tegrakernel/kernel/kernel-4.9/drivers/net/ethernet/sfc/ef10.c

5584 lines
160 KiB
C

/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2012-2013 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "net_driver.h"
#include "ef10_regs.h"
#include "io.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "nic.h"
#include "workarounds.h"
#include "selftest.h"
#include "ef10_sriov.h"
#include <linux/in.h>
#include <linux/jhash.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
/* Hardware control for EF10 architecture including 'Huntington'. */
#define EFX_EF10_DRVGEN_EV 7
enum {
EFX_EF10_TEST = 1,
EFX_EF10_REFILL,
};
/* The reserved RSS context value */
#define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
/* The maximum size of a shared RSS context */
/* TODO: this should really be from the mcdi protocol export */
#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
/* The filter table(s) are managed by firmware and we have write-only
* access. When removing filters we must identify them to the
* firmware by a 64-bit handle, but this is too wide for Linux kernel
* interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
* be able to tell in advance whether a requested insertion will
* replace an existing filter. Therefore we maintain a software hash
* table, which should be at least as large as the hardware hash
* table.
*
* Huntington has a single 8K filter table shared between all filter
* types and both ports.
*/
#define HUNT_FILTER_TBL_ROWS 8192
#define EFX_EF10_FILTER_ID_INVALID 0xffff
#define EFX_EF10_FILTER_DEV_UC_MAX 32
#define EFX_EF10_FILTER_DEV_MC_MAX 256
/* VLAN list entry */
struct efx_ef10_vlan {
struct list_head list;
u16 vid;
};
/* Per-VLAN filters information */
struct efx_ef10_filter_vlan {
struct list_head list;
u16 vid;
u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
u16 ucdef;
u16 bcast;
u16 mcdef;
};
struct efx_ef10_dev_addr {
u8 addr[ETH_ALEN];
};
struct efx_ef10_filter_table {
/* The MCDI match masks supported by this fw & hw, in order of priority */
u32 rx_match_mcdi_flags[
MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
unsigned int rx_match_count;
struct {
unsigned long spec; /* pointer to spec plus flag bits */
/* BUSY flag indicates that an update is in progress. AUTO_OLD is
* used to mark and sweep MAC filters for the device address lists.
*/
#define EFX_EF10_FILTER_FLAG_BUSY 1UL
#define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
#define EFX_EF10_FILTER_FLAGS 3UL
u64 handle; /* firmware handle */
} *entry;
wait_queue_head_t waitq;
/* Shadow of net_device address lists, guarded by mac_lock */
struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
int dev_uc_count;
int dev_mc_count;
bool uc_promisc;
bool mc_promisc;
/* Whether in multicast promiscuous mode when last changed */
bool mc_promisc_last;
bool vlan_filter;
struct list_head vlan_list;
};
/* An arbitrary search limit for the software hash table */
#define EFX_EF10_FILTER_SEARCH_LIMIT 200
static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
static void efx_ef10_filter_table_remove(struct efx_nic *efx);
static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
struct efx_ef10_filter_vlan *vlan);
static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
{
efx_dword_t reg;
efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
}
static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
{
int bar;
bar = efx->type->mem_bar;
return resource_size(&efx->pci_dev->resource[bar]);
}
static bool efx_ef10_is_vf(struct efx_nic *efx)
{
return efx->type->is_vf;
}
static int efx_ef10_get_pf_index(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < sizeof(outbuf))
return -EIO;
nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
return 0;
}
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_get_vf_index(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < sizeof(outbuf))
return -EIO;
nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
return 0;
}
#endif
static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V2_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
netif_err(efx, drv, efx->net_dev,
"unable to read datapath firmware capabilities\n");
return -EIO;
}
nic_data->datapath_caps =
MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
GET_CAPABILITIES_V2_OUT_FLAGS2);
nic_data->piobuf_size = MCDI_WORD(outbuf,
GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
} else {
nic_data->datapath_caps2 = 0;
nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
}
/* record the DPCPU firmware IDs to determine VEB vswitching support.
*/
nic_data->rx_dpcpu_fw_id =
MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
nic_data->tx_dpcpu_fw_id =
MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
if (!(nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
netif_err(efx, probe, efx->net_dev,
"current firmware does not support an RX prefix\n");
return -ENODEV;
}
return 0;
}
static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc)
return rc;
rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
return rc > 0 ? rc : -ERANGE;
}
static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
unsigned int implemented;
unsigned int enabled;
int rc;
nic_data->workaround_35388 = false;
nic_data->workaround_61265 = false;
rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
if (rc == -ENOSYS) {
/* Firmware without GET_WORKAROUNDS - not a problem. */
rc = 0;
} else if (rc == 0) {
/* Bug61265 workaround is always enabled if implemented. */
if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
nic_data->workaround_61265 = true;
if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
nic_data->workaround_35388 = true;
} else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
/* Workaround is implemented but not enabled.
* Try to enable it.
*/
rc = efx_mcdi_set_workaround(efx,
MC_CMD_WORKAROUND_BUG35388,
true, NULL);
if (rc == 0)
nic_data->workaround_35388 = true;
/* If we failed to set the workaround just carry on. */
rc = 0;
}
}
netif_dbg(efx, probe, efx->net_dev,
"workaround for bug 35388 is %sabled\n",
nic_data->workaround_35388 ? "en" : "dis");
netif_dbg(efx, probe, efx->net_dev,
"workaround for bug 61265 is %sabled\n",
nic_data->workaround_61265 ? "en" : "dis");
return rc;
}
static void efx_ef10_process_timer_config(struct efx_nic *efx,
const efx_dword_t *data)
{
unsigned int max_count;
if (EFX_EF10_WORKAROUND_61265(efx)) {
efx->timer_quantum_ns = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
efx->timer_max_ns = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
} else if (EFX_EF10_WORKAROUND_35388(efx)) {
efx->timer_quantum_ns = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
max_count = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
efx->timer_max_ns = max_count * efx->timer_quantum_ns;
} else {
efx->timer_quantum_ns = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
max_count = MCDI_DWORD(data,
GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
efx->timer_max_ns = max_count * efx->timer_quantum_ns;
}
netif_dbg(efx, probe, efx->net_dev,
"got timer properties from MC: quantum %u ns; max %u ns\n",
efx->timer_quantum_ns, efx->timer_max_ns);
}
static int efx_ef10_get_timer_config(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
int rc;
rc = efx_ef10_get_timer_workarounds(efx);
if (rc)
return rc;
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc == 0) {
efx_ef10_process_timer_config(efx, outbuf);
} else if (rc == -ENOSYS || rc == -EPERM) {
/* Not available - fall back to Huntington defaults. */
unsigned int quantum;
rc = efx_ef10_get_sysclk_freq(efx);
if (rc < 0)
return rc;
quantum = 1536000 / rc; /* 1536 cycles */
efx->timer_quantum_ns = quantum;
efx->timer_max_ns = efx->type->timer_period_max * quantum;
rc = 0;
} else {
efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
NULL, 0, rc);
}
return rc;
}
static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
return -EIO;
ether_addr_copy(mac_address,
MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
return 0;
}
static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
size_t outlen;
int num_addrs, rc;
MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
EVB_PORT_ID_ASSIGNED);
rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
return -EIO;
num_addrs = MCDI_DWORD(outbuf,
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
WARN_ON(num_addrs != 1);
ether_addr_copy(mac_address,
MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
return 0;
}
static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
return sprintf(buf, "%d\n",
((efx->mcdi->fn_flags) &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
? 1 : 0);
}
static ssize_t efx_ef10_show_primary_flag(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
return sprintf(buf, "%d\n",
((efx->mcdi->fn_flags) &
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
? 1 : 0);
}
static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_ef10_vlan *vlan;
WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
list_for_each_entry(vlan, &nic_data->vlan_list, list) {
if (vlan->vid == vid)
return vlan;
}
return NULL;
}
static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_ef10_vlan *vlan;
int rc;
mutex_lock(&nic_data->vlan_lock);
vlan = efx_ef10_find_vlan(efx, vid);
if (vlan) {
/* We add VID 0 on init. 8021q adds it on module init
* for all interfaces with VLAN filtring feature.
*/
if (vid == 0)
goto done_unlock;
netif_warn(efx, drv, efx->net_dev,
"VLAN %u already added\n", vid);
rc = -EALREADY;
goto fail_exist;
}
rc = -ENOMEM;
vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
if (!vlan)
goto fail_alloc;
vlan->vid = vid;
list_add_tail(&vlan->list, &nic_data->vlan_list);
if (efx->filter_state) {
mutex_lock(&efx->mac_lock);
down_write(&efx->filter_sem);
rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
up_write(&efx->filter_sem);
mutex_unlock(&efx->mac_lock);
if (rc)
goto fail_filter_add_vlan;
}
done_unlock:
mutex_unlock(&nic_data->vlan_lock);
return 0;
fail_filter_add_vlan:
list_del(&vlan->list);
kfree(vlan);
fail_alloc:
fail_exist:
mutex_unlock(&nic_data->vlan_lock);
return rc;
}
static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
struct efx_ef10_vlan *vlan)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
if (efx->filter_state) {
down_write(&efx->filter_sem);
efx_ef10_filter_del_vlan(efx, vlan->vid);
up_write(&efx->filter_sem);
}
list_del(&vlan->list);
kfree(vlan);
}
static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_ef10_vlan *vlan;
int rc = 0;
/* 8021q removes VID 0 on module unload for all interfaces
* with VLAN filtering feature. We need to keep it to receive
* untagged traffic.
*/
if (vid == 0)
return 0;
mutex_lock(&nic_data->vlan_lock);
vlan = efx_ef10_find_vlan(efx, vid);
if (!vlan) {
netif_err(efx, drv, efx->net_dev,
"VLAN %u to be deleted not found\n", vid);
rc = -ENOENT;
} else {
efx_ef10_del_vlan_internal(efx, vlan);
}
mutex_unlock(&nic_data->vlan_lock);
return rc;
}
static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_ef10_vlan *vlan, *next_vlan;
mutex_lock(&nic_data->vlan_lock);
list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
efx_ef10_del_vlan_internal(efx, vlan);
mutex_unlock(&nic_data->vlan_lock);
}
static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
NULL);
static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
static int efx_ef10_probe(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data;
struct net_device *net_dev = efx->net_dev;
int i, rc;
/* We can have one VI for each 8K region. However, until we
* use TX option descriptors we need two TX queues per channel.
*/
efx->max_channels = min_t(unsigned int,
EFX_MAX_CHANNELS,
efx_ef10_mem_map_size(efx) /
(EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
efx->max_tx_channels = efx->max_channels;
if (WARN_ON(efx->max_channels == 0))
return -EIO;
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
if (!nic_data)
return -ENOMEM;
efx->nic_data = nic_data;
/* we assume later that we can copy from this buffer in dwords */
BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
if (rc)
goto fail1;
/* Get the MC's warm boot count. In case it's rebooting right
* now, be prepared to retry.
*/
i = 0;
for (;;) {
rc = efx_ef10_get_warm_boot_count(efx);
if (rc >= 0)
break;
if (++i == 5)
goto fail2;
ssleep(1);
}
nic_data->warm_boot_count = rc;
nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
/* In case we're recovering from a crash (kexec), we want to
* cancel any outstanding request by the previous user of this
* function. We send a special message using the least
* significant bits of the 'high' (doorbell) register.
*/
_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
rc = efx_mcdi_init(efx);
if (rc)
goto fail2;
/* Reset (most) configuration for this function */
rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
if (rc)
goto fail3;
/* Enable event logging */
rc = efx_mcdi_log_ctrl(efx, true, false, 0);
if (rc)
goto fail3;
rc = device_create_file(&efx->pci_dev->dev,
&dev_attr_link_control_flag);
if (rc)
goto fail3;
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
if (rc)
goto fail4;
rc = efx_ef10_get_pf_index(efx);
if (rc)
goto fail5;
rc = efx_ef10_init_datapath_caps(efx);
if (rc < 0)
goto fail5;
efx->rx_packet_len_offset =
ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
rc = efx_mcdi_port_get_number(efx);
if (rc < 0)
goto fail5;
efx->port_num = rc;
net_dev->dev_port = rc;
rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
if (rc)
goto fail5;
rc = efx_ef10_get_timer_config(efx);
if (rc < 0)
goto fail5;
rc = efx_mcdi_mon_probe(efx);
if (rc && rc != -EPERM)
goto fail5;
efx_ptp_probe(efx, NULL);
#ifdef CONFIG_SFC_SRIOV
if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
} else
#endif
ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
INIT_LIST_HEAD(&nic_data->vlan_list);
mutex_init(&nic_data->vlan_lock);
/* Add unspecified VID to support VLAN filtering being disabled */
rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
if (rc)
goto fail_add_vid_unspec;
/* If VLAN filtering is enabled, we need VID 0 to get untagged
* traffic. It is added automatically if 8021q module is loaded,
* but we can't rely on it since module may be not loaded.
*/
rc = efx_ef10_add_vlan(efx, 0);
if (rc)
goto fail_add_vid_0;
return 0;
fail_add_vid_0:
efx_ef10_cleanup_vlans(efx);
fail_add_vid_unspec:
mutex_destroy(&nic_data->vlan_lock);
efx_ptp_remove(efx);
efx_mcdi_mon_remove(efx);
fail5:
device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
fail4:
device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
fail3:
efx_mcdi_fini(efx);
fail2:
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
fail1:
kfree(nic_data);
efx->nic_data = NULL;
return rc;
}
static int efx_ef10_free_vis(struct efx_nic *efx)
{
MCDI_DECLARE_BUF_ERR(outbuf);
size_t outlen;
int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
/* -EALREADY means nothing to free, so ignore */
if (rc == -EALREADY)
rc = 0;
if (rc)
efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
rc);
return rc;
}
#ifdef EFX_USE_PIO
static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
unsigned int i;
int rc;
BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
for (i = 0; i < nic_data->n_piobufs; i++) {
MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
nic_data->piobuf_handle[i]);
rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
NULL, 0, NULL);
WARN_ON(rc);
}
nic_data->n_piobufs = 0;
}
static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
unsigned int i;
size_t outlen;
int rc = 0;
BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
for (i = 0; i < n; i++) {
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc) {
/* Don't display the MC error if we didn't have space
* for a VF.
*/
if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
0, outbuf, outlen, rc);
break;
}
if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
rc = -EIO;
break;
}
nic_data->piobuf_handle[i] =
MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
netif_dbg(efx, probe, efx->net_dev,
"allocated PIO buffer %u handle %x\n", i,
nic_data->piobuf_handle[i]);
}
nic_data->n_piobufs = i;
if (rc)
efx_ef10_free_piobufs(efx);
return rc;
}
static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
_MCDI_DECLARE_BUF(inbuf,
max(MC_CMD_LINK_PIOBUF_IN_LEN,
MC_CMD_UNLINK_PIOBUF_IN_LEN));
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
unsigned int offset, index;
int rc;
BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
memset(inbuf, 0, sizeof(inbuf));
/* Link a buffer to each VI in the write-combining mapping */
for (index = 0; index < nic_data->n_piobufs; ++index) {
MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
nic_data->piobuf_handle[index]);
MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
nic_data->pio_write_vi_base + index);
rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
NULL, 0, NULL);
if (rc) {
netif_err(efx, drv, efx->net_dev,
"failed to link VI %u to PIO buffer %u (%d)\n",
nic_data->pio_write_vi_base + index, index,
rc);
goto fail;
}
netif_dbg(efx, probe, efx->net_dev,
"linked VI %u to PIO buffer %u\n",
nic_data->pio_write_vi_base + index, index);
}
/* Link a buffer to each TX queue */
efx_for_each_channel(channel, efx) {
efx_for_each_channel_tx_queue(tx_queue, channel) {
/* We assign the PIO buffers to queues in
* reverse order to allow for the following
* special case.
*/
offset = ((efx->tx_channel_offset + efx->n_tx_channels -
tx_queue->channel->channel - 1) *
efx_piobuf_size);
index = offset / nic_data->piobuf_size;
offset = offset % nic_data->piobuf_size;
/* When the host page size is 4K, the first
* host page in the WC mapping may be within
* the same VI page as the last TX queue. We
* can only link one buffer to each VI.
*/
if (tx_queue->queue == nic_data->pio_write_vi_base) {
BUG_ON(index != 0);
rc = 0;
} else {
MCDI_SET_DWORD(inbuf,
LINK_PIOBUF_IN_PIOBUF_HANDLE,
nic_data->piobuf_handle[index]);
MCDI_SET_DWORD(inbuf,
LINK_PIOBUF_IN_TXQ_INSTANCE,
tx_queue->queue);
rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
NULL, 0, NULL);
}
if (rc) {
/* This is non-fatal; the TX path just
* won't use PIO for this queue
*/
netif_err(efx, drv, efx->net_dev,
"failed to link VI %u to PIO buffer %u (%d)\n",
tx_queue->queue, index, rc);
tx_queue->piobuf = NULL;
} else {
tx_queue->piobuf =
nic_data->pio_write_base +
index * EFX_VI_PAGE_SIZE + offset;
tx_queue->piobuf_offset = offset;
netif_dbg(efx, probe, efx->net_dev,
"linked VI %u to PIO buffer %u offset %x addr %p\n",
tx_queue->queue, index,
tx_queue->piobuf_offset,
tx_queue->piobuf);
}
}
}
return 0;
fail:
while (index--) {
MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
nic_data->pio_write_vi_base + index);
efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
NULL, 0, NULL);
}
return rc;
}
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
/* All our existing PIO buffers went away */
efx_for_each_channel(channel, efx)
efx_for_each_channel_tx_queue(tx_queue, channel)
tx_queue->piobuf = NULL;
}
#else /* !EFX_USE_PIO */
static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
return n == 0 ? 0 : -ENOBUFS;
}
static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
return 0;
}
static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
}
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
}
#endif /* EFX_USE_PIO */
static void efx_ef10_remove(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
#ifdef CONFIG_SFC_SRIOV
struct efx_ef10_nic_data *nic_data_pf;
struct pci_dev *pci_dev_pf;
struct efx_nic *efx_pf;
struct ef10_vf *vf;
if (efx->pci_dev->is_virtfn) {
pci_dev_pf = efx->pci_dev->physfn;
if (pci_dev_pf) {
efx_pf = pci_get_drvdata(pci_dev_pf);
nic_data_pf = efx_pf->nic_data;
vf = nic_data_pf->vf + nic_data->vf_index;
vf->efx = NULL;
} else
netif_info(efx, drv, efx->net_dev,
"Could not get the PF id from VF\n");
}
#endif
efx_ef10_cleanup_vlans(efx);
mutex_destroy(&nic_data->vlan_lock);
efx_ptp_remove(efx);
efx_mcdi_mon_remove(efx);
efx_ef10_rx_free_indir_table(efx);
if (nic_data->wc_membase)
iounmap(nic_data->wc_membase);
rc = efx_ef10_free_vis(efx);
WARN_ON(rc != 0);
if (!nic_data->must_restore_piobufs)
efx_ef10_free_piobufs(efx);
device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
efx_mcdi_fini(efx);
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
kfree(nic_data);
}
static int efx_ef10_probe_pf(struct efx_nic *efx)
{
return efx_ef10_probe(efx);
}
int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
u32 *port_flags, u32 *vadaptor_flags,
unsigned int *vlan_tags)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
size_t outlen;
int rc;
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
port_id);
rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < sizeof(outbuf)) {
rc = -EIO;
return rc;
}
}
if (port_flags)
*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
if (vadaptor_flags)
*vadaptor_flags =
MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
if (vlan_tags)
*vlan_tags =
MCDI_DWORD(outbuf,
VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
return 0;
}
int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
int efx_ef10_vport_add_mac(struct efx_nic *efx,
unsigned int port_id, u8 *mac)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
sizeof(inbuf), NULL, 0, NULL);
}
int efx_ef10_vport_del_mac(struct efx_nic *efx,
unsigned int port_id, u8 *mac)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
sizeof(inbuf), NULL, 0, NULL);
}
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_probe_vf(struct efx_nic *efx)
{
int rc;
struct pci_dev *pci_dev_pf;
/* If the parent PF has no VF data structure, it doesn't know about this
* VF so fail probe. The VF needs to be re-created. This can happen
* if the PF driver is unloaded while the VF is assigned to a guest.
*/
pci_dev_pf = efx->pci_dev->physfn;
if (pci_dev_pf) {
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
if (!nic_data_pf->vf) {
netif_info(efx, drv, efx->net_dev,
"The VF cannot link to its parent PF; "
"please destroy and re-create the VF\n");
return -EBUSY;
}
}
rc = efx_ef10_probe(efx);
if (rc)
return rc;
rc = efx_ef10_get_vf_index(efx);
if (rc)
goto fail;
if (efx->pci_dev->is_virtfn) {
if (efx->pci_dev->physfn) {
struct efx_nic *efx_pf =
pci_get_drvdata(efx->pci_dev->physfn);
struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
nic_data_p->vf[nic_data->vf_index].efx = efx;
nic_data_p->vf[nic_data->vf_index].pci_dev =
efx->pci_dev;
} else
netif_info(efx, drv, efx->net_dev,
"Could not get the PF id from VF\n");
}
return 0;
fail:
efx_ef10_remove(efx);
return rc;
}
#else
static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
{
return 0;
}
#endif
static int efx_ef10_alloc_vis(struct efx_nic *efx,
unsigned int min_vis, unsigned int max_vis)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc != 0)
return rc;
if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
return -EIO;
netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
return 0;
}
/* Note that the failure path of this function does not free
* resources, as this will be done by efx_ef10_remove().
*/
static int efx_ef10_dimension_resources(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
unsigned int uc_mem_map_size, wc_mem_map_size;
unsigned int min_vis = max(EFX_TXQ_TYPES,
efx_separate_tx_channels ? 2 : 1);
unsigned int channel_vis, pio_write_vi_base, max_vis;
void __iomem *membase;
int rc;
channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
#ifdef EFX_USE_PIO
/* Try to allocate PIO buffers if wanted and if the full
* number of PIO buffers would be sufficient to allocate one
* copy-buffer per TX channel. Failure is non-fatal, as there
* are only a small number of PIO buffers shared between all
* functions of the controller.
*/
if (efx_piobuf_size != 0 &&
nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
efx->n_tx_channels) {
unsigned int n_piobufs =
DIV_ROUND_UP(efx->n_tx_channels,
nic_data->piobuf_size / efx_piobuf_size);
rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
if (rc)
netif_err(efx, probe, efx->net_dev,
"failed to allocate PIO buffers (%d)\n", rc);
else
netif_dbg(efx, probe, efx->net_dev,
"allocated %u PIO buffers\n", n_piobufs);
}
#else
nic_data->n_piobufs = 0;
#endif
/* PIO buffers should be mapped with write-combining enabled,
* and we want to make single UC and WC mappings rather than
* several of each (in fact that's the only option if host
* page size is >4K). So we may allocate some extra VIs just
* for writing PIO buffers through.
*
* The UC mapping contains (channel_vis - 1) complete VIs and the
* first half of the next VI. Then the WC mapping begins with
* the second half of this last VI.
*/
uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
ER_DZ_TX_PIOBUF);
if (nic_data->n_piobufs) {
/* pio_write_vi_base rounds down to give the number of complete
* VIs inside the UC mapping.
*/
pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
nic_data->n_piobufs) *
EFX_VI_PAGE_SIZE) -
uc_mem_map_size);
max_vis = pio_write_vi_base + nic_data->n_piobufs;
} else {
pio_write_vi_base = 0;
wc_mem_map_size = 0;
max_vis = channel_vis;
}
/* In case the last attached driver failed to free VIs, do it now */
rc = efx_ef10_free_vis(efx);
if (rc != 0)
return rc;
rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
if (rc != 0)
return rc;
if (nic_data->n_allocated_vis < channel_vis) {
netif_info(efx, drv, efx->net_dev,
"Could not allocate enough VIs to satisfy RSS"
" requirements. Performance may not be optimal.\n");
/* We didn't get the VIs to populate our channels.
* We could keep what we got but then we'd have more
* interrupts than we need.
* Instead calculate new max_channels and restart
*/
efx->max_channels = nic_data->n_allocated_vis;
efx->max_tx_channels =
nic_data->n_allocated_vis / EFX_TXQ_TYPES;
efx_ef10_free_vis(efx);
return -EAGAIN;
}
/* If we didn't get enough VIs to map all the PIO buffers, free the
* PIO buffers
*/
if (nic_data->n_piobufs &&
nic_data->n_allocated_vis <
pio_write_vi_base + nic_data->n_piobufs) {
netif_dbg(efx, probe, efx->net_dev,
"%u VIs are not sufficient to map %u PIO buffers\n",
nic_data->n_allocated_vis, nic_data->n_piobufs);
efx_ef10_free_piobufs(efx);
}
/* Shrink the original UC mapping of the memory BAR */
membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
if (!membase) {
netif_err(efx, probe, efx->net_dev,
"could not shrink memory BAR to %x\n",
uc_mem_map_size);
return -ENOMEM;
}
iounmap(efx->membase);
efx->membase = membase;
/* Set up the WC mapping if needed */
if (wc_mem_map_size) {
nic_data->wc_membase = ioremap_wc(efx->membase_phys +
uc_mem_map_size,
wc_mem_map_size);
if (!nic_data->wc_membase) {
netif_err(efx, probe, efx->net_dev,
"could not allocate WC mapping of size %x\n",
wc_mem_map_size);
return -ENOMEM;
}
nic_data->pio_write_vi_base = pio_write_vi_base;
nic_data->pio_write_base =
nic_data->wc_membase +
(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
uc_mem_map_size);
rc = efx_ef10_link_piobufs(efx);
if (rc)
efx_ef10_free_piobufs(efx);
}
netif_dbg(efx, probe, efx->net_dev,
"memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
&efx->membase_phys, efx->membase, uc_mem_map_size,
nic_data->wc_membase, wc_mem_map_size);
return 0;
}
static int efx_ef10_init_nic(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
if (nic_data->must_check_datapath_caps) {
rc = efx_ef10_init_datapath_caps(efx);
if (rc)
return rc;
nic_data->must_check_datapath_caps = false;
}
if (nic_data->must_realloc_vis) {
/* We cannot let the number of VIs change now */
rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
nic_data->n_allocated_vis);
if (rc)
return rc;
nic_data->must_realloc_vis = false;
}
if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
if (rc == 0) {
rc = efx_ef10_link_piobufs(efx);
if (rc)
efx_ef10_free_piobufs(efx);
}
/* Log an error on failure, but this is non-fatal */
if (rc)
netif_err(efx, drv, efx->net_dev,
"failed to restore PIO buffers (%d)\n", rc);
nic_data->must_restore_piobufs = false;
}
/* don't fail init if RSS setup doesn't work */
efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
return 0;
}
static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
#ifdef CONFIG_SFC_SRIOV
unsigned int i;
#endif
/* All our allocations have been reset */
nic_data->must_realloc_vis = true;
nic_data->must_restore_filters = true;
nic_data->must_restore_piobufs = true;
efx_ef10_forget_old_piobufs(efx);
nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
/* Driver-created vswitches and vports must be re-created */
nic_data->must_probe_vswitching = true;
nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
#ifdef CONFIG_SFC_SRIOV
if (nic_data->vf)
for (i = 0; i < efx->vf_count; i++)
nic_data->vf[i].vport_id = 0;
#endif
}
static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
{
if (reason == RESET_TYPE_MC_FAILURE)
return RESET_TYPE_DATAPATH;
return efx_mcdi_map_reset_reason(reason);
}
static int efx_ef10_map_reset_flags(u32 *flags)
{
enum {
EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
ETH_RESET_SHARED_SHIFT),
EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
ETH_RESET_OFFLOAD | ETH_RESET_MAC |
ETH_RESET_PHY | ETH_RESET_MGMT) <<
ETH_RESET_SHARED_SHIFT)
};
/* We assume for now that our PCI function is permitted to
* reset everything.
*/
if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
*flags &= ~EF10_RESET_MC;
return RESET_TYPE_WORLD;
}
if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
*flags &= ~EF10_RESET_PORT;
return RESET_TYPE_ALL;
}
/* no invisible reset implemented */
return -EINVAL;
}
static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
{
int rc = efx_mcdi_reset(efx, reset_type);
/* Unprivileged functions return -EPERM, but need to return success
* here so that the datapath is brought back up.
*/
if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
rc = 0;
/* If it was a port reset, trigger reallocation of MC resources.
* Note that on an MC reset nothing needs to be done now because we'll
* detect the MC reset later and handle it then.
* For an FLR, we never get an MC reset event, but the MC has reset all
* resources assigned to us, so we have to trigger reallocation now.
*/
if ((reset_type == RESET_TYPE_ALL ||
reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
efx_ef10_reset_mc_allocations(efx);
return rc;
}
#define EF10_DMA_STAT(ext_name, mcdi_name) \
[EF10_STAT_ ## ext_name] = \
{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
[EF10_STAT_ ## int_name] = \
{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_OTHER_STAT(ext_name) \
[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
#define GENERIC_SW_STAT(ext_name) \
[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
EF10_DMA_STAT(port_tx_packets, TX_PKTS),
EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
EF10_OTHER_STAT(port_rx_good_bytes),
EF10_OTHER_STAT(port_rx_bad_bytes),
EF10_DMA_STAT(port_rx_packets, RX_PKTS),
EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
GENERIC_SW_STAT(rx_nodesc_trunc),
GENERIC_SW_STAT(rx_noskb_drops),
EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
};
#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
(1ULL << EF10_STAT_port_tx_packets) | \
(1ULL << EF10_STAT_port_tx_pause) | \
(1ULL << EF10_STAT_port_tx_unicast) | \
(1ULL << EF10_STAT_port_tx_multicast) | \
(1ULL << EF10_STAT_port_tx_broadcast) | \
(1ULL << EF10_STAT_port_rx_bytes) | \
(1ULL << \
EF10_STAT_port_rx_bytes_minus_good_bytes) | \
(1ULL << EF10_STAT_port_rx_good_bytes) | \
(1ULL << EF10_STAT_port_rx_bad_bytes) | \
(1ULL << EF10_STAT_port_rx_packets) | \
(1ULL << EF10_STAT_port_rx_good) | \
(1ULL << EF10_STAT_port_rx_bad) | \
(1ULL << EF10_STAT_port_rx_pause) | \
(1ULL << EF10_STAT_port_rx_control) | \
(1ULL << EF10_STAT_port_rx_unicast) | \
(1ULL << EF10_STAT_port_rx_multicast) | \
(1ULL << EF10_STAT_port_rx_broadcast) | \
(1ULL << EF10_STAT_port_rx_lt64) | \
(1ULL << EF10_STAT_port_rx_64) | \
(1ULL << EF10_STAT_port_rx_65_to_127) | \
(1ULL << EF10_STAT_port_rx_128_to_255) | \
(1ULL << EF10_STAT_port_rx_256_to_511) | \
(1ULL << EF10_STAT_port_rx_512_to_1023) |\
(1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
(1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
(1ULL << EF10_STAT_port_rx_gtjumbo) | \
(1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
(1ULL << EF10_STAT_port_rx_overflow) | \
(1ULL << EF10_STAT_port_rx_nodesc_drops) |\
(1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
(1ULL << GENERIC_STAT_rx_noskb_drops))
/* On 7000 series NICs, these statistics are only provided by the 10G MAC.
* For a 10G/40G switchable port we do not expose these because they might
* not include all the packets they should.
* On 8000 series NICs these statistics are always provided.
*/
#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
(1ULL << EF10_STAT_port_tx_lt64) | \
(1ULL << EF10_STAT_port_tx_64) | \
(1ULL << EF10_STAT_port_tx_65_to_127) |\
(1ULL << EF10_STAT_port_tx_128_to_255) |\
(1ULL << EF10_STAT_port_tx_256_to_511) |\
(1ULL << EF10_STAT_port_tx_512_to_1023) |\
(1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
(1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
/* These statistics are only provided by the 40G MAC. For a 10G/40G
* switchable port we do expose these because the errors will otherwise
* be silent.
*/
#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
(1ULL << EF10_STAT_port_rx_length_error))
/* These statistics are only provided if the firmware supports the
* capability PM_AND_RXDP_COUNTERS.
*/
#define HUNT_PM_AND_RXDP_STAT_MASK ( \
(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
(1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
(1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
(1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
{
u64 raw_mask = HUNT_COMMON_STAT_MASK;
u32 port_caps = efx_mcdi_phy_get_caps(efx);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
if (!(efx->mcdi->fn_flags &
1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
return 0;
if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
/* 8000 series have everything even at 40G */
if (nic_data->datapath_caps2 &
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
raw_mask |= HUNT_10G_ONLY_STAT_MASK;
} else {
raw_mask |= HUNT_10G_ONLY_STAT_MASK;
}
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
return raw_mask;
}
static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u64 raw_mask[2];
raw_mask[0] = efx_ef10_raw_stat_mask(efx);
/* Only show vadaptor stats when EVB capability is present */
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
} else {
raw_mask[1] = 0;
}
#if BITS_PER_LONG == 64
BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
mask[0] = raw_mask[0];
mask[1] = raw_mask[1];
#else
BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
mask[0] = raw_mask[0] & 0xffffffff;
mask[1] = raw_mask[0] >> 32;
mask[2] = raw_mask[1] & 0xffffffff;
#endif
}
static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
{
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
efx_ef10_get_stat_mask(efx, mask);
return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
mask, names);
}
static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u64 *stats = nic_data->stats;
size_t stats_count = 0, index;
efx_ef10_get_stat_mask(efx, mask);
if (full_stats) {
for_each_set_bit(index, mask, EF10_STAT_COUNT) {
if (efx_ef10_stat_desc[index].name) {
*full_stats++ = stats[index];
++stats_count;
}
}
}
if (!core_stats)
return stats_count;
if (nic_data->datapath_caps &
1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
/* Use vadaptor stats. */
core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
stats[EF10_STAT_rx_multicast] +
stats[EF10_STAT_rx_broadcast];
core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
stats[EF10_STAT_tx_multicast] +
stats[EF10_STAT_tx_broadcast];
core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
stats[EF10_STAT_rx_multicast_bytes] +
stats[EF10_STAT_rx_broadcast_bytes];
core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
stats[EF10_STAT_tx_multicast_bytes] +
stats[EF10_STAT_tx_broadcast_bytes];
core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
stats[GENERIC_STAT_rx_noskb_drops];
core_stats->multicast = stats[EF10_STAT_rx_multicast];
core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
core_stats->rx_errors = core_stats->rx_crc_errors;
core_stats->tx_errors = stats[EF10_STAT_tx_bad];
} else {
/* Use port stats. */
core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
stats[GENERIC_STAT_rx_nodesc_trunc] +
stats[GENERIC_STAT_rx_noskb_drops];
core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
core_stats->rx_length_errors =
stats[EF10_STAT_port_rx_gtjumbo] +
stats[EF10_STAT_port_rx_length_error];
core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
core_stats->rx_frame_errors =
stats[EF10_STAT_port_rx_align_error];
core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
core_stats->rx_errors = (core_stats->rx_length_errors +
core_stats->rx_crc_errors +
core_stats->rx_frame_errors);
}
return stats_count;
}
static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
__le64 generation_start, generation_end;
u64 *stats = nic_data->stats;
__le64 *dma_stats;
efx_ef10_get_stat_mask(efx, mask);
dma_stats = efx->stats_buffer.addr;
generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
return 0;
rmb();
efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
stats, efx->stats_buffer.addr, false);
rmb();
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
if (generation_end != generation_start)
return -EAGAIN;
/* Update derived statistics */
efx_nic_fix_nodesc_drop_stat(efx,
&stats[EF10_STAT_port_rx_nodesc_drops]);
stats[EF10_STAT_port_rx_good_bytes] =
stats[EF10_STAT_port_rx_bytes] -
stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
efx_update_sw_stats(efx, stats);
return 0;
}
static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
int retry;
/* If we're unlucky enough to read statistics during the DMA, wait
* up to 10ms for it to finish (typically takes <500us)
*/
for (retry = 0; retry < 100; ++retry) {
if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
break;
udelay(100);
}
return efx_ef10_update_stats_common(efx, full_stats, core_stats);
}
static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
DECLARE_BITMAP(mask, EF10_STAT_COUNT);
__le64 generation_start, generation_end;
u64 *stats = nic_data->stats;
u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
struct efx_buffer stats_buf;
__le64 *dma_stats;
int rc;
spin_unlock_bh(&efx->stats_lock);
if (in_interrupt()) {
/* If in atomic context, cannot update stats. Just update the
* software stats and return so the caller can continue.
*/
spin_lock_bh(&efx->stats_lock);
efx_update_sw_stats(efx, stats);
return 0;
}
efx_ef10_get_stat_mask(efx, mask);
rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
if (rc) {
spin_lock_bh(&efx->stats_lock);
return rc;
}
dma_stats = stats_buf.addr;
dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
MAC_STATS_IN_DMA, 1);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
NULL, 0, NULL);
spin_lock_bh(&efx->stats_lock);
if (rc) {
/* Expect ENOENT if DMA queues have not been set up */
if (rc != -ENOENT || atomic_read(&efx->active_queues))
efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
sizeof(inbuf), NULL, 0, rc);
goto out;
}
generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
WARN_ON_ONCE(1);
goto out;
}
rmb();
efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
stats, stats_buf.addr, false);
rmb();
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
if (generation_end != generation_start) {
rc = -EAGAIN;
goto out;
}
efx_update_sw_stats(efx, stats);
out:
efx_nic_free_buffer(efx, &stats_buf);
return rc;
}
static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
struct rtnl_link_stats64 *core_stats)
{
if (efx_ef10_try_update_nic_stats_vf(efx))
return 0;
return efx_ef10_update_stats_common(efx, full_stats, core_stats);
}
static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
unsigned int mode, usecs;
efx_dword_t timer_cmd;
if (channel->irq_moderation_us) {
mode = 3;
usecs = channel->irq_moderation_us;
} else {
mode = 0;
usecs = 0;
}
if (EFX_EF10_WORKAROUND_61265(efx)) {
MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
unsigned int ns = usecs * 1000;
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
channel->channel);
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
inbuf, sizeof(inbuf), 0, NULL, 0);
} else if (EFX_EF10_WORKAROUND_35388(efx)) {
unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
EFE_DD_EVQ_IND_TIMER_FLAGS,
ERF_DD_EVQ_IND_TIMER_MODE, mode,
ERF_DD_EVQ_IND_TIMER_VAL, ticks);
efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
channel->channel);
} else {
unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
ERF_DZ_TC_TIMER_VAL, ticks);
efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
channel->channel);
}
}
static void efx_ef10_get_wol_vf(struct efx_nic *efx,
struct ethtool_wolinfo *wol) {}
static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
{
return -EOPNOTSUPP;
}
static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
wol->supported = 0;
wol->wolopts = 0;
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
{
if (type != 0)
return -EINVAL;
return 0;
}
static void efx_ef10_mcdi_request(struct efx_nic *efx,
const efx_dword_t *hdr, size_t hdr_len,
const efx_dword_t *sdu, size_t sdu_len)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u8 *pdu = nic_data->mcdi_buf.addr;
memcpy(pdu, hdr, hdr_len);
memcpy(pdu + hdr_len, sdu, sdu_len);
wmb();
/* The hardware provides 'low' and 'high' (doorbell) registers
* for passing the 64-bit address of an MCDI request to
* firmware. However the dwords are swapped by firmware. The
* least significant bits of the doorbell are then 0 for all
* MCDI requests due to alignment.
*/
_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
ER_DZ_MC_DB_LWRD);
_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
ER_DZ_MC_DB_HWRD);
}
static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
rmb();
return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
}
static void
efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
size_t offset, size_t outlen)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
const u8 *pdu = nic_data->mcdi_buf.addr;
memcpy(outbuf, pdu + offset, outlen);
}
static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
/* All our allocations have been reset */
efx_ef10_reset_mc_allocations(efx);
/* The datapath firmware might have been changed */
nic_data->must_check_datapath_caps = true;
/* MAC statistics have been cleared on the NIC; clear the local
* statistic that we update with efx_update_diff_stat().
*/
nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
}
static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
rc = efx_ef10_get_warm_boot_count(efx);
if (rc < 0) {
/* The firmware is presumably in the process of
* rebooting. However, we are supposed to report each
* reboot just once, so we must only do that once we
* can read and store the updated warm boot count.
*/
return 0;
}
if (rc == nic_data->warm_boot_count)
return 0;
nic_data->warm_boot_count = rc;
efx_ef10_mcdi_reboot_detected(efx);
return -EIO;
}
/* Handle an MSI interrupt
*
* Handle an MSI hardware interrupt. This routine schedules event
* queue processing. No interrupt acknowledgement cycle is necessary.
* Also, we never need to check that the interrupt is for us, since
* MSI interrupts cannot be shared.
*/
static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
{
struct efx_msi_context *context = dev_id;
struct efx_nic *efx = context->efx;
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
/* Note test interrupts */
if (context->index == efx->irq_level)
efx->last_irq_cpu = raw_smp_processor_id();
/* Schedule processing of the channel */
efx_schedule_channel_irq(efx->channel[context->index]);
}
return IRQ_HANDLED;
}
static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
{
struct efx_nic *efx = dev_id;
bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
struct efx_channel *channel;
efx_dword_t reg;
u32 queues;
/* Read the ISR which also ACKs the interrupts */
efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
if (queues == 0)
return IRQ_NONE;
if (likely(soft_enabled)) {
/* Note test interrupts */
if (queues & (1U << efx->irq_level))
efx->last_irq_cpu = raw_smp_processor_id();
efx_for_each_channel(channel, efx) {
if (queues & 1)
efx_schedule_channel_irq(channel);
queues >>= 1;
}
}
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
return IRQ_HANDLED;
}
static int efx_ef10_irq_test_generate(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
NULL) == 0)
return -ENOTSUPP;
BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
inbuf, sizeof(inbuf), NULL, 0, NULL);
}
static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
{
return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
(tx_queue->ptr_mask + 1) *
sizeof(efx_qword_t),
GFP_KERNEL);
}
/* This writes to the TX_DESC_WPTR and also pushes data */
static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
const efx_qword_t *txd)
{
unsigned int write_ptr;
efx_oword_t reg;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
reg.qword[0] = *txd;
efx_writeo_page(tx_queue->efx, &reg,
ER_DZ_TX_DESC_UPD, tx_queue->queue);
}
static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
EFX_BUF_SIZE));
bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
struct efx_channel *channel = tx_queue->channel;
struct efx_nic *efx = tx_queue->efx;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t inlen;
dma_addr_t dma_addr;
efx_qword_t *txd;
int rc;
int i;
BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
dma_addr = tx_queue->txd.buf.dma_addr;
netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
tx_queue->queue, entries, (u64)dma_addr);
for (i = 0; i < entries; ++i) {
MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
dma_addr += EFX_BUF_SIZE;
}
inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
NULL, 0, NULL);
if (rc)
goto fail;
/* A previous user of this TX queue might have set us up the
* bomb by writing a descriptor to the TX push collector but
* not the doorbell. (Each collector belongs to a port, not a
* queue or function, so cannot easily be reset.) We must
* attempt to push a no-op descriptor in its place.
*/
tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
tx_queue->insert_count = 1;
txd = efx_tx_desc(tx_queue, 0);
EFX_POPULATE_QWORD_4(*txd,
ESF_DZ_TX_DESC_IS_OPT, true,
ESF_DZ_TX_OPTION_TYPE,
ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
tx_queue->write_count = 1;
if (nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
tx_queue->tso_version = 1;
}
wmb();
efx_ef10_push_tx_desc(tx_queue, txd);
return;
fail:
netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
tx_queue->queue);
}
static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
MCDI_DECLARE_BUF_ERR(outbuf);
struct efx_nic *efx = tx_queue->efx;
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
tx_queue->queue);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc && rc != -EALREADY)
goto fail;
return;
fail:
efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
outbuf, outlen, rc);
}
static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
{
efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
}
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned int write_ptr;
efx_dword_t reg;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(tx_queue->efx, &reg,
ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
}
static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
{
unsigned int old_write_count = tx_queue->write_count;
struct efx_tx_buffer *buffer;
unsigned int write_ptr;
efx_qword_t *txd;
tx_queue->xmit_more_available = false;
if (unlikely(tx_queue->write_count == tx_queue->insert_count))
return;
do {
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[write_ptr];
txd = efx_tx_desc(tx_queue, write_ptr);
++tx_queue->write_count;
/* Create TX descriptor ring entry */
if (buffer->flags & EFX_TX_BUF_OPTION) {
*txd = buffer->option;
} else {
BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
EFX_POPULATE_QWORD_3(
*txd,
ESF_DZ_TX_KER_CONT,
buffer->flags & EFX_TX_BUF_CONT,
ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
}
} while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
txd = efx_tx_desc(tx_queue,
old_write_count & tx_queue->ptr_mask);
efx_ef10_push_tx_desc(tx_queue, txd);
++tx_queue->pushes;
} else {
efx_ef10_notify_tx_desc(tx_queue);
}
}
static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
bool exclusive, unsigned *context_size)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t outlen;
int rc;
u32 alloc_type = exclusive ?
MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
unsigned rss_spread = exclusive ?
efx->rss_spread :
min(rounddown_pow_of_two(efx->rss_spread),
EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
if (!exclusive && rss_spread == 1) {
*context = EFX_EF10_RSS_CONTEXT_INVALID;
if (context_size)
*context_size = 1;
return 0;
}
if (nic_data->datapath_caps &
1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
return -EOPNOTSUPP;
MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
nic_data->vport_id);
MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc != 0)
return rc;
if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
return -EIO;
*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
if (context_size)
*context_size = rss_spread;
return 0;
}
static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
int rc;
MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
context);
rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
WARN_ON(rc != 0);
}
static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
const u32 *rx_indir_table)
{
MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
int i, rc;
MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
context);
BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
MCDI_PTR(tablebuf,
RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
(u8) rx_indir_table[i];
rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
sizeof(tablebuf), NULL, 0, NULL);
if (rc != 0)
return rc;
MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
context);
BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
efx->rx_hash_key[i];
return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
sizeof(keybuf), NULL, 0, NULL);
}
static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
}
static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
unsigned *context_size)
{
u32 new_rx_rss_context;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
false, context_size);
if (rc != 0)
return rc;
nic_data->rx_rss_context = new_rx_rss_context;
nic_data->rx_rss_context_exclusive = false;
efx_set_default_rx_indir_table(efx);
return 0;
}
static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
const u32 *rx_indir_table)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
int rc;
u32 new_rx_rss_context;
if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
!nic_data->rx_rss_context_exclusive) {
rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
true, NULL);
if (rc == -EOPNOTSUPP)
return rc;
else if (rc != 0)
goto fail1;
} else {
new_rx_rss_context = nic_data->rx_rss_context;
}
rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
rx_indir_table);
if (rc != 0)
goto fail2;
if (nic_data->rx_rss_context != new_rx_rss_context)
efx_ef10_rx_free_indir_table(efx);
nic_data->rx_rss_context = new_rx_rss_context;
nic_data->rx_rss_context_exclusive = true;
if (rx_indir_table != efx->rx_indir_table)
memcpy(efx->rx_indir_table, rx_indir_table,
sizeof(efx->rx_indir_table));
return 0;
fail2:
if (new_rx_rss_context != nic_data->rx_rss_context)
efx_ef10_free_rss_context(efx, new_rx_rss_context);
fail1:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
const u32 *rx_indir_table)
{
int rc;
if (efx->rss_spread == 1)
return 0;
rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
if (rc == -ENOBUFS && !user) {
unsigned context_size;
bool mismatch = false;
size_t i;
for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
i++)
mismatch = rx_indir_table[i] !=
ethtool_rxfh_indir_default(i, efx->rss_spread);
rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
if (rc == 0) {
if (context_size != efx->rss_spread)
netif_warn(efx, probe, efx->net_dev,
"Could not allocate an exclusive RSS"
" context; allocated a shared one of"
" different size."
" Wanted %u, got %u.\n",
efx->rss_spread, context_size);
else if (mismatch)
netif_warn(efx, probe, efx->net_dev,
"Could not allocate an exclusive RSS"
" context; allocated a shared one but"
" could not apply custom"
" indirection.\n");
else
netif_info(efx, probe, efx->net_dev,
"Could not allocate an exclusive RSS"
" context; allocated a shared one.\n");
}
}
return rc;
}
static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
const u32 *rx_indir_table
__attribute__ ((unused)))
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
if (user)
return -EOPNOTSUPP;
if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
return 0;
return efx_ef10_rx_push_shared_rss_config(efx, NULL);
}
static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
{
return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
(rx_queue->ptr_mask + 1) *
sizeof(efx_qword_t),
GFP_KERNEL);
}
static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
{
MCDI_DECLARE_BUF(inbuf,
MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
EFX_BUF_SIZE));
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
struct efx_nic *efx = rx_queue->efx;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
size_t inlen;
dma_addr_t dma_addr;
int rc;
int i;
BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
rx_queue->scatter_n = 0;
rx_queue->scatter_len = 0;
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
efx_rx_queue_index(rx_queue));
MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
INIT_RXQ_IN_FLAG_PREFIX, 1,
INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
dma_addr = rx_queue->rxd.buf.dma_addr;
netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
for (i = 0; i < entries; ++i) {
MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
dma_addr += EFX_BUF_SIZE;
}
inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
NULL, 0, NULL);
if (rc)
netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
efx_rx_queue_index(rx_queue));
}
static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
MCDI_DECLARE_BUF_ERR(outbuf);
struct efx_nic *efx = rx_queue->efx;
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
efx_rx_queue_index(rx_queue));
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc && rc != -EALREADY)
goto fail;
return;
fail:
efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
outbuf, outlen, rc);
}
static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
{
efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
}
/* This creates an entry in the RX descriptor queue */
static inline void
efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
struct efx_rx_buffer *rx_buf;
efx_qword_t *rxd;
rxd = efx_rx_desc(rx_queue, index);
rx_buf = efx_rx_buffer(rx_queue, index);
EFX_POPULATE_QWORD_2(*rxd,
ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}
static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int write_count;
efx_dword_t reg;
/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
write_count = rx_queue->added_count & ~7;
if (rx_queue->notified_count == write_count)
return;
do
efx_ef10_build_rx_desc(
rx_queue,
rx_queue->notified_count & rx_queue->ptr_mask);
while (++rx_queue->notified_count != write_count);
wmb();
EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
write_count & rx_queue->ptr_mask);
efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
efx_rx_queue_index(rx_queue));
}
static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
{
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
efx_qword_t event;
EFX_POPULATE_QWORD_2(event,
ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
ESF_DZ_EV_DATA, EFX_EF10_REFILL);
MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
* already swapped the data to little-endian order.
*/
memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
sizeof(efx_qword_t));
efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
inbuf, sizeof(inbuf), 0,
efx_ef10_rx_defer_refill_complete, 0);
}
static void
efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
int rc, efx_dword_t *outbuf,
size_t outlen_actual)
{
/* nothing to do */
}
static int efx_ef10_ev_probe(struct efx_channel *channel)
{
return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
(channel->eventq_mask + 1) *
sizeof(efx_qword_t),
GFP_KERNEL);
}
static void efx_ef10_ev_fini(struct efx_channel *channel)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
MCDI_DECLARE_BUF_ERR(outbuf);
struct efx_nic *efx = channel->efx;
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc && rc != -EALREADY)
goto fail;
return;
fail:
efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
outbuf, outlen, rc);
}
static int efx_ef10_ev_init(struct efx_channel *channel)
{
MCDI_DECLARE_BUF(inbuf,
MC_CMD_INIT_EVQ_V2_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
EFX_BUF_SIZE));
MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_V2_OUT_LEN);
size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
struct efx_nic *efx = channel->efx;
struct efx_ef10_nic_data *nic_data;
size_t inlen, outlen;
unsigned int enabled, implemented;
dma_addr_t dma_addr;
int rc;
int i;
nic_data = efx->nic_data;
/* Fill event queue with all ones (i.e. empty events) */
memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
/* INIT_EVQ expects index in vector table, not absolute */
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
if (nic_data->datapath_caps2 &
1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN) {
/* Use the new generic approach to specifying event queue
* configuration, requesting lower latency or higher throughput.
* The options that actually get used appear in the output.
*/
MCDI_POPULATE_DWORD_2(inbuf, INIT_EVQ_V2_IN_FLAGS,
INIT_EVQ_V2_IN_FLAG_INTERRUPTING, 1,
INIT_EVQ_V2_IN_FLAG_TYPE,
MC_CMD_INIT_EVQ_V2_IN_FLAG_TYPE_AUTO);
} else {
bool cut_thru = !(nic_data->datapath_caps &
1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
INIT_EVQ_IN_FLAG_RX_MERGE, 1,
INIT_EVQ_IN_FLAG_TX_MERGE, 1,
INIT_EVQ_IN_FLAG_CUT_THRU, cut_thru);
}
dma_addr = channel->eventq.buf.dma_addr;
for (i = 0; i < entries; ++i) {
MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
dma_addr += EFX_BUF_SIZE;
}
inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
outbuf, sizeof(outbuf), &outlen);
if (outlen >= MC_CMD_INIT_EVQ_V2_OUT_LEN)
netif_dbg(efx, drv, efx->net_dev,
"Channel %d using event queue flags %08x\n",
channel->channel,
MCDI_DWORD(outbuf, INIT_EVQ_V2_OUT_FLAGS));
/* IRQ return is ignored */
if (channel->channel || rc)
return rc;
/* Successfully created event queue on channel 0 */
rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
if (rc == -ENOSYS) {
/* GET_WORKAROUNDS was implemented before this workaround,
* thus it must be unavailable in this firmware.
*/
nic_data->workaround_26807 = false;
rc = 0;
} else if (rc) {
goto fail;
} else {
nic_data->workaround_26807 =
!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
!nic_data->workaround_26807) {
unsigned int flags;
rc = efx_mcdi_set_workaround(efx,
MC_CMD_WORKAROUND_BUG26807,
true, &flags);
if (!rc) {
if (flags &
1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
netif_info(efx, drv, efx->net_dev,
"other functions on NIC have been reset\n");
/* With MCFW v4.6.x and earlier, the
* boot count will have incremented,
* so re-read the warm_boot_count
* value now to ensure this function
* doesn't think it has changed next
* time it checks.
*/
rc = efx_ef10_get_warm_boot_count(efx);
if (rc >= 0) {
nic_data->warm_boot_count = rc;
rc = 0;
}
}
nic_data->workaround_26807 = true;
} else if (rc == -EPERM) {
rc = 0;
}
}
}
if (!rc)
return 0;
fail:
efx_ef10_ev_fini(channel);
return rc;
}
static void efx_ef10_ev_remove(struct efx_channel *channel)
{
efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
}
static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
unsigned int rx_queue_label)
{
struct efx_nic *efx = rx_queue->efx;
netif_info(efx, hw, efx->net_dev,
"rx event arrived on queue %d labeled as queue %u\n",
efx_rx_queue_index(rx_queue), rx_queue_label);
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
static void
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
unsigned int actual, unsigned int expected)
{
unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
struct efx_nic *efx = rx_queue->efx;
netif_info(efx, hw, efx->net_dev,
"dropped %d events (index=%d expected=%d)\n",
dropped, actual, expected);
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
/* partially received RX was aborted. clean up. */
static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
{
unsigned int rx_desc_ptr;
netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
"scattered RX aborted (dropping %u buffers)\n",
rx_queue->scatter_n);
rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
0, EFX_RX_PKT_DISCARD);
rx_queue->removed_count += rx_queue->scatter_n;
rx_queue->scatter_n = 0;
rx_queue->scatter_len = 0;
++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
}
static int efx_ef10_handle_rx_event(struct efx_channel *channel,
const efx_qword_t *event)
{
unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
unsigned int n_descs, n_packets, i;
struct efx_nic *efx = channel->efx;
struct efx_rx_queue *rx_queue;
bool rx_cont;
u16 flags = 0;
if (unlikely(ACCESS_ONCE(efx->reset_pending)))
return 0;
/* Basic packet information */
rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
EFX_QWORD_FMT "\n",
EFX_QWORD_VAL(*event));
rx_queue = efx_channel_get_rx_queue(channel);
if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
if (n_descs != rx_queue->scatter_n + 1) {
struct efx_ef10_nic_data *nic_data = efx->nic_data;
/* detect rx abort */
if (unlikely(n_descs == rx_queue->scatter_n)) {
if (rx_queue->scatter_n == 0 || rx_bytes != 0)
netdev_WARN(efx->net_dev,
"invalid RX abort: scatter_n=%u event="
EFX_QWORD_FMT "\n",
rx_queue->scatter_n,
EFX_QWORD_VAL(*event));
efx_ef10_handle_rx_abort(rx_queue);
return 0;
}
/* Check that RX completion merging is valid, i.e.
* the current firmware supports it and this is a
* non-scattered packet.
*/
if (!(nic_data->datapath_caps &
(1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
rx_queue->scatter_n != 0 || rx_cont) {
efx_ef10_handle_rx_bad_lbits(
rx_queue, next_ptr_lbits,
(rx_queue->removed_count +
rx_queue->scatter_n + 1) &
((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
return 0;
}
/* Merged completion for multiple non-scattered packets */
rx_queue->scatter_n = 1;
rx_queue->scatter_len = 0;
n_packets = n_descs;
++channel->n_rx_merge_events;
channel->n_rx_merge_packets += n_packets;
flags |= EFX_RX_PKT_PREFIX_LEN;
} else {
++rx_queue->scatter_n;
rx_queue->scatter_len += rx_bytes;
if (rx_cont)
return 0;
n_packets = 1;
}
if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
flags |= EFX_RX_PKT_DISCARD;
if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
channel->n_rx_ip_hdr_chksum_err += n_packets;
} else if (unlikely(EFX_QWORD_FIELD(*event,
ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
channel->n_rx_tcp_udp_chksum_err += n_packets;
} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
flags |= EFX_RX_PKT_CSUMMED;
}
if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
flags |= EFX_RX_PKT_TCP;
channel->irq_mod_score += 2 * n_packets;
/* Handle received packet(s) */
for (i = 0; i < n_packets; i++) {
efx_rx_packet(rx_queue,
rx_queue->removed_count & rx_queue->ptr_mask,
rx_queue->scatter_n, rx_queue->scatter_len,
flags);
rx_queue->removed_count += rx_queue->scatter_n;
}
rx_queue->scatter_n = 0;
rx_queue->scatter_len = 0;
return n_packets;
}
static int
efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
struct efx_tx_queue *tx_queue;
unsigned int tx_ev_desc_ptr;
unsigned int tx_ev_q_label;
int tx_descs = 0;
if (unlikely(ACCESS_ONCE(efx->reset_pending)))
return 0;
if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
return 0;
/* Transmit completion */
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
tx_queue = efx_channel_get_tx_queue(channel,
tx_ev_q_label % EFX_TXQ_TYPES);
tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
tx_queue->ptr_mask);
efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
return tx_descs;
}
static void
efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
int subcode;
subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
switch (subcode) {
case ESE_DZ_DRV_TIMER_EV:
case ESE_DZ_DRV_WAKE_UP_EV:
break;
case ESE_DZ_DRV_START_UP_EV:
/* event queue init complete. ok. */
break;
default:
netif_err(efx, hw, efx->net_dev,
"channel %d unknown driver event type %d"
" (data " EFX_QWORD_FMT ")\n",
channel->channel, subcode,
EFX_QWORD_VAL(*event));
}
}
static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
u32 subcode;
subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
switch (subcode) {
case EFX_EF10_TEST:
channel->event_test_cpu = raw_smp_processor_id();
break;
case EFX_EF10_REFILL:
/* The queue must be empty, so we won't receive any rx
* events, so efx_process_channel() won't refill the
* queue. Refill it here
*/
efx_fast_push_rx_descriptors(&channel->rx_queue, true);
break;
default:
netif_err(efx, hw, efx->net_dev,
"channel %d unknown driver event type %u"
" (data " EFX_QWORD_FMT ")\n",
channel->channel, (unsigned) subcode,
EFX_QWORD_VAL(*event));
}
}
static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
{
struct efx_nic *efx = channel->efx;
efx_qword_t event, *p_event;
unsigned int read_ptr;
int ev_code;
int tx_descs = 0;
int spent = 0;
if (quota <= 0)
return spent;
read_ptr = channel->eventq_read_ptr;
for (;;) {
p_event = efx_event(channel, read_ptr);
event = *p_event;
if (!efx_event_present(&event))
break;
EFX_SET_QWORD(*p_event);
++read_ptr;
ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
netif_vdbg(efx, drv, efx->net_dev,
"processing event on %d " EFX_QWORD_FMT "\n",
channel->channel, EFX_QWORD_VAL(event));
switch (ev_code) {
case ESE_DZ_EV_CODE_MCDI_EV:
efx_mcdi_process_event(channel, &event);
break;
case ESE_DZ_EV_CODE_RX_EV:
spent += efx_ef10_handle_rx_event(channel, &event);
if (spent >= quota) {
/* XXX can we split a merged event to
* avoid going over-quota?
*/
spent = quota;
goto out;
}
break;
case ESE_DZ_EV_CODE_TX_EV:
tx_descs += efx_ef10_handle_tx_event(channel, &event);
if (tx_descs > efx->txq_entries) {
spent = quota;
goto out;
} else if (++spent == quota) {
goto out;
}
break;
case ESE_DZ_EV_CODE_DRIVER_EV:
efx_ef10_handle_driver_event(channel, &event);
if (++spent == quota)
goto out;
break;
case EFX_EF10_DRVGEN_EV:
efx_ef10_handle_driver_generated_event(channel, &event);
break;
default:
netif_err(efx, hw, efx->net_dev,
"channel %d unknown event type %d"
" (data " EFX_QWORD_FMT ")\n",
channel->channel, ev_code,
EFX_QWORD_VAL(event));
}
}
out:
channel->eventq_read_ptr = read_ptr;
return spent;
}
static void efx_ef10_ev_read_ack(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
efx_dword_t rptr;
if (EFX_EF10_WORKAROUND_35388(efx)) {
BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
(1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
(1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
ERF_DD_EVQ_IND_RPTR,
(channel->eventq_read_ptr &
channel->eventq_mask) >>
ERF_DD_EVQ_IND_RPTR_WIDTH);
efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
channel->channel);
EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
ERF_DD_EVQ_IND_RPTR,
channel->eventq_read_ptr &
((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
channel->channel);
} else {
EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
channel->eventq_read_ptr &
channel->eventq_mask);
efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
}
}
static void efx_ef10_ev_test_generate(struct efx_channel *channel)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
struct efx_nic *efx = channel->efx;
efx_qword_t event;
int rc;
EFX_POPULATE_QWORD_2(event,
ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
ESF_DZ_EV_DATA, EFX_EF10_TEST);
MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
* already swapped the data to little-endian order.
*/
memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
sizeof(efx_qword_t));
rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc != 0)
goto fail;
return;
fail:
WARN_ON(true);
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
}
void efx_ef10_handle_drain_event(struct efx_nic *efx)
{
if (atomic_dec_and_test(&efx->active_queues))
wake_up(&efx->flush_wq);
WARN_ON(atomic_read(&efx->active_queues) < 0);
}
static int efx_ef10_fini_dmaq(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int pending;
/* If the MC has just rebooted, the TX/RX queues will have already been
* torn down, but efx->active_queues needs to be set to zero.
*/
if (nic_data->must_realloc_vis) {
atomic_set(&efx->active_queues, 0);
return 0;
}
/* Do not attempt to write to the NIC during EEH recovery */
if (efx->state != STATE_RECOVERY) {
efx_for_each_channel(channel, efx) {
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_ef10_rx_fini(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_ef10_tx_fini(tx_queue);
}
wait_event_timeout(efx->flush_wq,
atomic_read(&efx->active_queues) == 0,
msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
pending = atomic_read(&efx->active_queues);
if (pending) {
netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
pending);
return -ETIMEDOUT;
}
}
return 0;
}
static void efx_ef10_prepare_flr(struct efx_nic *efx)
{
atomic_set(&efx->active_queues, 0);
}
static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
const struct efx_filter_spec *right)
{
if ((left->match_flags ^ right->match_flags) |
((left->flags ^ right->flags) &
(EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
return false;
return memcmp(&left->outer_vid, &right->outer_vid,
sizeof(struct efx_filter_spec) -
offsetof(struct efx_filter_spec, outer_vid)) == 0;
}
static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
{
BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
return jhash2((const u32 *)&spec->outer_vid,
(sizeof(struct efx_filter_spec) -
offsetof(struct efx_filter_spec, outer_vid)) / 4,
0);
/* XXX should we randomise the initval? */
}
/* Decide whether a filter should be exclusive or else should allow
* delivery to additional recipients. Currently we decide that
* filters for specific local unicast MAC and IP addresses are
* exclusive.
*/
static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
{
if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
!is_multicast_ether_addr(spec->loc_mac))
return true;
if ((spec->match_flags &
(EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
(EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
if (spec->ether_type == htons(ETH_P_IP) &&
!ipv4_is_multicast(spec->loc_host[0]))
return true;
if (spec->ether_type == htons(ETH_P_IPV6) &&
((const u8 *)spec->loc_host)[0] != 0xff)
return true;
}
return false;
}
static struct efx_filter_spec *
efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
unsigned int filter_idx)
{
return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
~EFX_EF10_FILTER_FLAGS);
}
static unsigned int
efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
unsigned int filter_idx)
{
return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
}
static void
efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
unsigned int filter_idx,
const struct efx_filter_spec *spec,
unsigned int flags)
{
table->entry[filter_idx].spec = (unsigned long)spec | flags;
}
static void efx_ef10_filter_push_prep(struct efx_nic *efx,
const struct efx_filter_spec *spec,
efx_dword_t *inbuf, u64 handle,
bool replacing)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u32 flags = spec->flags;
memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
/* Remove RSS flag if we don't have an RSS context. */
if (flags & EFX_FILTER_FLAG_RX_RSS &&
spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
flags &= ~EFX_FILTER_FLAG_RX_RSS;
if (replacing) {
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
MC_CMD_FILTER_OP_IN_OP_REPLACE);
MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
} else {
u32 match_fields = 0;
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
efx_ef10_filter_is_exclusive(spec) ?
MC_CMD_FILTER_OP_IN_OP_INSERT :
MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
/* Convert match flags and values. Unlike almost
* everything else in MCDI, these fields are in
* network byte order.
*/
if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
match_fields |=
is_multicast_ether_addr(spec->loc_mac) ?
1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
#define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
match_fields |= \
1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
mcdi_field ## _LBN; \
BUILD_BUG_ON( \
MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
sizeof(spec->gen_field)); \
memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
&spec->gen_field, sizeof(spec->gen_field)); \
}
COPY_FIELD(REM_HOST, rem_host, SRC_IP);
COPY_FIELD(LOC_HOST, loc_host, DST_IP);
COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
#undef COPY_FIELD
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
match_fields);
}
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
0 : spec->dmaq_id);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
(flags & EFX_FILTER_FLAG_RX_RSS) ?
MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
if (flags & EFX_FILTER_FLAG_RX_RSS)
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
spec->rss_context !=
EFX_FILTER_RSS_CONTEXT_DEFAULT ?
spec->rss_context : nic_data->rx_rss_context);
}
static int efx_ef10_filter_push(struct efx_nic *efx,
const struct efx_filter_spec *spec,
u64 *handle, bool replacing)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
int rc;
efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), NULL);
if (rc == 0)
*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
if (rc == -ENOSPC)
rc = -EBUSY; /* to match efx_farch_filter_insert() */
return rc;
}
static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
{
unsigned int match_flags = spec->match_flags;
u32 mcdi_flags = 0;
if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
mcdi_flags |=
is_multicast_ether_addr(spec->loc_mac) ?
(1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN) :
(1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN);
}
#define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field) { \
unsigned int old_match_flags = match_flags; \
match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag; \
if (match_flags != old_match_flags) \
mcdi_flags |= \
(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
mcdi_field ## _LBN); \
}
MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP);
MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP);
MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC);
MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT);
MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC);
MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT);
MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE);
MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN);
MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN);
MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO);
#undef MAP_FILTER_TO_MCDI_FLAG
/* Did we map them all? */
WARN_ON_ONCE(match_flags);
return mcdi_flags;
}
static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
const struct efx_filter_spec *spec)
{
u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
unsigned int match_pri;
for (match_pri = 0;
match_pri < table->rx_match_count;
match_pri++)
if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
return match_pri;
return -EPROTONOSUPPORT;
}
static s32 efx_ef10_filter_insert(struct efx_nic *efx,
struct efx_filter_spec *spec,
bool replace_equal)
{
struct efx_ef10_filter_table *table = efx->filter_state;
DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
struct efx_filter_spec *saved_spec;
unsigned int match_pri, hash;
unsigned int priv_flags;
bool replacing = false;
int ins_index = -1;
DEFINE_WAIT(wait);
bool is_mc_recip;
s32 rc;
/* For now, only support RX filters */
if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
EFX_FILTER_FLAG_RX)
return -EINVAL;
rc = efx_ef10_filter_pri(table, spec);
if (rc < 0)
return rc;
match_pri = rc;
hash = efx_ef10_filter_hash(spec);
is_mc_recip = efx_filter_is_mc_recipient(spec);
if (is_mc_recip)
bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
/* Find any existing filters with the same match tuple or
* else a free slot to insert at. If any of them are busy,
* we have to wait and retry.
*/
for (;;) {
unsigned int depth = 1;
unsigned int i;
spin_lock_bh(&efx->filter_lock);
for (;;) {
i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
saved_spec = efx_ef10_filter_entry_spec(table, i);
if (!saved_spec) {
if (ins_index < 0)
ins_index = i;
} else if (efx_ef10_filter_equal(spec, saved_spec)) {
if (table->entry[i].spec &
EFX_EF10_FILTER_FLAG_BUSY)
break;
if (spec->priority < saved_spec->priority &&
spec->priority != EFX_FILTER_PRI_AUTO) {
rc = -EPERM;
goto out_unlock;
}
if (!is_mc_recip) {
/* This is the only one */
if (spec->priority ==
saved_spec->priority &&
!replace_equal) {
rc = -EEXIST;
goto out_unlock;
}
ins_index = i;
goto found;
} else if (spec->priority >
saved_spec->priority ||
(spec->priority ==
saved_spec->priority &&
replace_equal)) {
if (ins_index < 0)
ins_index = i;
else
__set_bit(depth, mc_rem_map);
}
}
/* Once we reach the maximum search depth, use
* the first suitable slot or return -EBUSY if
* there was none
*/
if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
if (ins_index < 0) {
rc = -EBUSY;
goto out_unlock;
}
goto found;
}
++depth;
}
prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_bh(&efx->filter_lock);
schedule();
}
found:
/* Create a software table entry if necessary, and mark it
* busy. We might yet fail to insert, but any attempt to
* insert a conflicting filter while we're waiting for the
* firmware must find the busy entry.
*/
saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
if (saved_spec) {
if (spec->priority == EFX_FILTER_PRI_AUTO &&
saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
/* Just make sure it won't be removed */
if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
table->entry[ins_index].spec &=
~EFX_EF10_FILTER_FLAG_AUTO_OLD;
rc = ins_index;
goto out_unlock;
}
replacing = true;
priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
} else {
saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
if (!saved_spec) {
rc = -ENOMEM;
goto out_unlock;
}
*saved_spec = *spec;
priv_flags = 0;
}
efx_ef10_filter_set_entry(table, ins_index, saved_spec,
priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
/* Mark lower-priority multicast recipients busy prior to removal */
if (is_mc_recip) {
unsigned int depth, i;
for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
if (test_bit(depth, mc_rem_map))
table->entry[i].spec |=
EFX_EF10_FILTER_FLAG_BUSY;
}
}
spin_unlock_bh(&efx->filter_lock);
rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
replacing);
/* Finalise the software table entry */
spin_lock_bh(&efx->filter_lock);
if (rc == 0) {
if (replacing) {
/* Update the fields that may differ */
if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
saved_spec->flags |=
EFX_FILTER_FLAG_RX_OVER_AUTO;
saved_spec->priority = spec->priority;
saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
saved_spec->flags |= spec->flags;
saved_spec->rss_context = spec->rss_context;
saved_spec->dmaq_id = spec->dmaq_id;
}
} else if (!replacing) {
kfree(saved_spec);
saved_spec = NULL;
}
efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
/* Remove and finalise entries for lower-priority multicast
* recipients
*/
if (is_mc_recip) {
MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
unsigned int depth, i;
memset(inbuf, 0, sizeof(inbuf));
for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
if (!test_bit(depth, mc_rem_map))
continue;
i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
saved_spec = efx_ef10_filter_entry_spec(table, i);
priv_flags = efx_ef10_filter_entry_flags(table, i);
if (rc == 0) {
spin_unlock_bh(&efx->filter_lock);
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
table->entry[i].handle);
rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
inbuf, sizeof(inbuf),
NULL, 0, NULL);
spin_lock_bh(&efx->filter_lock);
}
if (rc == 0) {
kfree(saved_spec);
saved_spec = NULL;
priv_flags = 0;
} else {
priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
}
efx_ef10_filter_set_entry(table, i, saved_spec,
priv_flags);
}
}
/* If successful, return the inserted filter ID */
if (rc == 0)
rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
wake_up_all(&table->waitq);
out_unlock:
spin_unlock_bh(&efx->filter_lock);
finish_wait(&table->waitq, &wait);
return rc;
}
static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
{
/* no need to do anything here on EF10 */
}
/* Remove a filter.
* If !by_index, remove by ID
* If by_index, remove by index
* Filter ID may come from userland and must be range-checked.
*/
static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
unsigned int priority_mask,
u32 filter_id, bool by_index)
{
unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
struct efx_ef10_filter_table *table = efx->filter_state;
MCDI_DECLARE_BUF(inbuf,
MC_CMD_FILTER_OP_IN_HANDLE_OFST +
MC_CMD_FILTER_OP_IN_HANDLE_LEN);
struct efx_filter_spec *spec;
DEFINE_WAIT(wait);
int rc;
/* Find the software table entry and mark it busy. Don't
* remove it yet; any attempt to update while we're waiting
* for the firmware must find the busy entry.
*/
for (;;) {
spin_lock_bh(&efx->filter_lock);
if (!(table->entry[filter_idx].spec &
EFX_EF10_FILTER_FLAG_BUSY))
break;
prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_bh(&efx->filter_lock);
schedule();
}
spec = efx_ef10_filter_entry_spec(table, filter_idx);
if (!spec ||
(!by_index &&
efx_ef10_filter_pri(table, spec) !=
filter_id / HUNT_FILTER_TBL_ROWS)) {
rc = -ENOENT;
goto out_unlock;
}
if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
/* Just remove flags */
spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
rc = 0;
goto out_unlock;
}
if (!(priority_mask & (1U << spec->priority))) {
rc = -ENOENT;
goto out_unlock;
}
table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
spin_unlock_bh(&efx->filter_lock);
if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
/* Reset to an automatic filter */
struct efx_filter_spec new_spec = *spec;
new_spec.priority = EFX_FILTER_PRI_AUTO;
new_spec.flags = (EFX_FILTER_FLAG_RX |
(efx_rss_enabled(efx) ?
EFX_FILTER_FLAG_RX_RSS : 0));
new_spec.dmaq_id = 0;
new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
rc = efx_ef10_filter_push(efx, &new_spec,
&table->entry[filter_idx].handle,
true);
spin_lock_bh(&efx->filter_lock);
if (rc == 0)
*spec = new_spec;
} else {
/* Really remove the filter */
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
efx_ef10_filter_is_exclusive(spec) ?
MC_CMD_FILTER_OP_IN_OP_REMOVE :
MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
table->entry[filter_idx].handle);
rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
inbuf, sizeof(inbuf), NULL, 0, NULL);
spin_lock_bh(&efx->filter_lock);
if (rc == 0) {
kfree(spec);
efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
}
}
table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
wake_up_all(&table->waitq);
out_unlock:
spin_unlock_bh(&efx->filter_lock);
finish_wait(&table->waitq, &wait);
return rc;
}
static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id)
{
return efx_ef10_filter_remove_internal(efx, 1U << priority,
filter_id, false);
}
static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
{
return filter_id % HUNT_FILTER_TBL_ROWS;
}
static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id)
{
if (filter_id == EFX_EF10_FILTER_ID_INVALID)
return;
efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
}
static int efx_ef10_filter_get_safe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id, struct efx_filter_spec *spec)
{
unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
struct efx_ef10_filter_table *table = efx->filter_state;
const struct efx_filter_spec *saved_spec;
int rc;
spin_lock_bh(&efx->filter_lock);
saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
if (saved_spec && saved_spec->priority == priority &&
efx_ef10_filter_pri(table, saved_spec) ==
filter_id / HUNT_FILTER_TBL_ROWS) {
*spec = *saved_spec;
rc = 0;
} else {
rc = -ENOENT;
}
spin_unlock_bh(&efx->filter_lock);
return rc;
}
static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
enum efx_filter_priority priority)
{
unsigned int priority_mask;
unsigned int i;
int rc;
priority_mask = (((1U << (priority + 1)) - 1) &
~(1U << EFX_FILTER_PRI_AUTO));
for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
rc = efx_ef10_filter_remove_internal(efx, priority_mask,
i, true);
if (rc && rc != -ENOENT)
return rc;
}
return 0;
}
static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
enum efx_filter_priority priority)
{
struct efx_ef10_filter_table *table = efx->filter_state;
unsigned int filter_idx;
s32 count = 0;
spin_lock_bh(&efx->filter_lock);
for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
if (table->entry[filter_idx].spec &&
efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
priority)
++count;
}
spin_unlock_bh(&efx->filter_lock);
return count;
}
static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
}
static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 *buf, u32 size)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_filter_spec *spec;
unsigned int filter_idx;
s32 count = 0;
spin_lock_bh(&efx->filter_lock);
for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
spec = efx_ef10_filter_entry_spec(table, filter_idx);
if (spec && spec->priority == priority) {
if (count == size) {
count = -EMSGSIZE;
break;
}
buf[count++] = (efx_ef10_filter_pri(table, spec) *
HUNT_FILTER_TBL_ROWS +
filter_idx);
}
}
spin_unlock_bh(&efx->filter_lock);
return count;
}
#ifdef CONFIG_RFS_ACCEL
static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
struct efx_filter_spec *spec)
{
struct efx_ef10_filter_table *table = efx->filter_state;
MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
struct efx_filter_spec *saved_spec;
unsigned int hash, i, depth = 1;
bool replacing = false;
int ins_index = -1;
u64 cookie;
s32 rc;
/* Must be an RX filter without RSS and not for a multicast
* destination address (RFS only works for connected sockets).
* These restrictions allow us to pass only a tiny amount of
* data through to the completion function.
*/
EFX_WARN_ON_PARANOID(spec->flags !=
(EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
hash = efx_ef10_filter_hash(spec);
spin_lock_bh(&efx->filter_lock);
/* Find any existing filter with the same match tuple or else
* a free slot to insert at. If an existing filter is busy,
* we have to give up.
*/
for (;;) {
i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
saved_spec = efx_ef10_filter_entry_spec(table, i);
if (!saved_spec) {
if (ins_index < 0)
ins_index = i;
} else if (efx_ef10_filter_equal(spec, saved_spec)) {
if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
rc = -EBUSY;
goto fail_unlock;
}
if (spec->priority < saved_spec->priority) {
rc = -EPERM;
goto fail_unlock;
}
ins_index = i;
break;
}
/* Once we reach the maximum search depth, use the
* first suitable slot or return -EBUSY if there was
* none
*/
if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
if (ins_index < 0) {
rc = -EBUSY;
goto fail_unlock;
}
break;
}
++depth;
}
/* Create a software table entry if necessary, and mark it
* busy. We might yet fail to insert, but any attempt to
* insert a conflicting filter while we're waiting for the
* firmware must find the busy entry.
*/
saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
if (saved_spec) {
replacing = true;
} else {
saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
if (!saved_spec) {
rc = -ENOMEM;
goto fail_unlock;
}
*saved_spec = *spec;
}
efx_ef10_filter_set_entry(table, ins_index, saved_spec,
EFX_EF10_FILTER_FLAG_BUSY);
spin_unlock_bh(&efx->filter_lock);
/* Pack up the variables needed on completion */
cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
efx_ef10_filter_push_prep(efx, spec, inbuf,
table->entry[ins_index].handle, replacing);
efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
MC_CMD_FILTER_OP_OUT_LEN,
efx_ef10_filter_rfs_insert_complete, cookie);
return ins_index;
fail_unlock:
spin_unlock_bh(&efx->filter_lock);
return rc;
}
static void
efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
int rc, efx_dword_t *outbuf,
size_t outlen_actual)
{
struct efx_ef10_filter_table *table = efx->filter_state;
unsigned int ins_index, dmaq_id;
struct efx_filter_spec *spec;
bool replacing;
/* Unpack the cookie */
replacing = cookie >> 31;
ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
dmaq_id = cookie & 0xffff;
spin_lock_bh(&efx->filter_lock);
spec = efx_ef10_filter_entry_spec(table, ins_index);
if (rc == 0) {
table->entry[ins_index].handle =
MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
if (replacing)
spec->dmaq_id = dmaq_id;
} else if (!replacing) {
kfree(spec);
spec = NULL;
}
efx_ef10_filter_set_entry(table, ins_index, spec, 0);
spin_unlock_bh(&efx->filter_lock);
wake_up_all(&table->waitq);
}
static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
unsigned long filter_idx,
int rc, efx_dword_t *outbuf,
size_t outlen_actual);
static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
unsigned int filter_idx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_filter_spec *spec =
efx_ef10_filter_entry_spec(table, filter_idx);
MCDI_DECLARE_BUF(inbuf,
MC_CMD_FILTER_OP_IN_HANDLE_OFST +
MC_CMD_FILTER_OP_IN_HANDLE_LEN);
if (!spec ||
(table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
spec->priority != EFX_FILTER_PRI_HINT ||
!rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
flow_id, filter_idx))
return false;
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
MC_CMD_FILTER_OP_IN_OP_REMOVE);
MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
table->entry[filter_idx].handle);
if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
efx_ef10_filter_rfs_expire_complete, filter_idx))
return false;
table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
return true;
}
static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
unsigned long filter_idx,
int rc, efx_dword_t *outbuf,
size_t outlen_actual)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_filter_spec *spec =
efx_ef10_filter_entry_spec(table, filter_idx);
spin_lock_bh(&efx->filter_lock);
if (rc == 0) {
kfree(spec);
efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
}
table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
wake_up_all(&table->waitq);
spin_unlock_bh(&efx->filter_lock);
}
#endif /* CONFIG_RFS_ACCEL */
static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
{
int match_flags = 0;
#define MAP_FLAG(gen_flag, mcdi_field) { \
u32 old_mcdi_flags = mcdi_flags; \
mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
mcdi_field ## _LBN); \
if (mcdi_flags != old_mcdi_flags) \
match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
}
MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
MAP_FLAG(REM_HOST, SRC_IP);
MAP_FLAG(LOC_HOST, DST_IP);
MAP_FLAG(REM_MAC, SRC_MAC);
MAP_FLAG(REM_PORT, SRC_PORT);
MAP_FLAG(LOC_MAC, DST_MAC);
MAP_FLAG(LOC_PORT, DST_PORT);
MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
MAP_FLAG(INNER_VID, INNER_VLAN);
MAP_FLAG(OUTER_VID, OUTER_VLAN);
MAP_FLAG(IP_PROTO, IP_PROTO);
#undef MAP_FLAG
/* Did we map them all? */
if (mcdi_flags)
return -EINVAL;
return match_flags;
}
static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_filter_vlan *vlan, *next_vlan;
/* See comment in efx_ef10_filter_table_remove() */
if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
return;
if (!table)
return;
list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
efx_ef10_filter_del_vlan_internal(efx, vlan);
}
static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
enum efx_filter_match_flags match_flags)
{
unsigned int match_pri;
int mf;
for (match_pri = 0;
match_pri < table->rx_match_count;
match_pri++) {
mf = efx_ef10_filter_match_flags_from_mcdi(
table->rx_match_mcdi_flags[match_pri]);
if (mf == match_flags)
return true;
}
return false;
}
static int efx_ef10_filter_table_probe(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct net_device *net_dev = efx->net_dev;
unsigned int pd_match_pri, pd_match_count;
struct efx_ef10_filter_table *table;
struct efx_ef10_vlan *vlan;
size_t outlen;
int rc;
if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
return -EINVAL;
if (efx->filter_state) /* already probed */
return 0;
table = kzalloc(sizeof(*table), GFP_KERNEL);
if (!table)
return -ENOMEM;
/* Find out which RX filter types are supported, and their priorities */
MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
&outlen);
if (rc)
goto fail;
pd_match_count = MCDI_VAR_ARRAY_LEN(
outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
table->rx_match_count = 0;
for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
u32 mcdi_flags =
MCDI_ARRAY_DWORD(
outbuf,
GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
pd_match_pri);
rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
if (rc < 0) {
netif_dbg(efx, probe, efx->net_dev,
"%s: fw flags %#x pri %u not supported in driver\n",
__func__, mcdi_flags, pd_match_pri);
} else {
netif_dbg(efx, probe, efx->net_dev,
"%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
__func__, mcdi_flags, pd_match_pri,
rc, table->rx_match_count);
table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
table->rx_match_count++;
}
}
if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
!(efx_ef10_filter_match_supported(table,
(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
efx_ef10_filter_match_supported(table,
(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
netif_info(efx, probe, net_dev,
"VLAN filters are not supported in this firmware variant\n");
net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
}
table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
if (!table->entry) {
rc = -ENOMEM;
goto fail;
}
table->mc_promisc_last = false;
table->vlan_filter =
!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
INIT_LIST_HEAD(&table->vlan_list);
efx->filter_state = table;
init_waitqueue_head(&table->waitq);
list_for_each_entry(vlan, &nic_data->vlan_list, list) {
rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
if (rc)
goto fail_add_vlan;
}
return 0;
fail_add_vlan:
efx_ef10_filter_cleanup_vlans(efx);
efx->filter_state = NULL;
fail:
kfree(table);
return rc;
}
/* Caller must hold efx->filter_sem for read if race against
* efx_ef10_filter_table_remove() is possible
*/
static void efx_ef10_filter_table_restore(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
struct efx_filter_spec *spec;
unsigned int filter_idx;
bool failed = false;
int rc;
WARN_ON(!rwsem_is_locked(&efx->filter_sem));
if (!nic_data->must_restore_filters)
return;
if (!table)
return;
spin_lock_bh(&efx->filter_lock);
for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
spec = efx_ef10_filter_entry_spec(table, filter_idx);
if (!spec)
continue;
table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
spin_unlock_bh(&efx->filter_lock);
rc = efx_ef10_filter_push(efx, spec,
&table->entry[filter_idx].handle,
false);
if (rc)
failed = true;
spin_lock_bh(&efx->filter_lock);
if (rc) {
kfree(spec);
efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
} else {
table->entry[filter_idx].spec &=
~EFX_EF10_FILTER_FLAG_BUSY;
}
}
spin_unlock_bh(&efx->filter_lock);
if (failed)
netif_err(efx, hw, efx->net_dev,
"unable to restore all filters\n");
else
nic_data->must_restore_filters = false;
}
static void efx_ef10_filter_table_remove(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
struct efx_filter_spec *spec;
unsigned int filter_idx;
int rc;
efx_ef10_filter_cleanup_vlans(efx);
efx->filter_state = NULL;
/* If we were called without locking, then it's not safe to free
* the table as others might be using it. So we just WARN, leak
* the memory, and potentially get an inconsistent filter table
* state.
* This should never actually happen.
*/
if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
return;
if (!table)
return;
for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
spec = efx_ef10_filter_entry_spec(table, filter_idx);
if (!spec)
continue;
MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
efx_ef10_filter_is_exclusive(spec) ?
MC_CMD_FILTER_OP_IN_OP_REMOVE :
MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
table->entry[filter_idx].handle);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
sizeof(inbuf), NULL, 0, NULL);
if (rc)
netif_info(efx, drv, efx->net_dev,
"%s: filter %04x remove failed\n",
__func__, filter_idx);
kfree(spec);
}
vfree(table->entry);
kfree(table);
}
static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
{
struct efx_ef10_filter_table *table = efx->filter_state;
unsigned int filter_idx;
if (*id != EFX_EF10_FILTER_ID_INVALID) {
filter_idx = efx_ef10_filter_get_unsafe_id(efx, *id);
if (!table->entry[filter_idx].spec)
netif_dbg(efx, drv, efx->net_dev,
"marked null spec old %04x:%04x\n", *id,
filter_idx);
table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
*id = EFX_EF10_FILTER_ID_INVALID;
}
}
/* Mark old per-VLAN filters that may need to be removed */
static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
struct efx_ef10_filter_vlan *vlan)
{
struct efx_ef10_filter_table *table = efx->filter_state;
unsigned int i;
for (i = 0; i < table->dev_uc_count; i++)
efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
for (i = 0; i < table->dev_mc_count; i++)
efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
efx_ef10_filter_mark_one_old(efx, &vlan->ucdef);
efx_ef10_filter_mark_one_old(efx, &vlan->bcast);
efx_ef10_filter_mark_one_old(efx, &vlan->mcdef);
}
/* Mark old filters that may need to be removed.
* Caller must hold efx->filter_sem for read if race against
* efx_ef10_filter_table_remove() is possible
*/
static void efx_ef10_filter_mark_old(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_filter_vlan *vlan;
spin_lock_bh(&efx->filter_lock);
list_for_each_entry(vlan, &table->vlan_list, list)
_efx_ef10_filter_vlan_mark_old(efx, vlan);
spin_unlock_bh(&efx->filter_lock);
}
static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct net_device *net_dev = efx->net_dev;
struct netdev_hw_addr *uc;
unsigned int i;
table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
i = 1;
netdev_for_each_uc_addr(uc, net_dev) {
if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
table->uc_promisc = true;
break;
}
ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
i++;
}
table->dev_uc_count = i;
}
static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct net_device *net_dev = efx->net_dev;
struct netdev_hw_addr *mc;
unsigned int i;
table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
i = 0;
netdev_for_each_mc_addr(mc, net_dev) {
if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
table->mc_promisc = true;
break;
}
ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
i++;
}
table->dev_mc_count = i;
}
static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
struct efx_ef10_filter_vlan *vlan,
bool multicast, bool rollback)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_dev_addr *addr_list;
enum efx_filter_flags filter_flags;
struct efx_filter_spec spec;
u8 baddr[ETH_ALEN];
unsigned int i, j;
int addr_count;
u16 *ids;
int rc;
if (multicast) {
addr_list = table->dev_mc_list;
addr_count = table->dev_mc_count;
ids = vlan->mc;
} else {
addr_list = table->dev_uc_list;
addr_count = table->dev_uc_count;
ids = vlan->uc;
}
filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
/* Insert/renew filters */
for (i = 0; i < addr_count; i++) {
efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
rc = efx_ef10_filter_insert(efx, &spec, true);
if (rc < 0) {
if (rollback) {
netif_info(efx, drv, efx->net_dev,
"efx_ef10_filter_insert failed rc=%d\n",
rc);
/* Fall back to promiscuous */
for (j = 0; j < i; j++) {
efx_ef10_filter_remove_unsafe(
efx, EFX_FILTER_PRI_AUTO,
ids[j]);
ids[j] = EFX_EF10_FILTER_ID_INVALID;
}
return rc;
} else {
/* mark as not inserted, and carry on */
rc = EFX_EF10_FILTER_ID_INVALID;
}
}
ids[i] = efx_ef10_filter_get_unsafe_id(efx, rc);
}
if (multicast && rollback) {
/* Also need an Ethernet broadcast filter */
efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
eth_broadcast_addr(baddr);
efx_filter_set_eth_local(&spec, vlan->vid, baddr);
rc = efx_ef10_filter_insert(efx, &spec, true);
if (rc < 0) {
netif_warn(efx, drv, efx->net_dev,
"Broadcast filter insert failed rc=%d\n", rc);
/* Fall back to promiscuous */
for (j = 0; j < i; j++) {
efx_ef10_filter_remove_unsafe(
efx, EFX_FILTER_PRI_AUTO,
ids[j]);
ids[j] = EFX_EF10_FILTER_ID_INVALID;
}
return rc;
} else {
EFX_WARN_ON_PARANOID(vlan->bcast !=
EFX_EF10_FILTER_ID_INVALID);
vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
}
}
return 0;
}
static int efx_ef10_filter_insert_def(struct efx_nic *efx,
struct efx_ef10_filter_vlan *vlan,
bool multicast, bool rollback)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
enum efx_filter_flags filter_flags;
struct efx_filter_spec spec;
u8 baddr[ETH_ALEN];
int rc;
filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;
efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
if (multicast)
efx_filter_set_mc_def(&spec);
else
efx_filter_set_uc_def(&spec);
if (vlan->vid != EFX_FILTER_VID_UNSPEC)
efx_filter_set_eth_local(&spec, vlan->vid, NULL);
rc = efx_ef10_filter_insert(efx, &spec, true);
if (rc < 0) {
netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
efx->net_dev,
"%scast mismatch filter insert failed rc=%d\n",
multicast ? "Multi" : "Uni", rc);
} else if (multicast) {
EFX_WARN_ON_PARANOID(vlan->mcdef != EFX_EF10_FILTER_ID_INVALID);
vlan->mcdef = efx_ef10_filter_get_unsafe_id(efx, rc);
if (!nic_data->workaround_26807) {
/* Also need an Ethernet broadcast filter */
efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
filter_flags, 0);
eth_broadcast_addr(baddr);
efx_filter_set_eth_local(&spec, vlan->vid, baddr);
rc = efx_ef10_filter_insert(efx, &spec, true);
if (rc < 0) {
netif_warn(efx, drv, efx->net_dev,
"Broadcast filter insert failed rc=%d\n",
rc);
if (rollback) {
/* Roll back the mc_def filter */
efx_ef10_filter_remove_unsafe(
efx, EFX_FILTER_PRI_AUTO,
vlan->mcdef);
vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
return rc;
}
} else {
EFX_WARN_ON_PARANOID(vlan->bcast !=
EFX_EF10_FILTER_ID_INVALID);
vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
}
}
rc = 0;
} else {
EFX_WARN_ON_PARANOID(vlan->ucdef != EFX_EF10_FILTER_ID_INVALID);
vlan->ucdef = rc;
rc = 0;
}
return rc;
}
/* Remove filters that weren't renewed. Since nothing else changes the AUTO_OLD
* flag or removes these filters, we don't need to hold the filter_lock while
* scanning for these filters.
*/
static void efx_ef10_filter_remove_old(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
int remove_failed = 0;
int remove_noent = 0;
int rc;
int i;
for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
if (ACCESS_ONCE(table->entry[i].spec) &
EFX_EF10_FILTER_FLAG_AUTO_OLD) {
rc = efx_ef10_filter_remove_internal(efx,
1U << EFX_FILTER_PRI_AUTO, i, true);
if (rc == -ENOENT)
remove_noent++;
else if (rc)
remove_failed++;
}
}
if (remove_failed)
netif_info(efx, drv, efx->net_dev,
"%s: failed to remove %d filters\n",
__func__, remove_failed);
if (remove_noent)
netif_info(efx, drv, efx->net_dev,
"%s: failed to remove %d non-existent filters\n",
__func__, remove_noent);
}
static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
{
struct efx_ef10_nic_data *nic_data = efx->nic_data;
u8 mac_old[ETH_ALEN];
int rc, rc2;
/* Only reconfigure a PF-created vport */
if (is_zero_ether_addr(nic_data->vport_mac))
return 0;
efx_device_detach_sync(efx);
efx_net_stop(efx->net_dev);
down_write(&efx->filter_sem);
efx_ef10_filter_table_remove(efx);
up_write(&efx->filter_sem);
rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
if (rc)
goto restore_filters;
ether_addr_copy(mac_old, nic_data->vport_mac);
rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
nic_data->vport_mac);
if (rc)
goto restore_vadaptor;
rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
efx->net_dev->dev_addr);
if (!rc) {
ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
} else {
rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
if (rc2) {
/* Failed to add original MAC, so clear vport_mac */
eth_zero_addr(nic_data->vport_mac);
goto reset_nic;
}
}
restore_vadaptor:
rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
if (rc2)
goto reset_nic;
restore_filters:
down_write(&efx->filter_sem);
rc2 = efx_ef10_filter_table_probe(efx);
up_write(&efx->filter_sem);
if (rc2)
goto reset_nic;
rc2 = efx_net_open(efx->net_dev);
if (rc2)
goto reset_nic;
netif_device_attach(efx->net_dev);
return rc;
reset_nic:
netif_err(efx, drv, efx->net_dev,
"Failed to restore when changing MAC address - scheduling reset\n");
efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
return rc ? rc : rc2;
}
/* Caller must hold efx->filter_sem for read if race against
* efx_ef10_filter_table_remove() is possible
*/
static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
struct efx_ef10_filter_vlan *vlan)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_nic_data *nic_data = efx->nic_data;
/* Do not install unspecified VID if VLAN filtering is enabled.
* Do not install all specified VIDs if VLAN filtering is disabled.
*/
if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
return;
/* Insert/renew unicast filters */
if (table->uc_promisc) {
efx_ef10_filter_insert_def(efx, vlan, false, false);
efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
} else {
/* If any of the filters failed to insert, fall back to
* promiscuous mode - add in the uc_def filter. But keep
* our individual unicast filters.
*/
if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
efx_ef10_filter_insert_def(efx, vlan, false, false);
}
/* Insert/renew multicast filters */
/* If changing promiscuous state with cascaded multicast filters, remove
* old filters first, so that packets are dropped rather than duplicated
*/
if (nic_data->workaround_26807 &&
table->mc_promisc_last != table->mc_promisc)
efx_ef10_filter_remove_old(efx);
if (table->mc_promisc) {
if (nic_data->workaround_26807) {
/* If we failed to insert promiscuous filters, rollback
* and fall back to individual multicast filters
*/
if (efx_ef10_filter_insert_def(efx, vlan, true, true)) {
/* Changing promisc state, so remove old filters */
efx_ef10_filter_remove_old(efx);
efx_ef10_filter_insert_addr_list(efx, vlan,
true, false);
}
} else {
/* If we failed to insert promiscuous filters, don't
* rollback. Regardless, also insert the mc_list
*/
efx_ef10_filter_insert_def(efx, vlan, true, false);
efx_ef10_filter_insert_addr_list(efx, vlan, true, false);
}
} else {
/* If any filters failed to insert, rollback and fall back to
* promiscuous mode - mc_def filter and maybe broadcast. If
* that fails, roll back again and insert as many of our
* individual multicast filters as we can.
*/
if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
/* Changing promisc state, so remove old filters */
if (nic_data->workaround_26807)
efx_ef10_filter_remove_old(efx);
if (efx_ef10_filter_insert_def(efx, vlan, true, true))
efx_ef10_filter_insert_addr_list(efx, vlan,
true, false);
}
}
}
/* Caller must hold efx->filter_sem for read if race against
* efx_ef10_filter_table_remove() is possible
*/
static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct net_device *net_dev = efx->net_dev;
struct efx_ef10_filter_vlan *vlan;
bool vlan_filter;
if (!efx_dev_registered(efx))
return;
if (!table)
return;
efx_ef10_filter_mark_old(efx);
/* Copy/convert the address lists; add the primary station
* address and broadcast address
*/
netif_addr_lock_bh(net_dev);
efx_ef10_filter_uc_addr_list(efx);
efx_ef10_filter_mc_addr_list(efx);
netif_addr_unlock_bh(net_dev);
/* If VLAN filtering changes, all old filters are finally removed.
* Do it in advance to avoid conflicts for unicast untagged and
* VLAN 0 tagged filters.
*/
vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
if (table->vlan_filter != vlan_filter) {
table->vlan_filter = vlan_filter;
efx_ef10_filter_remove_old(efx);
}
list_for_each_entry(vlan, &table->vlan_list, list)
efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
efx_ef10_filter_remove_old(efx);
table->mc_promisc_last = table->mc_promisc;
}
static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_filter_vlan *vlan;
WARN_ON(!rwsem_is_locked(&efx->filter_sem));
list_for_each_entry(vlan, &table->vlan_list, list) {
if (vlan->vid == vid)
return vlan;
}
return NULL;
}
static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
{
struct efx_ef10_filter_table *table = efx->filter_state;
struct efx_ef10_filter_vlan *vlan;
unsigned int i;
if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
return -EINVAL;
vlan = efx_ef10_filter_find_vlan(efx, vid);
if (WARN_ON(vlan)) {
netif_err(efx, drv, efx->net_dev,
"VLAN %u already added\n", vid);
return -EALREADY;
}
vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
if (!vlan)
return -ENOMEM;
vlan->vid = vid;
for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
vlan->ucdef = EFX_EF10_FILTER_ID_INVALID;
vlan->bcast = EFX_EF10_FILTER_ID_INVALID;
vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
list_add_tail(&vlan->list, &table->vlan_list);
if (efx_dev_registered(efx))
efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
return 0;
}
static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
struct efx_ef10_filter_vlan *vlan)
{
unsigned int i;
/* See comment in efx_ef10_filter_table_remove() */
if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
return;
list_del(&vlan->list);
for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
vlan->uc[i]);
for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
vlan->mc[i]);
efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->ucdef);
efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->bcast);
efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->mcdef);
kfree(vlan);
}
static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
{
struct efx_ef10_filter_vlan *vlan;
/* See comment in efx_ef10_filter_table_remove() */
if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
return;
vlan = efx_ef10_filter_find_vlan(efx, vid);
if (!vlan) {
netif_err(efx, drv, efx->net_dev,
"VLAN %u not found in filter state\n", vid);
return;
}
efx_ef10_filter_del_vlan_internal(efx, vlan);
}
static int efx_ef10_set_mac_address(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
struct efx_ef10_nic_data *nic_data = efx->nic_data;
bool was_enabled = efx->port_enabled;
int rc;
efx_device_detach_sync(efx);
efx_net_stop(efx->net_dev);
mutex_lock(&efx->mac_lock);
down_write(&efx->filter_sem);
efx_ef10_filter_table_remove(efx);
ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
efx->net_dev->dev_addr);
MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
nic_data->vport_id);
rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
sizeof(inbuf), NULL, 0, NULL);
efx_ef10_filter_table_probe(efx);
up_write(&efx->filter_sem);
mutex_unlock(&efx->mac_lock);
if (was_enabled)
efx_net_open(efx->net_dev);
netif_device_attach(efx->net_dev);
#ifdef CONFIG_SFC_SRIOV
if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
if (rc == -EPERM) {
struct efx_nic *efx_pf;
/* Switch to PF and change MAC address on vport */
efx_pf = pci_get_drvdata(pci_dev_pf);
rc = efx_ef10_sriov_set_vf_mac(efx_pf,
nic_data->vf_index,
efx->net_dev->dev_addr);
} else if (!rc) {
struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
unsigned int i;
/* MAC address successfully changed by VF (with MAC
* spoofing) so update the parent PF if possible.
*/
for (i = 0; i < efx_pf->vf_count; ++i) {
struct ef10_vf *vf = nic_data->vf + i;
if (vf->efx == efx) {
ether_addr_copy(vf->mac,
efx->net_dev->dev_addr);
return 0;
}
}
}
} else
#endif
if (rc == -EPERM) {
netif_err(efx, drv, efx->net_dev,
"Cannot change MAC address; use sfboot to enable"
" mac-spoofing on this interface\n");
} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
* fall-back to the method of changing the MAC address on the
* vport. This only applies to PFs because such versions of
* MCFW do not support VFs.
*/
rc = efx_ef10_vport_set_mac_address(efx);
} else if (rc) {
efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
sizeof(inbuf), NULL, 0, rc);
}
return rc;
}
static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
{
efx_ef10_filter_sync_rx_mode(efx);
return efx_mcdi_set_mac(efx);
}
static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
{
efx_ef10_filter_sync_rx_mode(efx);
return 0;
}
static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
NULL, 0, NULL);
}
/* MC BISTs follow a different poll mechanism to phy BISTs.
* The BIST is done in the poll handler on the MC, and the MCDI command
* will block until the BIST is done.
*/
static int efx_ef10_poll_bist(struct efx_nic *efx)
{
int rc;
MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
size_t outlen;
u32 result;
rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc != 0)
return rc;
if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
return -EIO;
result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
switch (result) {
case MC_CMD_POLL_BIST_PASSED:
netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
return 0;
case MC_CMD_POLL_BIST_TIMEOUT:
netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
return -EIO;
case MC_CMD_POLL_BIST_FAILED:
netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
return -EIO;
default:
netif_err(efx, hw, efx->net_dev,
"BIST returned unknown result %u", result);
return -EIO;
}
}
static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
{
int rc;
netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
rc = efx_ef10_start_bist(efx, bist_type);
if (rc != 0)
return rc;
return efx_ef10_poll_bist(efx);
}
static int
efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
{
int rc, rc2;
efx_reset_down(efx, RESET_TYPE_WORLD);
rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
NULL, 0, NULL, 0, NULL);
if (rc != 0)
goto out;
tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
out:
if (rc == -EPERM)
rc = 0;
rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
return rc ? rc : rc2;
}
#ifdef CONFIG_SFC_MTD
struct efx_ef10_nvram_type_info {
u16 type, type_mask;
u8 port;
const char *name;
};
static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
{ NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
{ NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
{ NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
{ NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
{ NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
};
#define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
struct efx_mcdi_mtd_partition *part,
unsigned int type,
unsigned long *found)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
const struct efx_ef10_nvram_type_info *info;
size_t size, erase_size, outlen;
int type_idx = 0;
bool protected;
int rc;
for (type_idx = 0; ; type_idx++) {
if (type_idx == EF10_NVRAM_PARTITION_COUNT)
return -ENODEV;
info = efx_ef10_nvram_types + type_idx;
if ((type & ~info->type_mask) == info->type)
break;
}
if (info->port != efx_port_num(efx))
return -ENODEV;
rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
if (rc)
return rc;
if (protected)
return -ENODEV; /* hide it */
/* If we've already exposed a partition of this type, hide this
* duplicate. All operations on MTDs are keyed by the type anyway,
* so we can't act on the duplicate.
*/
if (__test_and_set_bit(type_idx, found))
return -EEXIST;
part->nvram_type = type;
MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
return -EIO;
if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
(1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
part->fw_subtype = MCDI_DWORD(outbuf,
NVRAM_METADATA_OUT_SUBTYPE);
part->common.dev_type_name = "EF10 NVRAM manager";
part->common.type_name = info->name;
part->common.mtd.type = MTD_NORFLASH;
part->common.mtd.flags = MTD_CAP_NORFLASH;
part->common.mtd.size = size;
part->common.mtd.erasesize = erase_size;
return 0;
}
static int efx_ef10_mtd_probe(struct efx_nic *efx)
{
MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
struct efx_mcdi_mtd_partition *parts;
size_t outlen, n_parts_total, i, n_parts;
unsigned int type;
int rc;
ASSERT_RTNL();
BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
return -EIO;
n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
if (n_parts_total >
MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
return -EIO;
parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
n_parts = 0;
for (i = 0; i < n_parts_total; i++) {
type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
i);
rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
found);
if (rc == -EEXIST || rc == -ENODEV)
continue;
if (rc)
goto fail;
n_parts++;
}
rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
fail:
if (rc)
kfree(parts);
return rc;
}
#endif /* CONFIG_SFC_MTD */
static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
{
_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
}
static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
u32 host_time) {}
static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
bool temp)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
int rc;
if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
channel->sync_events_state == SYNC_EVENTS_VALID ||
(temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
return 0;
channel->sync_events_state = SYNC_EVENTS_REQUESTED;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
channel->channel);
rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
inbuf, sizeof(inbuf), NULL, 0, NULL);
if (rc != 0)
channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
SYNC_EVENTS_DISABLED;
return rc;
}
static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
bool temp)
{
MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
int rc;
if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
(temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
return 0;
if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
channel->sync_events_state = SYNC_EVENTS_DISABLED;
return 0;
}
channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
SYNC_EVENTS_DISABLED;
MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
channel->channel);
rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
inbuf, sizeof(inbuf), NULL, 0, NULL);
return rc;
}
static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
bool temp)
{
int (*set)(struct efx_channel *channel, bool temp);
struct efx_channel *channel;
set = en ?
efx_ef10_rx_enable_timestamping :
efx_ef10_rx_disable_timestamping;
efx_for_each_channel(channel, efx) {
int rc = set(channel, temp);
if (en && rc != 0) {
efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
return rc;
}
}
return 0;
}
static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
struct hwtstamp_config *init)
{
return -EOPNOTSUPP;
}
static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
struct hwtstamp_config *init)
{
int rc;
switch (init->rx_filter) {
case HWTSTAMP_FILTER_NONE:
efx_ef10_ptp_set_ts_sync_events(efx, false, false);
/* if TX timestamping is still requested then leave PTP on */
return efx_ptp_change_mode(efx,
init->tx_type != HWTSTAMP_TX_OFF, 0);
case HWTSTAMP_FILTER_ALL:
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
init->rx_filter = HWTSTAMP_FILTER_ALL;
rc = efx_ptp_change_mode(efx, true, 0);
if (!rc)
rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
if (rc)
efx_ptp_change_mode(efx, false, 0);
return rc;
default:
return -ERANGE;
}
}
static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
{
if (proto != htons(ETH_P_8021Q))
return -EINVAL;
return efx_ef10_add_vlan(efx, vid);
}
static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
{
if (proto != htons(ETH_P_8021Q))
return -EINVAL;
return efx_ef10_del_vlan(efx, vid);
}
#define EF10_OFFLOAD_FEATURES \
(NETIF_F_IP_CSUM | \
NETIF_F_HW_VLAN_CTAG_FILTER | \
NETIF_F_IPV6_CSUM | \
NETIF_F_RXHASH | \
NETIF_F_NTUPLE)
const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
.is_vf = true,
.mem_bar = EFX_MEM_VF_BAR,
.mem_map_size = efx_ef10_mem_map_size,
.probe = efx_ef10_probe_vf,
.remove = efx_ef10_remove,
.dimension_resources = efx_ef10_dimension_resources,
.init = efx_ef10_init_nic,
.fini = efx_port_dummy_op_void,
.map_reset_reason = efx_ef10_map_reset_reason,
.map_reset_flags = efx_ef10_map_reset_flags,
.reset = efx_ef10_reset,
.probe_port = efx_mcdi_port_probe,
.remove_port = efx_mcdi_port_remove,
.fini_dmaq = efx_ef10_fini_dmaq,
.prepare_flr = efx_ef10_prepare_flr,
.finish_flr = efx_port_dummy_op_void,
.describe_stats = efx_ef10_describe_stats,
.update_stats = efx_ef10_update_stats_vf,
.start_stats = efx_port_dummy_op_void,
.pull_stats = efx_port_dummy_op_void,
.stop_stats = efx_port_dummy_op_void,
.set_id_led = efx_mcdi_set_id_led,
.push_irq_moderation = efx_ef10_push_irq_moderation,
.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
.check_mac_fault = efx_mcdi_mac_check_fault,
.reconfigure_port = efx_mcdi_port_reconfigure,
.get_wol = efx_ef10_get_wol_vf,
.set_wol = efx_ef10_set_wol_vf,
.resume_wol = efx_port_dummy_op_void,
.mcdi_request = efx_ef10_mcdi_request,
.mcdi_poll_response = efx_ef10_mcdi_poll_response,
.mcdi_read_response = efx_ef10_mcdi_read_response,
.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
.irq_enable_master = efx_port_dummy_op_void,
.irq_test_generate = efx_ef10_irq_test_generate,
.irq_disable_non_ev = efx_port_dummy_op_void,
.irq_handle_msi = efx_ef10_msi_interrupt,
.irq_handle_legacy = efx_ef10_legacy_interrupt,
.tx_probe = efx_ef10_tx_probe,
.tx_init = efx_ef10_tx_init,
.tx_remove = efx_ef10_tx_remove,
.tx_write = efx_ef10_tx_write,
.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
.rx_probe = efx_ef10_rx_probe,
.rx_init = efx_ef10_rx_init,
.rx_remove = efx_ef10_rx_remove,
.rx_write = efx_ef10_rx_write,
.rx_defer_refill = efx_ef10_rx_defer_refill,
.ev_probe = efx_ef10_ev_probe,
.ev_init = efx_ef10_ev_init,
.ev_fini = efx_ef10_ev_fini,
.ev_remove = efx_ef10_ev_remove,
.ev_process = efx_ef10_ev_process,
.ev_read_ack = efx_ef10_ev_read_ack,
.ev_test_generate = efx_ef10_ev_test_generate,
.filter_table_probe = efx_ef10_filter_table_probe,
.filter_table_restore = efx_ef10_filter_table_restore,
.filter_table_remove = efx_ef10_filter_table_remove,
.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
.filter_insert = efx_ef10_filter_insert,
.filter_remove_safe = efx_ef10_filter_remove_safe,
.filter_get_safe = efx_ef10_filter_get_safe,
.filter_clear_rx = efx_ef10_filter_clear_rx,
.filter_count_rx_used = efx_ef10_filter_count_rx_used,
.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
.filter_rfs_insert = efx_ef10_filter_rfs_insert,
.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
.mtd_probe = efx_port_dummy_op_int,
#endif
.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
#ifdef CONFIG_SFC_SRIOV
.vswitching_probe = efx_ef10_vswitching_probe_vf,
.vswitching_restore = efx_ef10_vswitching_restore_vf,
.vswitching_remove = efx_ef10_vswitching_remove_vf,
.sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
#endif
.get_mac_address = efx_ef10_get_mac_address_vf,
.set_mac_address = efx_ef10_set_mac_address,
.revision = EFX_REV_HUNT_A0,
.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
.can_rx_scatter = true,
.always_rx_scatter = true,
.max_interrupt_mode = EFX_INT_MODE_MSIX,
.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
.offload_features = EF10_OFFLOAD_FEATURES,
.mcdi_max_ver = 2,
.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
1 << HWTSTAMP_FILTER_ALL,
};
const struct efx_nic_type efx_hunt_a0_nic_type = {
.is_vf = false,
.mem_bar = EFX_MEM_BAR,
.mem_map_size = efx_ef10_mem_map_size,
.probe = efx_ef10_probe_pf,
.remove = efx_ef10_remove,
.dimension_resources = efx_ef10_dimension_resources,
.init = efx_ef10_init_nic,
.fini = efx_port_dummy_op_void,
.map_reset_reason = efx_ef10_map_reset_reason,
.map_reset_flags = efx_ef10_map_reset_flags,
.reset = efx_ef10_reset,
.probe_port = efx_mcdi_port_probe,
.remove_port = efx_mcdi_port_remove,
.fini_dmaq = efx_ef10_fini_dmaq,
.prepare_flr = efx_ef10_prepare_flr,
.finish_flr = efx_port_dummy_op_void,
.describe_stats = efx_ef10_describe_stats,
.update_stats = efx_ef10_update_stats_pf,
.start_stats = efx_mcdi_mac_start_stats,
.pull_stats = efx_mcdi_mac_pull_stats,
.stop_stats = efx_mcdi_mac_stop_stats,
.set_id_led = efx_mcdi_set_id_led,
.push_irq_moderation = efx_ef10_push_irq_moderation,
.reconfigure_mac = efx_ef10_mac_reconfigure,
.check_mac_fault = efx_mcdi_mac_check_fault,
.reconfigure_port = efx_mcdi_port_reconfigure,
.get_wol = efx_ef10_get_wol,
.set_wol = efx_ef10_set_wol,
.resume_wol = efx_port_dummy_op_void,
.test_chip = efx_ef10_test_chip,
.test_nvram = efx_mcdi_nvram_test_all,
.mcdi_request = efx_ef10_mcdi_request,
.mcdi_poll_response = efx_ef10_mcdi_poll_response,
.mcdi_read_response = efx_ef10_mcdi_read_response,
.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
.irq_enable_master = efx_port_dummy_op_void,
.irq_test_generate = efx_ef10_irq_test_generate,
.irq_disable_non_ev = efx_port_dummy_op_void,
.irq_handle_msi = efx_ef10_msi_interrupt,
.irq_handle_legacy = efx_ef10_legacy_interrupt,
.tx_probe = efx_ef10_tx_probe,
.tx_init = efx_ef10_tx_init,
.tx_remove = efx_ef10_tx_remove,
.tx_write = efx_ef10_tx_write,
.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
.rx_probe = efx_ef10_rx_probe,
.rx_init = efx_ef10_rx_init,
.rx_remove = efx_ef10_rx_remove,
.rx_write = efx_ef10_rx_write,
.rx_defer_refill = efx_ef10_rx_defer_refill,
.ev_probe = efx_ef10_ev_probe,
.ev_init = efx_ef10_ev_init,
.ev_fini = efx_ef10_ev_fini,
.ev_remove = efx_ef10_ev_remove,
.ev_process = efx_ef10_ev_process,
.ev_read_ack = efx_ef10_ev_read_ack,
.ev_test_generate = efx_ef10_ev_test_generate,
.filter_table_probe = efx_ef10_filter_table_probe,
.filter_table_restore = efx_ef10_filter_table_restore,
.filter_table_remove = efx_ef10_filter_table_remove,
.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
.filter_insert = efx_ef10_filter_insert,
.filter_remove_safe = efx_ef10_filter_remove_safe,
.filter_get_safe = efx_ef10_filter_get_safe,
.filter_clear_rx = efx_ef10_filter_clear_rx,
.filter_count_rx_used = efx_ef10_filter_count_rx_used,
.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
.filter_rfs_insert = efx_ef10_filter_rfs_insert,
.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
.mtd_probe = efx_ef10_mtd_probe,
.mtd_rename = efx_mcdi_mtd_rename,
.mtd_read = efx_mcdi_mtd_read,
.mtd_erase = efx_mcdi_mtd_erase,
.mtd_write = efx_mcdi_mtd_write,
.mtd_sync = efx_mcdi_mtd_sync,
#endif
.ptp_write_host_time = efx_ef10_ptp_write_host_time,
.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
#ifdef CONFIG_SFC_SRIOV
.sriov_configure = efx_ef10_sriov_configure,
.sriov_init = efx_ef10_sriov_init,
.sriov_fini = efx_ef10_sriov_fini,
.sriov_wanted = efx_ef10_sriov_wanted,
.sriov_reset = efx_ef10_sriov_reset,
.sriov_flr = efx_ef10_sriov_flr,
.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
.vswitching_probe = efx_ef10_vswitching_probe_pf,
.vswitching_restore = efx_ef10_vswitching_restore_pf,
.vswitching_remove = efx_ef10_vswitching_remove_pf,
#endif
.get_mac_address = efx_ef10_get_mac_address_pf,
.set_mac_address = efx_ef10_set_mac_address,
.revision = EFX_REV_HUNT_A0,
.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
.can_rx_scatter = true,
.always_rx_scatter = true,
.max_interrupt_mode = EFX_INT_MODE_MSIX,
.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
.offload_features = EF10_OFFLOAD_FEATURES,
.mcdi_max_ver = 2,
.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
1 << HWTSTAMP_FILTER_ALL,
};