1680 lines
48 KiB
C
1680 lines
48 KiB
C
/* Intel(R) Gigabit Ethernet Linux driver
|
|
* Copyright(c) 2007-2014 Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* The full GNU General Public License is included in this distribution in
|
|
* the file called "COPYING".
|
|
*
|
|
* Contact Information:
|
|
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*/
|
|
|
|
#include <linux/if_ether.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
|
|
#include "e1000_mac.h"
|
|
|
|
#include "igb.h"
|
|
|
|
static s32 igb_set_default_fc(struct e1000_hw *hw);
|
|
static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
|
|
|
|
/**
|
|
* igb_get_bus_info_pcie - Get PCIe bus information
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines and stores the system bus information for a particular
|
|
* network interface. The following bus information is determined and stored:
|
|
* bus speed, bus width, type (PCIe), and PCIe function.
|
|
**/
|
|
s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_bus_info *bus = &hw->bus;
|
|
s32 ret_val;
|
|
u32 reg;
|
|
u16 pcie_link_status;
|
|
|
|
bus->type = e1000_bus_type_pci_express;
|
|
|
|
ret_val = igb_read_pcie_cap_reg(hw,
|
|
PCI_EXP_LNKSTA,
|
|
&pcie_link_status);
|
|
if (ret_val) {
|
|
bus->width = e1000_bus_width_unknown;
|
|
bus->speed = e1000_bus_speed_unknown;
|
|
} else {
|
|
switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
|
|
case PCI_EXP_LNKSTA_CLS_2_5GB:
|
|
bus->speed = e1000_bus_speed_2500;
|
|
break;
|
|
case PCI_EXP_LNKSTA_CLS_5_0GB:
|
|
bus->speed = e1000_bus_speed_5000;
|
|
break;
|
|
default:
|
|
bus->speed = e1000_bus_speed_unknown;
|
|
break;
|
|
}
|
|
|
|
bus->width = (enum e1000_bus_width)((pcie_link_status &
|
|
PCI_EXP_LNKSTA_NLW) >>
|
|
PCI_EXP_LNKSTA_NLW_SHIFT);
|
|
}
|
|
|
|
reg = rd32(E1000_STATUS);
|
|
bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_clear_vfta - Clear VLAN filter table
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the register array which contains the VLAN filter table by
|
|
* setting all the values to 0.
|
|
**/
|
|
void igb_clear_vfta(struct e1000_hw *hw)
|
|
{
|
|
u32 offset;
|
|
|
|
for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
|
|
hw->mac.ops.write_vfta(hw, offset, 0);
|
|
}
|
|
|
|
/**
|
|
* igb_write_vfta - Write value to VLAN filter table
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset in VLAN filter table
|
|
* @value: register value written to VLAN filter table
|
|
*
|
|
* Writes value at the given offset in the register array which stores
|
|
* the VLAN filter table.
|
|
**/
|
|
void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
|
|
{
|
|
struct igb_adapter *adapter = hw->back;
|
|
|
|
array_wr32(E1000_VFTA, offset, value);
|
|
wrfl();
|
|
|
|
adapter->shadow_vfta[offset] = value;
|
|
}
|
|
|
|
/**
|
|
* igb_init_rx_addrs - Initialize receive address's
|
|
* @hw: pointer to the HW structure
|
|
* @rar_count: receive address registers
|
|
*
|
|
* Setups the receive address registers by setting the base receive address
|
|
* register to the devices MAC address and clearing all the other receive
|
|
* address registers to 0.
|
|
**/
|
|
void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
|
|
{
|
|
u32 i;
|
|
u8 mac_addr[ETH_ALEN] = {0};
|
|
|
|
/* Setup the receive address */
|
|
hw_dbg("Programming MAC Address into RAR[0]\n");
|
|
|
|
hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
|
|
|
|
/* Zero out the other (rar_entry_count - 1) receive addresses */
|
|
hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
|
|
for (i = 1; i < rar_count; i++)
|
|
hw->mac.ops.rar_set(hw, mac_addr, i);
|
|
}
|
|
|
|
/**
|
|
* igb_find_vlvf_slot - find the VLAN id or the first empty slot
|
|
* @hw: pointer to hardware structure
|
|
* @vlan: VLAN id to write to VLAN filter
|
|
* @vlvf_bypass: skip VLVF if no match is found
|
|
*
|
|
* return the VLVF index where this VLAN id should be placed
|
|
*
|
|
**/
|
|
static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
|
|
{
|
|
s32 regindex, first_empty_slot;
|
|
u32 bits;
|
|
|
|
/* short cut the special case */
|
|
if (vlan == 0)
|
|
return 0;
|
|
|
|
/* if vlvf_bypass is set we don't want to use an empty slot, we
|
|
* will simply bypass the VLVF if there are no entries present in the
|
|
* VLVF that contain our VLAN
|
|
*/
|
|
first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
|
|
|
|
/* Search for the VLAN id in the VLVF entries. Save off the first empty
|
|
* slot found along the way.
|
|
*
|
|
* pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
|
|
*/
|
|
for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
|
|
bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
|
|
if (bits == vlan)
|
|
return regindex;
|
|
if (!first_empty_slot && !bits)
|
|
first_empty_slot = regindex;
|
|
}
|
|
|
|
return first_empty_slot ? : -E1000_ERR_NO_SPACE;
|
|
}
|
|
|
|
/**
|
|
* igb_vfta_set - enable or disable vlan in VLAN filter table
|
|
* @hw: pointer to the HW structure
|
|
* @vlan: VLAN id to add or remove
|
|
* @vind: VMDq output index that maps queue to VLAN id
|
|
* @vlan_on: if true add filter, if false remove
|
|
*
|
|
* Sets or clears a bit in the VLAN filter table array based on VLAN id
|
|
* and if we are adding or removing the filter
|
|
**/
|
|
s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
|
|
bool vlan_on, bool vlvf_bypass)
|
|
{
|
|
struct igb_adapter *adapter = hw->back;
|
|
u32 regidx, vfta_delta, vfta, bits;
|
|
s32 vlvf_index;
|
|
|
|
if ((vlan > 4095) || (vind > 7))
|
|
return -E1000_ERR_PARAM;
|
|
|
|
/* this is a 2 part operation - first the VFTA, then the
|
|
* VLVF and VLVFB if VT Mode is set
|
|
* We don't write the VFTA until we know the VLVF part succeeded.
|
|
*/
|
|
|
|
/* Part 1
|
|
* The VFTA is a bitstring made up of 128 32-bit registers
|
|
* that enable the particular VLAN id, much like the MTA:
|
|
* bits[11-5]: which register
|
|
* bits[4-0]: which bit in the register
|
|
*/
|
|
regidx = vlan / 32;
|
|
vfta_delta = BIT(vlan % 32);
|
|
vfta = adapter->shadow_vfta[regidx];
|
|
|
|
/* vfta_delta represents the difference between the current value
|
|
* of vfta and the value we want in the register. Since the diff
|
|
* is an XOR mask we can just update vfta using an XOR.
|
|
*/
|
|
vfta_delta &= vlan_on ? ~vfta : vfta;
|
|
vfta ^= vfta_delta;
|
|
|
|
/* Part 2
|
|
* If VT Mode is set
|
|
* Either vlan_on
|
|
* make sure the VLAN is in VLVF
|
|
* set the vind bit in the matching VLVFB
|
|
* Or !vlan_on
|
|
* clear the pool bit and possibly the vind
|
|
*/
|
|
if (!adapter->vfs_allocated_count)
|
|
goto vfta_update;
|
|
|
|
vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
|
|
if (vlvf_index < 0) {
|
|
if (vlvf_bypass)
|
|
goto vfta_update;
|
|
return vlvf_index;
|
|
}
|
|
|
|
bits = rd32(E1000_VLVF(vlvf_index));
|
|
|
|
/* set the pool bit */
|
|
bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
|
|
if (vlan_on)
|
|
goto vlvf_update;
|
|
|
|
/* clear the pool bit */
|
|
bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
|
|
|
|
if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
|
|
/* Clear VFTA first, then disable VLVF. Otherwise
|
|
* we run the risk of stray packets leaking into
|
|
* the PF via the default pool
|
|
*/
|
|
if (vfta_delta)
|
|
hw->mac.ops.write_vfta(hw, regidx, vfta);
|
|
|
|
/* disable VLVF and clear remaining bit from pool */
|
|
wr32(E1000_VLVF(vlvf_index), 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* If there are still bits set in the VLVFB registers
|
|
* for the VLAN ID indicated we need to see if the
|
|
* caller is requesting that we clear the VFTA entry bit.
|
|
* If the caller has requested that we clear the VFTA
|
|
* entry bit but there are still pools/VFs using this VLAN
|
|
* ID entry then ignore the request. We're not worried
|
|
* about the case where we're turning the VFTA VLAN ID
|
|
* entry bit on, only when requested to turn it off as
|
|
* there may be multiple pools and/or VFs using the
|
|
* VLAN ID entry. In that case we cannot clear the
|
|
* VFTA bit until all pools/VFs using that VLAN ID have also
|
|
* been cleared. This will be indicated by "bits" being
|
|
* zero.
|
|
*/
|
|
vfta_delta = 0;
|
|
|
|
vlvf_update:
|
|
/* record pool change and enable VLAN ID if not already enabled */
|
|
wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
|
|
|
|
vfta_update:
|
|
/* bit was set/cleared before we started */
|
|
if (vfta_delta)
|
|
hw->mac.ops.write_vfta(hw, regidx, vfta);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_check_alt_mac_addr - Check for alternate MAC addr
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks the nvm for an alternate MAC address. An alternate MAC address
|
|
* can be setup by pre-boot software and must be treated like a permanent
|
|
* address and must override the actual permanent MAC address. If an
|
|
* alternate MAC address is found it is saved in the hw struct and
|
|
* programmed into RAR0 and the function returns success, otherwise the
|
|
* function returns an error.
|
|
**/
|
|
s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
|
|
{
|
|
u32 i;
|
|
s32 ret_val = 0;
|
|
u16 offset, nvm_alt_mac_addr_offset, nvm_data;
|
|
u8 alt_mac_addr[ETH_ALEN];
|
|
|
|
/* Alternate MAC address is handled by the option ROM for 82580
|
|
* and newer. SW support not required.
|
|
*/
|
|
if (hw->mac.type >= e1000_82580)
|
|
goto out;
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
|
|
&nvm_alt_mac_addr_offset);
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
|
|
(nvm_alt_mac_addr_offset == 0x0000))
|
|
/* There is no Alternate MAC Address */
|
|
goto out;
|
|
|
|
if (hw->bus.func == E1000_FUNC_1)
|
|
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
|
|
if (hw->bus.func == E1000_FUNC_2)
|
|
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
|
|
|
|
if (hw->bus.func == E1000_FUNC_3)
|
|
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
|
|
for (i = 0; i < ETH_ALEN; i += 2) {
|
|
offset = nvm_alt_mac_addr_offset + (i >> 1);
|
|
ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
|
|
alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
|
|
}
|
|
|
|
/* if multicast bit is set, the alternate address will not be used */
|
|
if (is_multicast_ether_addr(alt_mac_addr)) {
|
|
hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
|
|
goto out;
|
|
}
|
|
|
|
/* We have a valid alternate MAC address, and we want to treat it the
|
|
* same as the normal permanent MAC address stored by the HW into the
|
|
* RAR. Do this by mapping this address into RAR0.
|
|
*/
|
|
hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_rar_set - Set receive address register
|
|
* @hw: pointer to the HW structure
|
|
* @addr: pointer to the receive address
|
|
* @index: receive address array register
|
|
*
|
|
* Sets the receive address array register at index to the address passed
|
|
* in by addr.
|
|
**/
|
|
void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
|
|
{
|
|
u32 rar_low, rar_high;
|
|
|
|
/* HW expects these in little endian so we reverse the byte order
|
|
* from network order (big endian) to little endian
|
|
*/
|
|
rar_low = ((u32) addr[0] |
|
|
((u32) addr[1] << 8) |
|
|
((u32) addr[2] << 16) | ((u32) addr[3] << 24));
|
|
|
|
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
|
|
|
|
/* If MAC address zero, no need to set the AV bit */
|
|
if (rar_low || rar_high)
|
|
rar_high |= E1000_RAH_AV;
|
|
|
|
/* Some bridges will combine consecutive 32-bit writes into
|
|
* a single burst write, which will malfunction on some parts.
|
|
* The flushes avoid this.
|
|
*/
|
|
wr32(E1000_RAL(index), rar_low);
|
|
wrfl();
|
|
wr32(E1000_RAH(index), rar_high);
|
|
wrfl();
|
|
}
|
|
|
|
/**
|
|
* igb_mta_set - Set multicast filter table address
|
|
* @hw: pointer to the HW structure
|
|
* @hash_value: determines the MTA register and bit to set
|
|
*
|
|
* The multicast table address is a register array of 32-bit registers.
|
|
* The hash_value is used to determine what register the bit is in, the
|
|
* current value is read, the new bit is OR'd in and the new value is
|
|
* written back into the register.
|
|
**/
|
|
void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
|
|
{
|
|
u32 hash_bit, hash_reg, mta;
|
|
|
|
/* The MTA is a register array of 32-bit registers. It is
|
|
* treated like an array of (32*mta_reg_count) bits. We want to
|
|
* set bit BitArray[hash_value]. So we figure out what register
|
|
* the bit is in, read it, OR in the new bit, then write
|
|
* back the new value. The (hw->mac.mta_reg_count - 1) serves as a
|
|
* mask to bits 31:5 of the hash value which gives us the
|
|
* register we're modifying. The hash bit within that register
|
|
* is determined by the lower 5 bits of the hash value.
|
|
*/
|
|
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
|
|
hash_bit = hash_value & 0x1F;
|
|
|
|
mta = array_rd32(E1000_MTA, hash_reg);
|
|
|
|
mta |= BIT(hash_bit);
|
|
|
|
array_wr32(E1000_MTA, hash_reg, mta);
|
|
wrfl();
|
|
}
|
|
|
|
/**
|
|
* igb_hash_mc_addr - Generate a multicast hash value
|
|
* @hw: pointer to the HW structure
|
|
* @mc_addr: pointer to a multicast address
|
|
*
|
|
* Generates a multicast address hash value which is used to determine
|
|
* the multicast filter table array address and new table value. See
|
|
* igb_mta_set()
|
|
**/
|
|
static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 hash_value, hash_mask;
|
|
u8 bit_shift = 0;
|
|
|
|
/* Register count multiplied by bits per register */
|
|
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
|
|
|
|
/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
|
|
* where 0xFF would still fall within the hash mask.
|
|
*/
|
|
while (hash_mask >> bit_shift != 0xFF)
|
|
bit_shift++;
|
|
|
|
/* The portion of the address that is used for the hash table
|
|
* is determined by the mc_filter_type setting.
|
|
* The algorithm is such that there is a total of 8 bits of shifting.
|
|
* The bit_shift for a mc_filter_type of 0 represents the number of
|
|
* left-shifts where the MSB of mc_addr[5] would still fall within
|
|
* the hash_mask. Case 0 does this exactly. Since there are a total
|
|
* of 8 bits of shifting, then mc_addr[4] will shift right the
|
|
* remaining number of bits. Thus 8 - bit_shift. The rest of the
|
|
* cases are a variation of this algorithm...essentially raising the
|
|
* number of bits to shift mc_addr[5] left, while still keeping the
|
|
* 8-bit shifting total.
|
|
*
|
|
* For example, given the following Destination MAC Address and an
|
|
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
|
|
* we can see that the bit_shift for case 0 is 4. These are the hash
|
|
* values resulting from each mc_filter_type...
|
|
* [0] [1] [2] [3] [4] [5]
|
|
* 01 AA 00 12 34 56
|
|
* LSB MSB
|
|
*
|
|
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
|
|
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
|
|
* case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
|
|
* case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
|
|
*/
|
|
switch (hw->mac.mc_filter_type) {
|
|
default:
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
bit_shift += 1;
|
|
break;
|
|
case 2:
|
|
bit_shift += 2;
|
|
break;
|
|
case 3:
|
|
bit_shift += 4;
|
|
break;
|
|
}
|
|
|
|
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
|
|
(((u16) mc_addr[5]) << bit_shift)));
|
|
|
|
return hash_value;
|
|
}
|
|
|
|
/**
|
|
* igb_update_mc_addr_list - Update Multicast addresses
|
|
* @hw: pointer to the HW structure
|
|
* @mc_addr_list: array of multicast addresses to program
|
|
* @mc_addr_count: number of multicast addresses to program
|
|
*
|
|
* Updates entire Multicast Table Array.
|
|
* The caller must have a packed mc_addr_list of multicast addresses.
|
|
**/
|
|
void igb_update_mc_addr_list(struct e1000_hw *hw,
|
|
u8 *mc_addr_list, u32 mc_addr_count)
|
|
{
|
|
u32 hash_value, hash_bit, hash_reg;
|
|
int i;
|
|
|
|
/* clear mta_shadow */
|
|
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
|
|
|
|
/* update mta_shadow from mc_addr_list */
|
|
for (i = 0; (u32) i < mc_addr_count; i++) {
|
|
hash_value = igb_hash_mc_addr(hw, mc_addr_list);
|
|
|
|
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
|
|
hash_bit = hash_value & 0x1F;
|
|
|
|
hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
|
|
mc_addr_list += (ETH_ALEN);
|
|
}
|
|
|
|
/* replace the entire MTA table */
|
|
for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
|
|
array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
|
|
wrfl();
|
|
}
|
|
|
|
/**
|
|
* igb_clear_hw_cntrs_base - Clear base hardware counters
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the base hardware counters by reading the counter registers.
|
|
**/
|
|
void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
|
|
{
|
|
rd32(E1000_CRCERRS);
|
|
rd32(E1000_SYMERRS);
|
|
rd32(E1000_MPC);
|
|
rd32(E1000_SCC);
|
|
rd32(E1000_ECOL);
|
|
rd32(E1000_MCC);
|
|
rd32(E1000_LATECOL);
|
|
rd32(E1000_COLC);
|
|
rd32(E1000_DC);
|
|
rd32(E1000_SEC);
|
|
rd32(E1000_RLEC);
|
|
rd32(E1000_XONRXC);
|
|
rd32(E1000_XONTXC);
|
|
rd32(E1000_XOFFRXC);
|
|
rd32(E1000_XOFFTXC);
|
|
rd32(E1000_FCRUC);
|
|
rd32(E1000_GPRC);
|
|
rd32(E1000_BPRC);
|
|
rd32(E1000_MPRC);
|
|
rd32(E1000_GPTC);
|
|
rd32(E1000_GORCL);
|
|
rd32(E1000_GORCH);
|
|
rd32(E1000_GOTCL);
|
|
rd32(E1000_GOTCH);
|
|
rd32(E1000_RNBC);
|
|
rd32(E1000_RUC);
|
|
rd32(E1000_RFC);
|
|
rd32(E1000_ROC);
|
|
rd32(E1000_RJC);
|
|
rd32(E1000_TORL);
|
|
rd32(E1000_TORH);
|
|
rd32(E1000_TOTL);
|
|
rd32(E1000_TOTH);
|
|
rd32(E1000_TPR);
|
|
rd32(E1000_TPT);
|
|
rd32(E1000_MPTC);
|
|
rd32(E1000_BPTC);
|
|
}
|
|
|
|
/**
|
|
* igb_check_for_copper_link - Check for link (Copper)
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks to see of the link status of the hardware has changed. If a
|
|
* change in link status has been detected, then we read the PHY registers
|
|
* to get the current speed/duplex if link exists.
|
|
**/
|
|
s32 igb_check_for_copper_link(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val;
|
|
bool link;
|
|
|
|
/* We only want to go out to the PHY registers to see if Auto-Neg
|
|
* has completed and/or if our link status has changed. The
|
|
* get_link_status flag is set upon receiving a Link Status
|
|
* Change or Rx Sequence Error interrupt.
|
|
*/
|
|
if (!mac->get_link_status) {
|
|
ret_val = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* First we want to see if the MII Status Register reports
|
|
* link. If so, then we want to get the current speed/duplex
|
|
* of the PHY.
|
|
*/
|
|
ret_val = igb_phy_has_link(hw, 1, 0, &link);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (!link)
|
|
goto out; /* No link detected */
|
|
|
|
mac->get_link_status = false;
|
|
|
|
/* Check if there was DownShift, must be checked
|
|
* immediately after link-up
|
|
*/
|
|
igb_check_downshift(hw);
|
|
|
|
/* If we are forcing speed/duplex, then we simply return since
|
|
* we have already determined whether we have link or not.
|
|
*/
|
|
if (!mac->autoneg) {
|
|
ret_val = -E1000_ERR_CONFIG;
|
|
goto out;
|
|
}
|
|
|
|
/* Auto-Neg is enabled. Auto Speed Detection takes care
|
|
* of MAC speed/duplex configuration. So we only need to
|
|
* configure Collision Distance in the MAC.
|
|
*/
|
|
igb_config_collision_dist(hw);
|
|
|
|
/* Configure Flow Control now that Auto-Neg has completed.
|
|
* First, we need to restore the desired flow control
|
|
* settings because we may have had to re-autoneg with a
|
|
* different link partner.
|
|
*/
|
|
ret_val = igb_config_fc_after_link_up(hw);
|
|
if (ret_val)
|
|
hw_dbg("Error configuring flow control\n");
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_setup_link - Setup flow control and link settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines which flow control settings to use, then configures flow
|
|
* control. Calls the appropriate media-specific link configuration
|
|
* function. Assuming the adapter has a valid link partner, a valid link
|
|
* should be established. Assumes the hardware has previously been reset
|
|
* and the transmitter and receiver are not enabled.
|
|
**/
|
|
s32 igb_setup_link(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
|
|
/* In the case of the phy reset being blocked, we already have a link.
|
|
* We do not need to set it up again.
|
|
*/
|
|
if (igb_check_reset_block(hw))
|
|
goto out;
|
|
|
|
/* If requested flow control is set to default, set flow control
|
|
* based on the EEPROM flow control settings.
|
|
*/
|
|
if (hw->fc.requested_mode == e1000_fc_default) {
|
|
ret_val = igb_set_default_fc(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
|
|
/* We want to save off the original Flow Control configuration just
|
|
* in case we get disconnected and then reconnected into a different
|
|
* hub or switch with different Flow Control capabilities.
|
|
*/
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
|
|
hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
|
|
|
|
/* Call the necessary media_type subroutine to configure the link. */
|
|
ret_val = hw->mac.ops.setup_physical_interface(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Initialize the flow control address, type, and PAUSE timer
|
|
* registers to their default values. This is done even if flow
|
|
* control is disabled, because it does not hurt anything to
|
|
* initialize these registers.
|
|
*/
|
|
hw_dbg("Initializing the Flow Control address, type and timer regs\n");
|
|
wr32(E1000_FCT, FLOW_CONTROL_TYPE);
|
|
wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
|
|
wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
|
|
|
|
wr32(E1000_FCTTV, hw->fc.pause_time);
|
|
|
|
ret_val = igb_set_fc_watermarks(hw);
|
|
|
|
out:
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_config_collision_dist - Configure collision distance
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configures the collision distance to the default value and is used
|
|
* during link setup. Currently no func pointer exists and all
|
|
* implementations are handled in the generic version of this function.
|
|
**/
|
|
void igb_config_collision_dist(struct e1000_hw *hw)
|
|
{
|
|
u32 tctl;
|
|
|
|
tctl = rd32(E1000_TCTL);
|
|
|
|
tctl &= ~E1000_TCTL_COLD;
|
|
tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
|
|
|
|
wr32(E1000_TCTL, tctl);
|
|
wrfl();
|
|
}
|
|
|
|
/**
|
|
* igb_set_fc_watermarks - Set flow control high/low watermarks
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Sets the flow control high/low threshold (watermark) registers. If
|
|
* flow control XON frame transmission is enabled, then set XON frame
|
|
* tansmission as well.
|
|
**/
|
|
static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
u32 fcrtl = 0, fcrth = 0;
|
|
|
|
/* Set the flow control receive threshold registers. Normally,
|
|
* these registers will be set to a default threshold that may be
|
|
* adjusted later by the driver's runtime code. However, if the
|
|
* ability to transmit pause frames is not enabled, then these
|
|
* registers will be set to 0.
|
|
*/
|
|
if (hw->fc.current_mode & e1000_fc_tx_pause) {
|
|
/* We need to set up the Receive Threshold high and low water
|
|
* marks as well as (optionally) enabling the transmission of
|
|
* XON frames.
|
|
*/
|
|
fcrtl = hw->fc.low_water;
|
|
if (hw->fc.send_xon)
|
|
fcrtl |= E1000_FCRTL_XONE;
|
|
|
|
fcrth = hw->fc.high_water;
|
|
}
|
|
wr32(E1000_FCRTL, fcrtl);
|
|
wr32(E1000_FCRTH, fcrth);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_set_default_fc - Set flow control default values
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Read the EEPROM for the default values for flow control and store the
|
|
* values.
|
|
**/
|
|
static s32 igb_set_default_fc(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
u16 lan_offset;
|
|
u16 nvm_data;
|
|
|
|
/* Read and store word 0x0F of the EEPROM. This word contains bits
|
|
* that determine the hardware's default PAUSE (flow control) mode,
|
|
* a bit that determines whether the HW defaults to enabling or
|
|
* disabling auto-negotiation, and the direction of the
|
|
* SW defined pins. If there is no SW over-ride of the flow
|
|
* control setting, then the variable hw->fc will
|
|
* be initialized based on a value in the EEPROM.
|
|
*/
|
|
if (hw->mac.type == e1000_i350) {
|
|
lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
|
|
ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG
|
|
+ lan_offset, 1, &nvm_data);
|
|
} else {
|
|
ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG,
|
|
1, &nvm_data);
|
|
}
|
|
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
|
|
hw->fc.requested_mode = e1000_fc_none;
|
|
else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
|
|
NVM_WORD0F_ASM_DIR)
|
|
hw->fc.requested_mode = e1000_fc_tx_pause;
|
|
else
|
|
hw->fc.requested_mode = e1000_fc_full;
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_force_mac_fc - Force the MAC's flow control settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
|
|
* device control register to reflect the adapter settings. TFCE and RFCE
|
|
* need to be explicitly set by software when a copper PHY is used because
|
|
* autonegotiation is managed by the PHY rather than the MAC. Software must
|
|
* also configure these bits when link is forced on a fiber connection.
|
|
**/
|
|
s32 igb_force_mac_fc(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
s32 ret_val = 0;
|
|
|
|
ctrl = rd32(E1000_CTRL);
|
|
|
|
/* Because we didn't get link via the internal auto-negotiation
|
|
* mechanism (we either forced link or we got link via PHY
|
|
* auto-neg), we have to manually enable/disable transmit an
|
|
* receive flow control.
|
|
*
|
|
* The "Case" statement below enables/disable flow control
|
|
* according to the "hw->fc.current_mode" parameter.
|
|
*
|
|
* The possible values of the "fc" parameter are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause
|
|
* frames but not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames
|
|
* frames but we do not receive pause frames).
|
|
* 3: Both Rx and TX flow control (symmetric) is enabled.
|
|
* other: No other values should be possible at this point.
|
|
*/
|
|
hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
|
|
|
|
switch (hw->fc.current_mode) {
|
|
case e1000_fc_none:
|
|
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
|
|
break;
|
|
case e1000_fc_rx_pause:
|
|
ctrl &= (~E1000_CTRL_TFCE);
|
|
ctrl |= E1000_CTRL_RFCE;
|
|
break;
|
|
case e1000_fc_tx_pause:
|
|
ctrl &= (~E1000_CTRL_RFCE);
|
|
ctrl |= E1000_CTRL_TFCE;
|
|
break;
|
|
case e1000_fc_full:
|
|
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
|
|
break;
|
|
default:
|
|
hw_dbg("Flow control param set incorrectly\n");
|
|
ret_val = -E1000_ERR_CONFIG;
|
|
goto out;
|
|
}
|
|
|
|
wr32(E1000_CTRL, ctrl);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_config_fc_after_link_up - Configures flow control after link
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks the status of auto-negotiation after link up to ensure that the
|
|
* speed and duplex were not forced. If the link needed to be forced, then
|
|
* flow control needs to be forced also. If auto-negotiation is enabled
|
|
* and did not fail, then we configure flow control based on our link
|
|
* partner.
|
|
**/
|
|
s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val = 0;
|
|
u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
|
|
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
|
|
u16 speed, duplex;
|
|
|
|
/* Check for the case where we have fiber media and auto-neg failed
|
|
* so we had to force link. In this case, we need to force the
|
|
* configuration of the MAC to match the "fc" parameter.
|
|
*/
|
|
if (mac->autoneg_failed) {
|
|
if (hw->phy.media_type == e1000_media_type_internal_serdes)
|
|
ret_val = igb_force_mac_fc(hw);
|
|
} else {
|
|
if (hw->phy.media_type == e1000_media_type_copper)
|
|
ret_val = igb_force_mac_fc(hw);
|
|
}
|
|
|
|
if (ret_val) {
|
|
hw_dbg("Error forcing flow control settings\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Check for the case where we have copper media and auto-neg is
|
|
* enabled. In this case, we need to check and see if Auto-Neg
|
|
* has completed, and if so, how the PHY and link partner has
|
|
* flow control configured.
|
|
*/
|
|
if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
|
|
/* Read the MII Status Register and check to see if AutoNeg
|
|
* has completed. We read this twice because this reg has
|
|
* some "sticky" (latched) bits.
|
|
*/
|
|
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
|
|
&mii_status_reg);
|
|
if (ret_val)
|
|
goto out;
|
|
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
|
|
&mii_status_reg);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
|
|
hw_dbg("Copper PHY and Auto Neg has not completed.\n");
|
|
goto out;
|
|
}
|
|
|
|
/* The AutoNeg process has completed, so we now need to
|
|
* read both the Auto Negotiation Advertisement
|
|
* Register (Address 4) and the Auto_Negotiation Base
|
|
* Page Ability Register (Address 5) to determine how
|
|
* flow control was negotiated.
|
|
*/
|
|
ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
|
|
&mii_nway_adv_reg);
|
|
if (ret_val)
|
|
goto out;
|
|
ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
|
|
&mii_nway_lp_ability_reg);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Two bits in the Auto Negotiation Advertisement Register
|
|
* (Address 4) and two bits in the Auto Negotiation Base
|
|
* Page Ability Register (Address 5) determine flow control
|
|
* for both the PHY and the link partner. The following
|
|
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
|
|
* 1999, describes these PAUSE resolution bits and how flow
|
|
* control is determined based upon these settings.
|
|
* NOTE: DC = Don't Care
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
|
|
*-------|---------|-------|---------|--------------------
|
|
* 0 | 0 | DC | DC | e1000_fc_none
|
|
* 0 | 1 | 0 | DC | e1000_fc_none
|
|
* 0 | 1 | 1 | 0 | e1000_fc_none
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
* 1 | 0 | 0 | DC | e1000_fc_none
|
|
* 1 | DC | 1 | DC | e1000_fc_full
|
|
* 1 | 1 | 0 | 0 | e1000_fc_none
|
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
|
*
|
|
* Are both PAUSE bits set to 1? If so, this implies
|
|
* Symmetric Flow Control is enabled at both ends. The
|
|
* ASM_DIR bits are irrelevant per the spec.
|
|
*
|
|
* For Symmetric Flow Control:
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 1 | DC | 1 | DC | E1000_fc_full
|
|
*
|
|
*/
|
|
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
|
|
/* Now we need to check if the user selected RX ONLY
|
|
* of pause frames. In this case, we had to advertise
|
|
* FULL flow control because we could not advertise RX
|
|
* ONLY. Hence, we must now check to see if we need to
|
|
* turn OFF the TRANSMISSION of PAUSE frames.
|
|
*/
|
|
if (hw->fc.requested_mode == e1000_fc_full) {
|
|
hw->fc.current_mode = e1000_fc_full;
|
|
hw_dbg("Flow Control = FULL.\n");
|
|
} else {
|
|
hw->fc.current_mode = e1000_fc_rx_pause;
|
|
hw_dbg("Flow Control = RX PAUSE frames only.\n");
|
|
}
|
|
}
|
|
/* For receiving PAUSE frames ONLY.
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
*/
|
|
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
|
hw->fc.current_mode = e1000_fc_tx_pause;
|
|
hw_dbg("Flow Control = TX PAUSE frames only.\n");
|
|
}
|
|
/* For transmitting PAUSE frames ONLY.
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
|
*/
|
|
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
|
hw->fc.current_mode = e1000_fc_rx_pause;
|
|
hw_dbg("Flow Control = RX PAUSE frames only.\n");
|
|
}
|
|
/* Per the IEEE spec, at this point flow control should be
|
|
* disabled. However, we want to consider that we could
|
|
* be connected to a legacy switch that doesn't advertise
|
|
* desired flow control, but can be forced on the link
|
|
* partner. So if we advertised no flow control, that is
|
|
* what we will resolve to. If we advertised some kind of
|
|
* receive capability (Rx Pause Only or Full Flow Control)
|
|
* and the link partner advertised none, we will configure
|
|
* ourselves to enable Rx Flow Control only. We can do
|
|
* this safely for two reasons: If the link partner really
|
|
* didn't want flow control enabled, and we enable Rx, no
|
|
* harm done since we won't be receiving any PAUSE frames
|
|
* anyway. If the intent on the link partner was to have
|
|
* flow control enabled, then by us enabling RX only, we
|
|
* can at least receive pause frames and process them.
|
|
* This is a good idea because in most cases, since we are
|
|
* predominantly a server NIC, more times than not we will
|
|
* be asked to delay transmission of packets than asking
|
|
* our link partner to pause transmission of frames.
|
|
*/
|
|
else if ((hw->fc.requested_mode == e1000_fc_none) ||
|
|
(hw->fc.requested_mode == e1000_fc_tx_pause) ||
|
|
(hw->fc.strict_ieee)) {
|
|
hw->fc.current_mode = e1000_fc_none;
|
|
hw_dbg("Flow Control = NONE.\n");
|
|
} else {
|
|
hw->fc.current_mode = e1000_fc_rx_pause;
|
|
hw_dbg("Flow Control = RX PAUSE frames only.\n");
|
|
}
|
|
|
|
/* Now we need to do one last check... If we auto-
|
|
* negotiated to HALF DUPLEX, flow control should not be
|
|
* enabled per IEEE 802.3 spec.
|
|
*/
|
|
ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
|
|
if (ret_val) {
|
|
hw_dbg("Error getting link speed and duplex\n");
|
|
goto out;
|
|
}
|
|
|
|
if (duplex == HALF_DUPLEX)
|
|
hw->fc.current_mode = e1000_fc_none;
|
|
|
|
/* Now we call a subroutine to actually force the MAC
|
|
* controller to use the correct flow control settings.
|
|
*/
|
|
ret_val = igb_force_mac_fc(hw);
|
|
if (ret_val) {
|
|
hw_dbg("Error forcing flow control settings\n");
|
|
goto out;
|
|
}
|
|
}
|
|
/* Check for the case where we have SerDes media and auto-neg is
|
|
* enabled. In this case, we need to check and see if Auto-Neg
|
|
* has completed, and if so, how the PHY and link partner has
|
|
* flow control configured.
|
|
*/
|
|
if ((hw->phy.media_type == e1000_media_type_internal_serdes)
|
|
&& mac->autoneg) {
|
|
/* Read the PCS_LSTS and check to see if AutoNeg
|
|
* has completed.
|
|
*/
|
|
pcs_status_reg = rd32(E1000_PCS_LSTAT);
|
|
|
|
if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
|
|
hw_dbg("PCS Auto Neg has not completed.\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* The AutoNeg process has completed, so we now need to
|
|
* read both the Auto Negotiation Advertisement
|
|
* Register (PCS_ANADV) and the Auto_Negotiation Base
|
|
* Page Ability Register (PCS_LPAB) to determine how
|
|
* flow control was negotiated.
|
|
*/
|
|
pcs_adv_reg = rd32(E1000_PCS_ANADV);
|
|
pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
|
|
|
|
/* Two bits in the Auto Negotiation Advertisement Register
|
|
* (PCS_ANADV) and two bits in the Auto Negotiation Base
|
|
* Page Ability Register (PCS_LPAB) determine flow control
|
|
* for both the PHY and the link partner. The following
|
|
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
|
|
* 1999, describes these PAUSE resolution bits and how flow
|
|
* control is determined based upon these settings.
|
|
* NOTE: DC = Don't Care
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
|
|
*-------|---------|-------|---------|--------------------
|
|
* 0 | 0 | DC | DC | e1000_fc_none
|
|
* 0 | 1 | 0 | DC | e1000_fc_none
|
|
* 0 | 1 | 1 | 0 | e1000_fc_none
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
* 1 | 0 | 0 | DC | e1000_fc_none
|
|
* 1 | DC | 1 | DC | e1000_fc_full
|
|
* 1 | 1 | 0 | 0 | e1000_fc_none
|
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
|
*
|
|
* Are both PAUSE bits set to 1? If so, this implies
|
|
* Symmetric Flow Control is enabled at both ends. The
|
|
* ASM_DIR bits are irrelevant per the spec.
|
|
*
|
|
* For Symmetric Flow Control:
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 1 | DC | 1 | DC | e1000_fc_full
|
|
*
|
|
*/
|
|
if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
|
|
(pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
|
|
/* Now we need to check if the user selected Rx ONLY
|
|
* of pause frames. In this case, we had to advertise
|
|
* FULL flow control because we could not advertise Rx
|
|
* ONLY. Hence, we must now check to see if we need to
|
|
* turn OFF the TRANSMISSION of PAUSE frames.
|
|
*/
|
|
if (hw->fc.requested_mode == e1000_fc_full) {
|
|
hw->fc.current_mode = e1000_fc_full;
|
|
hw_dbg("Flow Control = FULL.\n");
|
|
} else {
|
|
hw->fc.current_mode = e1000_fc_rx_pause;
|
|
hw_dbg("Flow Control = Rx PAUSE frames only.\n");
|
|
}
|
|
}
|
|
/* For receiving PAUSE frames ONLY.
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
*/
|
|
else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
|
|
(pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
|
|
(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
|
|
(pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
|
|
hw->fc.current_mode = e1000_fc_tx_pause;
|
|
hw_dbg("Flow Control = Tx PAUSE frames only.\n");
|
|
}
|
|
/* For transmitting PAUSE frames ONLY.
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
|
*/
|
|
else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
|
|
(pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
|
|
!(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
|
|
(pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
|
|
hw->fc.current_mode = e1000_fc_rx_pause;
|
|
hw_dbg("Flow Control = Rx PAUSE frames only.\n");
|
|
} else {
|
|
/* Per the IEEE spec, at this point flow control
|
|
* should be disabled.
|
|
*/
|
|
hw->fc.current_mode = e1000_fc_none;
|
|
hw_dbg("Flow Control = NONE.\n");
|
|
}
|
|
|
|
/* Now we call a subroutine to actually force the MAC
|
|
* controller to use the correct flow control settings.
|
|
*/
|
|
pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
|
|
pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
|
|
wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
|
|
|
|
ret_val = igb_force_mac_fc(hw);
|
|
if (ret_val) {
|
|
hw_dbg("Error forcing flow control settings\n");
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
|
|
* @hw: pointer to the HW structure
|
|
* @speed: stores the current speed
|
|
* @duplex: stores the current duplex
|
|
*
|
|
* Read the status register for the current speed/duplex and store the current
|
|
* speed and duplex for copper connections.
|
|
**/
|
|
s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex)
|
|
{
|
|
u32 status;
|
|
|
|
status = rd32(E1000_STATUS);
|
|
if (status & E1000_STATUS_SPEED_1000) {
|
|
*speed = SPEED_1000;
|
|
hw_dbg("1000 Mbs, ");
|
|
} else if (status & E1000_STATUS_SPEED_100) {
|
|
*speed = SPEED_100;
|
|
hw_dbg("100 Mbs, ");
|
|
} else {
|
|
*speed = SPEED_10;
|
|
hw_dbg("10 Mbs, ");
|
|
}
|
|
|
|
if (status & E1000_STATUS_FD) {
|
|
*duplex = FULL_DUPLEX;
|
|
hw_dbg("Full Duplex\n");
|
|
} else {
|
|
*duplex = HALF_DUPLEX;
|
|
hw_dbg("Half Duplex\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_get_hw_semaphore - Acquire hardware semaphore
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire the HW semaphore to access the PHY or NVM
|
|
**/
|
|
s32 igb_get_hw_semaphore(struct e1000_hw *hw)
|
|
{
|
|
u32 swsm;
|
|
s32 ret_val = 0;
|
|
s32 timeout = hw->nvm.word_size + 1;
|
|
s32 i = 0;
|
|
|
|
/* Get the SW semaphore */
|
|
while (i < timeout) {
|
|
swsm = rd32(E1000_SWSM);
|
|
if (!(swsm & E1000_SWSM_SMBI))
|
|
break;
|
|
|
|
udelay(50);
|
|
i++;
|
|
}
|
|
|
|
if (i == timeout) {
|
|
hw_dbg("Driver can't access device - SMBI bit is set.\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto out;
|
|
}
|
|
|
|
/* Get the FW semaphore. */
|
|
for (i = 0; i < timeout; i++) {
|
|
swsm = rd32(E1000_SWSM);
|
|
wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
|
|
|
|
/* Semaphore acquired if bit latched */
|
|
if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
|
|
break;
|
|
|
|
udelay(50);
|
|
}
|
|
|
|
if (i == timeout) {
|
|
/* Release semaphores */
|
|
igb_put_hw_semaphore(hw);
|
|
hw_dbg("Driver can't access the NVM\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_put_hw_semaphore - Release hardware semaphore
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Release hardware semaphore used to access the PHY or NVM
|
|
**/
|
|
void igb_put_hw_semaphore(struct e1000_hw *hw)
|
|
{
|
|
u32 swsm;
|
|
|
|
swsm = rd32(E1000_SWSM);
|
|
|
|
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
|
|
|
|
wr32(E1000_SWSM, swsm);
|
|
}
|
|
|
|
/**
|
|
* igb_get_auto_rd_done - Check for auto read completion
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Check EEPROM for Auto Read done bit.
|
|
**/
|
|
s32 igb_get_auto_rd_done(struct e1000_hw *hw)
|
|
{
|
|
s32 i = 0;
|
|
s32 ret_val = 0;
|
|
|
|
|
|
while (i < AUTO_READ_DONE_TIMEOUT) {
|
|
if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
|
|
break;
|
|
usleep_range(1000, 2000);
|
|
i++;
|
|
}
|
|
|
|
if (i == AUTO_READ_DONE_TIMEOUT) {
|
|
hw_dbg("Auto read by HW from NVM has not completed.\n");
|
|
ret_val = -E1000_ERR_RESET;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_valid_led_default - Verify a valid default LED config
|
|
* @hw: pointer to the HW structure
|
|
* @data: pointer to the NVM (EEPROM)
|
|
*
|
|
* Read the EEPROM for the current default LED configuration. If the
|
|
* LED configuration is not valid, set to a valid LED configuration.
|
|
**/
|
|
static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
|
|
{
|
|
s32 ret_val;
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
|
|
if (ret_val) {
|
|
hw_dbg("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
|
|
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_internal_serdes:
|
|
*data = ID_LED_DEFAULT_82575_SERDES;
|
|
break;
|
|
case e1000_media_type_copper:
|
|
default:
|
|
*data = ID_LED_DEFAULT;
|
|
break;
|
|
}
|
|
}
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_id_led_init -
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
**/
|
|
s32 igb_id_led_init(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val;
|
|
const u32 ledctl_mask = 0x000000FF;
|
|
const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
|
|
const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
|
|
u16 data, i, temp;
|
|
const u16 led_mask = 0x0F;
|
|
|
|
/* i210 and i211 devices have different LED mechanism */
|
|
if ((hw->mac.type == e1000_i210) ||
|
|
(hw->mac.type == e1000_i211))
|
|
ret_val = igb_valid_led_default_i210(hw, &data);
|
|
else
|
|
ret_val = igb_valid_led_default(hw, &data);
|
|
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
mac->ledctl_default = rd32(E1000_LEDCTL);
|
|
mac->ledctl_mode1 = mac->ledctl_default;
|
|
mac->ledctl_mode2 = mac->ledctl_default;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
temp = (data >> (i << 2)) & led_mask;
|
|
switch (temp) {
|
|
case ID_LED_ON1_DEF2:
|
|
case ID_LED_ON1_ON2:
|
|
case ID_LED_ON1_OFF2:
|
|
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
|
|
mac->ledctl_mode1 |= ledctl_on << (i << 3);
|
|
break;
|
|
case ID_LED_OFF1_DEF2:
|
|
case ID_LED_OFF1_ON2:
|
|
case ID_LED_OFF1_OFF2:
|
|
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
|
|
mac->ledctl_mode1 |= ledctl_off << (i << 3);
|
|
break;
|
|
default:
|
|
/* Do nothing */
|
|
break;
|
|
}
|
|
switch (temp) {
|
|
case ID_LED_DEF1_ON2:
|
|
case ID_LED_ON1_ON2:
|
|
case ID_LED_OFF1_ON2:
|
|
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
|
|
mac->ledctl_mode2 |= ledctl_on << (i << 3);
|
|
break;
|
|
case ID_LED_DEF1_OFF2:
|
|
case ID_LED_ON1_OFF2:
|
|
case ID_LED_OFF1_OFF2:
|
|
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
|
|
mac->ledctl_mode2 |= ledctl_off << (i << 3);
|
|
break;
|
|
default:
|
|
/* Do nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_cleanup_led - Set LED config to default operation
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Remove the current LED configuration and set the LED configuration
|
|
* to the default value, saved from the EEPROM.
|
|
**/
|
|
s32 igb_cleanup_led(struct e1000_hw *hw)
|
|
{
|
|
wr32(E1000_LEDCTL, hw->mac.ledctl_default);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_blink_led - Blink LED
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Blink the led's which are set to be on.
|
|
**/
|
|
s32 igb_blink_led(struct e1000_hw *hw)
|
|
{
|
|
u32 ledctl_blink = 0;
|
|
u32 i;
|
|
|
|
if (hw->phy.media_type == e1000_media_type_fiber) {
|
|
/* always blink LED0 for PCI-E fiber */
|
|
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
|
|
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
|
|
} else {
|
|
/* Set the blink bit for each LED that's "on" (0x0E)
|
|
* (or "off" if inverted) in ledctl_mode2. The blink
|
|
* logic in hardware only works when mode is set to "on"
|
|
* so it must be changed accordingly when the mode is
|
|
* "off" and inverted.
|
|
*/
|
|
ledctl_blink = hw->mac.ledctl_mode2;
|
|
for (i = 0; i < 32; i += 8) {
|
|
u32 mode = (hw->mac.ledctl_mode2 >> i) &
|
|
E1000_LEDCTL_LED0_MODE_MASK;
|
|
u32 led_default = hw->mac.ledctl_default >> i;
|
|
|
|
if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
|
|
(mode == E1000_LEDCTL_MODE_LED_ON)) ||
|
|
((led_default & E1000_LEDCTL_LED0_IVRT) &&
|
|
(mode == E1000_LEDCTL_MODE_LED_OFF))) {
|
|
ledctl_blink &=
|
|
~(E1000_LEDCTL_LED0_MODE_MASK << i);
|
|
ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
|
|
E1000_LEDCTL_MODE_LED_ON) << i;
|
|
}
|
|
}
|
|
}
|
|
|
|
wr32(E1000_LEDCTL, ledctl_blink);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_led_off - Turn LED off
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Turn LED off.
|
|
**/
|
|
s32 igb_led_off(struct e1000_hw *hw)
|
|
{
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_copper:
|
|
wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igb_disable_pcie_master - Disables PCI-express master access
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Returns 0 (0) if successful, else returns -10
|
|
* (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
|
|
* the master requests to be disabled.
|
|
*
|
|
* Disables PCI-Express master access and verifies there are no pending
|
|
* requests.
|
|
**/
|
|
s32 igb_disable_pcie_master(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
s32 timeout = MASTER_DISABLE_TIMEOUT;
|
|
s32 ret_val = 0;
|
|
|
|
if (hw->bus.type != e1000_bus_type_pci_express)
|
|
goto out;
|
|
|
|
ctrl = rd32(E1000_CTRL);
|
|
ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
|
|
wr32(E1000_CTRL, ctrl);
|
|
|
|
while (timeout) {
|
|
if (!(rd32(E1000_STATUS) &
|
|
E1000_STATUS_GIO_MASTER_ENABLE))
|
|
break;
|
|
udelay(100);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
hw_dbg("Master requests are pending.\n");
|
|
ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_validate_mdi_setting - Verify MDI/MDIx settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Verify that when not using auto-negotitation that MDI/MDIx is correctly
|
|
* set, which is forced to MDI mode only.
|
|
**/
|
|
s32 igb_validate_mdi_setting(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
|
|
/* All MDI settings are supported on 82580 and newer. */
|
|
if (hw->mac.type >= e1000_82580)
|
|
goto out;
|
|
|
|
if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
|
|
hw_dbg("Invalid MDI setting detected\n");
|
|
hw->phy.mdix = 1;
|
|
ret_val = -E1000_ERR_CONFIG;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
|
|
* @hw: pointer to the HW structure
|
|
* @reg: 32bit register offset such as E1000_SCTL
|
|
* @offset: register offset to write to
|
|
* @data: data to write at register offset
|
|
*
|
|
* Writes an address/data control type register. There are several of these
|
|
* and they all have the format address << 8 | data and bit 31 is polled for
|
|
* completion.
|
|
**/
|
|
s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
|
|
u32 offset, u8 data)
|
|
{
|
|
u32 i, regvalue = 0;
|
|
s32 ret_val = 0;
|
|
|
|
/* Set up the address and data */
|
|
regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
|
|
wr32(reg, regvalue);
|
|
|
|
/* Poll the ready bit to see if the MDI read completed */
|
|
for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
|
|
udelay(5);
|
|
regvalue = rd32(reg);
|
|
if (regvalue & E1000_GEN_CTL_READY)
|
|
break;
|
|
}
|
|
if (!(regvalue & E1000_GEN_CTL_READY)) {
|
|
hw_dbg("Reg %08x did not indicate ready\n", reg);
|
|
ret_val = -E1000_ERR_PHY;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* igb_enable_mng_pass_thru - Enable processing of ARP's
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Verifies the hardware needs to leave interface enabled so that frames can
|
|
* be directed to and from the management interface.
|
|
**/
|
|
bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
|
|
{
|
|
u32 manc;
|
|
u32 fwsm, factps;
|
|
bool ret_val = false;
|
|
|
|
if (!hw->mac.asf_firmware_present)
|
|
goto out;
|
|
|
|
manc = rd32(E1000_MANC);
|
|
|
|
if (!(manc & E1000_MANC_RCV_TCO_EN))
|
|
goto out;
|
|
|
|
if (hw->mac.arc_subsystem_valid) {
|
|
fwsm = rd32(E1000_FWSM);
|
|
factps = rd32(E1000_FACTPS);
|
|
|
|
if (!(factps & E1000_FACTPS_MNGCG) &&
|
|
((fwsm & E1000_FWSM_MODE_MASK) ==
|
|
(e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
|
|
ret_val = true;
|
|
goto out;
|
|
}
|
|
} else {
|
|
if ((manc & E1000_MANC_SMBUS_EN) &&
|
|
!(manc & E1000_MANC_ASF_EN)) {
|
|
ret_val = true;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|