tegrakernel/kernel/kernel-4.9/drivers/mtd/spi-nor/fsl-quadspi.c

1202 lines
30 KiB
C

/*
* Freescale QuadSPI driver.
*
* Copyright (C) 2013 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/mutex.h>
#include <linux/pm_qos.h>
#include <linux/sizes.h>
/* Controller needs driver to swap endian */
#define QUADSPI_QUIRK_SWAP_ENDIAN (1 << 0)
/* Controller needs 4x internal clock */
#define QUADSPI_QUIRK_4X_INT_CLK (1 << 1)
/*
* TKT253890, Controller needs driver to fill txfifo till 16 byte to
* trigger data transfer even though extern data will not transferred.
*/
#define QUADSPI_QUIRK_TKT253890 (1 << 2)
/* Controller cannot wake up from wait mode, TKT245618 */
#define QUADSPI_QUIRK_TKT245618 (1 << 3)
/* The registers */
#define QUADSPI_MCR 0x00
#define QUADSPI_MCR_RESERVED_SHIFT 16
#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
#define QUADSPI_MCR_MDIS_SHIFT 14
#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
#define QUADSPI_MCR_CLR_TXF_SHIFT 11
#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
#define QUADSPI_MCR_CLR_RXF_SHIFT 10
#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
#define QUADSPI_MCR_DDR_EN_SHIFT 7
#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
#define QUADSPI_MCR_END_CFG_SHIFT 2
#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
#define QUADSPI_MCR_SWRSTHD_SHIFT 1
#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
#define QUADSPI_MCR_SWRSTSD_SHIFT 0
#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
#define QUADSPI_IPCR 0x08
#define QUADSPI_IPCR_SEQID_SHIFT 24
#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
#define QUADSPI_BUF0CR 0x10
#define QUADSPI_BUF1CR 0x14
#define QUADSPI_BUF2CR 0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
#define QUADSPI_BUF3CR 0x1c
#define QUADSPI_BUF3CR_ALLMST_SHIFT 31
#define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
#define QUADSPI_BUF3CR_ADATSZ_SHIFT 8
#define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
#define QUADSPI_BFGENCR 0x20
#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
#define QUADSPI_BFGENCR_SEQID_SHIFT 12
#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
#define QUADSPI_BUF0IND 0x30
#define QUADSPI_BUF1IND 0x34
#define QUADSPI_BUF2IND 0x38
#define QUADSPI_SFAR 0x100
#define QUADSPI_SMPR 0x108
#define QUADSPI_SMPR_DDRSMP_SHIFT 16
#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
#define QUADSPI_SMPR_FSDLY_SHIFT 6
#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
#define QUADSPI_SMPR_FSPHS_SHIFT 5
#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
#define QUADSPI_SMPR_HSENA_SHIFT 0
#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
#define QUADSPI_RBSR 0x10c
#define QUADSPI_RBSR_RDBFL_SHIFT 8
#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
#define QUADSPI_RBCT 0x110
#define QUADSPI_RBCT_WMRK_MASK 0x1F
#define QUADSPI_RBCT_RXBRD_SHIFT 8
#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
#define QUADSPI_TBSR 0x150
#define QUADSPI_TBDR 0x154
#define QUADSPI_SR 0x15c
#define QUADSPI_SR_IP_ACC_SHIFT 1
#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
#define QUADSPI_SR_AHB_ACC_SHIFT 2
#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
#define QUADSPI_FR 0x160
#define QUADSPI_FR_TFF_MASK 0x1
#define QUADSPI_SFA1AD 0x180
#define QUADSPI_SFA2AD 0x184
#define QUADSPI_SFB1AD 0x188
#define QUADSPI_SFB2AD 0x18c
#define QUADSPI_RBDR 0x200
#define QUADSPI_LUTKEY 0x300
#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
#define QUADSPI_LCKCR 0x304
#define QUADSPI_LCKER_LOCK 0x1
#define QUADSPI_LCKER_UNLOCK 0x2
#define QUADSPI_RSER 0x164
#define QUADSPI_RSER_TFIE (0x1 << 0)
#define QUADSPI_LUT_BASE 0x310
/*
* The definition of the LUT register shows below:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define OPRND0_SHIFT 0
#define PAD0_SHIFT 8
#define INSTR0_SHIFT 10
#define OPRND1_SHIFT 16
/* Instruction set for the LUT register. */
#define LUT_STOP 0
#define LUT_CMD 1
#define LUT_ADDR 2
#define LUT_DUMMY 3
#define LUT_MODE 4
#define LUT_MODE2 5
#define LUT_MODE4 6
#define LUT_FSL_READ 7
#define LUT_FSL_WRITE 8
#define LUT_JMP_ON_CS 9
#define LUT_ADDR_DDR 10
#define LUT_MODE_DDR 11
#define LUT_MODE2_DDR 12
#define LUT_MODE4_DDR 13
#define LUT_FSL_READ_DDR 14
#define LUT_FSL_WRITE_DDR 15
#define LUT_DATA_LEARN 16
/*
* The PAD definitions for LUT register.
*
* The pad stands for the lines number of IO[0:3].
* For example, the Quad read need four IO lines, so you should
* set LUT_PAD4 which means we use four IO lines.
*/
#define LUT_PAD1 0
#define LUT_PAD2 1
#define LUT_PAD4 2
/* Oprands for the LUT register. */
#define ADDR24BIT 0x18
#define ADDR32BIT 0x20
/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr) \
(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
((LUT_##ins) << INSTR0_SHIFT))
#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
/* other macros for LUT register. */
#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
#define QUADSPI_LUT_NUM 64
/* SEQID -- we can have 16 seqids at most. */
#define SEQID_QUAD_READ 0
#define SEQID_WREN 1
#define SEQID_WRDI 2
#define SEQID_RDSR 3
#define SEQID_SE 4
#define SEQID_CHIP_ERASE 5
#define SEQID_PP 6
#define SEQID_RDID 7
#define SEQID_WRSR 8
#define SEQID_RDCR 9
#define SEQID_EN4B 10
#define SEQID_BRWR 11
#define QUADSPI_MIN_IOMAP SZ_4M
enum fsl_qspi_devtype {
FSL_QUADSPI_VYBRID,
FSL_QUADSPI_IMX6SX,
FSL_QUADSPI_IMX7D,
FSL_QUADSPI_IMX6UL,
FSL_QUADSPI_LS1021A,
};
struct fsl_qspi_devtype_data {
enum fsl_qspi_devtype devtype;
int rxfifo;
int txfifo;
int ahb_buf_size;
int driver_data;
};
static struct fsl_qspi_devtype_data vybrid_data = {
.devtype = FSL_QUADSPI_VYBRID,
.rxfifo = 128,
.txfifo = 64,
.ahb_buf_size = 1024,
.driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
};
static struct fsl_qspi_devtype_data imx6sx_data = {
.devtype = FSL_QUADSPI_IMX6SX,
.rxfifo = 128,
.txfifo = 512,
.ahb_buf_size = 1024,
.driver_data = QUADSPI_QUIRK_4X_INT_CLK
| QUADSPI_QUIRK_TKT245618,
};
static struct fsl_qspi_devtype_data imx7d_data = {
.devtype = FSL_QUADSPI_IMX7D,
.rxfifo = 512,
.txfifo = 512,
.ahb_buf_size = 1024,
.driver_data = QUADSPI_QUIRK_TKT253890
| QUADSPI_QUIRK_4X_INT_CLK,
};
static struct fsl_qspi_devtype_data imx6ul_data = {
.devtype = FSL_QUADSPI_IMX6UL,
.rxfifo = 128,
.txfifo = 512,
.ahb_buf_size = 1024,
.driver_data = QUADSPI_QUIRK_TKT253890
| QUADSPI_QUIRK_4X_INT_CLK,
};
static struct fsl_qspi_devtype_data ls1021a_data = {
.devtype = FSL_QUADSPI_LS1021A,
.rxfifo = 128,
.txfifo = 64,
.ahb_buf_size = 1024,
.driver_data = 0,
};
#define FSL_QSPI_MAX_CHIP 4
struct fsl_qspi {
struct spi_nor nor[FSL_QSPI_MAX_CHIP];
void __iomem *iobase;
void __iomem *ahb_addr;
u32 memmap_phy;
u32 memmap_offs;
u32 memmap_len;
struct clk *clk, *clk_en;
struct device *dev;
struct completion c;
const struct fsl_qspi_devtype_data *devtype_data;
u32 nor_size;
u32 nor_num;
u32 clk_rate;
unsigned int chip_base_addr; /* We may support two chips. */
bool has_second_chip;
bool big_endian;
struct mutex lock;
struct pm_qos_request pm_qos_req;
};
static inline int needs_swap_endian(struct fsl_qspi *q)
{
return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
}
static inline int needs_4x_clock(struct fsl_qspi *q)
{
return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
}
static inline int needs_fill_txfifo(struct fsl_qspi *q)
{
return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
}
static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
{
return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
}
/*
* R/W functions for big- or little-endian registers:
* The qSPI controller's endian is independent of the CPU core's endian.
* So far, although the CPU core is little-endian but the qSPI have two
* versions for big-endian and little-endian.
*/
static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
{
if (q->big_endian)
iowrite32be(val, addr);
else
iowrite32(val, addr);
}
static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
{
if (q->big_endian)
return ioread32be(addr);
else
return ioread32(addr);
}
/*
* An IC bug makes us to re-arrange the 32-bit data.
* The following chips, such as IMX6SLX, have fixed this bug.
*/
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
return needs_swap_endian(q) ? __swab32(a) : a;
}
static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
{
qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
}
static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
{
qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
}
static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
{
struct fsl_qspi *q = dev_id;
u32 reg;
/* clear interrupt */
reg = qspi_readl(q, q->iobase + QUADSPI_FR);
qspi_writel(q, reg, q->iobase + QUADSPI_FR);
if (reg & QUADSPI_FR_TFF_MASK)
complete(&q->c);
dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
return IRQ_HANDLED;
}
static void fsl_qspi_init_lut(struct fsl_qspi *q)
{
void __iomem *base = q->iobase;
int rxfifo = q->devtype_data->rxfifo;
u32 lut_base;
u8 cmd, addrlen, dummy;
int i;
fsl_qspi_unlock_lut(q);
/* Clear all the LUT table */
for (i = 0; i < QUADSPI_LUT_NUM; i++)
qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
/* Quad Read */
lut_base = SEQID_QUAD_READ * 4;
if (q->nor_size <= SZ_16M) {
cmd = SPINOR_OP_READ_1_1_4;
addrlen = ADDR24BIT;
dummy = 8;
} else {
/* use the 4-byte address */
cmd = SPINOR_OP_READ_1_1_4;
addrlen = ADDR32BIT;
dummy = 8;
}
qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
qspi_writel(q, LUT0(DUMMY, PAD1, dummy) | LUT1(FSL_READ, PAD4, rxfifo),
base + QUADSPI_LUT(lut_base + 1));
/* Write enable */
lut_base = SEQID_WREN * 4;
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
base + QUADSPI_LUT(lut_base));
/* Page Program */
lut_base = SEQID_PP * 4;
if (q->nor_size <= SZ_16M) {
cmd = SPINOR_OP_PP;
addrlen = ADDR24BIT;
} else {
/* use the 4-byte address */
cmd = SPINOR_OP_PP;
addrlen = ADDR32BIT;
}
qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
base + QUADSPI_LUT(lut_base + 1));
/* Read Status */
lut_base = SEQID_RDSR * 4;
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
LUT1(FSL_READ, PAD1, 0x1),
base + QUADSPI_LUT(lut_base));
/* Erase a sector */
lut_base = SEQID_SE * 4;
cmd = q->nor[0].erase_opcode;
addrlen = q->nor_size <= SZ_16M ? ADDR24BIT : ADDR32BIT;
qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
/* Erase the whole chip */
lut_base = SEQID_CHIP_ERASE * 4;
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
base + QUADSPI_LUT(lut_base));
/* READ ID */
lut_base = SEQID_RDID * 4;
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
LUT1(FSL_READ, PAD1, 0x8),
base + QUADSPI_LUT(lut_base));
/* Write Register */
lut_base = SEQID_WRSR * 4;
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
LUT1(FSL_WRITE, PAD1, 0x2),
base + QUADSPI_LUT(lut_base));
/* Read Configuration Register */
lut_base = SEQID_RDCR * 4;
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
LUT1(FSL_READ, PAD1, 0x1),
base + QUADSPI_LUT(lut_base));
/* Write disable */
lut_base = SEQID_WRDI * 4;
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
base + QUADSPI_LUT(lut_base));
/* Enter 4 Byte Mode (Micron) */
lut_base = SEQID_EN4B * 4;
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
base + QUADSPI_LUT(lut_base));
/* Enter 4 Byte Mode (Spansion) */
lut_base = SEQID_BRWR * 4;
qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
base + QUADSPI_LUT(lut_base));
fsl_qspi_lock_lut(q);
}
/* Get the SEQID for the command */
static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
{
switch (cmd) {
case SPINOR_OP_READ_1_1_4:
return SEQID_QUAD_READ;
case SPINOR_OP_WREN:
return SEQID_WREN;
case SPINOR_OP_WRDI:
return SEQID_WRDI;
case SPINOR_OP_RDSR:
return SEQID_RDSR;
case SPINOR_OP_SE:
return SEQID_SE;
case SPINOR_OP_CHIP_ERASE:
return SEQID_CHIP_ERASE;
case SPINOR_OP_PP:
return SEQID_PP;
case SPINOR_OP_RDID:
return SEQID_RDID;
case SPINOR_OP_WRSR:
return SEQID_WRSR;
case SPINOR_OP_RDCR:
return SEQID_RDCR;
case SPINOR_OP_EN4B:
return SEQID_EN4B;
case SPINOR_OP_BRWR:
return SEQID_BRWR;
default:
if (cmd == q->nor[0].erase_opcode)
return SEQID_SE;
dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
break;
}
return -EINVAL;
}
static int
fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
{
void __iomem *base = q->iobase;
int seqid;
u32 reg, reg2;
int err;
init_completion(&q->c);
dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
q->chip_base_addr, addr, len, cmd);
/* save the reg */
reg = qspi_readl(q, base + QUADSPI_MCR);
qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
base + QUADSPI_SFAR);
qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
base + QUADSPI_RBCT);
qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
do {
reg2 = qspi_readl(q, base + QUADSPI_SR);
if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
udelay(1);
dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
continue;
}
break;
} while (1);
/* trigger the LUT now */
seqid = fsl_qspi_get_seqid(q, cmd);
qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
base + QUADSPI_IPCR);
/* Wait for the interrupt. */
if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
dev_err(q->dev,
"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
cmd, addr, qspi_readl(q, base + QUADSPI_FR),
qspi_readl(q, base + QUADSPI_SR));
err = -ETIMEDOUT;
} else {
err = 0;
}
/* restore the MCR */
qspi_writel(q, reg, base + QUADSPI_MCR);
return err;
}
/* Read out the data from the QUADSPI_RBDR buffer registers. */
static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
{
u32 tmp;
int i = 0;
while (len > 0) {
tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
tmp = fsl_qspi_endian_xchg(q, tmp);
dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
q->chip_base_addr, tmp);
if (len >= 4) {
*((u32 *)rxbuf) = tmp;
rxbuf += 4;
} else {
memcpy(rxbuf, &tmp, len);
break;
}
len -= 4;
i++;
}
}
/*
* If we have changed the content of the flash by writing or erasing,
* we need to invalidate the AHB buffer. If we do not do so, we may read out
* the wrong data. The spec tells us reset the AHB domain and Serial Flash
* domain at the same time.
*/
static inline void fsl_qspi_invalid(struct fsl_qspi *q)
{
u32 reg;
reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
* Delay 1 us is enough.
*/
udelay(1);
reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
}
static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
u8 opcode, unsigned int to, u32 *txbuf,
unsigned count)
{
int ret, i, j;
u32 tmp;
dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
q->chip_base_addr, to, count);
/* clear the TX FIFO. */
tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
/* fill the TX data to the FIFO */
for (j = 0, i = ((count + 3) / 4); j < i; j++) {
tmp = fsl_qspi_endian_xchg(q, *txbuf);
qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
txbuf++;
}
/* fill the TXFIFO upto 16 bytes for i.MX7d */
if (needs_fill_txfifo(q))
for (; i < 4; i++)
qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
/* Trigger it */
ret = fsl_qspi_runcmd(q, opcode, to, count);
if (ret == 0)
return count;
return ret;
}
static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
{
int nor_size = q->nor_size;
void __iomem *base = q->iobase;
qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
}
/*
* There are two different ways to read out the data from the flash:
* the "IP Command Read" and the "AHB Command Read".
*
* The IC guy suggests we use the "AHB Command Read" which is faster
* then the "IP Command Read". (What's more is that there is a bug in
* the "IP Command Read" in the Vybrid.)
*
* After we set up the registers for the "AHB Command Read", we can use
* the memcpy to read the data directly. A "missed" access to the buffer
* causes the controller to clear the buffer, and use the sequence pointed
* by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
*/
static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
{
void __iomem *base = q->iobase;
int seqid;
/* AHB configuration for access buffer 0/1/2 .*/
qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
/*
* Set ADATSZ with the maximum AHB buffer size to improve the
* read performance.
*/
qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
((q->devtype_data->ahb_buf_size / 8)
<< QUADSPI_BUF3CR_ADATSZ_SHIFT),
base + QUADSPI_BUF3CR);
/* We only use the buffer3 */
qspi_writel(q, 0, base + QUADSPI_BUF0IND);
qspi_writel(q, 0, base + QUADSPI_BUF1IND);
qspi_writel(q, 0, base + QUADSPI_BUF2IND);
/* Set the default lut sequence for AHB Read. */
seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
q->iobase + QUADSPI_BFGENCR);
}
/* This function was used to prepare and enable QSPI clock */
static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
{
int ret;
ret = clk_prepare_enable(q->clk_en);
if (ret)
return ret;
ret = clk_prepare_enable(q->clk);
if (ret) {
clk_disable_unprepare(q->clk_en);
return ret;
}
if (needs_wakeup_wait_mode(q))
pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
return 0;
}
/* This function was used to disable and unprepare QSPI clock */
static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
{
if (needs_wakeup_wait_mode(q))
pm_qos_remove_request(&q->pm_qos_req);
clk_disable_unprepare(q->clk);
clk_disable_unprepare(q->clk_en);
}
/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_qspi_nor_setup(struct fsl_qspi *q)
{
void __iomem *base = q->iobase;
u32 reg;
int ret;
/* disable and unprepare clock to avoid glitch pass to controller */
fsl_qspi_clk_disable_unprep(q);
/* the default frequency, we will change it in the future. */
ret = clk_set_rate(q->clk, 66000000);
if (ret)
return ret;
ret = fsl_qspi_clk_prep_enable(q);
if (ret)
return ret;
/* Reset the module */
qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
base + QUADSPI_MCR);
udelay(1);
/* Init the LUT table. */
fsl_qspi_init_lut(q);
/* Disable the module */
qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
base + QUADSPI_MCR);
reg = qspi_readl(q, base + QUADSPI_SMPR);
qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
| QUADSPI_SMPR_FSPHS_MASK
| QUADSPI_SMPR_HSENA_MASK
| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
/* Enable the module */
qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
base + QUADSPI_MCR);
/* clear all interrupt status */
qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
/* enable the interrupt */
qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
return 0;
}
static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
{
unsigned long rate = q->clk_rate;
int ret;
if (needs_4x_clock(q))
rate *= 4;
/* disable and unprepare clock to avoid glitch pass to controller */
fsl_qspi_clk_disable_unprep(q);
ret = clk_set_rate(q->clk, rate);
if (ret)
return ret;
ret = fsl_qspi_clk_prep_enable(q);
if (ret)
return ret;
/* Init the LUT table again. */
fsl_qspi_init_lut(q);
/* Init for AHB read */
fsl_qspi_init_abh_read(q);
return 0;
}
static const struct of_device_id fsl_qspi_dt_ids[] = {
{ .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
{ .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
{ .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, },
{ .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, },
{ .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
{
q->chip_base_addr = q->nor_size * (nor - q->nor);
}
static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
int ret;
struct fsl_qspi *q = nor->priv;
ret = fsl_qspi_runcmd(q, opcode, 0, len);
if (ret)
return ret;
fsl_qspi_read_data(q, len, buf);
return 0;
}
static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
{
struct fsl_qspi *q = nor->priv;
int ret;
if (!buf) {
ret = fsl_qspi_runcmd(q, opcode, 0, 1);
if (ret)
return ret;
if (opcode == SPINOR_OP_CHIP_ERASE)
fsl_qspi_invalid(q);
} else if (len > 0) {
ret = fsl_qspi_nor_write(q, nor, opcode, 0,
(u32 *)buf, len);
if (ret > 0)
return 0;
} else {
dev_err(q->dev, "invalid cmd %d\n", opcode);
ret = -EINVAL;
}
return ret;
}
static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to,
size_t len, const u_char *buf)
{
struct fsl_qspi *q = nor->priv;
ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
(u32 *)buf, len);
/* invalid the data in the AHB buffer. */
fsl_qspi_invalid(q);
return ret;
}
static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from,
size_t len, u_char *buf)
{
struct fsl_qspi *q = nor->priv;
u8 cmd = nor->read_opcode;
/* if necessary,ioremap buffer before AHB read, */
if (!q->ahb_addr) {
q->memmap_offs = q->chip_base_addr + from;
q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
q->ahb_addr = ioremap_nocache(
q->memmap_phy + q->memmap_offs,
q->memmap_len);
if (!q->ahb_addr) {
dev_err(q->dev, "ioremap failed\n");
return -ENOMEM;
}
/* ioremap if the data requested is out of range */
} else if (q->chip_base_addr + from < q->memmap_offs
|| q->chip_base_addr + from + len >
q->memmap_offs + q->memmap_len) {
iounmap(q->ahb_addr);
q->memmap_offs = q->chip_base_addr + from;
q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
q->ahb_addr = ioremap_nocache(
q->memmap_phy + q->memmap_offs,
q->memmap_len);
if (!q->ahb_addr) {
dev_err(q->dev, "ioremap failed\n");
return -ENOMEM;
}
}
dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
len);
/* Read out the data directly from the AHB buffer.*/
memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
len);
return len;
}
static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
{
struct fsl_qspi *q = nor->priv;
int ret;
dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
if (ret)
return ret;
fsl_qspi_invalid(q);
return 0;
}
static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct fsl_qspi *q = nor->priv;
int ret;
mutex_lock(&q->lock);
ret = fsl_qspi_clk_prep_enable(q);
if (ret)
goto err_mutex;
fsl_qspi_set_base_addr(q, nor);
return 0;
err_mutex:
mutex_unlock(&q->lock);
return ret;
}
static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct fsl_qspi *q = nor->priv;
fsl_qspi_clk_disable_unprep(q);
mutex_unlock(&q->lock);
}
static int fsl_qspi_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct fsl_qspi *q;
struct resource *res;
struct spi_nor *nor;
struct mtd_info *mtd;
int ret, i = 0;
q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
if (!q)
return -ENOMEM;
q->nor_num = of_get_child_count(dev->of_node);
if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
return -ENODEV;
q->dev = dev;
q->devtype_data = of_device_get_match_data(dev);
if (!q->devtype_data)
return -ENODEV;
platform_set_drvdata(pdev, q);
/* find the resources */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
q->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(q->iobase))
return PTR_ERR(q->iobase);
q->big_endian = of_property_read_bool(np, "big-endian");
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"QuadSPI-memory");
if (!devm_request_mem_region(dev, res->start, resource_size(res),
res->name)) {
dev_err(dev, "can't request region for resource %pR\n", res);
return -EBUSY;
}
q->memmap_phy = res->start;
/* find the clocks */
q->clk_en = devm_clk_get(dev, "qspi_en");
if (IS_ERR(q->clk_en))
return PTR_ERR(q->clk_en);
q->clk = devm_clk_get(dev, "qspi");
if (IS_ERR(q->clk))
return PTR_ERR(q->clk);
ret = fsl_qspi_clk_prep_enable(q);
if (ret) {
dev_err(dev, "can not enable the clock\n");
goto clk_failed;
}
/* find the irq */
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(dev, "failed to get the irq: %d\n", ret);
goto irq_failed;
}
ret = devm_request_irq(dev, ret,
fsl_qspi_irq_handler, 0, pdev->name, q);
if (ret) {
dev_err(dev, "failed to request irq: %d\n", ret);
goto irq_failed;
}
ret = fsl_qspi_nor_setup(q);
if (ret)
goto irq_failed;
if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
q->has_second_chip = true;
mutex_init(&q->lock);
/* iterate the subnodes. */
for_each_available_child_of_node(dev->of_node, np) {
/* skip the holes */
if (!q->has_second_chip)
i *= 2;
nor = &q->nor[i];
mtd = &nor->mtd;
nor->dev = dev;
spi_nor_set_flash_node(nor, np);
nor->priv = q;
/* fill the hooks */
nor->read_reg = fsl_qspi_read_reg;
nor->write_reg = fsl_qspi_write_reg;
nor->read = fsl_qspi_read;
nor->write = fsl_qspi_write;
nor->erase = fsl_qspi_erase;
nor->prepare = fsl_qspi_prep;
nor->unprepare = fsl_qspi_unprep;
ret = of_property_read_u32(np, "spi-max-frequency",
&q->clk_rate);
if (ret < 0)
goto mutex_failed;
/* set the chip address for READID */
fsl_qspi_set_base_addr(q, nor);
ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
if (ret)
goto mutex_failed;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto mutex_failed;
/* Set the correct NOR size now. */
if (q->nor_size == 0) {
q->nor_size = mtd->size;
/* Map the SPI NOR to accessiable address */
fsl_qspi_set_map_addr(q);
}
/*
* The TX FIFO is 64 bytes in the Vybrid, but the Page Program
* may writes 265 bytes per time. The write is working in the
* unit of the TX FIFO, not in the unit of the SPI NOR's page
* size.
*
* So shrink the spi_nor->page_size if it is larger then the
* TX FIFO.
*/
if (nor->page_size > q->devtype_data->txfifo)
nor->page_size = q->devtype_data->txfifo;
i++;
}
/* finish the rest init. */
ret = fsl_qspi_nor_setup_last(q);
if (ret)
goto last_init_failed;
fsl_qspi_clk_disable_unprep(q);
return 0;
last_init_failed:
for (i = 0; i < q->nor_num; i++) {
/* skip the holes */
if (!q->has_second_chip)
i *= 2;
mtd_device_unregister(&q->nor[i].mtd);
}
mutex_failed:
mutex_destroy(&q->lock);
irq_failed:
fsl_qspi_clk_disable_unprep(q);
clk_failed:
dev_err(dev, "Freescale QuadSPI probe failed\n");
return ret;
}
static int fsl_qspi_remove(struct platform_device *pdev)
{
struct fsl_qspi *q = platform_get_drvdata(pdev);
int i;
for (i = 0; i < q->nor_num; i++) {
/* skip the holes */
if (!q->has_second_chip)
i *= 2;
mtd_device_unregister(&q->nor[i].mtd);
}
/* disable the hardware */
qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
mutex_destroy(&q->lock);
if (q->ahb_addr)
iounmap(q->ahb_addr);
return 0;
}
static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
{
return 0;
}
static int fsl_qspi_resume(struct platform_device *pdev)
{
int ret;
struct fsl_qspi *q = platform_get_drvdata(pdev);
ret = fsl_qspi_clk_prep_enable(q);
if (ret)
return ret;
fsl_qspi_nor_setup(q);
fsl_qspi_set_map_addr(q);
fsl_qspi_nor_setup_last(q);
fsl_qspi_clk_disable_unprep(q);
return 0;
}
static struct platform_driver fsl_qspi_driver = {
.driver = {
.name = "fsl-quadspi",
.bus = &platform_bus_type,
.of_match_table = fsl_qspi_dt_ids,
},
.probe = fsl_qspi_probe,
.remove = fsl_qspi_remove,
.suspend = fsl_qspi_suspend,
.resume = fsl_qspi_resume,
};
module_platform_driver(fsl_qspi_driver);
MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");