oobregion->offset = 0;
|
||
oobregion->length = chip->ecc.total;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
|
||
struct mtd_oob_region *oobregion)
|
||
{
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
|
||
if (section)
|
||
return -ERANGE;
|
||
|
||
oobregion->offset = chip->ecc.total;
|
||
oobregion->length = mtd->oobsize - chip->ecc.total;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
|
||
.ecc = cafe_ooblayout_ecc,
|
||
.free = cafe_ooblayout_free,
|
||
};
|
||
|
||
/* Ick. The BBT code really ought to be able to work this bit out
|
||
for itself from the above, at least for the 2KiB case */
|
||
static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
|
||
static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
|
||
|
||
static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
|
||
static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
|
||
|
||
|
||
static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
|
||
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
||
| NAND_BBT_2BIT | NAND_BBT_VERSION,
|
||
.offs = 14,
|
||
.len = 4,
|
||
.veroffs = 18,
|
||
.maxblocks = 4,
|
||
.pattern = cafe_bbt_pattern_2048
|
||
};
|
||
|
||
static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
|
||
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
||
| NAND_BBT_2BIT | NAND_BBT_VERSION,
|
||
.offs = 14,
|
||
.len = 4,
|
||
.veroffs = 18,
|
||
.maxblocks = 4,
|
||
.pattern = cafe_mirror_pattern_2048
|
||
};
|
||
|
||
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
|
||
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
||
| NAND_BBT_2BIT | NAND_BBT_VERSION,
|
||
.offs = 14,
|
||
.len = 1,
|
||
.veroffs = 15,
|
||
.maxblocks = 4,
|
||
.pattern = cafe_bbt_pattern_512
|
||
};
|
||
|
||
static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
|
||
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
||
| NAND_BBT_2BIT | NAND_BBT_VERSION,
|
||
.offs = 14,
|
||
.len = 1,
|
||
.veroffs = 15,
|
||
.maxblocks = 4,
|
||
.pattern = cafe_mirror_pattern_512
|
||
};
|
||
|
||
|
||
static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
|
||
struct nand_chip *chip,
|
||
const uint8_t *buf, int oob_required,
|
||
int page)
|
||
{
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
|
||
chip->write_buf(mtd, buf, mtd->writesize);
|
||
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
||
|
||
/* Set up ECC autogeneration */
|
||
cafe->ctl2 |= (1<<30);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* F_2[X]/(X**6+X+1) */
|
||
static unsigned short gf64_mul(u8 a, u8 b)
|
||
{
|
||
u8 c;
|
||
unsigned int i;
|
||
|
||
c = 0;
|
||
for (i = 0; i < 6; i++) {
|
||
if (a & 1)
|
||
c ^= b;
|
||
a >>= 1;
|
||
b <<= 1;
|
||
if ((b & 0x40) != 0)
|
||
b ^= 0x43;
|
||
}
|
||
|
||
return c;
|
||
}
|
||
|
||
/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
|
||
static u16 gf4096_mul(u16 a, u16 b)
|
||
{
|
||
u8 ah, al, bh, bl, ch, cl;
|
||
|
||
ah = a >> 6;
|
||
al = a & 0x3f;
|
||
bh = b >> 6;
|
||
bl = b & 0x3f;
|
||
|
||
ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
|
||
cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
|
||
|
||
return (ch << 6) ^ cl;
|
||
}
|
||
|
||
static int cafe_mul(int x)
|
||
{
|
||
if (x == 0)
|
||
return 1;
|
||
return gf4096_mul(x, 0xe01);
|
||
}
|
||
|
||
static int cafe_nand_probe(struct pci_dev *pdev,
|
||
const struct pci_device_id *ent)
|
||
{
|
||
struct mtd_info *mtd;
|
||
struct cafe_priv *cafe;
|
||
uint32_t ctrl;
|
||
int err = 0;
|
||
int old_dma;
|
||
struct nand_buffers *nbuf;
|
||
|
||
/* Very old versions shared the same PCI ident for all three
|
||
functions on the chip. Verify the class too... */
|
||
if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
|
||
return -ENODEV;
|
||
|
||
err = pci_enable_device(pdev);
|
||
if (err)
|
||
return err;
|
||
|
||
pci_set_master(pdev);
|
||
|
||
cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
|
||
if (!cafe)
|
||
return -ENOMEM;
|
||
|
||
mtd = nand_to_mtd(&cafe->nand);
|
||
mtd->dev.parent = &pdev->dev;
|
||
nand_set_controller_data(&cafe->nand, cafe);
|
||
|
||
cafe->pdev = pdev;
|
||
cafe->mmio = pci_iomap(pdev, 0, 0);
|
||
if (!cafe->mmio) {
|
||
dev_warn(&pdev->dev, "failed to iomap\n");
|
||
err = -ENOMEM;
|
||
goto out_free_mtd;
|
||
}
|
||
|
||
cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
|
||
if (!cafe->rs) {
|
||
err = -ENOMEM;
|
||
goto out_ior;
|
||
}
|
||
|
||
cafe->nand.cmdfunc = cafe_nand_cmdfunc;
|
||
cafe->nand.dev_ready = cafe_device_ready;
|
||
cafe->nand.read_byte = cafe_read_byte;
|
||
cafe->nand.read_buf = cafe_read_buf;
|
||
cafe->nand.write_buf = cafe_write_buf;
|
||
cafe->nand.select_chip = cafe_select_chip;
|
||
|
||
cafe->nand.chip_delay = 0;
|
||
|
||
/* Enable the following for a flash based bad block table */
|
||
cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
|
||
cafe->nand.options = NAND_OWN_BUFFERS;
|
||
|
||
if (skipbbt) {
|
||
cafe->nand.options |= NAND_SKIP_BBTSCAN;
|
||
cafe->nand.block_bad = cafe_nand_block_bad;
|
||
}
|
||
|
||
if (numtimings && numtimings != 3) {
|
||
dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
|
||
}
|
||
|
||
if (numtimings == 3) {
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
|
||
timing[0], timing[1], timing[2]);
|
||
} else {
|
||
timing[0] = cafe_readl(cafe, NAND_TIMING1);
|
||
timing[1] = cafe_readl(cafe, NAND_TIMING2);
|
||
timing[2] = cafe_readl(cafe, NAND_TIMING3);
|
||
|
||
if (timing[0] | timing[1] | timing[2]) {
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
|
||
timing[0], timing[1], timing[2]);
|
||
} else {
|
||
dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
|
||
timing[0] = timing[1] = timing[2] = 0xffffffff;
|
||
}
|
||
}
|
||
|
||
/* Start off by resetting the NAND controller completely */
|
||
cafe_writel(cafe, 1, NAND_RESET);
|
||
cafe_writel(cafe, 0, NAND_RESET);
|
||
|
||
cafe_writel(cafe, timing[0], NAND_TIMING1);
|
||
cafe_writel(cafe, timing[1], NAND_TIMING2);
|
||
cafe_writel(cafe, timing[2], NAND_TIMING3);
|
||
|
||
cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
|
||
err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
|
||
"CAFE NAND", mtd);
|
||
if (err) {
|
||
dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
|
||
goto out_ior;
|
||
}
|
||
|
||
/* Disable master reset, enable NAND clock */
|
||
ctrl = cafe_readl(cafe, GLOBAL_CTRL);
|
||
ctrl &= 0xffffeff0;
|
||
ctrl |= 0x00007000;
|
||
cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
|
||
cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
|
||
cafe_writel(cafe, 0, NAND_DMA_CTRL);
|
||
|
||
cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
|
||
cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
|
||
|
||
/* Enable NAND IRQ in global IRQ mask register */
|
||
cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
|
||
cafe_readl(cafe, GLOBAL_CTRL),
|
||
cafe_readl(cafe, GLOBAL_IRQ_MASK));
|
||
|
||
/* Do not use the DMA for the nand_scan_ident() */
|
||
old_dma = usedma;
|
||
usedma = 0;
|
||
|
||
/* Scan to find existence of the device */
|
||
if (nand_scan_ident(mtd, 2, NULL)) {
|
||
err = -ENXIO;
|
||
goto out_irq;
|
||
}
|
||
|
||
cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev,
|
||
2112 + sizeof(struct nand_buffers) +
|
||
mtd->writesize + mtd->oobsize,
|
||
&cafe->dmaaddr, GFP_KERNEL);
|
||
if (!cafe->dmabuf) {
|
||
err = -ENOMEM;
|
||
goto out_irq;
|
||
}
|
||
cafe->nand.buffers = nbuf = (void *)cafe->dmabuf + 2112;
|
||
|
||
/* Set up DMA address */
|
||
cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
|
||
if (sizeof(cafe->dmaaddr) > 4)
|
||
/* Shift in two parts to shut the compiler up */
|
||
cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
|
||
else
|
||
cafe_writel(cafe, 0, NAND_DMA_ADDR1);
|
||
|
||
cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
|
||
cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
|
||
|
||
/* this driver does not need the @ecccalc and @ecccode */
|
||
nbuf->ecccalc = NULL;
|
||
nbuf->ecccode = NULL;
|
||
nbuf->databuf = (uint8_t *)(nbuf + 1);
|
||
|
||
/* Restore the DMA flag */
|
||
usedma = old_dma;
|
||
|
||
cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
|
||
if (mtd->writesize == 2048)
|
||
cafe->ctl2 |= 1<<29; /* 2KiB page size */
|
||
|
||
/* Set up ECC according to the type of chip we found */
|
||
mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
|
||
if (mtd->writesize == 2048) {
|
||
cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
|
||
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
|
||
} else if (mtd->writesize == 512) {
|
||
cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
|
||
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
|
||
} else {
|
||
printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
|
||
mtd->writesize);
|
||
goto out_free_dma;
|
||
}
|
||
cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
|
||
cafe->nand.ecc.size = mtd->writesize;
|
||
cafe->nand.ecc.bytes = 14;
|
||
cafe->nand.ecc.strength = 4;
|
||
cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
|
||
cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
|
||
cafe->nand.ecc.correct = (void *)cafe_nand_bug;
|
||
cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
|
||
cafe->nand.ecc.write_oob = cafe_nand_write_oob;
|
||
cafe->nand.ecc.read_page = cafe_nand_read_page;
|
||
cafe->nand.ecc.read_oob = cafe_nand_read_oob;
|
||
|
||
err = nand_scan_tail(mtd);
|
||
if (err)
|
||
goto out_free_dma;
|
||
|
||
pci_set_drvdata(pdev, mtd);
|
||
|
||
mtd->name = "cafe_nand";
|
||
mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
|
||
|
||
goto out;
|
||
|
||
out_free_dma:
|
||
dma_free_coherent(&cafe->pdev->dev,
|
||
2112 + sizeof(struct nand_buffers) +
|
||
mtd->writesize + mtd->oobsize,
|
||
cafe->dmabuf, cafe->dmaaddr);
|
||
out_irq:
|
||
/* Disable NAND IRQ in global IRQ mask register */
|
||
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
|
||
free_irq(pdev->irq, mtd);
|
||
out_ior:
|
||
pci_iounmap(pdev, cafe->mmio);
|
||
out_free_mtd:
|
||
kfree(cafe);
|
||
out:
|
||
return err;
|
||
}
|
||
|
||
static void cafe_nand_remove(struct pci_dev *pdev)
|
||
{
|
||
struct mtd_info *mtd = pci_get_drvdata(pdev);
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
|
||
/* Disable NAND IRQ in global IRQ mask register */
|
||
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
|
||
free_irq(pdev->irq, mtd);
|
||
nand_release(chip);
|
||
free_rs(cafe->rs);
|
||
pci_iounmap(pdev, cafe->mmio);
|
||
dma_free_coherent(&cafe->pdev->dev,
|
||
2112 + sizeof(struct nand_buffers) +
|
||
mtd->writesize + mtd->oobsize,
|
||
cafe->dmabuf, cafe->dmaaddr);
|
||
kfree(cafe);
|
||
}
|
||
|
||
static const struct pci_device_id cafe_nand_tbl[] = {
|
||
{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
|
||
PCI_ANY_ID, PCI_ANY_ID },
|
||
{ }
|
||
};
|
||
|
||
MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
|
||
|
||
static int cafe_nand_resume(struct pci_dev *pdev)
|
||
{
|
||
uint32_t ctrl;
|
||
struct mtd_info *mtd = pci_get_drvdata(pdev);
|
||
struct nand_chip *chip = mtd_to_nand(mtd);
|
||
struct cafe_priv *cafe = nand_get_controller_data(chip);
|
||
|
||
/* Start off by resetting the NAND controller completely */
|
||
cafe_writel(cafe, 1, NAND_RESET);
|
||
cafe_writel(cafe, 0, NAND_RESET);
|
||
cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
|
||
|
||
/* Restore timing configuration */
|
||
cafe_writel(cafe, timing[0], NAND_TIMING1);
|
||
cafe_writel(cafe, timing[1], NAND_TIMING2);
|
||
cafe_writel(cafe, timing[2], NAND_TIMING3);
|
||
|
||
/* Disable master reset, enable NAND clock */
|
||
ctrl = cafe_readl(cafe, GLOBAL_CTRL);
|
||
ctrl &= 0xffffeff0;
|
||
ctrl |= 0x00007000;
|
||
cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
|
||
cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
|
||
cafe_writel(cafe, 0, NAND_DMA_CTRL);
|
||
cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
|
||
cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
|
||
|
||
/* Set up DMA address */
|
||
cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
|
||
if (sizeof(cafe->dmaaddr) > 4)
|
||
/* Shift in two parts to shut the compiler up */
|
||
cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
|
||
else
|
||
cafe_writel(cafe, 0, NAND_DMA_ADDR1);
|
||
|
||
/* Enable NAND IRQ in global IRQ mask register */
|
||
cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
|
||
return 0;
|
||
}
|
||
|
||
static struct pci_driver cafe_nand_pci_driver = {
|
||
.name = "CAFÉ NAND",
|
||
.id_table = cafe_nand_tbl,
|
||
.probe = cafe_nand_probe,
|
||
.remove = cafe_nand_remove,
|
||
.resume = cafe_nand_resume,
|
||
};
|
||
|
||
module_pci_driver(cafe_nand_pci_driver);
|
||
|
||
MODULE_LICENSE("GPL");
|
||
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
||
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
|