tegrakernel/kernel/kernel-4.9/drivers/net/irda/pxaficp_ir.c

1076 lines
26 KiB
C

/*
* linux/drivers/net/irda/pxaficp_ir.c
*
* Based on sa1100_ir.c by Russell King
*
* Changes copyright (C) 2003-2005 MontaVista Software, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Infra-red driver (SIR/FIR) for the PXA2xx embedded microprocessor
*
*/
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/pxa-dma.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <net/irda/irda.h>
#include <net/irda/irmod.h>
#include <net/irda/wrapper.h>
#include <net/irda/irda_device.h>
#include <linux/platform_data/irda-pxaficp.h>
#undef __REG
#define __REG(x) ((x) & 0xffff)
#include <mach/regs-uart.h>
#define ICCR0 0x0000 /* ICP Control Register 0 */
#define ICCR1 0x0004 /* ICP Control Register 1 */
#define ICCR2 0x0008 /* ICP Control Register 2 */
#define ICDR 0x000c /* ICP Data Register */
#define ICSR0 0x0014 /* ICP Status Register 0 */
#define ICSR1 0x0018 /* ICP Status Register 1 */
#define ICCR0_AME (1 << 7) /* Address match enable */
#define ICCR0_TIE (1 << 6) /* Transmit FIFO interrupt enable */
#define ICCR0_RIE (1 << 5) /* Receive FIFO interrupt enable */
#define ICCR0_RXE (1 << 4) /* Receive enable */
#define ICCR0_TXE (1 << 3) /* Transmit enable */
#define ICCR0_TUS (1 << 2) /* Transmit FIFO underrun select */
#define ICCR0_LBM (1 << 1) /* Loopback mode */
#define ICCR0_ITR (1 << 0) /* IrDA transmission */
#define ICCR2_RXP (1 << 3) /* Receive Pin Polarity select */
#define ICCR2_TXP (1 << 2) /* Transmit Pin Polarity select */
#define ICCR2_TRIG (3 << 0) /* Receive FIFO Trigger threshold */
#define ICCR2_TRIG_8 (0 << 0) /* >= 8 bytes */
#define ICCR2_TRIG_16 (1 << 0) /* >= 16 bytes */
#define ICCR2_TRIG_32 (2 << 0) /* >= 32 bytes */
#define ICSR0_EOC (1 << 6) /* DMA End of Descriptor Chain */
#define ICSR0_FRE (1 << 5) /* Framing error */
#define ICSR0_RFS (1 << 4) /* Receive FIFO service request */
#define ICSR0_TFS (1 << 3) /* Transnit FIFO service request */
#define ICSR0_RAB (1 << 2) /* Receiver abort */
#define ICSR0_TUR (1 << 1) /* Trunsmit FIFO underun */
#define ICSR0_EIF (1 << 0) /* End/Error in FIFO */
#define ICSR1_ROR (1 << 6) /* Receiver FIFO underrun */
#define ICSR1_CRE (1 << 5) /* CRC error */
#define ICSR1_EOF (1 << 4) /* End of frame */
#define ICSR1_TNF (1 << 3) /* Transmit FIFO not full */
#define ICSR1_RNE (1 << 2) /* Receive FIFO not empty */
#define ICSR1_TBY (1 << 1) /* Tramsmiter busy flag */
#define ICSR1_RSY (1 << 0) /* Recevier synchronized flag */
#define IrSR_RXPL_NEG_IS_ZERO (1<<4)
#define IrSR_RXPL_POS_IS_ZERO 0x0
#define IrSR_TXPL_NEG_IS_ZERO (1<<3)
#define IrSR_TXPL_POS_IS_ZERO 0x0
#define IrSR_XMODE_PULSE_1_6 (1<<2)
#define IrSR_XMODE_PULSE_3_16 0x0
#define IrSR_RCVEIR_IR_MODE (1<<1)
#define IrSR_RCVEIR_UART_MODE 0x0
#define IrSR_XMITIR_IR_MODE (1<<0)
#define IrSR_XMITIR_UART_MODE 0x0
#define IrSR_IR_RECEIVE_ON (\
IrSR_RXPL_NEG_IS_ZERO | \
IrSR_TXPL_POS_IS_ZERO | \
IrSR_XMODE_PULSE_3_16 | \
IrSR_RCVEIR_IR_MODE | \
IrSR_XMITIR_UART_MODE)
#define IrSR_IR_TRANSMIT_ON (\
IrSR_RXPL_NEG_IS_ZERO | \
IrSR_TXPL_POS_IS_ZERO | \
IrSR_XMODE_PULSE_3_16 | \
IrSR_RCVEIR_UART_MODE | \
IrSR_XMITIR_IR_MODE)
/* macros for registers read/write */
#define ficp_writel(irda, val, off) \
do { \
dev_vdbg(irda->dev, \
"%s():%d ficp_writel(0x%x, %s)\n", \
__func__, __LINE__, (val), #off); \
writel_relaxed((val), (irda)->irda_base + (off)); \
} while (0)
#define ficp_readl(irda, off) \
({ \
unsigned int _v; \
_v = readl_relaxed((irda)->irda_base + (off)); \
dev_vdbg(irda->dev, \
"%s():%d ficp_readl(%s): 0x%x\n", \
__func__, __LINE__, #off, _v); \
_v; \
})
#define stuart_writel(irda, val, off) \
do { \
dev_vdbg(irda->dev, \
"%s():%d stuart_writel(0x%x, %s)\n", \
__func__, __LINE__, (val), #off); \
writel_relaxed((val), (irda)->stuart_base + (off)); \
} while (0)
#define stuart_readl(irda, off) \
({ \
unsigned int _v; \
_v = readl_relaxed((irda)->stuart_base + (off)); \
dev_vdbg(irda->dev, \
"%s():%d stuart_readl(%s): 0x%x\n", \
__func__, __LINE__, #off, _v); \
_v; \
})
struct pxa_irda {
int speed;
int newspeed;
unsigned long long last_clk;
void __iomem *stuart_base;
void __iomem *irda_base;
unsigned char *dma_rx_buff;
unsigned char *dma_tx_buff;
dma_addr_t dma_rx_buff_phy;
dma_addr_t dma_tx_buff_phy;
unsigned int dma_tx_buff_len;
struct dma_chan *txdma;
struct dma_chan *rxdma;
dma_cookie_t rx_cookie;
dma_cookie_t tx_cookie;
int drcmr_rx;
int drcmr_tx;
int uart_irq;
int icp_irq;
struct irlap_cb *irlap;
struct qos_info qos;
iobuff_t tx_buff;
iobuff_t rx_buff;
struct device *dev;
struct pxaficp_platform_data *pdata;
struct clk *fir_clk;
struct clk *sir_clk;
struct clk *cur_clk;
};
static int pxa_irda_set_speed(struct pxa_irda *si, int speed);
static inline void pxa_irda_disable_clk(struct pxa_irda *si)
{
if (si->cur_clk)
clk_disable_unprepare(si->cur_clk);
si->cur_clk = NULL;
}
static inline void pxa_irda_enable_firclk(struct pxa_irda *si)
{
si->cur_clk = si->fir_clk;
clk_prepare_enable(si->fir_clk);
}
static inline void pxa_irda_enable_sirclk(struct pxa_irda *si)
{
si->cur_clk = si->sir_clk;
clk_prepare_enable(si->sir_clk);
}
#define IS_FIR(si) ((si)->speed >= 4000000)
#define IRDA_FRAME_SIZE_LIMIT 2047
static void pxa_irda_fir_dma_rx_irq(void *data);
static void pxa_irda_fir_dma_tx_irq(void *data);
inline static void pxa_irda_fir_dma_rx_start(struct pxa_irda *si)
{
struct dma_async_tx_descriptor *tx;
tx = dmaengine_prep_slave_single(si->rxdma, si->dma_rx_buff_phy,
IRDA_FRAME_SIZE_LIMIT, DMA_FROM_DEVICE,
DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(si->dev, "prep_slave_sg() failed\n");
return;
}
tx->callback = pxa_irda_fir_dma_rx_irq;
tx->callback_param = si;
si->rx_cookie = dmaengine_submit(tx);
dma_async_issue_pending(si->rxdma);
}
inline static void pxa_irda_fir_dma_tx_start(struct pxa_irda *si)
{
struct dma_async_tx_descriptor *tx;
tx = dmaengine_prep_slave_single(si->txdma, si->dma_tx_buff_phy,
si->dma_tx_buff_len, DMA_TO_DEVICE,
DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(si->dev, "prep_slave_sg() failed\n");
return;
}
tx->callback = pxa_irda_fir_dma_tx_irq;
tx->callback_param = si;
si->tx_cookie = dmaengine_submit(tx);
dma_async_issue_pending(si->rxdma);
}
/*
* Set the IrDA communications mode.
*/
static void pxa_irda_set_mode(struct pxa_irda *si, int mode)
{
if (si->pdata->transceiver_mode)
si->pdata->transceiver_mode(si->dev, mode);
else {
if (gpio_is_valid(si->pdata->gpio_pwdown))
gpio_set_value(si->pdata->gpio_pwdown,
!(mode & IR_OFF) ^
!si->pdata->gpio_pwdown_inverted);
pxa2xx_transceiver_mode(si->dev, mode);
}
}
/*
* Set the IrDA communications speed.
*/
static int pxa_irda_set_speed(struct pxa_irda *si, int speed)
{
unsigned long flags;
unsigned int divisor;
switch (speed) {
case 9600: case 19200: case 38400:
case 57600: case 115200:
/* refer to PXA250/210 Developer's Manual 10-7 */
/* BaudRate = 14.7456 MHz / (16*Divisor) */
divisor = 14745600 / (16 * speed);
local_irq_save(flags);
if (IS_FIR(si)) {
/* stop RX DMA */
dmaengine_terminate_all(si->rxdma);
/* disable FICP */
ficp_writel(si, 0, ICCR0);
pxa_irda_disable_clk(si);
/* set board transceiver to SIR mode */
pxa_irda_set_mode(si, IR_SIRMODE);
/* enable the STUART clock */
pxa_irda_enable_sirclk(si);
}
/* disable STUART first */
stuart_writel(si, 0, STIER);
/* access DLL & DLH */
stuart_writel(si, stuart_readl(si, STLCR) | LCR_DLAB, STLCR);
stuart_writel(si, divisor & 0xff, STDLL);
stuart_writel(si, divisor >> 8, STDLH);
stuart_writel(si, stuart_readl(si, STLCR) & ~LCR_DLAB, STLCR);
si->speed = speed;
stuart_writel(si, IrSR_IR_RECEIVE_ON | IrSR_XMODE_PULSE_1_6,
STISR);
stuart_writel(si, IER_UUE | IER_RLSE | IER_RAVIE | IER_RTIOE,
STIER);
local_irq_restore(flags);
break;
case 4000000:
local_irq_save(flags);
/* disable STUART */
stuart_writel(si, 0, STIER);
stuart_writel(si, 0, STISR);
pxa_irda_disable_clk(si);
/* disable FICP first */
ficp_writel(si, 0, ICCR0);
/* set board transceiver to FIR mode */
pxa_irda_set_mode(si, IR_FIRMODE);
/* enable the FICP clock */
pxa_irda_enable_firclk(si);
si->speed = speed;
pxa_irda_fir_dma_rx_start(si);
ficp_writel(si, ICCR0_ITR | ICCR0_RXE, ICCR0);
local_irq_restore(flags);
break;
default:
return -EINVAL;
}
return 0;
}
/* SIR interrupt service routine. */
static irqreturn_t pxa_irda_sir_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct pxa_irda *si = netdev_priv(dev);
int iir, lsr, data;
iir = stuart_readl(si, STIIR);
switch (iir & 0x0F) {
case 0x06: /* Receiver Line Status */
lsr = stuart_readl(si, STLSR);
while (lsr & LSR_FIFOE) {
data = stuart_readl(si, STRBR);
if (lsr & (LSR_OE | LSR_PE | LSR_FE | LSR_BI)) {
printk(KERN_DEBUG "pxa_ir: sir receiving error\n");
dev->stats.rx_errors++;
if (lsr & LSR_FE)
dev->stats.rx_frame_errors++;
if (lsr & LSR_OE)
dev->stats.rx_fifo_errors++;
} else {
dev->stats.rx_bytes++;
async_unwrap_char(dev, &dev->stats,
&si->rx_buff, data);
}
lsr = stuart_readl(si, STLSR);
}
si->last_clk = sched_clock();
break;
case 0x04: /* Received Data Available */
/* forth through */
case 0x0C: /* Character Timeout Indication */
do {
dev->stats.rx_bytes++;
async_unwrap_char(dev, &dev->stats, &si->rx_buff,
stuart_readl(si, STRBR));
} while (stuart_readl(si, STLSR) & LSR_DR);
si->last_clk = sched_clock();
break;
case 0x02: /* Transmit FIFO Data Request */
while ((si->tx_buff.len) &&
(stuart_readl(si, STLSR) & LSR_TDRQ)) {
stuart_writel(si, *si->tx_buff.data++, STTHR);
si->tx_buff.len -= 1;
}
if (si->tx_buff.len == 0) {
dev->stats.tx_packets++;
dev->stats.tx_bytes += si->tx_buff.data - si->tx_buff.head;
/* We need to ensure that the transmitter has finished. */
while ((stuart_readl(si, STLSR) & LSR_TEMT) == 0)
cpu_relax();
si->last_clk = sched_clock();
/*
* Ok, we've finished transmitting. Now enable
* the receiver. Sometimes we get a receive IRQ
* immediately after a transmit...
*/
if (si->newspeed) {
pxa_irda_set_speed(si, si->newspeed);
si->newspeed = 0;
} else {
/* enable IR Receiver, disable IR Transmitter */
stuart_writel(si, IrSR_IR_RECEIVE_ON |
IrSR_XMODE_PULSE_1_6, STISR);
/* enable STUART and receive interrupts */
stuart_writel(si, IER_UUE | IER_RLSE |
IER_RAVIE | IER_RTIOE, STIER);
}
/* I'm hungry! */
netif_wake_queue(dev);
}
break;
}
return IRQ_HANDLED;
}
/* FIR Receive DMA interrupt handler */
static void pxa_irda_fir_dma_rx_irq(void *data)
{
struct net_device *dev = data;
struct pxa_irda *si = netdev_priv(dev);
dmaengine_terminate_all(si->rxdma);
netdev_dbg(dev, "pxa_ir: fir rx dma bus error\n");
}
/* FIR Transmit DMA interrupt handler */
static void pxa_irda_fir_dma_tx_irq(void *data)
{
struct net_device *dev = data;
struct pxa_irda *si = netdev_priv(dev);
dmaengine_terminate_all(si->txdma);
if (dmaengine_tx_status(si->txdma, si->tx_cookie, NULL) == DMA_ERROR) {
dev->stats.tx_errors++;
} else {
dev->stats.tx_packets++;
dev->stats.tx_bytes += si->dma_tx_buff_len;
}
while (ficp_readl(si, ICSR1) & ICSR1_TBY)
cpu_relax();
si->last_clk = sched_clock();
/*
* HACK: It looks like the TBY bit is dropped too soon.
* Without this delay things break.
*/
udelay(120);
if (si->newspeed) {
pxa_irda_set_speed(si, si->newspeed);
si->newspeed = 0;
} else {
int i = 64;
ficp_writel(si, 0, ICCR0);
pxa_irda_fir_dma_rx_start(si);
while ((ficp_readl(si, ICSR1) & ICSR1_RNE) && i--)
ficp_readl(si, ICDR);
ficp_writel(si, ICCR0_ITR | ICCR0_RXE, ICCR0);
if (i < 0)
printk(KERN_ERR "pxa_ir: cannot clear Rx FIFO!\n");
}
netif_wake_queue(dev);
}
/* EIF(Error in FIFO/End in Frame) handler for FIR */
static void pxa_irda_fir_irq_eif(struct pxa_irda *si, struct net_device *dev, int icsr0)
{
unsigned int len, stat, data;
struct dma_tx_state state;
/* Get the current data position. */
dmaengine_tx_status(si->rxdma, si->rx_cookie, &state);
len = IRDA_FRAME_SIZE_LIMIT - state.residue;
do {
/* Read Status, and then Data. */
stat = ficp_readl(si, ICSR1);
rmb();
data = ficp_readl(si, ICDR);
if (stat & (ICSR1_CRE | ICSR1_ROR)) {
dev->stats.rx_errors++;
if (stat & ICSR1_CRE) {
printk(KERN_DEBUG "pxa_ir: fir receive CRC error\n");
dev->stats.rx_crc_errors++;
}
if (stat & ICSR1_ROR) {
printk(KERN_DEBUG "pxa_ir: fir receive overrun\n");
dev->stats.rx_over_errors++;
}
} else {
si->dma_rx_buff[len++] = data;
}
/* If we hit the end of frame, there's no point in continuing. */
if (stat & ICSR1_EOF)
break;
} while (ficp_readl(si, ICSR0) & ICSR0_EIF);
if (stat & ICSR1_EOF) {
/* end of frame. */
struct sk_buff *skb;
if (icsr0 & ICSR0_FRE) {
printk(KERN_ERR "pxa_ir: dropping erroneous frame\n");
dev->stats.rx_dropped++;
return;
}
skb = alloc_skb(len+1,GFP_ATOMIC);
if (!skb) {
printk(KERN_ERR "pxa_ir: fir out of memory for receive skb\n");
dev->stats.rx_dropped++;
return;
}
/* Align IP header to 20 bytes */
skb_reserve(skb, 1);
skb_copy_to_linear_data(skb, si->dma_rx_buff, len);
skb_put(skb, len);
/* Feed it to IrLAP */
skb->dev = dev;
skb_reset_mac_header(skb);
skb->protocol = htons(ETH_P_IRDA);
netif_rx(skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
}
}
/* FIR interrupt handler */
static irqreturn_t pxa_irda_fir_irq(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct pxa_irda *si = netdev_priv(dev);
int icsr0, i = 64;
/* stop RX DMA */
dmaengine_terminate_all(si->rxdma);
si->last_clk = sched_clock();
icsr0 = ficp_readl(si, ICSR0);
if (icsr0 & (ICSR0_FRE | ICSR0_RAB)) {
if (icsr0 & ICSR0_FRE) {
printk(KERN_DEBUG "pxa_ir: fir receive frame error\n");
dev->stats.rx_frame_errors++;
} else {
printk(KERN_DEBUG "pxa_ir: fir receive abort\n");
dev->stats.rx_errors++;
}
ficp_writel(si, icsr0 & (ICSR0_FRE | ICSR0_RAB), ICSR0);
}
if (icsr0 & ICSR0_EIF) {
/* An error in FIFO occurred, or there is a end of frame */
pxa_irda_fir_irq_eif(si, dev, icsr0);
}
ficp_writel(si, 0, ICCR0);
pxa_irda_fir_dma_rx_start(si);
while ((ficp_readl(si, ICSR1) & ICSR1_RNE) && i--)
ficp_readl(si, ICDR);
ficp_writel(si, ICCR0_ITR | ICCR0_RXE, ICCR0);
if (i < 0)
printk(KERN_ERR "pxa_ir: cannot clear Rx FIFO!\n");
return IRQ_HANDLED;
}
/* hard_xmit interface of irda device */
static int pxa_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct pxa_irda *si = netdev_priv(dev);
int speed = irda_get_next_speed(skb);
/*
* Does this packet contain a request to change the interface
* speed? If so, remember it until we complete the transmission
* of this frame.
*/
if (speed != si->speed && speed != -1)
si->newspeed = speed;
/*
* If this is an empty frame, we can bypass a lot.
*/
if (skb->len == 0) {
if (si->newspeed) {
si->newspeed = 0;
pxa_irda_set_speed(si, speed);
}
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
netif_stop_queue(dev);
if (!IS_FIR(si)) {
si->tx_buff.data = si->tx_buff.head;
si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data, si->tx_buff.truesize);
/* Disable STUART interrupts and switch to transmit mode. */
stuart_writel(si, 0, STIER);
stuart_writel(si, IrSR_IR_TRANSMIT_ON | IrSR_XMODE_PULSE_1_6,
STISR);
/* enable STUART and transmit interrupts */
stuart_writel(si, IER_UUE | IER_TIE, STIER);
} else {
unsigned long mtt = irda_get_mtt(skb);
si->dma_tx_buff_len = skb->len;
skb_copy_from_linear_data(skb, si->dma_tx_buff, skb->len);
if (mtt)
while ((sched_clock() - si->last_clk) * 1000 < mtt)
cpu_relax();
/* stop RX DMA, disable FICP */
dmaengine_terminate_all(si->rxdma);
ficp_writel(si, 0, ICCR0);
pxa_irda_fir_dma_tx_start(si);
ficp_writel(si, ICCR0_ITR | ICCR0_TXE, ICCR0);
}
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static int pxa_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
{
struct if_irda_req *rq = (struct if_irda_req *)ifreq;
struct pxa_irda *si = netdev_priv(dev);
int ret;
switch (cmd) {
case SIOCSBANDWIDTH:
ret = -EPERM;
if (capable(CAP_NET_ADMIN)) {
/*
* We are unable to set the speed if the
* device is not running.
*/
if (netif_running(dev)) {
ret = pxa_irda_set_speed(si,
rq->ifr_baudrate);
} else {
printk(KERN_INFO "pxa_ir: SIOCSBANDWIDTH: !netif_running\n");
ret = 0;
}
}
break;
case SIOCSMEDIABUSY:
ret = -EPERM;
if (capable(CAP_NET_ADMIN)) {
irda_device_set_media_busy(dev, TRUE);
ret = 0;
}
break;
case SIOCGRECEIVING:
ret = 0;
rq->ifr_receiving = IS_FIR(si) ? 0
: si->rx_buff.state != OUTSIDE_FRAME;
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static void pxa_irda_startup(struct pxa_irda *si)
{
/* Disable STUART interrupts */
stuart_writel(si, 0, STIER);
/* enable STUART interrupt to the processor */
stuart_writel(si, MCR_OUT2, STMCR);
/* configure SIR frame format: StartBit - Data 7 ... Data 0 - Stop Bit */
stuart_writel(si, LCR_WLS0 | LCR_WLS1, STLCR);
/* enable FIFO, we use FIFO to improve performance */
stuart_writel(si, FCR_TRFIFOE | FCR_ITL_32, STFCR);
/* disable FICP */
ficp_writel(si, 0, ICCR0);
/* configure FICP ICCR2 */
ficp_writel(si, ICCR2_TXP | ICCR2_TRIG_32, ICCR2);
/* force SIR reinitialization */
si->speed = 4000000;
pxa_irda_set_speed(si, 9600);
printk(KERN_DEBUG "pxa_ir: irda startup\n");
}
static void pxa_irda_shutdown(struct pxa_irda *si)
{
unsigned long flags;
local_irq_save(flags);
/* disable STUART and interrupt */
stuart_writel(si, 0, STIER);
/* disable STUART SIR mode */
stuart_writel(si, 0, STISR);
/* disable DMA */
dmaengine_terminate_all(si->rxdma);
dmaengine_terminate_all(si->txdma);
/* disable FICP */
ficp_writel(si, 0, ICCR0);
/* disable the STUART or FICP clocks */
pxa_irda_disable_clk(si);
local_irq_restore(flags);
/* power off board transceiver */
pxa_irda_set_mode(si, IR_OFF);
printk(KERN_DEBUG "pxa_ir: irda shutdown\n");
}
static int pxa_irda_start(struct net_device *dev)
{
struct pxa_irda *si = netdev_priv(dev);
dma_cap_mask_t mask;
struct dma_slave_config config;
struct pxad_param param;
int err;
si->speed = 9600;
err = request_irq(si->uart_irq, pxa_irda_sir_irq, 0, dev->name, dev);
if (err)
goto err_irq1;
err = request_irq(si->icp_irq, pxa_irda_fir_irq, 0, dev->name, dev);
if (err)
goto err_irq2;
/*
* The interrupt must remain disabled for now.
*/
disable_irq(si->uart_irq);
disable_irq(si->icp_irq);
err = -EBUSY;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
param.prio = PXAD_PRIO_LOWEST;
memset(&config, 0, sizeof(config));
config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
config.src_addr = (dma_addr_t)si->irda_base + ICDR;
config.dst_addr = (dma_addr_t)si->irda_base + ICDR;
config.src_maxburst = 32;
config.dst_maxburst = 32;
param.drcmr = si->drcmr_rx;
si->rxdma = dma_request_slave_channel_compat(mask, pxad_filter_fn,
&param, &dev->dev, "rx");
if (!si->rxdma)
goto err_rx_dma;
param.drcmr = si->drcmr_tx;
si->txdma = dma_request_slave_channel_compat(mask, pxad_filter_fn,
&param, &dev->dev, "tx");
if (!si->txdma)
goto err_tx_dma;
err = dmaengine_slave_config(si->rxdma, &config);
if (err)
goto err_dma_rx_buff;
err = dmaengine_slave_config(si->txdma, &config);
if (err)
goto err_dma_rx_buff;
err = -ENOMEM;
si->dma_rx_buff = dma_alloc_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT,
&si->dma_rx_buff_phy, GFP_KERNEL);
if (!si->dma_rx_buff)
goto err_dma_rx_buff;
si->dma_tx_buff = dma_alloc_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT,
&si->dma_tx_buff_phy, GFP_KERNEL);
if (!si->dma_tx_buff)
goto err_dma_tx_buff;
/* Setup the serial port for the initial speed. */
pxa_irda_startup(si);
/*
* Open a new IrLAP layer instance.
*/
si->irlap = irlap_open(dev, &si->qos, "pxa");
err = -ENOMEM;
if (!si->irlap)
goto err_irlap;
/*
* Now enable the interrupt and start the queue
*/
enable_irq(si->uart_irq);
enable_irq(si->icp_irq);
netif_start_queue(dev);
printk(KERN_DEBUG "pxa_ir: irda driver opened\n");
return 0;
err_irlap:
pxa_irda_shutdown(si);
dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_tx_buff, si->dma_tx_buff_phy);
err_dma_tx_buff:
dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_rx_buff, si->dma_rx_buff_phy);
err_dma_rx_buff:
dma_release_channel(si->txdma);
err_tx_dma:
dma_release_channel(si->rxdma);
err_rx_dma:
free_irq(si->icp_irq, dev);
err_irq2:
free_irq(si->uart_irq, dev);
err_irq1:
return err;
}
static int pxa_irda_stop(struct net_device *dev)
{
struct pxa_irda *si = netdev_priv(dev);
netif_stop_queue(dev);
pxa_irda_shutdown(si);
/* Stop IrLAP */
if (si->irlap) {
irlap_close(si->irlap);
si->irlap = NULL;
}
free_irq(si->uart_irq, dev);
free_irq(si->icp_irq, dev);
dmaengine_terminate_all(si->rxdma);
dmaengine_terminate_all(si->txdma);
dma_release_channel(si->rxdma);
dma_release_channel(si->txdma);
if (si->dma_rx_buff)
dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_tx_buff, si->dma_tx_buff_phy);
if (si->dma_tx_buff)
dma_free_coherent(si->dev, IRDA_FRAME_SIZE_LIMIT, si->dma_rx_buff, si->dma_rx_buff_phy);
printk(KERN_DEBUG "pxa_ir: irda driver closed\n");
return 0;
}
static int pxa_irda_suspend(struct platform_device *_dev, pm_message_t state)
{
struct net_device *dev = platform_get_drvdata(_dev);
struct pxa_irda *si;
if (dev && netif_running(dev)) {
si = netdev_priv(dev);
netif_device_detach(dev);
pxa_irda_shutdown(si);
}
return 0;
}
static int pxa_irda_resume(struct platform_device *_dev)
{
struct net_device *dev = platform_get_drvdata(_dev);
struct pxa_irda *si;
if (dev && netif_running(dev)) {
si = netdev_priv(dev);
pxa_irda_startup(si);
netif_device_attach(dev);
netif_wake_queue(dev);
}
return 0;
}
static int pxa_irda_init_iobuf(iobuff_t *io, int size)
{
io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
if (io->head != NULL) {
io->truesize = size;
io->in_frame = FALSE;
io->state = OUTSIDE_FRAME;
io->data = io->head;
}
return io->head ? 0 : -ENOMEM;
}
static const struct net_device_ops pxa_irda_netdev_ops = {
.ndo_open = pxa_irda_start,
.ndo_stop = pxa_irda_stop,
.ndo_start_xmit = pxa_irda_hard_xmit,
.ndo_do_ioctl = pxa_irda_ioctl,
};
static int pxa_irda_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct resource *res;
struct pxa_irda *si;
void __iomem *ficp, *stuart;
unsigned int baudrate_mask;
int err;
if (!pdev->dev.platform_data)
return -ENODEV;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ficp = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ficp)) {
dev_err(&pdev->dev, "resource ficp not defined\n");
return PTR_ERR(ficp);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
stuart = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(stuart)) {
dev_err(&pdev->dev, "resource stuart not defined\n");
return PTR_ERR(stuart);
}
dev = alloc_irdadev(sizeof(struct pxa_irda));
if (!dev) {
err = -ENOMEM;
goto err_mem_1;
}
SET_NETDEV_DEV(dev, &pdev->dev);
si = netdev_priv(dev);
si->dev = &pdev->dev;
si->pdata = pdev->dev.platform_data;
si->irda_base = ficp;
si->stuart_base = stuart;
si->uart_irq = platform_get_irq(pdev, 0);
si->icp_irq = platform_get_irq(pdev, 1);
si->sir_clk = devm_clk_get(&pdev->dev, "UARTCLK");
si->fir_clk = devm_clk_get(&pdev->dev, "FICPCLK");
if (IS_ERR(si->sir_clk) || IS_ERR(si->fir_clk)) {
err = PTR_ERR(IS_ERR(si->sir_clk) ? si->sir_clk : si->fir_clk);
goto err_mem_4;
}
res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (res)
si->drcmr_rx = res->start;
res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
if (res)
si->drcmr_tx = res->start;
/*
* Initialise the SIR buffers
*/
err = pxa_irda_init_iobuf(&si->rx_buff, 14384);
if (err)
goto err_mem_4;
err = pxa_irda_init_iobuf(&si->tx_buff, 4000);
if (err)
goto err_mem_5;
if (gpio_is_valid(si->pdata->gpio_pwdown)) {
err = gpio_request(si->pdata->gpio_pwdown, "IrDA switch");
if (err)
goto err_startup;
err = gpio_direction_output(si->pdata->gpio_pwdown,
!si->pdata->gpio_pwdown_inverted);
if (err) {
gpio_free(si->pdata->gpio_pwdown);
goto err_startup;
}
}
if (si->pdata->startup) {
err = si->pdata->startup(si->dev);
if (err)
goto err_startup;
}
if (gpio_is_valid(si->pdata->gpio_pwdown) && si->pdata->startup)
dev_warn(si->dev, "gpio_pwdown and startup() both defined!\n");
dev->netdev_ops = &pxa_irda_netdev_ops;
irda_init_max_qos_capabilies(&si->qos);
baudrate_mask = 0;
if (si->pdata->transceiver_cap & IR_SIRMODE)
baudrate_mask |= IR_9600|IR_19200|IR_38400|IR_57600|IR_115200;
if (si->pdata->transceiver_cap & IR_FIRMODE)
baudrate_mask |= IR_4000000 << 8;
si->qos.baud_rate.bits &= baudrate_mask;
si->qos.min_turn_time.bits = 7; /* 1ms or more */
irda_qos_bits_to_value(&si->qos);
err = register_netdev(dev);
if (err == 0)
platform_set_drvdata(pdev, dev);
if (err) {
if (si->pdata->shutdown)
si->pdata->shutdown(si->dev);
err_startup:
kfree(si->tx_buff.head);
err_mem_5:
kfree(si->rx_buff.head);
err_mem_4:
free_netdev(dev);
}
err_mem_1:
return err;
}
static int pxa_irda_remove(struct platform_device *_dev)
{
struct net_device *dev = platform_get_drvdata(_dev);
if (dev) {
struct pxa_irda *si = netdev_priv(dev);
unregister_netdev(dev);
if (gpio_is_valid(si->pdata->gpio_pwdown))
gpio_free(si->pdata->gpio_pwdown);
if (si->pdata->shutdown)
si->pdata->shutdown(si->dev);
kfree(si->tx_buff.head);
kfree(si->rx_buff.head);
free_netdev(dev);
}
return 0;
}
static struct platform_driver pxa_ir_driver = {
.driver = {
.name = "pxa2xx-ir",
},
.probe = pxa_irda_probe,
.remove = pxa_irda_remove,
.suspend = pxa_irda_suspend,
.resume = pxa_irda_resume,
};
module_platform_driver(pxa_ir_driver);
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pxa2xx-ir");