tegrakernel/kernel/kernel-4.9/drivers/net/ethernet/cavium/liquidio/octeon_console.c

827 lines
23 KiB
C

/**********************************************************************
* Author: Cavium, Inc.
*
* Contact: support@cavium.com
* Please include "LiquidIO" in the subject.
*
* Copyright (c) 2003-2015 Cavium, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, Version 2, as
* published by the Free Software Foundation.
*
* This file is distributed in the hope that it will be useful, but
* AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
* NONINFRINGEMENT. See the GNU General Public License for more
* details.
*
* This file may also be available under a different license from Cavium.
* Contact Cavium, Inc. for more information
**********************************************************************/
/**
* @file octeon_console.c
*/
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/crc32.h>
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "liquidio_image.h"
#include "octeon_mem_ops.h"
static void octeon_remote_lock(void);
static void octeon_remote_unlock(void);
static u64 cvmx_bootmem_phy_named_block_find(struct octeon_device *oct,
const char *name,
u32 flags);
static int octeon_console_read(struct octeon_device *oct, u32 console_num,
char *buffer, u32 buf_size);
static u32 console_bitmask;
module_param(console_bitmask, int, 0644);
MODULE_PARM_DESC(console_bitmask,
"Bitmask indicating which consoles have debug output redirected to syslog.");
#define MIN(a, b) min((a), (b))
#define CAST_ULL(v) ((u64)(v))
#define BOOTLOADER_PCI_READ_BUFFER_DATA_ADDR 0x0006c008
#define BOOTLOADER_PCI_READ_BUFFER_LEN_ADDR 0x0006c004
#define BOOTLOADER_PCI_READ_BUFFER_OWNER_ADDR 0x0006c000
#define BOOTLOADER_PCI_READ_DESC_ADDR 0x0006c100
#define BOOTLOADER_PCI_WRITE_BUFFER_STR_LEN 248
#define OCTEON_PCI_IO_BUF_OWNER_OCTEON 0x00000001
#define OCTEON_PCI_IO_BUF_OWNER_HOST 0x00000002
/** Can change without breaking ABI */
#define CVMX_BOOTMEM_NUM_NAMED_BLOCKS 64
/** minimum alignment of bootmem alloced blocks */
#define CVMX_BOOTMEM_ALIGNMENT_SIZE (16ull)
/** CVMX bootmem descriptor major version */
#define CVMX_BOOTMEM_DESC_MAJ_VER 3
/* CVMX bootmem descriptor minor version */
#define CVMX_BOOTMEM_DESC_MIN_VER 0
/* Current versions */
#define OCTEON_PCI_CONSOLE_MAJOR_VERSION 1
#define OCTEON_PCI_CONSOLE_MINOR_VERSION 0
#define OCTEON_PCI_CONSOLE_BLOCK_NAME "__pci_console"
#define OCTEON_CONSOLE_POLL_INTERVAL_MS 100 /* 10 times per second */
/* First three members of cvmx_bootmem_desc are left in original
** positions for backwards compatibility.
** Assumes big endian target
*/
struct cvmx_bootmem_desc {
/** spinlock to control access to list */
u32 lock;
/** flags for indicating various conditions */
u32 flags;
u64 head_addr;
/** incremented changed when incompatible changes made */
u32 major_version;
/** incremented changed when compatible changes made,
* reset to zero when major incremented
*/
u32 minor_version;
u64 app_data_addr;
u64 app_data_size;
/** number of elements in named blocks array */
u32 nb_num_blocks;
/** length of name array in bootmem blocks */
u32 named_block_name_len;
/** address of named memory block descriptors */
u64 named_block_array_addr;
};
/* Structure that defines a single console.
*
* Note: when read_index == write_index, the buffer is empty.
* The actual usable size of each console is console_buf_size -1;
*/
struct octeon_pci_console {
u64 input_base_addr;
u32 input_read_index;
u32 input_write_index;
u64 output_base_addr;
u32 output_read_index;
u32 output_write_index;
u32 lock;
u32 buf_size;
};
/* This is the main container structure that contains all the information
* about all PCI consoles. The address of this structure is passed to various
* routines that operation on PCI consoles.
*/
struct octeon_pci_console_desc {
u32 major_version;
u32 minor_version;
u32 lock;
u32 flags;
u32 num_consoles;
u32 pad;
/* must be 64 bit aligned here... */
/* Array of addresses of octeon_pci_console structures */
u64 console_addr_array[0];
/* Implicit storage for console_addr_array */
};
/**
* This macro returns the size of a member of a structure.
* Logically it is the same as "sizeof(s::field)" in C++, but
* C lacks the "::" operator.
*/
#define SIZEOF_FIELD(s, field) sizeof(((s *)NULL)->field)
/**
* This macro returns a member of the cvmx_bootmem_desc
* structure. These members can't be directly addressed as
* they might be in memory not directly reachable. In the case
* where bootmem is compiled with LINUX_HOST, the structure
* itself might be located on a remote Octeon. The argument
* "field" is the member name of the cvmx_bootmem_desc to read.
* Regardless of the type of the field, the return type is always
* a u64.
*/
#define CVMX_BOOTMEM_DESC_GET_FIELD(oct, field) \
__cvmx_bootmem_desc_get(oct, oct->bootmem_desc_addr, \
offsetof(struct cvmx_bootmem_desc, field), \
SIZEOF_FIELD(struct cvmx_bootmem_desc, field))
#define __cvmx_bootmem_lock(flags) (flags = flags)
#define __cvmx_bootmem_unlock(flags) (flags = flags)
/**
* This macro returns a member of the
* cvmx_bootmem_named_block_desc structure. These members can't
* be directly addressed as they might be in memory not directly
* reachable. In the case where bootmem is compiled with
* LINUX_HOST, the structure itself might be located on a remote
* Octeon. The argument "field" is the member name of the
* cvmx_bootmem_named_block_desc to read. Regardless of the type
* of the field, the return type is always a u64. The "addr"
* parameter is the physical address of the structure.
*/
#define CVMX_BOOTMEM_NAMED_GET_FIELD(oct, addr, field) \
__cvmx_bootmem_desc_get(oct, addr, \
offsetof(struct cvmx_bootmem_named_block_desc, field), \
SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field))
/**
* \brief determines if a given console has debug enabled.
* @param console console to check
* @returns 1 = enabled. 0 otherwise
*/
static int octeon_console_debug_enabled(u32 console)
{
return (console_bitmask >> (console)) & 0x1;
}
/**
* This function is the implementation of the get macros defined
* for individual structure members. The argument are generated
* by the macros inorder to read only the needed memory.
*
* @param oct Pointer to current octeon device
* @param base 64bit physical address of the complete structure
* @param offset Offset from the beginning of the structure to the member being
* accessed.
* @param size Size of the structure member.
*
* @return Value of the structure member promoted into a u64.
*/
static inline u64 __cvmx_bootmem_desc_get(struct octeon_device *oct,
u64 base,
u32 offset,
u32 size)
{
base = (1ull << 63) | (base + offset);
switch (size) {
case 4:
return octeon_read_device_mem32(oct, base);
case 8:
return octeon_read_device_mem64(oct, base);
default:
return 0;
}
}
/**
* This function retrieves the string name of a named block. It is
* more complicated than a simple memcpy() since the named block
* descriptor may not be directly accessible.
*
* @param addr Physical address of the named block descriptor
* @param str String to receive the named block string name
* @param len Length of the string buffer, which must match the length
* stored in the bootmem descriptor.
*/
static void CVMX_BOOTMEM_NAMED_GET_NAME(struct octeon_device *oct,
u64 addr,
char *str,
u32 len)
{
addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
octeon_pci_read_core_mem(oct, addr, (u8 *)str, len);
str[len] = 0;
}
/* See header file for descriptions of functions */
/**
* Check the version information on the bootmem descriptor
*
* @param exact_match
* Exact major version to check against. A zero means
* check that the version supports named blocks.
*
* @return Zero if the version is correct. Negative if the version is
* incorrect. Failures also cause a message to be displayed.
*/
static int __cvmx_bootmem_check_version(struct octeon_device *oct,
u32 exact_match)
{
u32 major_version;
u32 minor_version;
if (!oct->bootmem_desc_addr)
oct->bootmem_desc_addr =
octeon_read_device_mem64(oct,
BOOTLOADER_PCI_READ_DESC_ADDR);
major_version =
(u32)CVMX_BOOTMEM_DESC_GET_FIELD(oct, major_version);
minor_version =
(u32)CVMX_BOOTMEM_DESC_GET_FIELD(oct, minor_version);
dev_dbg(&oct->pci_dev->dev, "%s: major_version=%d\n", __func__,
major_version);
if ((major_version > 3) ||
(exact_match && major_version != exact_match)) {
dev_err(&oct->pci_dev->dev, "bootmem ver mismatch %d.%d addr:0x%llx\n",
major_version, minor_version,
CAST_ULL(oct->bootmem_desc_addr));
return -1;
} else {
return 0;
}
}
static const struct cvmx_bootmem_named_block_desc
*__cvmx_bootmem_find_named_block_flags(struct octeon_device *oct,
const char *name, u32 flags)
{
struct cvmx_bootmem_named_block_desc *desc =
&oct->bootmem_named_block_desc;
u64 named_addr = cvmx_bootmem_phy_named_block_find(oct, name, flags);
if (named_addr) {
desc->base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(oct, named_addr,
base_addr);
desc->size =
CVMX_BOOTMEM_NAMED_GET_FIELD(oct, named_addr, size);
strncpy(desc->name, name, sizeof(desc->name));
desc->name[sizeof(desc->name) - 1] = 0;
return &oct->bootmem_named_block_desc;
} else {
return NULL;
}
}
static u64 cvmx_bootmem_phy_named_block_find(struct octeon_device *oct,
const char *name,
u32 flags)
{
u64 result = 0;
__cvmx_bootmem_lock(flags);
if (!__cvmx_bootmem_check_version(oct, 3)) {
u32 i;
u64 named_block_array_addr =
CVMX_BOOTMEM_DESC_GET_FIELD(oct,
named_block_array_addr);
u32 num_blocks = (u32)
CVMX_BOOTMEM_DESC_GET_FIELD(oct, nb_num_blocks);
u32 name_length = (u32)
CVMX_BOOTMEM_DESC_GET_FIELD(oct, named_block_name_len);
u64 named_addr = named_block_array_addr;
for (i = 0; i < num_blocks; i++) {
u64 named_size =
CVMX_BOOTMEM_NAMED_GET_FIELD(oct, named_addr,
size);
if (name && named_size) {
char *name_tmp =
kmalloc(name_length + 1, GFP_KERNEL);
if (!name_tmp)
break;
CVMX_BOOTMEM_NAMED_GET_NAME(oct, named_addr,
name_tmp,
name_length);
if (!strncmp(name, name_tmp, name_length)) {
result = named_addr;
kfree(name_tmp);
break;
}
kfree(name_tmp);
} else if (!name && !named_size) {
result = named_addr;
break;
}
named_addr +=
sizeof(struct cvmx_bootmem_named_block_desc);
}
}
__cvmx_bootmem_unlock(flags);
return result;
}
/**
* Find a named block on the remote Octeon
*
* @param name Name of block to find
* @param base_addr Address the block is at (OUTPUT)
* @param size The size of the block (OUTPUT)
*
* @return Zero on success, One on failure.
*/
static int octeon_named_block_find(struct octeon_device *oct, const char *name,
u64 *base_addr, u64 *size)
{
const struct cvmx_bootmem_named_block_desc *named_block;
octeon_remote_lock();
named_block = __cvmx_bootmem_find_named_block_flags(oct, name, 0);
octeon_remote_unlock();
if (named_block) {
*base_addr = named_block->base_addr;
*size = named_block->size;
return 0;
}
return 1;
}
static void octeon_remote_lock(void)
{
/* fill this in if any sharing is needed */
}
static void octeon_remote_unlock(void)
{
/* fill this in if any sharing is needed */
}
int octeon_console_send_cmd(struct octeon_device *oct, char *cmd_str,
u32 wait_hundredths)
{
u32 len = (u32)strlen(cmd_str);
dev_dbg(&oct->pci_dev->dev, "sending \"%s\" to bootloader\n", cmd_str);
if (len > BOOTLOADER_PCI_WRITE_BUFFER_STR_LEN - 1) {
dev_err(&oct->pci_dev->dev, "Command string too long, max length is: %d\n",
BOOTLOADER_PCI_WRITE_BUFFER_STR_LEN - 1);
return -1;
}
if (octeon_wait_for_bootloader(oct, wait_hundredths) != 0) {
dev_err(&oct->pci_dev->dev, "Bootloader not ready for command.\n");
return -1;
}
/* Write command to bootloader */
octeon_remote_lock();
octeon_pci_write_core_mem(oct, BOOTLOADER_PCI_READ_BUFFER_DATA_ADDR,
(u8 *)cmd_str, len);
octeon_write_device_mem32(oct, BOOTLOADER_PCI_READ_BUFFER_LEN_ADDR,
len);
octeon_write_device_mem32(oct, BOOTLOADER_PCI_READ_BUFFER_OWNER_ADDR,
OCTEON_PCI_IO_BUF_OWNER_OCTEON);
/* Bootloader should accept command very quickly
* if it really was ready
*/
if (octeon_wait_for_bootloader(oct, 200) != 0) {
octeon_remote_unlock();
dev_err(&oct->pci_dev->dev, "Bootloader did not accept command.\n");
return -1;
}
octeon_remote_unlock();
return 0;
}
int octeon_wait_for_bootloader(struct octeon_device *oct,
u32 wait_time_hundredths)
{
dev_dbg(&oct->pci_dev->dev, "waiting %d0 ms for bootloader\n",
wait_time_hundredths);
if (octeon_mem_access_ok(oct))
return -1;
while (wait_time_hundredths > 0 &&
octeon_read_device_mem32(oct,
BOOTLOADER_PCI_READ_BUFFER_OWNER_ADDR)
!= OCTEON_PCI_IO_BUF_OWNER_HOST) {
if (--wait_time_hundredths <= 0)
return -1;
schedule_timeout_uninterruptible(HZ / 100);
}
return 0;
}
static void octeon_console_handle_result(struct octeon_device *oct,
size_t console_num)
{
struct octeon_console *console;
console = &oct->console[console_num];
console->waiting = 0;
}
static char console_buffer[OCTEON_CONSOLE_MAX_READ_BYTES];
static void output_console_line(struct octeon_device *oct,
struct octeon_console *console,
size_t console_num,
char *console_buffer,
s32 bytes_read)
{
char *line;
s32 i;
line = console_buffer;
for (i = 0; i < bytes_read; i++) {
/* Output a line at a time, prefixed */
if (console_buffer[i] == '\n') {
console_buffer[i] = '\0';
if (console->leftover[0]) {
dev_info(&oct->pci_dev->dev, "%lu: %s%s\n",
console_num, console->leftover,
line);
console->leftover[0] = '\0';
} else {
dev_info(&oct->pci_dev->dev, "%lu: %s\n",
console_num, line);
}
line = &console_buffer[i + 1];
}
}
/* Save off any leftovers */
if (line != &console_buffer[bytes_read]) {
console_buffer[bytes_read] = '\0';
strcpy(console->leftover, line);
}
}
static void check_console(struct work_struct *work)
{
s32 bytes_read, tries, total_read;
struct octeon_console *console;
struct cavium_wk *wk = (struct cavium_wk *)work;
struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
u32 console_num = (u32)wk->ctxul;
u32 delay;
console = &oct->console[console_num];
tries = 0;
total_read = 0;
do {
/* Take console output regardless of whether it will
* be logged
*/
bytes_read =
octeon_console_read(oct, console_num, console_buffer,
sizeof(console_buffer) - 1);
if (bytes_read > 0) {
total_read += bytes_read;
if (console->waiting)
octeon_console_handle_result(oct, console_num);
if (octeon_console_debug_enabled(console_num)) {
output_console_line(oct, console, console_num,
console_buffer, bytes_read);
}
} else if (bytes_read < 0) {
dev_err(&oct->pci_dev->dev, "Error reading console %u, ret=%d\n",
console_num, bytes_read);
}
tries++;
} while ((bytes_read > 0) && (tries < 16));
/* If nothing is read after polling the console,
* output any leftovers if any
*/
if (octeon_console_debug_enabled(console_num) &&
(total_read == 0) && (console->leftover[0])) {
dev_info(&oct->pci_dev->dev, "%u: %s\n",
console_num, console->leftover);
console->leftover[0] = '\0';
}
delay = OCTEON_CONSOLE_POLL_INTERVAL_MS;
schedule_delayed_work(&wk->work, msecs_to_jiffies(delay));
}
int octeon_init_consoles(struct octeon_device *oct)
{
int ret = 0;
u64 addr, size;
ret = octeon_mem_access_ok(oct);
if (ret) {
dev_err(&oct->pci_dev->dev, "Memory access not okay'\n");
return ret;
}
ret = octeon_named_block_find(oct, OCTEON_PCI_CONSOLE_BLOCK_NAME, &addr,
&size);
if (ret) {
dev_err(&oct->pci_dev->dev, "Could not find console '%s'\n",
OCTEON_PCI_CONSOLE_BLOCK_NAME);
return ret;
}
/* num_consoles > 0, is an indication that the consoles
* are accessible
*/
oct->num_consoles = octeon_read_device_mem32(oct,
addr + offsetof(struct octeon_pci_console_desc,
num_consoles));
oct->console_desc_addr = addr;
dev_dbg(&oct->pci_dev->dev, "Initialized consoles. %d available\n",
oct->num_consoles);
return ret;
}
int octeon_add_console(struct octeon_device *oct, u32 console_num)
{
int ret = 0;
u32 delay;
u64 coreaddr;
struct delayed_work *work;
struct octeon_console *console;
if (console_num >= oct->num_consoles) {
dev_err(&oct->pci_dev->dev,
"trying to read from console number %d when only 0 to %d exist\n",
console_num, oct->num_consoles);
} else {
console = &oct->console[console_num];
console->waiting = 0;
coreaddr = oct->console_desc_addr + console_num * 8 +
offsetof(struct octeon_pci_console_desc,
console_addr_array);
console->addr = octeon_read_device_mem64(oct, coreaddr);
coreaddr = console->addr + offsetof(struct octeon_pci_console,
buf_size);
console->buffer_size = octeon_read_device_mem32(oct, coreaddr);
coreaddr = console->addr + offsetof(struct octeon_pci_console,
input_base_addr);
console->input_base_addr =
octeon_read_device_mem64(oct, coreaddr);
coreaddr = console->addr + offsetof(struct octeon_pci_console,
output_base_addr);
console->output_base_addr =
octeon_read_device_mem64(oct, coreaddr);
console->leftover[0] = '\0';
work = &oct->console_poll_work[console_num].work;
INIT_DELAYED_WORK(work, check_console);
oct->console_poll_work[console_num].ctxptr = (void *)oct;
oct->console_poll_work[console_num].ctxul = console_num;
delay = OCTEON_CONSOLE_POLL_INTERVAL_MS;
schedule_delayed_work(work, msecs_to_jiffies(delay));
if (octeon_console_debug_enabled(console_num)) {
ret = octeon_console_send_cmd(oct,
"setenv pci_console_active 1",
2000);
}
console->active = 1;
}
return ret;
}
/**
* Removes all consoles
*
* @param oct octeon device
*/
void octeon_remove_consoles(struct octeon_device *oct)
{
u32 i;
struct octeon_console *console;
for (i = 0; i < oct->num_consoles; i++) {
console = &oct->console[i];
if (!console->active)
continue;
cancel_delayed_work_sync(&oct->console_poll_work[i].
work);
console->addr = 0;
console->buffer_size = 0;
console->input_base_addr = 0;
console->output_base_addr = 0;
}
oct->num_consoles = 0;
}
static inline int octeon_console_free_bytes(u32 buffer_size,
u32 wr_idx,
u32 rd_idx)
{
if (rd_idx >= buffer_size || wr_idx >= buffer_size)
return -1;
return ((buffer_size - 1) - (wr_idx - rd_idx)) % buffer_size;
}
static inline int octeon_console_avail_bytes(u32 buffer_size,
u32 wr_idx,
u32 rd_idx)
{
if (rd_idx >= buffer_size || wr_idx >= buffer_size)
return -1;
return buffer_size - 1 -
octeon_console_free_bytes(buffer_size, wr_idx, rd_idx);
}
static int octeon_console_read(struct octeon_device *oct, u32 console_num,
char *buffer, u32 buf_size)
{
int bytes_to_read;
u32 rd_idx, wr_idx;
struct octeon_console *console;
if (console_num >= oct->num_consoles) {
dev_err(&oct->pci_dev->dev, "Attempted to read from disabled console %d\n",
console_num);
return 0;
}
console = &oct->console[console_num];
/* Check to see if any data is available.
* Maybe optimize this with 64-bit read.
*/
rd_idx = octeon_read_device_mem32(oct, console->addr +
offsetof(struct octeon_pci_console, output_read_index));
wr_idx = octeon_read_device_mem32(oct, console->addr +
offsetof(struct octeon_pci_console, output_write_index));
bytes_to_read = octeon_console_avail_bytes(console->buffer_size,
wr_idx, rd_idx);
if (bytes_to_read <= 0)
return bytes_to_read;
bytes_to_read = MIN(bytes_to_read, (s32)buf_size);
/* Check to see if what we want to read is not contiguous, and limit
* ourselves to the contiguous block
*/
if (rd_idx + bytes_to_read >= console->buffer_size)
bytes_to_read = console->buffer_size - rd_idx;
octeon_pci_read_core_mem(oct, console->output_base_addr + rd_idx,
(u8 *)buffer, bytes_to_read);
octeon_write_device_mem32(oct, console->addr +
offsetof(struct octeon_pci_console,
output_read_index),
(rd_idx + bytes_to_read) %
console->buffer_size);
return bytes_to_read;
}
#define FBUF_SIZE (4 * 1024 * 1024)
u8 fbuf[FBUF_SIZE];
int octeon_download_firmware(struct octeon_device *oct, const u8 *data,
size_t size)
{
int ret = 0;
u8 *p = fbuf;
u32 crc32_result;
u64 load_addr;
u32 image_len;
struct octeon_firmware_file_header *h;
u32 i, rem;
if (size < sizeof(struct octeon_firmware_file_header)) {
dev_err(&oct->pci_dev->dev, "Firmware file too small (%d < %d).\n",
(u32)size,
(u32)sizeof(struct octeon_firmware_file_header));
return -EINVAL;
}
h = (struct octeon_firmware_file_header *)data;
if (be32_to_cpu(h->magic) != LIO_NIC_MAGIC) {
dev_err(&oct->pci_dev->dev, "Unrecognized firmware file.\n");
return -EINVAL;
}
crc32_result = crc32((unsigned int)~0, data,
sizeof(struct octeon_firmware_file_header) -
sizeof(u32)) ^ ~0U;
if (crc32_result != be32_to_cpu(h->crc32)) {
dev_err(&oct->pci_dev->dev, "Firmware CRC mismatch (0x%08x != 0x%08x).\n",
crc32_result, be32_to_cpu(h->crc32));
return -EINVAL;
}
if (strncmp(LIQUIDIO_PACKAGE, h->version, strlen(LIQUIDIO_PACKAGE))) {
dev_err(&oct->pci_dev->dev, "Unmatched firmware package type. Expected %s, got %s.\n",
LIQUIDIO_PACKAGE, h->version);
return -EINVAL;
}
if (memcmp(LIQUIDIO_BASE_VERSION, h->version + strlen(LIQUIDIO_PACKAGE),
strlen(LIQUIDIO_BASE_VERSION))) {
dev_err(&oct->pci_dev->dev, "Unmatched firmware version. Expected %s.x, got %s.\n",
LIQUIDIO_BASE_VERSION,
h->version + strlen(LIQUIDIO_PACKAGE));
return -EINVAL;
}
if (be32_to_cpu(h->num_images) > LIO_MAX_IMAGES) {
dev_err(&oct->pci_dev->dev, "Too many images in firmware file (%d).\n",
be32_to_cpu(h->num_images));
return -EINVAL;
}
dev_info(&oct->pci_dev->dev, "Firmware version: %s\n", h->version);
snprintf(oct->fw_info.liquidio_firmware_version, 32, "LIQUIDIO: %s",
h->version);
data += sizeof(struct octeon_firmware_file_header);
dev_info(&oct->pci_dev->dev, "%s: Loading %d images\n", __func__,
be32_to_cpu(h->num_images));
/* load all images */
for (i = 0; i < be32_to_cpu(h->num_images); i++) {
load_addr = be64_to_cpu(h->desc[i].addr);
image_len = be32_to_cpu(h->desc[i].len);
dev_info(&oct->pci_dev->dev, "Loading firmware %d at %llx\n",
image_len, load_addr);
/* Write in 4MB chunks*/
rem = image_len;
while (rem) {
if (rem < FBUF_SIZE)
size = rem;
else
size = FBUF_SIZE;
memcpy(p, data, size);
/* download the image */
octeon_pci_write_core_mem(oct, load_addr, p, (u32)size);
data += size;
rem -= (u32)size;
load_addr += size;
}
}
dev_info(&oct->pci_dev->dev, "Writing boot command: %s\n",
h->bootcmd);
/* Invoke the bootcmd */
ret = octeon_console_send_cmd(oct, h->bootcmd, 50);
return 0;
}