tegrakernel/kernel/kernel-4.9/drivers/mtd/nand/mpc5121_nfc.c

856 lines
20 KiB
C

/*
* Copyright 2004-2008 Freescale Semiconductor, Inc.
* Copyright 2009 Semihalf.
*
* Approved as OSADL project by a majority of OSADL members and funded
* by OSADL membership fees in 2009; for details see www.osadl.org.
*
* Based on original driver from Freescale Semiconductor
* written by John Rigby <jrigby@freescale.com> on basis
* of drivers/mtd/nand/mxc_nand.c. Reworked and extended
* Piotr Ziecik <kosmo@semihalf.com>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301, USA.
*/
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/gfp.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <asm/mpc5121.h>
/* Addresses for NFC MAIN RAM BUFFER areas */
#define NFC_MAIN_AREA(n) ((n) * 0x200)
/* Addresses for NFC SPARE BUFFER areas */
#define NFC_SPARE_BUFFERS 8
#define NFC_SPARE_LEN 0x40
#define NFC_SPARE_AREA(n) (0x1000 + ((n) * NFC_SPARE_LEN))
/* MPC5121 NFC registers */
#define NFC_BUF_ADDR 0x1E04
#define NFC_FLASH_ADDR 0x1E06
#define NFC_FLASH_CMD 0x1E08
#define NFC_CONFIG 0x1E0A
#define NFC_ECC_STATUS1 0x1E0C
#define NFC_ECC_STATUS2 0x1E0E
#define NFC_SPAS 0x1E10
#define NFC_WRPROT 0x1E12
#define NFC_NF_WRPRST 0x1E18
#define NFC_CONFIG1 0x1E1A
#define NFC_CONFIG2 0x1E1C
#define NFC_UNLOCKSTART_BLK0 0x1E20
#define NFC_UNLOCKEND_BLK0 0x1E22
#define NFC_UNLOCKSTART_BLK1 0x1E24
#define NFC_UNLOCKEND_BLK1 0x1E26
#define NFC_UNLOCKSTART_BLK2 0x1E28
#define NFC_UNLOCKEND_BLK2 0x1E2A
#define NFC_UNLOCKSTART_BLK3 0x1E2C
#define NFC_UNLOCKEND_BLK3 0x1E2E
/* Bit Definitions: NFC_BUF_ADDR */
#define NFC_RBA_MASK (7 << 0)
#define NFC_ACTIVE_CS_SHIFT 5
#define NFC_ACTIVE_CS_MASK (3 << NFC_ACTIVE_CS_SHIFT)
/* Bit Definitions: NFC_CONFIG */
#define NFC_BLS_UNLOCKED (1 << 1)
/* Bit Definitions: NFC_CONFIG1 */
#define NFC_ECC_4BIT (1 << 0)
#define NFC_FULL_PAGE_DMA (1 << 1)
#define NFC_SPARE_ONLY (1 << 2)
#define NFC_ECC_ENABLE (1 << 3)
#define NFC_INT_MASK (1 << 4)
#define NFC_BIG_ENDIAN (1 << 5)
#define NFC_RESET (1 << 6)
#define NFC_CE (1 << 7)
#define NFC_ONE_CYCLE (1 << 8)
#define NFC_PPB_32 (0 << 9)
#define NFC_PPB_64 (1 << 9)
#define NFC_PPB_128 (2 << 9)
#define NFC_PPB_256 (3 << 9)
#define NFC_PPB_MASK (3 << 9)
#define NFC_FULL_PAGE_INT (1 << 11)
/* Bit Definitions: NFC_CONFIG2 */
#define NFC_COMMAND (1 << 0)
#define NFC_ADDRESS (1 << 1)
#define NFC_INPUT (1 << 2)
#define NFC_OUTPUT (1 << 3)
#define NFC_ID (1 << 4)
#define NFC_STATUS (1 << 5)
#define NFC_CMD_FAIL (1 << 15)
#define NFC_INT (1 << 15)
/* Bit Definitions: NFC_WRPROT */
#define NFC_WPC_LOCK_TIGHT (1 << 0)
#define NFC_WPC_LOCK (1 << 1)
#define NFC_WPC_UNLOCK (1 << 2)
#define DRV_NAME "mpc5121_nfc"
/* Timeouts */
#define NFC_RESET_TIMEOUT 1000 /* 1 ms */
#define NFC_TIMEOUT (HZ / 10) /* 1/10 s */
struct mpc5121_nfc_prv {
struct nand_chip chip;
int irq;
void __iomem *regs;
struct clk *clk;
wait_queue_head_t irq_waitq;
uint column;
int spareonly;
void __iomem *csreg;
struct device *dev;
};
static void mpc5121_nfc_done(struct mtd_info *mtd);
/* Read NFC register */
static inline u16 nfc_read(struct mtd_info *mtd, uint reg)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
return in_be16(prv->regs + reg);
}
/* Write NFC register */
static inline void nfc_write(struct mtd_info *mtd, uint reg, u16 val)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
out_be16(prv->regs + reg, val);
}
/* Set bits in NFC register */
static inline void nfc_set(struct mtd_info *mtd, uint reg, u16 bits)
{
nfc_write(mtd, reg, nfc_read(mtd, reg) | bits);
}
/* Clear bits in NFC register */
static inline void nfc_clear(struct mtd_info *mtd, uint reg, u16 bits)
{
nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits);
}
/* Invoke address cycle */
static inline void mpc5121_nfc_send_addr(struct mtd_info *mtd, u16 addr)
{
nfc_write(mtd, NFC_FLASH_ADDR, addr);
nfc_write(mtd, NFC_CONFIG2, NFC_ADDRESS);
mpc5121_nfc_done(mtd);
}
/* Invoke command cycle */
static inline void mpc5121_nfc_send_cmd(struct mtd_info *mtd, u16 cmd)
{
nfc_write(mtd, NFC_FLASH_CMD, cmd);
nfc_write(mtd, NFC_CONFIG2, NFC_COMMAND);
mpc5121_nfc_done(mtd);
}
/* Send data from NFC buffers to NAND flash */
static inline void mpc5121_nfc_send_prog_page(struct mtd_info *mtd)
{
nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
nfc_write(mtd, NFC_CONFIG2, NFC_INPUT);
mpc5121_nfc_done(mtd);
}
/* Receive data from NAND flash */
static inline void mpc5121_nfc_send_read_page(struct mtd_info *mtd)
{
nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
nfc_write(mtd, NFC_CONFIG2, NFC_OUTPUT);
mpc5121_nfc_done(mtd);
}
/* Receive ID from NAND flash */
static inline void mpc5121_nfc_send_read_id(struct mtd_info *mtd)
{
nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
nfc_write(mtd, NFC_CONFIG2, NFC_ID);
mpc5121_nfc_done(mtd);
}
/* Receive status from NAND flash */
static inline void mpc5121_nfc_send_read_status(struct mtd_info *mtd)
{
nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
nfc_write(mtd, NFC_CONFIG2, NFC_STATUS);
mpc5121_nfc_done(mtd);
}
/* NFC interrupt handler */
static irqreturn_t mpc5121_nfc_irq(int irq, void *data)
{
struct mtd_info *mtd = data;
struct nand_chip *chip = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
nfc_set(mtd, NFC_CONFIG1, NFC_INT_MASK);
wake_up(&prv->irq_waitq);
return IRQ_HANDLED;
}
/* Wait for operation complete */
static void mpc5121_nfc_done(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
int rv;
if ((nfc_read(mtd, NFC_CONFIG2) & NFC_INT) == 0) {
nfc_clear(mtd, NFC_CONFIG1, NFC_INT_MASK);
rv = wait_event_timeout(prv->irq_waitq,
(nfc_read(mtd, NFC_CONFIG2) & NFC_INT), NFC_TIMEOUT);
if (!rv)
dev_warn(prv->dev,
"Timeout while waiting for interrupt.\n");
}
nfc_clear(mtd, NFC_CONFIG2, NFC_INT);
}
/* Do address cycle(s) */
static void mpc5121_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
{
struct nand_chip *chip = mtd_to_nand(mtd);
u32 pagemask = chip->pagemask;
if (column != -1) {
mpc5121_nfc_send_addr(mtd, column);
if (mtd->writesize > 512)
mpc5121_nfc_send_addr(mtd, column >> 8);
}
if (page != -1) {
do {
mpc5121_nfc_send_addr(mtd, page & 0xFF);
page >>= 8;
pagemask >>= 8;
} while (pagemask);
}
}
/* Control chip select signals */
static void mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip)
{
if (chip < 0) {
nfc_clear(mtd, NFC_CONFIG1, NFC_CE);
return;
}
nfc_clear(mtd, NFC_BUF_ADDR, NFC_ACTIVE_CS_MASK);
nfc_set(mtd, NFC_BUF_ADDR, (chip << NFC_ACTIVE_CS_SHIFT) &
NFC_ACTIVE_CS_MASK);
nfc_set(mtd, NFC_CONFIG1, NFC_CE);
}
/* Init external chip select logic on ADS5121 board */
static int ads5121_chipselect_init(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
struct device_node *dn;
dn = of_find_compatible_node(NULL, NULL, "fsl,mpc5121ads-cpld");
if (dn) {
prv->csreg = of_iomap(dn, 0);
of_node_put(dn);
if (!prv->csreg)
return -ENOMEM;
/* CPLD Register 9 controls NAND /CE Lines */
prv->csreg += 9;
return 0;
}
return -EINVAL;
}
/* Control chips select signal on ADS5121 board */
static void ads5121_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand);
u8 v;
v = in_8(prv->csreg);
v |= 0x0F;
if (chip >= 0) {
mpc5121_nfc_select_chip(mtd, 0);
v &= ~(1 << chip);
} else
mpc5121_nfc_select_chip(mtd, -1);
out_8(prv->csreg, v);
}
/* Read NAND Ready/Busy signal */
static int mpc5121_nfc_dev_ready(struct mtd_info *mtd)
{
/*
* NFC handles ready/busy signal internally. Therefore, this function
* always returns status as ready.
*/
return 1;
}
/* Write command to NAND flash */
static void mpc5121_nfc_command(struct mtd_info *mtd, unsigned command,
int column, int page)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
prv->column = (column >= 0) ? column : 0;
prv->spareonly = 0;
switch (command) {
case NAND_CMD_PAGEPROG:
mpc5121_nfc_send_prog_page(mtd);
break;
/*
* NFC does not support sub-page reads and writes,
* so emulate them using full page transfers.
*/
case NAND_CMD_READ0:
column = 0;
break;
case NAND_CMD_READ1:
prv->column += 256;
command = NAND_CMD_READ0;
column = 0;
break;
case NAND_CMD_READOOB:
prv->spareonly = 1;
command = NAND_CMD_READ0;
column = 0;
break;
case NAND_CMD_SEQIN:
mpc5121_nfc_command(mtd, NAND_CMD_READ0, column, page);
column = 0;
break;
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_READID:
case NAND_CMD_STATUS:
break;
default:
return;
}
mpc5121_nfc_send_cmd(mtd, command);
mpc5121_nfc_addr_cycle(mtd, column, page);
switch (command) {
case NAND_CMD_READ0:
if (mtd->writesize > 512)
mpc5121_nfc_send_cmd(mtd, NAND_CMD_READSTART);
mpc5121_nfc_send_read_page(mtd);
break;
case NAND_CMD_READID:
mpc5121_nfc_send_read_id(mtd);
break;
case NAND_CMD_STATUS:
mpc5121_nfc_send_read_status(mtd);
if (chip->options & NAND_BUSWIDTH_16)
prv->column = 1;
else
prv->column = 0;
break;
}
}
/* Copy data from/to NFC spare buffers. */
static void mpc5121_nfc_copy_spare(struct mtd_info *mtd, uint offset,
u8 *buffer, uint size, int wr)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand);
uint o, s, sbsize, blksize;
/*
* NAND spare area is available through NFC spare buffers.
* The NFC divides spare area into (page_size / 512) chunks.
* Each chunk is placed into separate spare memory area, using
* first (spare_size / num_of_chunks) bytes of the buffer.
*
* For NAND device in which the spare area is not divided fully
* by the number of chunks, number of used bytes in each spare
* buffer is rounded down to the nearest even number of bytes,
* and all remaining bytes are added to the last used spare area.
*
* For more information read section 26.6.10 of MPC5121e
* Microcontroller Reference Manual, Rev. 3.
*/
/* Calculate number of valid bytes in each spare buffer */
sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1;
while (size) {
/* Calculate spare buffer number */
s = offset / sbsize;
if (s > NFC_SPARE_BUFFERS - 1)
s = NFC_SPARE_BUFFERS - 1;
/*
* Calculate offset to requested data block in selected spare
* buffer and its size.
*/
o = offset - (s * sbsize);
blksize = min(sbsize - o, size);
if (wr)
memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o,
buffer, blksize);
else
memcpy_fromio(buffer,
prv->regs + NFC_SPARE_AREA(s) + o, blksize);
buffer += blksize;
offset += blksize;
size -= blksize;
};
}
/* Copy data from/to NFC main and spare buffers */
static void mpc5121_nfc_buf_copy(struct mtd_info *mtd, u_char *buf, int len,
int wr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
uint c = prv->column;
uint l;
/* Handle spare area access */
if (prv->spareonly || c >= mtd->writesize) {
/* Calculate offset from beginning of spare area */
if (c >= mtd->writesize)
c -= mtd->writesize;
prv->column += len;
mpc5121_nfc_copy_spare(mtd, c, buf, len, wr);
return;
}
/*
* Handle main area access - limit copy length to prevent
* crossing main/spare boundary.
*/
l = min((uint)len, mtd->writesize - c);
prv->column += l;
if (wr)
memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l);
else
memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l);
/* Handle crossing main/spare boundary */
if (l != len) {
buf += l;
len -= l;
mpc5121_nfc_buf_copy(mtd, buf, len, wr);
}
}
/* Read data from NFC buffers */
static void mpc5121_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
mpc5121_nfc_buf_copy(mtd, buf, len, 0);
}
/* Write data to NFC buffers */
static void mpc5121_nfc_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
mpc5121_nfc_buf_copy(mtd, (u_char *)buf, len, 1);
}
/* Read byte from NFC buffers */
static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd)
{
u8 tmp;
mpc5121_nfc_read_buf(mtd, &tmp, sizeof(tmp));
return tmp;
}
/* Read word from NFC buffers */
static u16 mpc5121_nfc_read_word(struct mtd_info *mtd)
{
u16 tmp;
mpc5121_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
return tmp;
}
/*
* Read NFC configuration from Reset Config Word
*
* NFC is configured during reset in basis of information stored
* in Reset Config Word. There is no other way to set NAND block
* size, spare size and bus width.
*/
static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
struct mpc512x_reset_module *rm;
struct device_node *rmnode;
uint rcw_pagesize = 0;
uint rcw_sparesize = 0;
uint rcw_width;
uint rcwh;
uint romloc, ps;
int ret = 0;
rmnode = of_find_compatible_node(NULL, NULL, "fsl,mpc5121-reset");
if (!rmnode) {
dev_err(prv->dev, "Missing 'fsl,mpc5121-reset' "
"node in device tree!\n");
return -ENODEV;
}
rm = of_iomap(rmnode, 0);
if (!rm) {
dev_err(prv->dev, "Error mapping reset module node!\n");
ret = -EBUSY;
goto out;
}
rcwh = in_be32(&rm->rcwhr);
/* Bit 6: NFC bus width */
rcw_width = ((rcwh >> 6) & 0x1) ? 2 : 1;
/* Bit 7: NFC Page/Spare size */
ps = (rcwh >> 7) & 0x1;
/* Bits [22:21]: ROM Location */
romloc = (rcwh >> 21) & 0x3;
/* Decode RCW bits */
switch ((ps << 2) | romloc) {
case 0x00:
case 0x01:
rcw_pagesize = 512;
rcw_sparesize = 16;
break;
case 0x02:
case 0x03:
rcw_pagesize = 4096;
rcw_sparesize = 128;
break;
case 0x04:
case 0x05:
rcw_pagesize = 2048;
rcw_sparesize = 64;
break;
case 0x06:
case 0x07:
rcw_pagesize = 4096;
rcw_sparesize = 218;
break;
}
mtd->writesize = rcw_pagesize;
mtd->oobsize = rcw_sparesize;
if (rcw_width == 2)
chip->options |= NAND_BUSWIDTH_16;
dev_notice(prv->dev, "Configured for "
"%u-bit NAND, page size %u "
"with %u spare.\n",
rcw_width * 8, rcw_pagesize,
rcw_sparesize);
iounmap(rm);
out:
of_node_put(rmnode);
return ret;
}
/* Free driver resources */
static void mpc5121_nfc_free(struct device *dev, struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
if (prv->clk)
clk_disable_unprepare(prv->clk);
if (prv->csreg)
iounmap(prv->csreg);
}
static int mpc5121_nfc_probe(struct platform_device *op)
{
struct device_node *dn = op->dev.of_node;
struct clk *clk;
struct device *dev = &op->dev;
struct mpc5121_nfc_prv *prv;
struct resource res;
struct mtd_info *mtd;
struct nand_chip *chip;
unsigned long regs_paddr, regs_size;
const __be32 *chips_no;
int resettime = 0;
int retval = 0;
int rev, len;
/*
* Check SoC revision. This driver supports only NFC
* in MPC5121 revision 2 and MPC5123 revision 3.
*/
rev = (mfspr(SPRN_SVR) >> 4) & 0xF;
if ((rev != 2) && (rev != 3)) {
dev_err(dev, "SoC revision %u is not supported!\n", rev);
return -ENXIO;
}
prv = devm_kzalloc(dev, sizeof(*prv), GFP_KERNEL);
if (!prv)
return -ENOMEM;
chip = &prv->chip;
mtd = nand_to_mtd(chip);
mtd->dev.parent = dev;
nand_set_controller_data(chip, prv);
nand_set_flash_node(chip, dn);
prv->dev = dev;
/* Read NFC configuration from Reset Config Word */
retval = mpc5121_nfc_read_hw_config(mtd);
if (retval) {
dev_err(dev, "Unable to read NFC config!\n");
return retval;
}
prv->irq = irq_of_parse_and_map(dn, 0);
if (prv->irq == NO_IRQ) {
dev_err(dev, "Error mapping IRQ!\n");
return -EINVAL;
}
retval = of_address_to_resource(dn, 0, &res);
if (retval) {
dev_err(dev, "Error parsing memory region!\n");
return retval;
}
chips_no = of_get_property(dn, "chips", &len);
if (!chips_no || len != sizeof(*chips_no)) {
dev_err(dev, "Invalid/missing 'chips' property!\n");
return -EINVAL;
}
regs_paddr = res.start;
regs_size = resource_size(&res);
if (!devm_request_mem_region(dev, regs_paddr, regs_size, DRV_NAME)) {
dev_err(dev, "Error requesting memory region!\n");
return -EBUSY;
}
prv->regs = devm_ioremap(dev, regs_paddr, regs_size);
if (!prv->regs) {
dev_err(dev, "Error mapping memory region!\n");
return -ENOMEM;
}
mtd->name = "MPC5121 NAND";
chip->dev_ready = mpc5121_nfc_dev_ready;
chip->cmdfunc = mpc5121_nfc_command;
chip->read_byte = mpc5121_nfc_read_byte;
chip->read_word = mpc5121_nfc_read_word;
chip->read_buf = mpc5121_nfc_read_buf;
chip->write_buf = mpc5121_nfc_write_buf;
chip->select_chip = mpc5121_nfc_select_chip;
chip->bbt_options = NAND_BBT_USE_FLASH;
chip->ecc.mode = NAND_ECC_SOFT;
chip->ecc.algo = NAND_ECC_HAMMING;
/* Support external chip-select logic on ADS5121 board */
if (of_machine_is_compatible("fsl,mpc5121ads")) {
retval = ads5121_chipselect_init(mtd);
if (retval) {
dev_err(dev, "Chipselect init error!\n");
return retval;
}
chip->select_chip = ads5121_select_chip;
}
/* Enable NFC clock */
clk = devm_clk_get(dev, "ipg");
if (IS_ERR(clk)) {
dev_err(dev, "Unable to acquire NFC clock!\n");
retval = PTR_ERR(clk);
goto error;
}
retval = clk_prepare_enable(clk);
if (retval) {
dev_err(dev, "Unable to enable NFC clock!\n");
goto error;
}
prv->clk = clk;
/* Reset NAND Flash controller */
nfc_set(mtd, NFC_CONFIG1, NFC_RESET);
while (nfc_read(mtd, NFC_CONFIG1) & NFC_RESET) {
if (resettime++ >= NFC_RESET_TIMEOUT) {
dev_err(dev, "Timeout while resetting NFC!\n");
retval = -EINVAL;
goto error;
}
udelay(1);
}
/* Enable write to NFC memory */
nfc_write(mtd, NFC_CONFIG, NFC_BLS_UNLOCKED);
/* Enable write to all NAND pages */
nfc_write(mtd, NFC_UNLOCKSTART_BLK0, 0x0000);
nfc_write(mtd, NFC_UNLOCKEND_BLK0, 0xFFFF);
nfc_write(mtd, NFC_WRPROT, NFC_WPC_UNLOCK);
/*
* Setup NFC:
* - Big Endian transfers,
* - Interrupt after full page read/write.
*/
nfc_write(mtd, NFC_CONFIG1, NFC_BIG_ENDIAN | NFC_INT_MASK |
NFC_FULL_PAGE_INT);
/* Set spare area size */
nfc_write(mtd, NFC_SPAS, mtd->oobsize >> 1);
init_waitqueue_head(&prv->irq_waitq);
retval = devm_request_irq(dev, prv->irq, &mpc5121_nfc_irq, 0, DRV_NAME,
mtd);
if (retval) {
dev_err(dev, "Error requesting IRQ!\n");
goto error;
}
/* Detect NAND chips */
if (nand_scan(mtd, be32_to_cpup(chips_no))) {
dev_err(dev, "NAND Flash not found !\n");
retval = -ENXIO;
goto error;
}
/* Set erase block size */
switch (mtd->erasesize / mtd->writesize) {
case 32:
nfc_set(mtd, NFC_CONFIG1, NFC_PPB_32);
break;
case 64:
nfc_set(mtd, NFC_CONFIG1, NFC_PPB_64);
break;
case 128:
nfc_set(mtd, NFC_CONFIG1, NFC_PPB_128);
break;
case 256:
nfc_set(mtd, NFC_CONFIG1, NFC_PPB_256);
break;
default:
dev_err(dev, "Unsupported NAND flash!\n");
retval = -ENXIO;
goto error;
}
dev_set_drvdata(dev, mtd);
/* Register device in MTD */
retval = mtd_device_register(mtd, NULL, 0);
if (retval) {
dev_err(dev, "Error adding MTD device!\n");
goto error;
}
return 0;
error:
mpc5121_nfc_free(dev, mtd);
return retval;
}
static int mpc5121_nfc_remove(struct platform_device *op)
{
struct device *dev = &op->dev;
struct mtd_info *mtd = dev_get_drvdata(dev);
nand_release(mtd_to_nand(mtd));
mpc5121_nfc_free(dev, mtd);
return 0;
}
static const struct of_device_id mpc5121_nfc_match[] = {
{ .compatible = "fsl,mpc5121-nfc", },
{},
};
MODULE_DEVICE_TABLE(of, mpc5121_nfc_match);
static struct platform_driver mpc5121_nfc_driver = {
.probe = mpc5121_nfc_probe,
.remove = mpc5121_nfc_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = mpc5121_nfc_match,
},
};
module_platform_driver(mpc5121_nfc_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("MPC5121 NAND MTD driver");
MODULE_LICENSE("GPL");