tegrakernel/kernel/kernel-4.9/drivers/net/can/pch_can.c

1280 lines
32 KiB
C

/*
* Copyright (C) 1999 - 2010 Intel Corporation.
* Copyright (C) 2010 LAPIS SEMICONDUCTOR CO., LTD.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
#define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
#define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
#define PCH_CTRL_CCE BIT(6)
#define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
#define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
#define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
#define PCH_CMASK_RX_TX_SET 0x00f3
#define PCH_CMASK_RX_TX_GET 0x0073
#define PCH_CMASK_ALL 0xff
#define PCH_CMASK_NEWDAT BIT(2)
#define PCH_CMASK_CLRINTPND BIT(3)
#define PCH_CMASK_CTRL BIT(4)
#define PCH_CMASK_ARB BIT(5)
#define PCH_CMASK_MASK BIT(6)
#define PCH_CMASK_RDWR BIT(7)
#define PCH_IF_MCONT_NEWDAT BIT(15)
#define PCH_IF_MCONT_MSGLOST BIT(14)
#define PCH_IF_MCONT_INTPND BIT(13)
#define PCH_IF_MCONT_UMASK BIT(12)
#define PCH_IF_MCONT_TXIE BIT(11)
#define PCH_IF_MCONT_RXIE BIT(10)
#define PCH_IF_MCONT_RMTEN BIT(9)
#define PCH_IF_MCONT_TXRQXT BIT(8)
#define PCH_IF_MCONT_EOB BIT(7)
#define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
#define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
#define PCH_ID2_DIR BIT(13)
#define PCH_ID2_XTD BIT(14)
#define PCH_ID_MSGVAL BIT(15)
#define PCH_IF_CREQ_BUSY BIT(15)
#define PCH_STATUS_INT 0x8000
#define PCH_RP 0x00008000
#define PCH_REC 0x00007f00
#define PCH_TEC 0x000000ff
#define PCH_TX_OK BIT(3)
#define PCH_RX_OK BIT(4)
#define PCH_EPASSIV BIT(5)
#define PCH_EWARN BIT(6)
#define PCH_BUS_OFF BIT(7)
/* bit position of certain controller bits. */
#define PCH_BIT_BRP_SHIFT 0
#define PCH_BIT_SJW_SHIFT 6
#define PCH_BIT_TSEG1_SHIFT 8
#define PCH_BIT_TSEG2_SHIFT 12
#define PCH_BIT_BRPE_BRPE_SHIFT 6
#define PCH_MSK_BITT_BRP 0x3f
#define PCH_MSK_BRPE_BRPE 0x3c0
#define PCH_MSK_CTRL_IE_SIE_EIE 0x07
#define PCH_COUNTER_LIMIT 10
#define PCH_CAN_CLK 50000000 /* 50MHz */
/*
* Define the number of message object.
* PCH CAN communications are done via Message RAM.
* The Message RAM consists of 32 message objects.
*/
#define PCH_RX_OBJ_NUM 26
#define PCH_TX_OBJ_NUM 6
#define PCH_RX_OBJ_START 1
#define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
#define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
#define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
#define PCH_FIFO_THRESH 16
/* TxRqst2 show status of MsgObjNo.17~32 */
#define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
(PCH_RX_OBJ_END - 16))
enum pch_ifreg {
PCH_RX_IFREG,
PCH_TX_IFREG,
};
enum pch_can_err {
PCH_STUF_ERR = 1,
PCH_FORM_ERR,
PCH_ACK_ERR,
PCH_BIT1_ERR,
PCH_BIT0_ERR,
PCH_CRC_ERR,
PCH_LEC_ALL,
};
enum pch_can_mode {
PCH_CAN_ENABLE,
PCH_CAN_DISABLE,
PCH_CAN_ALL,
PCH_CAN_NONE,
PCH_CAN_STOP,
PCH_CAN_RUN,
};
struct pch_can_if_regs {
u32 creq;
u32 cmask;
u32 mask1;
u32 mask2;
u32 id1;
u32 id2;
u32 mcont;
u32 data[4];
u32 rsv[13];
};
struct pch_can_regs {
u32 cont;
u32 stat;
u32 errc;
u32 bitt;
u32 intr;
u32 opt;
u32 brpe;
u32 reserve;
struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
u32 reserve1[8];
u32 treq1;
u32 treq2;
u32 reserve2[6];
u32 data1;
u32 data2;
u32 reserve3[6];
u32 canipend1;
u32 canipend2;
u32 reserve4[6];
u32 canmval1;
u32 canmval2;
u32 reserve5[37];
u32 srst;
};
struct pch_can_priv {
struct can_priv can;
struct pci_dev *dev;
u32 tx_enable[PCH_TX_OBJ_END];
u32 rx_enable[PCH_TX_OBJ_END];
u32 rx_link[PCH_TX_OBJ_END];
u32 int_enables;
struct net_device *ndev;
struct pch_can_regs __iomem *regs;
struct napi_struct napi;
int tx_obj; /* Point next Tx Obj index */
int use_msi;
};
static const struct can_bittiming_const pch_can_bittiming_const = {
.name = KBUILD_MODNAME,
.tseg1_min = 2,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024, /* 6bit + extended 4bit */
.brp_inc = 1,
};
static const struct pci_device_id pch_pci_tbl[] = {
{PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
{0,}
};
MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
{
iowrite32(ioread32(addr) | mask, addr);
}
static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
{
iowrite32(ioread32(addr) & ~mask, addr);
}
static void pch_can_set_run_mode(struct pch_can_priv *priv,
enum pch_can_mode mode)
{
switch (mode) {
case PCH_CAN_RUN:
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
break;
case PCH_CAN_STOP:
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
break;
default:
netdev_err(priv->ndev, "%s -> Invalid Mode.\n", __func__);
break;
}
}
static void pch_can_set_optmode(struct pch_can_priv *priv)
{
u32 reg_val = ioread32(&priv->regs->opt);
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
reg_val |= PCH_OPT_SILENT;
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
reg_val |= PCH_OPT_LBACK;
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
iowrite32(reg_val, &priv->regs->opt);
}
static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
{
int counter = PCH_COUNTER_LIMIT;
u32 ifx_creq;
iowrite32(num, creq_addr);
while (counter) {
ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
if (!ifx_creq)
break;
counter--;
udelay(1);
}
if (!counter)
pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
}
static void pch_can_set_int_enables(struct pch_can_priv *priv,
enum pch_can_mode interrupt_no)
{
switch (interrupt_no) {
case PCH_CAN_DISABLE:
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
break;
case PCH_CAN_ALL:
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
break;
case PCH_CAN_NONE:
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
break;
default:
netdev_err(priv->ndev, "Invalid interrupt number.\n");
break;
}
}
static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
int set, enum pch_ifreg dir)
{
u32 ie;
if (dir)
ie = PCH_IF_MCONT_TXIE;
else
ie = PCH_IF_MCONT_RXIE;
/* Reading the Msg buffer from Message RAM to IF1/2 registers. */
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
/* Setting the IF1/2MASK1 register to access MsgVal and RxIE bits */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
&priv->regs->ifregs[dir].cmask);
if (set) {
/* Setting the MsgVal and RxIE/TxIE bits */
pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
} else {
/* Clearing the MsgVal and RxIE/TxIE bits */
pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
}
pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
}
static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
{
int i;
/* Traversing to obtain the object configured as receivers. */
for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
}
static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
{
int i;
/* Traversing to obtain the object configured as transmit object. */
for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
}
static u32 pch_can_int_pending(struct pch_can_priv *priv)
{
return ioread32(&priv->regs->intr) & 0xffff;
}
static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
{
int i; /* Msg Obj ID (1~32) */
for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
iowrite32(0x0, &priv->regs->ifregs[0].id1);
iowrite32(0x0, &priv->regs->ifregs[0].id2);
iowrite32(0x0, &priv->regs->ifregs[0].mcont);
iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
PCH_CMASK_ARB | PCH_CMASK_CTRL,
&priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
}
}
static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
{
int i;
for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
iowrite32(0x0, &priv->regs->ifregs[0].id1);
iowrite32(0x0, &priv->regs->ifregs[0].id2);
pch_can_bit_set(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_UMASK);
/* In case FIFO mode, Last EoB of Rx Obj must be 1 */
if (i == PCH_RX_OBJ_END)
pch_can_bit_set(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_EOB);
else
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_EOB);
iowrite32(0, &priv->regs->ifregs[0].mask1);
pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
0x1fff | PCH_MASK2_MDIR_MXTD);
/* Setting CMASK for writing */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
}
for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
/* Resetting DIR bit for reception */
iowrite32(0x0, &priv->regs->ifregs[1].id1);
iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2);
/* Setting EOB bit for transmitter */
iowrite32(PCH_IF_MCONT_EOB | PCH_IF_MCONT_UMASK,
&priv->regs->ifregs[1].mcont);
iowrite32(0, &priv->regs->ifregs[1].mask1);
pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
/* Setting CMASK for writing */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
PCH_CMASK_CTRL, &priv->regs->ifregs[1].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
}
}
static void pch_can_init(struct pch_can_priv *priv)
{
/* Stopping the Can device. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Clearing all the message object buffers. */
pch_can_clear_if_buffers(priv);
/* Configuring the respective message object as either rx/tx object. */
pch_can_config_rx_tx_buffers(priv);
/* Enabling the interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_ALL);
}
static void pch_can_release(struct pch_can_priv *priv)
{
/* Stooping the CAN device. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Disabling the interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_NONE);
/* Disabling all the receive object. */
pch_can_set_rx_all(priv, 0);
/* Disabling all the transmit object. */
pch_can_set_tx_all(priv, 0);
}
/* This function clears interrupt(s) from the CAN device. */
static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
{
/* Clear interrupt for transmit object */
if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
/* Setting CMASK for clearing the reception interrupts. */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
&priv->regs->ifregs[0].cmask);
/* Clearing the Dir bit. */
pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
/* Clearing NewDat & IntPnd */
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
} else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
/*
* Setting CMASK for clearing interrupts for frame transmission.
*/
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
&priv->regs->ifregs[1].cmask);
/* Resetting the ID registers. */
pch_can_bit_set(&priv->regs->ifregs[1].id2,
PCH_ID2_DIR | (0x7ff << 2));
iowrite32(0x0, &priv->regs->ifregs[1].id1);
/* Claring NewDat, TxRqst & IntPnd */
pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
PCH_IF_MCONT_TXRQXT);
pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
}
}
static void pch_can_reset(struct pch_can_priv *priv)
{
/* write to sw reset register */
iowrite32(1, &priv->regs->srst);
iowrite32(0, &priv->regs->srst);
}
static void pch_can_error(struct net_device *ndev, u32 status)
{
struct sk_buff *skb;
struct pch_can_priv *priv = netdev_priv(ndev);
struct can_frame *cf;
u32 errc, lec;
struct net_device_stats *stats = &(priv->ndev->stats);
enum can_state state = priv->can.state;
skb = alloc_can_err_skb(ndev, &cf);
if (!skb)
return;
if (status & PCH_BUS_OFF) {
pch_can_set_tx_all(priv, 0);
pch_can_set_rx_all(priv, 0);
state = CAN_STATE_BUS_OFF;
cf->can_id |= CAN_ERR_BUSOFF;
priv->can.can_stats.bus_off++;
can_bus_off(ndev);
}
errc = ioread32(&priv->regs->errc);
/* Warning interrupt. */
if (status & PCH_EWARN) {
state = CAN_STATE_ERROR_WARNING;
priv->can.can_stats.error_warning++;
cf->can_id |= CAN_ERR_CRTL;
if (((errc & PCH_REC) >> 8) > 96)
cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
if ((errc & PCH_TEC) > 96)
cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
netdev_dbg(ndev,
"%s -> Error Counter is more than 96.\n", __func__);
}
/* Error passive interrupt. */
if (status & PCH_EPASSIV) {
priv->can.can_stats.error_passive++;
state = CAN_STATE_ERROR_PASSIVE;
cf->can_id |= CAN_ERR_CRTL;
if (errc & PCH_RP)
cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
if ((errc & PCH_TEC) > 127)
cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
netdev_dbg(ndev,
"%s -> CAN controller is ERROR PASSIVE .\n", __func__);
}
lec = status & PCH_LEC_ALL;
switch (lec) {
case PCH_STUF_ERR:
cf->data[2] |= CAN_ERR_PROT_STUFF;
priv->can.can_stats.bus_error++;
stats->rx_errors++;
break;
case PCH_FORM_ERR:
cf->data[2] |= CAN_ERR_PROT_FORM;
priv->can.can_stats.bus_error++;
stats->rx_errors++;
break;
case PCH_ACK_ERR:
cf->can_id |= CAN_ERR_ACK;
priv->can.can_stats.bus_error++;
stats->rx_errors++;
break;
case PCH_BIT1_ERR:
case PCH_BIT0_ERR:
cf->data[2] |= CAN_ERR_PROT_BIT;
priv->can.can_stats.bus_error++;
stats->rx_errors++;
break;
case PCH_CRC_ERR:
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
priv->can.can_stats.bus_error++;
stats->rx_errors++;
break;
case PCH_LEC_ALL: /* Written by CPU. No error status */
break;
}
cf->data[6] = errc & PCH_TEC;
cf->data[7] = (errc & PCH_REC) >> 8;
priv->can.state = state;
netif_receive_skb(skb);
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
}
static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = (struct net_device *)dev_id;
struct pch_can_priv *priv = netdev_priv(ndev);
if (!pch_can_int_pending(priv))
return IRQ_NONE;
pch_can_set_int_enables(priv, PCH_CAN_NONE);
napi_schedule(&priv->napi);
return IRQ_HANDLED;
}
static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
{
if (obj_id < PCH_FIFO_THRESH) {
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
/* Clearing the Dir bit. */
pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
/* Clearing NewDat & IntPnd */
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_INTPND);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
} else if (obj_id > PCH_FIFO_THRESH) {
pch_can_int_clr(priv, obj_id);
} else if (obj_id == PCH_FIFO_THRESH) {
int cnt;
for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
pch_can_int_clr(priv, cnt + 1);
}
}
static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
{
struct pch_can_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &(priv->ndev->stats);
struct sk_buff *skb;
struct can_frame *cf;
netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_MSGLOST);
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
&priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
skb = alloc_can_err_skb(ndev, &cf);
if (!skb)
return;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
stats->rx_over_errors++;
stats->rx_errors++;
netif_receive_skb(skb);
}
static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
{
u32 reg;
canid_t id;
int rcv_pkts = 0;
struct sk_buff *skb;
struct can_frame *cf;
struct pch_can_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &(priv->ndev->stats);
int i;
u32 id2;
u16 data_reg;
do {
/* Reading the message object from the Message RAM */
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
/* Reading the MCONT register. */
reg = ioread32(&priv->regs->ifregs[0].mcont);
if (reg & PCH_IF_MCONT_EOB)
break;
/* If MsgLost bit set. */
if (reg & PCH_IF_MCONT_MSGLOST) {
pch_can_rx_msg_lost(ndev, obj_num);
rcv_pkts++;
quota--;
obj_num++;
continue;
} else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
obj_num++;
continue;
}
skb = alloc_can_skb(priv->ndev, &cf);
if (!skb) {
netdev_err(ndev, "alloc_can_skb Failed\n");
return rcv_pkts;
}
/* Get Received data */
id2 = ioread32(&priv->regs->ifregs[0].id2);
if (id2 & PCH_ID2_XTD) {
id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
id |= (((id2) & 0x1fff) << 16);
cf->can_id = id | CAN_EFF_FLAG;
} else {
id = (id2 >> 2) & CAN_SFF_MASK;
cf->can_id = id;
}
if (id2 & PCH_ID2_DIR)
cf->can_id |= CAN_RTR_FLAG;
cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
ifregs[0].mcont)) & 0xF);
for (i = 0; i < cf->can_dlc; i += 2) {
data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
cf->data[i] = data_reg;
cf->data[i + 1] = data_reg >> 8;
}
netif_receive_skb(skb);
rcv_pkts++;
stats->rx_packets++;
quota--;
stats->rx_bytes += cf->can_dlc;
pch_fifo_thresh(priv, obj_num);
obj_num++;
} while (quota > 0);
return rcv_pkts;
}
static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
{
struct pch_can_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &(priv->ndev->stats);
u32 dlc;
can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
&priv->regs->ifregs[1].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
PCH_IF_MCONT_DLC);
stats->tx_bytes += dlc;
stats->tx_packets++;
if (int_stat == PCH_TX_OBJ_END)
netif_wake_queue(ndev);
}
static int pch_can_poll(struct napi_struct *napi, int quota)
{
struct net_device *ndev = napi->dev;
struct pch_can_priv *priv = netdev_priv(ndev);
u32 int_stat;
u32 reg_stat;
int quota_save = quota;
int_stat = pch_can_int_pending(priv);
if (!int_stat)
goto end;
if (int_stat == PCH_STATUS_INT) {
reg_stat = ioread32(&priv->regs->stat);
if ((reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) &&
((reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL)) {
pch_can_error(ndev, reg_stat);
quota--;
}
if (reg_stat & (PCH_TX_OK | PCH_RX_OK))
pch_can_bit_clear(&priv->regs->stat,
reg_stat & (PCH_TX_OK | PCH_RX_OK));
int_stat = pch_can_int_pending(priv);
}
if (quota == 0)
goto end;
if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
quota -= pch_can_rx_normal(ndev, int_stat, quota);
} else if ((int_stat >= PCH_TX_OBJ_START) &&
(int_stat <= PCH_TX_OBJ_END)) {
/* Handle transmission interrupt */
pch_can_tx_complete(ndev, int_stat);
}
end:
napi_complete(napi);
pch_can_set_int_enables(priv, PCH_CAN_ALL);
return quota_save - quota;
}
static int pch_set_bittiming(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
const struct can_bittiming *bt = &priv->can.bittiming;
u32 canbit;
u32 bepe;
/* Setting the CCE bit for accessing the Can Timing register. */
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
canbit = (bt->brp - 1) & PCH_MSK_BITT_BRP;
canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
bepe = ((bt->brp - 1) & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
iowrite32(canbit, &priv->regs->bitt);
iowrite32(bepe, &priv->regs->brpe);
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
return 0;
}
static void pch_can_start(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
if (priv->can.state != CAN_STATE_STOPPED)
pch_can_reset(priv);
pch_set_bittiming(ndev);
pch_can_set_optmode(priv);
pch_can_set_tx_all(priv, 1);
pch_can_set_rx_all(priv, 1);
/* Setting the CAN to run mode. */
pch_can_set_run_mode(priv, PCH_CAN_RUN);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return;
}
static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int ret = 0;
switch (mode) {
case CAN_MODE_START:
pch_can_start(ndev);
netif_wake_queue(ndev);
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int pch_can_open(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
int retval;
/* Regstering the interrupt. */
retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
ndev->name, ndev);
if (retval) {
netdev_err(ndev, "request_irq failed.\n");
goto req_irq_err;
}
/* Open common can device */
retval = open_candev(ndev);
if (retval) {
netdev_err(ndev, "open_candev() failed %d\n", retval);
goto err_open_candev;
}
pch_can_init(priv);
pch_can_start(ndev);
napi_enable(&priv->napi);
netif_start_queue(ndev);
return 0;
err_open_candev:
free_irq(priv->dev->irq, ndev);
req_irq_err:
pch_can_release(priv);
return retval;
}
static int pch_close(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
napi_disable(&priv->napi);
pch_can_release(priv);
free_irq(priv->dev->irq, ndev);
close_candev(ndev);
priv->can.state = CAN_STATE_STOPPED;
return 0;
}
static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
struct can_frame *cf = (struct can_frame *)skb->data;
int tx_obj_no;
int i;
u32 id2;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
tx_obj_no = priv->tx_obj;
if (priv->tx_obj == PCH_TX_OBJ_END) {
if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
netif_stop_queue(ndev);
priv->tx_obj = PCH_TX_OBJ_START;
} else {
priv->tx_obj++;
}
/* Setting the CMASK register. */
pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
/* If ID extended is set. */
if (cf->can_id & CAN_EFF_FLAG) {
iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1);
id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD;
} else {
iowrite32(0, &priv->regs->ifregs[1].id1);
id2 = (cf->can_id & CAN_SFF_MASK) << 2;
}
id2 |= PCH_ID_MSGVAL;
/* If remote frame has to be transmitted.. */
if (!(cf->can_id & CAN_RTR_FLAG))
id2 |= PCH_ID2_DIR;
iowrite32(id2, &priv->regs->ifregs[1].id2);
/* Copy data to register */
for (i = 0; i < cf->can_dlc; i += 2) {
iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
&priv->regs->ifregs[1].data[i / 2]);
}
can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1);
/* Set the size of the data. Update if2_mcont */
iowrite32(cf->can_dlc | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT |
PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont);
pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
return NETDEV_TX_OK;
}
static const struct net_device_ops pch_can_netdev_ops = {
.ndo_open = pch_can_open,
.ndo_stop = pch_close,
.ndo_start_xmit = pch_xmit,
.ndo_change_mtu = can_change_mtu,
};
static void pch_can_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(ndev);
unregister_candev(priv->ndev);
if (priv->use_msi)
pci_disable_msi(priv->dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pch_can_reset(priv);
pci_iounmap(pdev, priv->regs);
free_candev(priv->ndev);
}
#ifdef CONFIG_PM
static void pch_can_set_int_custom(struct pch_can_priv *priv)
{
/* Clearing the IE, SIE and EIE bits of Can control register. */
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
/* Appropriately setting them. */
pch_can_bit_set(&priv->regs->cont,
((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
}
/* This function retrieves interrupt enabled for the CAN device. */
static u32 pch_can_get_int_enables(struct pch_can_priv *priv)
{
/* Obtaining the status of IE, SIE and EIE interrupt bits. */
return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1;
}
static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
enum pch_ifreg dir)
{
u32 ie, enable;
if (dir)
ie = PCH_IF_MCONT_RXIE;
else
ie = PCH_IF_MCONT_TXIE;
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
((ioread32(&priv->regs->ifregs[dir].mcont)) & ie))
enable = 1;
else
enable = 0;
return enable;
}
static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
u32 buffer_num, int set)
{
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
&priv->regs->ifregs[0].cmask);
if (set)
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_EOB);
else
pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
}
static u32 pch_can_get_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num)
{
u32 link;
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
link = 0;
else
link = 1;
return link;
}
static int pch_can_get_buffer_status(struct pch_can_priv *priv)
{
return (ioread32(&priv->regs->treq1) & 0xffff) |
(ioread32(&priv->regs->treq2) << 16);
}
static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
{
int i;
int retval;
u32 buf_stat; /* Variable for reading the transmit buffer status. */
int counter = PCH_COUNTER_LIMIT;
struct net_device *dev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(dev);
/* Stop the CAN controller */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Indicate that we are aboutto/in suspend */
priv->can.state = CAN_STATE_STOPPED;
/* Waiting for all transmission to complete. */
while (counter) {
buf_stat = pch_can_get_buffer_status(priv);
if (!buf_stat)
break;
counter--;
udelay(1);
}
if (!counter)
dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
/* Save interrupt configuration and then disable them */
priv->int_enables = pch_can_get_int_enables(priv);
pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
/* Save Tx buffer enable state */
for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
priv->tx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
PCH_TX_IFREG);
/* Disable all Transmit buffers */
pch_can_set_tx_all(priv, 0);
/* Save Rx buffer enable state */
for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
priv->rx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
PCH_RX_IFREG);
priv->rx_link[i - 1] = pch_can_get_rx_buffer_link(priv, i);
}
/* Disable all Receive buffers */
pch_can_set_rx_all(priv, 0);
retval = pci_save_state(pdev);
if (retval) {
dev_err(&pdev->dev, "pci_save_state failed.\n");
} else {
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
}
return retval;
}
static int pch_can_resume(struct pci_dev *pdev)
{
int i;
int retval;
struct net_device *dev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(dev);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
retval = pci_enable_device(pdev);
if (retval) {
dev_err(&pdev->dev, "pci_enable_device failed.\n");
return retval;
}
pci_enable_wake(pdev, PCI_D3hot, 0);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
/* Disabling all interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
/* Setting the CAN device in Stop Mode. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Configuring the transmit and receive buffers. */
pch_can_config_rx_tx_buffers(priv);
/* Restore the CAN state */
pch_set_bittiming(dev);
/* Listen/Active */
pch_can_set_optmode(priv);
/* Enabling the transmit buffer. */
for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
pch_can_set_rxtx(priv, i, priv->tx_enable[i - 1], PCH_TX_IFREG);
/* Configuring the receive buffer and enabling them. */
for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
/* Restore buffer link */
pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i - 1]);
/* Restore buffer enables */
pch_can_set_rxtx(priv, i, priv->rx_enable[i - 1], PCH_RX_IFREG);
}
/* Enable CAN Interrupts */
pch_can_set_int_custom(priv);
/* Restore Run Mode */
pch_can_set_run_mode(priv, PCH_CAN_RUN);
return retval;
}
#else
#define pch_can_suspend NULL
#define pch_can_resume NULL
#endif
static int pch_can_get_berr_counter(const struct net_device *dev,
struct can_berr_counter *bec)
{
struct pch_can_priv *priv = netdev_priv(dev);
u32 errc = ioread32(&priv->regs->errc);
bec->txerr = errc & PCH_TEC;
bec->rxerr = (errc & PCH_REC) >> 8;
return 0;
}
static int pch_can_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct net_device *ndev;
struct pch_can_priv *priv;
int rc;
void __iomem *addr;
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
goto probe_exit_endev;
}
rc = pci_request_regions(pdev, KBUILD_MODNAME);
if (rc) {
dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
goto probe_exit_pcireq;
}
addr = pci_iomap(pdev, 1, 0);
if (!addr) {
rc = -EIO;
dev_err(&pdev->dev, "Failed pci_iomap\n");
goto probe_exit_ipmap;
}
ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
if (!ndev) {
rc = -ENOMEM;
dev_err(&pdev->dev, "Failed alloc_candev\n");
goto probe_exit_alloc_candev;
}
priv = netdev_priv(ndev);
priv->ndev = ndev;
priv->regs = addr;
priv->dev = pdev;
priv->can.bittiming_const = &pch_can_bittiming_const;
priv->can.do_set_mode = pch_can_do_set_mode;
priv->can.do_get_berr_counter = pch_can_get_berr_counter;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
CAN_CTRLMODE_LOOPBACK;
priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
ndev->irq = pdev->irq;
ndev->flags |= IFF_ECHO;
pci_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->netdev_ops = &pch_can_netdev_ops;
priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
rc = pci_enable_msi(priv->dev);
if (rc) {
netdev_err(ndev, "PCH CAN opened without MSI\n");
priv->use_msi = 0;
} else {
netdev_err(ndev, "PCH CAN opened with MSI\n");
pci_set_master(pdev);
priv->use_msi = 1;
}
rc = register_candev(ndev);
if (rc) {
dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
goto probe_exit_reg_candev;
}
return 0;
probe_exit_reg_candev:
if (priv->use_msi)
pci_disable_msi(priv->dev);
free_candev(ndev);
probe_exit_alloc_candev:
pci_iounmap(pdev, addr);
probe_exit_ipmap:
pci_release_regions(pdev);
probe_exit_pcireq:
pci_disable_device(pdev);
probe_exit_endev:
return rc;
}
static struct pci_driver pch_can_pci_driver = {
.name = "pch_can",
.id_table = pch_pci_tbl,
.probe = pch_can_probe,
.remove = pch_can_remove,
.suspend = pch_can_suspend,
.resume = pch_can_resume,
};
module_pci_driver(pch_can_pci_driver);
MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.94");