tegrakernel/kernel/kernel-4.9/drivers/net/ethernet/qualcomm/emac/emac-mac.c

1546 lines
45 KiB
C

/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
*/
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/jiffies.h>
#include <linux/phy.h>
#include <linux/of.h>
#include <net/ip6_checksum.h>
#include "emac.h"
#include "emac-sgmii.h"
/* EMAC base register offsets */
#define EMAC_MAC_CTRL 0x001480
#define EMAC_WOL_CTRL0 0x0014a0
#define EMAC_RSS_KEY0 0x0014b0
#define EMAC_H1TPD_BASE_ADDR_LO 0x0014e0
#define EMAC_H2TPD_BASE_ADDR_LO 0x0014e4
#define EMAC_H3TPD_BASE_ADDR_LO 0x0014e8
#define EMAC_INTER_SRAM_PART9 0x001534
#define EMAC_DESC_CTRL_0 0x001540
#define EMAC_DESC_CTRL_1 0x001544
#define EMAC_DESC_CTRL_2 0x001550
#define EMAC_DESC_CTRL_10 0x001554
#define EMAC_DESC_CTRL_12 0x001558
#define EMAC_DESC_CTRL_13 0x00155c
#define EMAC_DESC_CTRL_3 0x001560
#define EMAC_DESC_CTRL_4 0x001564
#define EMAC_DESC_CTRL_5 0x001568
#define EMAC_DESC_CTRL_14 0x00156c
#define EMAC_DESC_CTRL_15 0x001570
#define EMAC_DESC_CTRL_16 0x001574
#define EMAC_DESC_CTRL_6 0x001578
#define EMAC_DESC_CTRL_8 0x001580
#define EMAC_DESC_CTRL_9 0x001584
#define EMAC_DESC_CTRL_11 0x001588
#define EMAC_TXQ_CTRL_0 0x001590
#define EMAC_TXQ_CTRL_1 0x001594
#define EMAC_TXQ_CTRL_2 0x001598
#define EMAC_RXQ_CTRL_0 0x0015a0
#define EMAC_RXQ_CTRL_1 0x0015a4
#define EMAC_RXQ_CTRL_2 0x0015a8
#define EMAC_RXQ_CTRL_3 0x0015ac
#define EMAC_BASE_CPU_NUMBER 0x0015b8
#define EMAC_DMA_CTRL 0x0015c0
#define EMAC_MAILBOX_0 0x0015e0
#define EMAC_MAILBOX_5 0x0015e4
#define EMAC_MAILBOX_6 0x0015e8
#define EMAC_MAILBOX_13 0x0015ec
#define EMAC_MAILBOX_2 0x0015f4
#define EMAC_MAILBOX_3 0x0015f8
#define EMAC_MAILBOX_11 0x00160c
#define EMAC_AXI_MAST_CTRL 0x001610
#define EMAC_MAILBOX_12 0x001614
#define EMAC_MAILBOX_9 0x001618
#define EMAC_MAILBOX_10 0x00161c
#define EMAC_ATHR_HEADER_CTRL 0x001620
#define EMAC_CLK_GATE_CTRL 0x001814
#define EMAC_MISC_CTRL 0x001990
#define EMAC_MAILBOX_7 0x0019e0
#define EMAC_MAILBOX_8 0x0019e4
#define EMAC_MAILBOX_15 0x001bd4
#define EMAC_MAILBOX_16 0x001bd8
/* EMAC_MAC_CTRL */
#define SINGLE_PAUSE_MODE 0x10000000
#define DEBUG_MODE 0x08000000
#define BROAD_EN 0x04000000
#define MULTI_ALL 0x02000000
#define RX_CHKSUM_EN 0x01000000
#define HUGE 0x00800000
#define SPEED(x) (((x) & 0x3) << 20)
#define SPEED_MASK SPEED(0x3)
#define SIMR 0x00080000
#define TPAUSE 0x00010000
#define PROM_MODE 0x00008000
#define VLAN_STRIP 0x00004000
#define PRLEN_BMSK 0x00003c00
#define PRLEN_SHFT 10
#define HUGEN 0x00000200
#define FLCHK 0x00000100
#define PCRCE 0x00000080
#define CRCE 0x00000040
#define FULLD 0x00000020
#define MAC_LP_EN 0x00000010
#define RXFC 0x00000008
#define TXFC 0x00000004
#define RXEN 0x00000002
#define TXEN 0x00000001
/* EMAC_WOL_CTRL0 */
#define LK_CHG_PME 0x20
#define LK_CHG_EN 0x10
#define MG_FRAME_PME 0x8
#define MG_FRAME_EN 0x4
#define WK_FRAME_EN 0x1
/* EMAC_DESC_CTRL_3 */
#define RFD_RING_SIZE_BMSK 0xfff
/* EMAC_DESC_CTRL_4 */
#define RX_BUFFER_SIZE_BMSK 0xffff
/* EMAC_DESC_CTRL_6 */
#define RRD_RING_SIZE_BMSK 0xfff
/* EMAC_DESC_CTRL_9 */
#define TPD_RING_SIZE_BMSK 0xffff
/* EMAC_TXQ_CTRL_0 */
#define NUM_TXF_BURST_PREF_BMSK 0xffff0000
#define NUM_TXF_BURST_PREF_SHFT 16
#define LS_8023_SP 0x80
#define TXQ_MODE 0x40
#define TXQ_EN 0x20
#define IP_OP_SP 0x10
#define NUM_TPD_BURST_PREF_BMSK 0xf
#define NUM_TPD_BURST_PREF_SHFT 0
/* EMAC_TXQ_CTRL_1 */
#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK 0x7ff
/* EMAC_TXQ_CTRL_2 */
#define TXF_HWM_BMSK 0xfff0000
#define TXF_LWM_BMSK 0xfff
/* EMAC_RXQ_CTRL_0 */
#define RXQ_EN BIT(31)
#define CUT_THRU_EN BIT(30)
#define RSS_HASH_EN BIT(29)
#define NUM_RFD_BURST_PREF_BMSK 0x3f00000
#define NUM_RFD_BURST_PREF_SHFT 20
#define IDT_TABLE_SIZE_BMSK 0x1ff00
#define IDT_TABLE_SIZE_SHFT 8
#define SP_IPV6 0x80
/* EMAC_RXQ_CTRL_1 */
#define JUMBO_1KAH_BMSK 0xf000
#define JUMBO_1KAH_SHFT 12
#define RFD_PREF_LOW_TH 0x10
#define RFD_PREF_LOW_THRESHOLD_BMSK 0xfc0
#define RFD_PREF_LOW_THRESHOLD_SHFT 6
#define RFD_PREF_UP_TH 0x10
#define RFD_PREF_UP_THRESHOLD_BMSK 0x3f
#define RFD_PREF_UP_THRESHOLD_SHFT 0
/* EMAC_RXQ_CTRL_2 */
#define RXF_DOF_THRESFHOLD 0x1a0
#define RXF_DOF_THRESHOLD_BMSK 0xfff0000
#define RXF_DOF_THRESHOLD_SHFT 16
#define RXF_UOF_THRESFHOLD 0xbe
#define RXF_UOF_THRESHOLD_BMSK 0xfff
#define RXF_UOF_THRESHOLD_SHFT 0
/* EMAC_RXQ_CTRL_3 */
#define RXD_TIMER_BMSK 0xffff0000
#define RXD_THRESHOLD_BMSK 0xfff
#define RXD_THRESHOLD_SHFT 0
/* EMAC_DMA_CTRL */
#define DMAW_DLY_CNT_BMSK 0xf0000
#define DMAW_DLY_CNT_SHFT 16
#define DMAR_DLY_CNT_BMSK 0xf800
#define DMAR_DLY_CNT_SHFT 11
#define DMAR_REQ_PRI 0x400
#define REGWRBLEN_BMSK 0x380
#define REGWRBLEN_SHFT 7
#define REGRDBLEN_BMSK 0x70
#define REGRDBLEN_SHFT 4
#define OUT_ORDER_MODE 0x4
#define ENH_ORDER_MODE 0x2
#define IN_ORDER_MODE 0x1
/* EMAC_MAILBOX_13 */
#define RFD3_PROC_IDX_BMSK 0xfff0000
#define RFD3_PROC_IDX_SHFT 16
#define RFD3_PROD_IDX_BMSK 0xfff
#define RFD3_PROD_IDX_SHFT 0
/* EMAC_MAILBOX_2 */
#define NTPD_CONS_IDX_BMSK 0xffff0000
#define NTPD_CONS_IDX_SHFT 16
/* EMAC_MAILBOX_3 */
#define RFD0_CONS_IDX_BMSK 0xfff
#define RFD0_CONS_IDX_SHFT 0
/* EMAC_MAILBOX_11 */
#define H3TPD_PROD_IDX_BMSK 0xffff0000
#define H3TPD_PROD_IDX_SHFT 16
/* EMAC_AXI_MAST_CTRL */
#define DATA_BYTE_SWAP 0x8
#define MAX_BOUND 0x2
#define MAX_BTYPE 0x1
/* EMAC_MAILBOX_12 */
#define H3TPD_CONS_IDX_BMSK 0xffff0000
#define H3TPD_CONS_IDX_SHFT 16
/* EMAC_MAILBOX_9 */
#define H2TPD_PROD_IDX_BMSK 0xffff
#define H2TPD_PROD_IDX_SHFT 0
/* EMAC_MAILBOX_10 */
#define H1TPD_CONS_IDX_BMSK 0xffff0000
#define H1TPD_CONS_IDX_SHFT 16
#define H2TPD_CONS_IDX_BMSK 0xffff
#define H2TPD_CONS_IDX_SHFT 0
/* EMAC_ATHR_HEADER_CTRL */
#define HEADER_CNT_EN 0x2
#define HEADER_ENABLE 0x1
/* EMAC_MAILBOX_0 */
#define RFD0_PROC_IDX_BMSK 0xfff0000
#define RFD0_PROC_IDX_SHFT 16
#define RFD0_PROD_IDX_BMSK 0xfff
#define RFD0_PROD_IDX_SHFT 0
/* EMAC_MAILBOX_5 */
#define RFD1_PROC_IDX_BMSK 0xfff0000
#define RFD1_PROC_IDX_SHFT 16
#define RFD1_PROD_IDX_BMSK 0xfff
#define RFD1_PROD_IDX_SHFT 0
/* EMAC_MISC_CTRL */
#define RX_UNCPL_INT_EN 0x1
/* EMAC_MAILBOX_7 */
#define RFD2_CONS_IDX_BMSK 0xfff0000
#define RFD2_CONS_IDX_SHFT 16
#define RFD1_CONS_IDX_BMSK 0xfff
#define RFD1_CONS_IDX_SHFT 0
/* EMAC_MAILBOX_8 */
#define RFD3_CONS_IDX_BMSK 0xfff
#define RFD3_CONS_IDX_SHFT 0
/* EMAC_MAILBOX_15 */
#define NTPD_PROD_IDX_BMSK 0xffff
#define NTPD_PROD_IDX_SHFT 0
/* EMAC_MAILBOX_16 */
#define H1TPD_PROD_IDX_BMSK 0xffff
#define H1TPD_PROD_IDX_SHFT 0
#define RXQ0_RSS_HSTYP_IPV6_TCP_EN 0x20
#define RXQ0_RSS_HSTYP_IPV6_EN 0x10
#define RXQ0_RSS_HSTYP_IPV4_TCP_EN 0x8
#define RXQ0_RSS_HSTYP_IPV4_EN 0x4
/* EMAC_EMAC_WRAPPER_TX_TS_INX */
#define EMAC_WRAPPER_TX_TS_EMPTY BIT(31)
#define EMAC_WRAPPER_TX_TS_INX_BMSK 0xffff
struct emac_skb_cb {
u32 tpd_idx;
unsigned long jiffies;
};
#define EMAC_SKB_CB(skb) ((struct emac_skb_cb *)(skb)->cb)
#define EMAC_RSS_IDT_SIZE 256
#define JUMBO_1KAH 0x4
#define RXD_TH 0x100
#define EMAC_TPD_LAST_FRAGMENT 0x80000000
#define EMAC_TPD_TSTAMP_SAVE 0x80000000
/* EMAC Errors in emac_rrd.word[3] */
#define EMAC_RRD_L4F BIT(14)
#define EMAC_RRD_IPF BIT(15)
#define EMAC_RRD_CRC BIT(21)
#define EMAC_RRD_FAE BIT(22)
#define EMAC_RRD_TRN BIT(23)
#define EMAC_RRD_RNT BIT(24)
#define EMAC_RRD_INC BIT(25)
#define EMAC_RRD_FOV BIT(29)
#define EMAC_RRD_LEN BIT(30)
/* Error bits that will result in a received frame being discarded */
#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
EMAC_RRD_FOV | EMAC_RRD_LEN)
#define EMAC_RRD_STATS_DW_IDX 3
#define EMAC_RRD(RXQ, SIZE, IDX) ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
#define EMAC_RFD(RXQ, SIZE, IDX) ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
#define EMAC_TPD(TXQ, SIZE, IDX) ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
#define GET_RFD_BUFFER(RXQ, IDX) (&((RXQ)->rfd.rfbuff[(IDX)]))
#define GET_TPD_BUFFER(RTQ, IDX) (&((RTQ)->tpd.tpbuff[(IDX)]))
#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD 8
#define ISR_RX_PKT (\
RX_PKT_INT0 |\
RX_PKT_INT1 |\
RX_PKT_INT2 |\
RX_PKT_INT3)
#define EMAC_MAC_IRQ_RES "core0"
void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
{
u32 crc32, bit, reg, mta;
/* Calculate the CRC of the MAC address */
crc32 = ether_crc(ETH_ALEN, addr);
/* The HASH Table is an array of 2 32-bit registers. It is
* treated like an array of 64 bits (BitArray[hash_value]).
* Use the upper 6 bits of the above CRC as the hash value.
*/
reg = (crc32 >> 31) & 0x1;
bit = (crc32 >> 26) & 0x1F;
mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
mta |= BIT(bit);
writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
}
void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
{
writel(0, adpt->base + EMAC_HASH_TAB_REG0);
writel(0, adpt->base + EMAC_HASH_TAB_REG1);
}
/* definitions for RSS */
#define EMAC_RSS_KEY(_i, _type) \
(EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
#define EMAC_RSS_TBL(_i, _type) \
(EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
/* Config MAC modes */
void emac_mac_mode_config(struct emac_adapter *adpt)
{
struct net_device *netdev = adpt->netdev;
u32 mac;
mac = readl(adpt->base + EMAC_MAC_CTRL);
mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
mac |= VLAN_STRIP;
if (netdev->flags & IFF_PROMISC)
mac |= PROM_MODE;
if (netdev->flags & IFF_ALLMULTI)
mac |= MULTI_ALL;
writel(mac, adpt->base + EMAC_MAC_CTRL);
}
/* Config descriptor rings */
static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
{
static const unsigned short tpd_q_offset[] = {
EMAC_DESC_CTRL_8, EMAC_H1TPD_BASE_ADDR_LO,
EMAC_H2TPD_BASE_ADDR_LO, EMAC_H3TPD_BASE_ADDR_LO};
static const unsigned short rfd_q_offset[] = {
EMAC_DESC_CTRL_2, EMAC_DESC_CTRL_10,
EMAC_DESC_CTRL_12, EMAC_DESC_CTRL_13};
static const unsigned short rrd_q_offset[] = {
EMAC_DESC_CTRL_5, EMAC_DESC_CTRL_14,
EMAC_DESC_CTRL_15, EMAC_DESC_CTRL_16};
/* TPD (Transmit Packet Descriptor) */
writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
adpt->base + EMAC_DESC_CTRL_1);
writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
adpt->base + tpd_q_offset[0]);
writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
adpt->base + EMAC_DESC_CTRL_9);
/* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
adpt->base + EMAC_DESC_CTRL_0);
writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
adpt->base + rfd_q_offset[0]);
writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
adpt->base + rrd_q_offset[0]);
writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
adpt->base + EMAC_DESC_CTRL_3);
writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
adpt->base + EMAC_DESC_CTRL_6);
writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
adpt->base + EMAC_DESC_CTRL_4);
writel(0, adpt->base + EMAC_DESC_CTRL_11);
/* Load all of the base addresses above and ensure that triggering HW to
* read ring pointers is flushed
*/
writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
}
/* Config transmit parameters */
static void emac_mac_tx_config(struct emac_adapter *adpt)
{
u32 val;
writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
NUM_TPD_BURST_PREF_BMSK;
val |= TXQ_MODE | LS_8023_SP;
val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
NUM_TXF_BURST_PREF_BMSK;
writel(val, adpt->base + EMAC_TXQ_CTRL_0);
emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
(TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
}
/* Config receive parameters */
static void emac_mac_rx_config(struct emac_adapter *adpt)
{
u32 val;
val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
NUM_RFD_BURST_PREF_BMSK;
val |= (SP_IPV6 | CUT_THRU_EN);
writel(val, adpt->base + EMAC_RXQ_CTRL_0);
val = readl(adpt->base + EMAC_RXQ_CTRL_1);
val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
RFD_PREF_UP_THRESHOLD_BMSK);
val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
(RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
(RFD_PREF_UP_TH << RFD_PREF_UP_THRESHOLD_SHFT);
writel(val, adpt->base + EMAC_RXQ_CTRL_1);
val = readl(adpt->base + EMAC_RXQ_CTRL_2);
val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
val |= (RXF_DOF_THRESFHOLD << RXF_DOF_THRESHOLD_SHFT) |
(RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
writel(val, adpt->base + EMAC_RXQ_CTRL_2);
val = readl(adpt->base + EMAC_RXQ_CTRL_3);
val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
val |= RXD_TH << RXD_THRESHOLD_SHFT;
writel(val, adpt->base + EMAC_RXQ_CTRL_3);
}
/* Config dma */
static void emac_mac_dma_config(struct emac_adapter *adpt)
{
u32 dma_ctrl = DMAR_REQ_PRI;
switch (adpt->dma_order) {
case emac_dma_ord_in:
dma_ctrl |= IN_ORDER_MODE;
break;
case emac_dma_ord_enh:
dma_ctrl |= ENH_ORDER_MODE;
break;
case emac_dma_ord_out:
dma_ctrl |= OUT_ORDER_MODE;
break;
default:
break;
}
dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
REGRDBLEN_BMSK;
dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
REGWRBLEN_BMSK;
dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
DMAR_DLY_CNT_BMSK;
dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
DMAW_DLY_CNT_BMSK;
/* config DMA and ensure that configuration is flushed to HW */
writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
}
/* set MAC address */
static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
{
u32 sta;
/* for example: 00-A0-C6-11-22-33
* 0<-->C6112233, 1<-->00A0.
*/
/* low 32bit word */
sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
(((u32)addr[4]) << 8) | (((u32)addr[5]));
writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
/* hight 32bit word */
sta = (((u32)addr[0]) << 8) | (u32)addr[1];
writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
}
static void emac_mac_config(struct emac_adapter *adpt)
{
struct net_device *netdev = adpt->netdev;
unsigned int max_frame;
u32 val;
emac_set_mac_address(adpt, netdev->dev_addr);
max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
emac_mac_dma_rings_config(adpt);
writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
emac_mac_tx_config(adpt);
emac_mac_rx_config(adpt);
emac_mac_dma_config(adpt);
val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
val |= MAX_BTYPE;
writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
}
void emac_mac_reset(struct emac_adapter *adpt)
{
emac_mac_stop(adpt);
emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
usleep_range(100, 150); /* reset may take up to 100usec */
/* interrupt clear-on-read */
emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
}
void emac_mac_start(struct emac_adapter *adpt)
{
struct phy_device *phydev = adpt->phydev;
u32 mac, csr1;
/* enable tx queue */
emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
/* enable rx queue */
emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
/* enable mac control */
mac = readl(adpt->base + EMAC_MAC_CTRL);
csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
mac |= TXEN | RXEN; /* enable RX/TX */
/* Configure MAC flow control to match the PHY's settings. */
if (phydev->pause)
mac |= RXFC;
if (phydev->pause != phydev->asym_pause)
mac |= TXFC;
/* setup link speed */
mac &= ~SPEED_MASK;
if (phydev->speed == SPEED_1000) {
mac |= SPEED(2);
csr1 |= FREQ_MODE;
} else {
mac |= SPEED(1);
csr1 &= ~FREQ_MODE;
}
if (phydev->duplex == DUPLEX_FULL)
mac |= FULLD;
else
mac &= ~FULLD;
/* other parameters */
mac |= (CRCE | PCRCE);
mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
mac |= BROAD_EN;
mac |= FLCHK;
mac &= ~RX_CHKSUM_EN;
mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
DEBUG_MODE | SINGLE_PAUSE_MODE);
writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
/* enable interrupt read clear, low power sleep mode and
* the irq moderators
*/
writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
emac_mac_mode_config(adpt);
emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
(HEADER_ENABLE | HEADER_CNT_EN), 0);
emac_reg_update32(adpt->csr + EMAC_EMAC_WRAPPER_CSR2, 0, WOL_EN);
}
void emac_mac_stop(struct emac_adapter *adpt)
{
emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
}
/* Free all descriptors of given transmit queue */
static void emac_tx_q_descs_free(struct emac_adapter *adpt)
{
struct emac_tx_queue *tx_q = &adpt->tx_q;
unsigned int i;
size_t size;
/* ring already cleared, nothing to do */
if (!tx_q->tpd.tpbuff)
return;
for (i = 0; i < tx_q->tpd.count; i++) {
struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
if (tpbuf->dma_addr) {
dma_unmap_single(adpt->netdev->dev.parent,
tpbuf->dma_addr, tpbuf->length,
DMA_TO_DEVICE);
tpbuf->dma_addr = 0;
}
if (tpbuf->skb) {
dev_kfree_skb_any(tpbuf->skb);
tpbuf->skb = NULL;
}
}
size = sizeof(struct emac_buffer) * tx_q->tpd.count;
memset(tx_q->tpd.tpbuff, 0, size);
/* clear the descriptor ring */
memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
tx_q->tpd.consume_idx = 0;
tx_q->tpd.produce_idx = 0;
}
/* Free all descriptors of given receive queue */
static void emac_rx_q_free_descs(struct emac_adapter *adpt)
{
struct device *dev = adpt->netdev->dev.parent;
struct emac_rx_queue *rx_q = &adpt->rx_q;
unsigned int i;
size_t size;
/* ring already cleared, nothing to do */
if (!rx_q->rfd.rfbuff)
return;
for (i = 0; i < rx_q->rfd.count; i++) {
struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
if (rfbuf->dma_addr) {
dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
DMA_FROM_DEVICE);
rfbuf->dma_addr = 0;
}
if (rfbuf->skb) {
dev_kfree_skb(rfbuf->skb);
rfbuf->skb = NULL;
}
}
size = sizeof(struct emac_buffer) * rx_q->rfd.count;
memset(rx_q->rfd.rfbuff, 0, size);
/* clear the descriptor rings */
memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
rx_q->rrd.produce_idx = 0;
rx_q->rrd.consume_idx = 0;
memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
rx_q->rfd.produce_idx = 0;
rx_q->rfd.consume_idx = 0;
}
/* Free all buffers associated with given transmit queue */
static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
{
struct emac_tx_queue *tx_q = &adpt->tx_q;
emac_tx_q_descs_free(adpt);
kfree(tx_q->tpd.tpbuff);
tx_q->tpd.tpbuff = NULL;
tx_q->tpd.v_addr = NULL;
tx_q->tpd.dma_addr = 0;
tx_q->tpd.size = 0;
}
/* Allocate TX descriptor ring for the given transmit queue */
static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
struct emac_tx_queue *tx_q)
{
struct emac_ring_header *ring_header = &adpt->ring_header;
size_t size;
size = sizeof(struct emac_buffer) * tx_q->tpd.count;
tx_q->tpd.tpbuff = kzalloc(size, GFP_KERNEL);
if (!tx_q->tpd.tpbuff)
return -ENOMEM;
tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
ring_header->used += ALIGN(tx_q->tpd.size, 8);
tx_q->tpd.produce_idx = 0;
tx_q->tpd.consume_idx = 0;
return 0;
}
/* Free all buffers associated with given transmit queue */
static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
{
struct emac_rx_queue *rx_q = &adpt->rx_q;
emac_rx_q_free_descs(adpt);
kfree(rx_q->rfd.rfbuff);
rx_q->rfd.rfbuff = NULL;
rx_q->rfd.v_addr = NULL;
rx_q->rfd.dma_addr = 0;
rx_q->rfd.size = 0;
rx_q->rrd.v_addr = NULL;
rx_q->rrd.dma_addr = 0;
rx_q->rrd.size = 0;
}
/* Allocate RX descriptor rings for the given receive queue */
static int emac_rx_descs_alloc(struct emac_adapter *adpt)
{
struct emac_ring_header *ring_header = &adpt->ring_header;
struct emac_rx_queue *rx_q = &adpt->rx_q;
size_t size;
size = sizeof(struct emac_buffer) * rx_q->rfd.count;
rx_q->rfd.rfbuff = kzalloc(size, GFP_KERNEL);
if (!rx_q->rfd.rfbuff)
return -ENOMEM;
rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
rx_q->rrd.v_addr = ring_header->v_addr + ring_header->used;
ring_header->used += ALIGN(rx_q->rrd.size, 8);
rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
rx_q->rfd.v_addr = ring_header->v_addr + ring_header->used;
ring_header->used += ALIGN(rx_q->rfd.size, 8);
rx_q->rrd.produce_idx = 0;
rx_q->rrd.consume_idx = 0;
rx_q->rfd.produce_idx = 0;
rx_q->rfd.consume_idx = 0;
return 0;
}
/* Allocate all TX and RX descriptor rings */
int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
{
struct emac_ring_header *ring_header = &adpt->ring_header;
struct device *dev = adpt->netdev->dev.parent;
unsigned int num_tx_descs = adpt->tx_desc_cnt;
unsigned int num_rx_descs = adpt->rx_desc_cnt;
int ret;
adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
/* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
* hence the additional padding bytes are allocated.
*/
ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
num_rx_descs * (adpt->rfd_size * 4) +
num_rx_descs * (adpt->rrd_size * 4) +
8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
ring_header->used = 0;
ring_header->v_addr = dma_zalloc_coherent(dev, ring_header->size,
&ring_header->dma_addr,
GFP_KERNEL);
if (!ring_header->v_addr)
return -ENOMEM;
ring_header->used = ALIGN(ring_header->dma_addr, 8) -
ring_header->dma_addr;
ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
if (ret) {
netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
goto err_alloc_tx;
}
ret = emac_rx_descs_alloc(adpt);
if (ret) {
netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
goto err_alloc_rx;
}
return 0;
err_alloc_rx:
emac_tx_q_bufs_free(adpt);
err_alloc_tx:
dma_free_coherent(dev, ring_header->size,
ring_header->v_addr, ring_header->dma_addr);
ring_header->v_addr = NULL;
ring_header->dma_addr = 0;
ring_header->size = 0;
ring_header->used = 0;
return ret;
}
/* Free all TX and RX descriptor rings */
void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
{
struct emac_ring_header *ring_header = &adpt->ring_header;
struct device *dev = adpt->netdev->dev.parent;
emac_tx_q_bufs_free(adpt);
emac_rx_q_bufs_free(adpt);
dma_free_coherent(dev, ring_header->size,
ring_header->v_addr, ring_header->dma_addr);
ring_header->v_addr = NULL;
ring_header->dma_addr = 0;
ring_header->size = 0;
ring_header->used = 0;
}
/* Initialize descriptor rings */
static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
{
unsigned int i;
adpt->tx_q.tpd.produce_idx = 0;
adpt->tx_q.tpd.consume_idx = 0;
for (i = 0; i < adpt->tx_q.tpd.count; i++)
adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
adpt->rx_q.rrd.produce_idx = 0;
adpt->rx_q.rrd.consume_idx = 0;
adpt->rx_q.rfd.produce_idx = 0;
adpt->rx_q.rfd.consume_idx = 0;
for (i = 0; i < adpt->rx_q.rfd.count; i++)
adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
}
/* Produce new receive free descriptor */
static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
struct emac_rx_queue *rx_q,
dma_addr_t addr)
{
u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
*(hw_rfd++) = lower_32_bits(addr);
*hw_rfd = upper_32_bits(addr);
if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
rx_q->rfd.produce_idx = 0;
}
/* Fill up receive queue's RFD with preallocated receive buffers */
static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
struct emac_rx_queue *rx_q)
{
struct emac_buffer *curr_rxbuf;
struct emac_buffer *next_rxbuf;
unsigned int count = 0;
u32 next_produce_idx;
next_produce_idx = rx_q->rfd.produce_idx + 1;
if (next_produce_idx == rx_q->rfd.count)
next_produce_idx = 0;
curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
/* this always has a blank rx_buffer*/
while (!next_rxbuf->dma_addr) {
struct sk_buff *skb;
int ret;
skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
if (!skb)
break;
curr_rxbuf->dma_addr =
dma_map_single(adpt->netdev->dev.parent, skb->data,
adpt->rxbuf_size, DMA_FROM_DEVICE);
ret = dma_mapping_error(adpt->netdev->dev.parent,
curr_rxbuf->dma_addr);
if (ret) {
dev_kfree_skb(skb);
break;
}
curr_rxbuf->skb = skb;
curr_rxbuf->length = adpt->rxbuf_size;
emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
next_produce_idx = rx_q->rfd.produce_idx + 1;
if (next_produce_idx == rx_q->rfd.count)
next_produce_idx = 0;
curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
count++;
}
if (count) {
u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
rx_q->produce_mask;
emac_reg_update32(adpt->base + rx_q->produce_reg,
rx_q->produce_mask, prod_idx);
}
}
static void emac_adjust_link(struct net_device *netdev)
{
struct emac_adapter *adpt = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
if (phydev->link)
emac_mac_start(adpt);
else
emac_mac_stop(adpt);
phy_print_status(phydev);
}
/* Bringup the interface/HW */
int emac_mac_up(struct emac_adapter *adpt)
{
struct net_device *netdev = adpt->netdev;
struct emac_irq *irq = &adpt->irq;
int ret;
emac_mac_rx_tx_ring_reset_all(adpt);
emac_mac_config(adpt);
ret = request_irq(irq->irq, emac_isr, 0, EMAC_MAC_IRQ_RES, irq);
if (ret) {
netdev_err(adpt->netdev, "could not request %s irq\n",
EMAC_MAC_IRQ_RES);
return ret;
}
emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
PHY_INTERFACE_MODE_SGMII);
if (ret) {
netdev_err(adpt->netdev, "could not connect phy\n");
free_irq(irq->irq, irq);
return ret;
}
/* enable mac irq */
writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
/* Enable pause frames. Without this feature, the EMAC has been shown
* to receive (and drop) frames with FCS errors at gigabit connections.
*/
adpt->phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
adpt->phydev->advertising |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
adpt->phydev->irq = PHY_IGNORE_INTERRUPT;
phy_start(adpt->phydev);
napi_enable(&adpt->rx_q.napi);
netif_start_queue(netdev);
return 0;
}
/* Bring down the interface/HW */
void emac_mac_down(struct emac_adapter *adpt)
{
struct net_device *netdev = adpt->netdev;
netif_stop_queue(netdev);
napi_disable(&adpt->rx_q.napi);
phy_stop(adpt->phydev);
/* Interrupts must be disabled before the PHY is disconnected, to
* avoid a race condition where adjust_link is null when we get
* an interrupt.
*/
writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
writel(0, adpt->base + EMAC_INT_MASK);
synchronize_irq(adpt->irq.irq);
free_irq(adpt->irq.irq, &adpt->irq);
phy_disconnect(adpt->phydev);
emac_mac_reset(adpt);
emac_tx_q_descs_free(adpt);
netdev_reset_queue(adpt->netdev);
emac_rx_q_free_descs(adpt);
}
/* Consume next received packet descriptor */
static bool emac_rx_process_rrd(struct emac_adapter *adpt,
struct emac_rx_queue *rx_q,
struct emac_rrd *rrd)
{
u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
rrd->word[3] = *(hw_rrd + 3);
if (!RRD_UPDT(rrd))
return false;
rrd->word[4] = 0;
rrd->word[5] = 0;
rrd->word[0] = *(hw_rrd++);
rrd->word[1] = *(hw_rrd++);
rrd->word[2] = *(hw_rrd++);
if (unlikely(RRD_NOR(rrd) != 1)) {
netdev_err(adpt->netdev,
"error: multi-RFD not support yet! nor:%lu\n",
RRD_NOR(rrd));
}
/* mark rrd as processed */
RRD_UPDT_SET(rrd, 0);
*hw_rrd = rrd->word[3];
if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
rx_q->rrd.consume_idx = 0;
return true;
}
/* Produce new transmit descriptor */
static void emac_tx_tpd_create(struct emac_adapter *adpt,
struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
{
u32 *hw_tpd;
tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
tx_q->tpd.produce_idx = 0;
*(hw_tpd++) = tpd->word[0];
*(hw_tpd++) = tpd->word[1];
*(hw_tpd++) = tpd->word[2];
*hw_tpd = tpd->word[3];
}
/* Mark the last transmit descriptor as such (for the transmit packet) */
static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
struct emac_tx_queue *tx_q)
{
u32 *hw_tpd =
EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
u32 tmp_tpd;
tmp_tpd = *(hw_tpd + 1);
tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
*(hw_tpd + 1) = tmp_tpd;
}
static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
{
struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
u32 consume_idx = RRD_SI(rrd);
unsigned int i;
for (i = 0; i < RRD_NOR(rrd); i++) {
rfbuf[consume_idx].skb = NULL;
if (++consume_idx == rx_q->rfd.count)
consume_idx = 0;
}
rx_q->rfd.consume_idx = consume_idx;
rx_q->rfd.process_idx = consume_idx;
}
/* Push the received skb to upper layers */
static void emac_receive_skb(struct emac_rx_queue *rx_q,
struct sk_buff *skb,
u16 vlan_tag, bool vlan_flag)
{
if (vlan_flag) {
u16 vlan;
EMAC_TAG_TO_VLAN(vlan_tag, vlan);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
}
napi_gro_receive(&rx_q->napi, skb);
}
/* Process receive event */
void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
int *num_pkts, int max_pkts)
{
u32 proc_idx, hw_consume_idx, num_consume_pkts;
struct net_device *netdev = adpt->netdev;
struct emac_buffer *rfbuf;
unsigned int count = 0;
struct emac_rrd rrd;
struct sk_buff *skb;
u32 reg;
reg = readl_relaxed(adpt->base + rx_q->consume_reg);
hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
(hw_consume_idx - rx_q->rrd.consume_idx) :
(hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
do {
if (!num_consume_pkts)
break;
if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
break;
if (likely(RRD_NOR(&rrd) == 1)) {
/* good receive */
rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
dma_unmap_single(adpt->netdev->dev.parent,
rfbuf->dma_addr, rfbuf->length,
DMA_FROM_DEVICE);
rfbuf->dma_addr = 0;
skb = rfbuf->skb;
} else {
netdev_err(adpt->netdev,
"error: multi-RFD not support yet!\n");
break;
}
emac_rx_rfd_clean(rx_q, &rrd);
num_consume_pkts--;
count++;
/* Due to a HW issue in L4 check sum detection (UDP/TCP frags
* with DF set are marked as error), drop packets based on the
* error mask rather than the summary bit (ignoring L4F errors)
*/
if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
netif_dbg(adpt, rx_status, adpt->netdev,
"Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
rrd.word[0], rrd.word[1],
rrd.word[2], rrd.word[3]);
dev_kfree_skb(skb);
continue;
}
skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
skb->dev = netdev;
skb->protocol = eth_type_trans(skb, skb->dev);
if (netdev->features & NETIF_F_RXCSUM)
skb->ip_summed = RRD_L4F(&rrd) ?
CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
(bool)RRD_CVTAG(&rrd));
netdev->last_rx = jiffies;
(*num_pkts)++;
} while (*num_pkts < max_pkts);
if (count) {
proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
rx_q->process_mask;
emac_reg_update32(adpt->base + rx_q->process_reg,
rx_q->process_mask, proc_idx);
emac_mac_rx_descs_refill(adpt, rx_q);
}
}
/* get the number of free transmit descriptors */
static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
{
u32 produce_idx = tx_q->tpd.produce_idx;
u32 consume_idx = tx_q->tpd.consume_idx;
return (consume_idx > produce_idx) ?
(consume_idx - produce_idx - 1) :
(tx_q->tpd.count + consume_idx - produce_idx - 1);
}
/* Process transmit event */
void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
{
u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
struct emac_buffer *tpbuf;
hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
while (tx_q->tpd.consume_idx != hw_consume_idx) {
tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
if (tpbuf->dma_addr) {
dma_unmap_page(adpt->netdev->dev.parent,
tpbuf->dma_addr, tpbuf->length,
DMA_TO_DEVICE);
tpbuf->dma_addr = 0;
}
if (tpbuf->skb) {
pkts_compl++;
bytes_compl += tpbuf->skb->len;
dev_kfree_skb_irq(tpbuf->skb);
tpbuf->skb = NULL;
}
if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
tx_q->tpd.consume_idx = 0;
}
netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
if (netif_queue_stopped(adpt->netdev))
if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
netif_wake_queue(adpt->netdev);
}
/* Initialize all queue data structures */
void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
struct emac_adapter *adpt)
{
adpt->rx_q.netdev = adpt->netdev;
adpt->rx_q.produce_reg = EMAC_MAILBOX_0;
adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
adpt->rx_q.process_reg = EMAC_MAILBOX_0;
adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
adpt->rx_q.consume_reg = EMAC_MAILBOX_3;
adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
adpt->rx_q.irq = &adpt->irq;
adpt->rx_q.intr = adpt->irq.mask & ISR_RX_PKT;
adpt->tx_q.produce_reg = EMAC_MAILBOX_15;
adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
adpt->tx_q.consume_reg = EMAC_MAILBOX_2;
adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
}
/* Fill up transmit descriptors with TSO and Checksum offload information */
static int emac_tso_csum(struct emac_adapter *adpt,
struct emac_tx_queue *tx_q,
struct sk_buff *skb,
struct emac_tpd *tpd)
{
unsigned int hdr_len;
int ret;
if (skb_is_gso(skb)) {
if (skb_header_cloned(skb)) {
ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (unlikely(ret))
return ret;
}
if (skb->protocol == htons(ETH_P_IP)) {
u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
+ ntohs(ip_hdr(skb)->tot_len);
if (skb->len > pkt_len)
pskb_trim(skb, pkt_len);
}
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
if (unlikely(skb->len == hdr_len)) {
/* we only need to do csum */
netif_warn(adpt, tx_err, adpt->netdev,
"tso not needed for packet with 0 data\n");
goto do_csum;
}
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check =
~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
TPD_IPV4_SET(tpd, 1);
}
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
/* ipv6 tso need an extra tpd */
struct emac_tpd extra_tpd;
memset(tpd, 0, sizeof(*tpd));
memset(&extra_tpd, 0, sizeof(extra_tpd));
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
TPD_PKT_LEN_SET(&extra_tpd, skb->len);
TPD_LSO_SET(&extra_tpd, 1);
TPD_LSOV_SET(&extra_tpd, 1);
emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
TPD_LSOV_SET(tpd, 1);
}
TPD_LSO_SET(tpd, 1);
TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
return 0;
}
do_csum:
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
unsigned int css, cso;
cso = skb_transport_offset(skb);
if (unlikely(cso & 0x1)) {
netdev_err(adpt->netdev,
"error: payload offset should be even\n");
return -EINVAL;
}
css = cso + skb->csum_offset;
TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
TPD_CSX_SET(tpd, 1);
}
return 0;
}
/* Fill up transmit descriptors */
static void emac_tx_fill_tpd(struct emac_adapter *adpt,
struct emac_tx_queue *tx_q, struct sk_buff *skb,
struct emac_tpd *tpd)
{
unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
unsigned int first = tx_q->tpd.produce_idx;
unsigned int len = skb_headlen(skb);
struct emac_buffer *tpbuf = NULL;
unsigned int mapped_len = 0;
unsigned int i;
int count = 0;
int ret;
/* if Large Segment Offload is (in TCP Segmentation Offload struct) */
if (TPD_LSO(tpd)) {
mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
tpbuf->length = mapped_len;
tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
virt_to_page(skb->data),
offset_in_page(skb->data),
tpbuf->length,
DMA_TO_DEVICE);
ret = dma_mapping_error(adpt->netdev->dev.parent,
tpbuf->dma_addr);
if (ret)
goto error;
TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
TPD_BUF_LEN_SET(tpd, tpbuf->length);
emac_tx_tpd_create(adpt, tx_q, tpd);
count++;
}
if (mapped_len < len) {
tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
tpbuf->length = len - mapped_len;
tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
virt_to_page(skb->data +
mapped_len),
offset_in_page(skb->data +
mapped_len),
tpbuf->length, DMA_TO_DEVICE);
ret = dma_mapping_error(adpt->netdev->dev.parent,
tpbuf->dma_addr);
if (ret)
goto error;
TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
TPD_BUF_LEN_SET(tpd, tpbuf->length);
emac_tx_tpd_create(adpt, tx_q, tpd);
count++;
}
for (i = 0; i < nr_frags; i++) {
struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[i];
tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
tpbuf->length = frag->size;
tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
frag->page.p, frag->page_offset,
tpbuf->length, DMA_TO_DEVICE);
ret = dma_mapping_error(adpt->netdev->dev.parent,
tpbuf->dma_addr);
if (ret)
goto error;
TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
TPD_BUF_LEN_SET(tpd, tpbuf->length);
emac_tx_tpd_create(adpt, tx_q, tpd);
count++;
}
/* The last tpd */
wmb();
emac_tx_tpd_mark_last(adpt, tx_q);
/* The last buffer info contain the skb address,
* so it will be freed after unmap
*/
tpbuf->skb = skb;
return;
error:
/* One of the memory mappings failed, so undo everything */
tx_q->tpd.produce_idx = first;
while (count--) {
tpbuf = GET_TPD_BUFFER(tx_q, first);
dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
tpbuf->length, DMA_TO_DEVICE);
tpbuf->dma_addr = 0;
tpbuf->length = 0;
if (++first == tx_q->tpd.count)
first = 0;
}
dev_kfree_skb(skb);
}
/* Transmit the packet using specified transmit queue */
int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
struct sk_buff *skb)
{
struct emac_tpd tpd;
u32 prod_idx;
memset(&tpd, 0, sizeof(tpd));
if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb_vlan_tag_present(skb)) {
u16 tag;
EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
TPD_CVLAN_TAG_SET(&tpd, tag);
TPD_INSTC_SET(&tpd, 1);
}
if (skb_network_offset(skb) != ETH_HLEN)
TPD_TYP_SET(&tpd, 1);
emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
netdev_sent_queue(adpt->netdev, skb->len);
/* Make sure the are enough free descriptors to hold one
* maximum-sized SKB. We need one desc for each fragment,
* one for the checksum (emac_tso_csum), one for TSO, and
* and one for the SKB header.
*/
if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
netif_stop_queue(adpt->netdev);
/* update produce idx */
prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
tx_q->produce_mask;
emac_reg_update32(adpt->base + tx_q->produce_reg,
tx_q->produce_mask, prod_idx);
return NETDEV_TX_OK;
}