tegrakernel/kernel/kernel-4.9/drivers/net/wireless/ath/carl9170/tx.c

1712 lines
42 KiB
C

/*
* Atheros CARL9170 driver
*
* 802.11 xmit & status routines
*
* Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
* Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, see
* http://www.gnu.org/licenses/.
*
* This file incorporates work covered by the following copyright and
* permission notice:
* Copyright (c) 2007-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <net/mac80211.h>
#include "carl9170.h"
#include "hw.h"
#include "cmd.h"
static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
unsigned int queue)
{
if (unlikely(modparam_noht)) {
return queue;
} else {
/*
* This is just another workaround, until
* someone figures out how to get QoS and
* AMPDU to play nicely together.
*/
return 2; /* AC_BE */
}
}
static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
struct sk_buff *skb)
{
return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
}
static bool is_mem_full(struct ar9170 *ar)
{
return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
atomic_read(&ar->mem_free_blocks));
}
static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
{
int queue, i;
bool mem_full;
atomic_inc(&ar->tx_total_queued);
queue = skb_get_queue_mapping(skb);
spin_lock_bh(&ar->tx_stats_lock);
/*
* The driver has to accept the frame, regardless if the queue is
* full to the brim, or not. We have to do the queuing internally,
* since mac80211 assumes that a driver which can operate with
* aggregated frames does not reject frames for this reason.
*/
ar->tx_stats[queue].len++;
ar->tx_stats[queue].count++;
mem_full = is_mem_full(ar);
for (i = 0; i < ar->hw->queues; i++) {
if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
ieee80211_stop_queue(ar->hw, i);
ar->queue_stop_timeout[i] = jiffies;
}
}
spin_unlock_bh(&ar->tx_stats_lock);
}
/* needs rcu_read_lock */
static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
struct sk_buff *skb)
{
struct _carl9170_tx_superframe *super = (void *) skb->data;
struct ieee80211_hdr *hdr = (void *) super->frame_data;
struct ieee80211_vif *vif;
unsigned int vif_id;
vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
CARL9170_TX_SUPER_MISC_VIF_ID_S;
if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
return NULL;
vif = rcu_dereference(ar->vif_priv[vif_id].vif);
if (unlikely(!vif))
return NULL;
/*
* Normally we should use wrappers like ieee80211_get_DA to get
* the correct peer ieee80211_sta.
*
* But there is a problem with indirect traffic (broadcasts, or
* data which is designated for other stations) in station mode.
* The frame will be directed to the AP for distribution and not
* to the actual destination.
*/
return ieee80211_find_sta(vif, hdr->addr1);
}
static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
{
struct ieee80211_sta *sta;
struct carl9170_sta_info *sta_info;
rcu_read_lock();
sta = __carl9170_get_tx_sta(ar, skb);
if (unlikely(!sta))
goto out_rcu;
sta_info = (struct carl9170_sta_info *) sta->drv_priv;
if (atomic_dec_return(&sta_info->pending_frames) == 0)
ieee80211_sta_block_awake(ar->hw, sta, false);
out_rcu:
rcu_read_unlock();
}
static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
{
int queue;
queue = skb_get_queue_mapping(skb);
spin_lock_bh(&ar->tx_stats_lock);
ar->tx_stats[queue].len--;
if (!is_mem_full(ar)) {
unsigned int i;
for (i = 0; i < ar->hw->queues; i++) {
if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
continue;
if (ieee80211_queue_stopped(ar->hw, i)) {
unsigned long tmp;
tmp = jiffies - ar->queue_stop_timeout[i];
if (tmp > ar->max_queue_stop_timeout[i])
ar->max_queue_stop_timeout[i] = tmp;
}
ieee80211_wake_queue(ar->hw, i);
}
}
spin_unlock_bh(&ar->tx_stats_lock);
if (atomic_dec_and_test(&ar->tx_total_queued))
complete(&ar->tx_flush);
}
static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
{
struct _carl9170_tx_superframe *super = (void *) skb->data;
unsigned int chunks;
int cookie = -1;
atomic_inc(&ar->mem_allocs);
chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
atomic_add(chunks, &ar->mem_free_blocks);
return -ENOSPC;
}
spin_lock_bh(&ar->mem_lock);
cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
spin_unlock_bh(&ar->mem_lock);
if (unlikely(cookie < 0)) {
atomic_add(chunks, &ar->mem_free_blocks);
return -ENOSPC;
}
super = (void *) skb->data;
/*
* Cookie #0 serves two special purposes:
* 1. The firmware might use it generate BlockACK frames
* in responds of an incoming BlockAckReqs.
*
* 2. Prevent double-free bugs.
*/
super->s.cookie = (u8) cookie + 1;
return 0;
}
static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
{
struct _carl9170_tx_superframe *super = (void *) skb->data;
int cookie;
/* make a local copy of the cookie */
cookie = super->s.cookie;
/* invalidate cookie */
super->s.cookie = 0;
/*
* Do a out-of-bounds check on the cookie:
*
* * cookie "0" is reserved and won't be assigned to any
* out-going frame. Internally however, it is used to
* mark no longer/un-accounted frames and serves as a
* cheap way of preventing frames from being freed
* twice by _accident_. NB: There is a tiny race...
*
* * obviously, cookie number is limited by the amount
* of available memory blocks, so the number can
* never execeed the mem_blocks count.
*/
if (unlikely(WARN_ON_ONCE(cookie == 0) ||
WARN_ON_ONCE(cookie > ar->fw.mem_blocks)))
return;
atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
&ar->mem_free_blocks);
spin_lock_bh(&ar->mem_lock);
bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
spin_unlock_bh(&ar->mem_lock);
}
/* Called from any context */
static void carl9170_tx_release(struct kref *ref)
{
struct ar9170 *ar;
struct carl9170_tx_info *arinfo;
struct ieee80211_tx_info *txinfo;
struct sk_buff *skb;
arinfo = container_of(ref, struct carl9170_tx_info, ref);
txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
rate_driver_data);
skb = container_of((void *) txinfo, struct sk_buff, cb);
ar = arinfo->ar;
if (WARN_ON_ONCE(!ar))
return;
BUILD_BUG_ON(
offsetof(struct ieee80211_tx_info, status.ack_signal) != 20);
memset(&txinfo->status.ack_signal, 0,
sizeof(struct ieee80211_tx_info) -
offsetof(struct ieee80211_tx_info, status.ack_signal));
if (atomic_read(&ar->tx_total_queued))
ar->tx_schedule = true;
if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
if (!atomic_read(&ar->tx_ampdu_upload))
ar->tx_ampdu_schedule = true;
if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
struct _carl9170_tx_superframe *super;
super = (void *)skb->data;
txinfo->status.ampdu_len = super->s.rix;
txinfo->status.ampdu_ack_len = super->s.cnt;
} else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
!(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
/*
* drop redundant tx_status reports:
*
* 1. ampdu_ack_len of the final tx_status does
* include the feedback of this particular frame.
*
* 2. tx_status_irqsafe only queues up to 128
* tx feedback reports and discards the rest.
*
* 3. minstrel_ht is picky, it only accepts
* reports of frames with the TX_STATUS_AMPDU flag.
*
* 4. mac80211 is not particularly interested in
* feedback either [CTL_REQ_TX_STATUS not set]
*/
ieee80211_free_txskb(ar->hw, skb);
return;
} else {
/*
* Either the frame transmission has failed or
* mac80211 requested tx status.
*/
}
}
skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
ieee80211_tx_status_irqsafe(ar->hw, skb);
}
void carl9170_tx_get_skb(struct sk_buff *skb)
{
struct carl9170_tx_info *arinfo = (void *)
(IEEE80211_SKB_CB(skb))->rate_driver_data;
kref_get(&arinfo->ref);
}
int carl9170_tx_put_skb(struct sk_buff *skb)
{
struct carl9170_tx_info *arinfo = (void *)
(IEEE80211_SKB_CB(skb))->rate_driver_data;
return kref_put(&arinfo->ref, carl9170_tx_release);
}
/* Caller must hold the tid_info->lock & rcu_read_lock */
static void carl9170_tx_shift_bm(struct ar9170 *ar,
struct carl9170_sta_tid *tid_info, u16 seq)
{
u16 off;
off = SEQ_DIFF(seq, tid_info->bsn);
if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
return;
/*
* Sanity check. For each MPDU we set the bit in bitmap and
* clear it once we received the tx_status.
* But if the bit is already cleared then we've been bitten
* by a bug.
*/
WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
return;
if (!bitmap_empty(tid_info->bitmap, off))
off = find_first_bit(tid_info->bitmap, off);
tid_info->bsn += off;
tid_info->bsn &= 0x0fff;
bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
off, CARL9170_BAW_BITS);
}
static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
{
struct _carl9170_tx_superframe *super = (void *) skb->data;
struct ieee80211_hdr *hdr = (void *) super->frame_data;
struct ieee80211_sta *sta;
struct carl9170_sta_info *sta_info;
struct carl9170_sta_tid *tid_info;
u8 tid;
if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
txinfo->flags & IEEE80211_TX_CTL_INJECTED)
return;
rcu_read_lock();
sta = __carl9170_get_tx_sta(ar, skb);
if (unlikely(!sta))
goto out_rcu;
tid = get_tid_h(hdr);
sta_info = (void *) sta->drv_priv;
tid_info = rcu_dereference(sta_info->agg[tid]);
if (!tid_info)
goto out_rcu;
spin_lock_bh(&tid_info->lock);
if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
if (sta_info->stats[tid].clear) {
sta_info->stats[tid].clear = false;
sta_info->stats[tid].req = false;
sta_info->stats[tid].ampdu_len = 0;
sta_info->stats[tid].ampdu_ack_len = 0;
}
sta_info->stats[tid].ampdu_len++;
if (txinfo->status.rates[0].count == 1)
sta_info->stats[tid].ampdu_ack_len++;
if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
sta_info->stats[tid].req = true;
if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
super->s.rix = sta_info->stats[tid].ampdu_len;
super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
if (sta_info->stats[tid].req)
txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
sta_info->stats[tid].clear = true;
}
spin_unlock_bh(&tid_info->lock);
out_rcu:
rcu_read_unlock();
}
static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb,
struct ieee80211_tx_info *tx_info)
{
struct _carl9170_tx_superframe *super = (void *) skb->data;
struct ieee80211_bar *bar = (void *) super->frame_data;
/*
* Unlike all other frames, the status report for BARs does
* not directly come from the hardware as it is incapable of
* matching a BA to a previously send BAR.
* Instead the RX-path will scan for incoming BAs and set the
* IEEE80211_TX_STAT_ACK if it sees one that was likely
* caused by a BAR from us.
*/
if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
!(tx_info->flags & IEEE80211_TX_STAT_ACK)) {
struct carl9170_bar_list_entry *entry;
int queue = skb_get_queue_mapping(skb);
rcu_read_lock();
list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) {
if (entry->skb == skb) {
spin_lock_bh(&ar->bar_list_lock[queue]);
list_del_rcu(&entry->list);
spin_unlock_bh(&ar->bar_list_lock[queue]);
kfree_rcu(entry, head);
goto out;
}
}
WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n",
queue, bar->ra, bar->ta, bar->control,
bar->start_seq_num);
out:
rcu_read_unlock();
}
}
void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
const bool success)
{
struct ieee80211_tx_info *txinfo;
carl9170_tx_accounting_free(ar, skb);
txinfo = IEEE80211_SKB_CB(skb);
carl9170_tx_bar_status(ar, skb, txinfo);
if (success)
txinfo->flags |= IEEE80211_TX_STAT_ACK;
else
ar->tx_ack_failures++;
if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
carl9170_tx_status_process_ampdu(ar, skb, txinfo);
carl9170_tx_ps_unblock(ar, skb);
carl9170_tx_put_skb(skb);
}
/* This function may be called form any context */
void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
{
struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
atomic_dec(&ar->tx_total_pending);
if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
atomic_dec(&ar->tx_ampdu_upload);
if (carl9170_tx_put_skb(skb))
tasklet_hi_schedule(&ar->usb_tasklet);
}
static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
struct sk_buff_head *queue)
{
struct sk_buff *skb;
spin_lock_bh(&queue->lock);
skb_queue_walk(queue, skb) {
struct _carl9170_tx_superframe *txc = (void *) skb->data;
if (txc->s.cookie != cookie)
continue;
__skb_unlink(skb, queue);
spin_unlock_bh(&queue->lock);
carl9170_release_dev_space(ar, skb);
return skb;
}
spin_unlock_bh(&queue->lock);
return NULL;
}
static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
unsigned int tries, struct ieee80211_tx_info *txinfo)
{
unsigned int i;
for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
if (txinfo->status.rates[i].idx < 0)
break;
if (i == rix) {
txinfo->status.rates[i].count = tries;
i++;
break;
}
}
for (; i < IEEE80211_TX_MAX_RATES; i++) {
txinfo->status.rates[i].idx = -1;
txinfo->status.rates[i].count = 0;
}
}
static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
{
int i;
struct sk_buff *skb;
struct ieee80211_tx_info *txinfo;
struct carl9170_tx_info *arinfo;
bool restart = false;
for (i = 0; i < ar->hw->queues; i++) {
spin_lock_bh(&ar->tx_status[i].lock);
skb = skb_peek(&ar->tx_status[i]);
if (!skb)
goto next;
txinfo = IEEE80211_SKB_CB(skb);
arinfo = (void *) txinfo->rate_driver_data;
if (time_is_before_jiffies(arinfo->timeout +
msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
restart = true;
next:
spin_unlock_bh(&ar->tx_status[i].lock);
}
if (restart) {
/*
* At least one queue has been stuck for long enough.
* Give the device a kick and hope it gets back to
* work.
*
* possible reasons may include:
* - frames got lost/corrupted (bad connection to the device)
* - stalled rx processing/usb controller hiccups
* - firmware errors/bugs
* - every bug you can think of.
* - all bugs you can't...
* - ...
*/
carl9170_restart(ar, CARL9170_RR_STUCK_TX);
}
}
static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
{
struct carl9170_sta_tid *iter;
struct sk_buff *skb;
struct ieee80211_tx_info *txinfo;
struct carl9170_tx_info *arinfo;
struct ieee80211_sta *sta;
rcu_read_lock();
list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
if (iter->state < CARL9170_TID_STATE_IDLE)
continue;
spin_lock_bh(&iter->lock);
skb = skb_peek(&iter->queue);
if (!skb)
goto unlock;
txinfo = IEEE80211_SKB_CB(skb);
arinfo = (void *)txinfo->rate_driver_data;
if (time_is_after_jiffies(arinfo->timeout +
msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
goto unlock;
sta = iter->sta;
if (WARN_ON(!sta))
goto unlock;
ieee80211_stop_tx_ba_session(sta, iter->tid);
unlock:
spin_unlock_bh(&iter->lock);
}
rcu_read_unlock();
}
void carl9170_tx_janitor(struct work_struct *work)
{
struct ar9170 *ar = container_of(work, struct ar9170,
tx_janitor.work);
if (!IS_STARTED(ar))
return;
ar->tx_janitor_last_run = jiffies;
carl9170_check_queue_stop_timeout(ar);
carl9170_tx_ampdu_timeout(ar);
if (!atomic_read(&ar->tx_total_queued))
return;
ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
msecs_to_jiffies(CARL9170_TX_TIMEOUT));
}
static void __carl9170_tx_process_status(struct ar9170 *ar,
const uint8_t cookie, const uint8_t info)
{
struct sk_buff *skb;
struct ieee80211_tx_info *txinfo;
unsigned int r, t, q;
bool success = true;
q = ar9170_qmap[info & CARL9170_TX_STATUS_QUEUE];
skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
if (!skb) {
/*
* We have lost the race to another thread.
*/
return ;
}
txinfo = IEEE80211_SKB_CB(skb);
if (!(info & CARL9170_TX_STATUS_SUCCESS))
success = false;
r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
carl9170_tx_status(ar, skb, success);
}
void carl9170_tx_process_status(struct ar9170 *ar,
const struct carl9170_rsp *cmd)
{
unsigned int i;
for (i = 0; i < cmd->hdr.ext; i++) {
if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
(void *) cmd, cmd->hdr.len + 4);
break;
}
__carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
cmd->_tx_status[i].info);
}
}
static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate,
unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
{
struct ieee80211_rate *rate = NULL;
u8 *txpower;
unsigned int idx;
idx = txrate->idx;
*tpc = 0;
*phyrate = 0;
if (txrate->flags & IEEE80211_TX_RC_MCS) {
if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
/* +1 dBm for HT40 */
*tpc += 2;
if (info->band == NL80211_BAND_2GHZ)
txpower = ar->power_2G_ht40;
else
txpower = ar->power_5G_ht40;
} else {
if (info->band == NL80211_BAND_2GHZ)
txpower = ar->power_2G_ht20;
else
txpower = ar->power_5G_ht20;
}
*phyrate = txrate->idx;
*tpc += txpower[idx & 7];
} else {
if (info->band == NL80211_BAND_2GHZ) {
if (idx < 4)
txpower = ar->power_2G_cck;
else
txpower = ar->power_2G_ofdm;
} else {
txpower = ar->power_5G_leg;
idx += 4;
}
rate = &__carl9170_ratetable[idx];
*tpc += txpower[(rate->hw_value & 0x30) >> 4];
*phyrate = rate->hw_value & 0xf;
}
if (ar->eeprom.tx_mask == 1) {
*chains = AR9170_TX_PHY_TXCHAIN_1;
} else {
if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
rate && rate->bitrate >= 360)
*chains = AR9170_TX_PHY_TXCHAIN_1;
else
*chains = AR9170_TX_PHY_TXCHAIN_2;
}
*tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2);
}
static __le32 carl9170_tx_physet(struct ar9170 *ar,
struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
{
unsigned int power = 0, chains = 0, phyrate = 0;
__le32 tmp;
tmp = cpu_to_le32(0);
if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
AR9170_TX_PHY_BW_S);
/* this works because 40 MHz is 2 and dup is 3 */
if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
AR9170_TX_PHY_BW_S);
if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
if (txrate->flags & IEEE80211_TX_RC_MCS) {
SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
/* heavy clip control */
tmp |= cpu_to_le32((txrate->idx & 0x7) <<
AR9170_TX_PHY_TX_HEAVY_CLIP_S);
tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
/*
* green field preamble does not work.
*
* if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
* tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
*/
} else {
if (info->band == NL80211_BAND_2GHZ) {
if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK);
else
tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
} else {
tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
}
/*
* short preamble seems to be broken too.
*
* if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
* tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
*/
}
carl9170_tx_rate_tpc_chains(ar, info, txrate,
&phyrate, &power, &chains);
tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power));
tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains));
return tmp;
}
static bool carl9170_tx_rts_check(struct ar9170 *ar,
struct ieee80211_tx_rate *rate,
bool ampdu, bool multi)
{
switch (ar->erp_mode) {
case CARL9170_ERP_AUTO:
if (ampdu)
break;
case CARL9170_ERP_MAC80211:
if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
break;
case CARL9170_ERP_RTS:
if (likely(!multi))
return true;
default:
break;
}
return false;
}
static bool carl9170_tx_cts_check(struct ar9170 *ar,
struct ieee80211_tx_rate *rate)
{
switch (ar->erp_mode) {
case CARL9170_ERP_AUTO:
case CARL9170_ERP_MAC80211:
if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
break;
case CARL9170_ERP_CTS:
return true;
default:
break;
}
return false;
}
static void carl9170_tx_get_rates(struct ar9170 *ar,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info;
BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE);
info = IEEE80211_SKB_CB(skb);
ieee80211_get_tx_rates(vif, sta, skb,
info->control.rates,
IEEE80211_TX_MAX_RATES);
}
static void carl9170_tx_apply_rateset(struct ar9170 *ar,
struct ieee80211_tx_info *sinfo,
struct sk_buff *skb)
{
struct ieee80211_tx_rate *txrate;
struct ieee80211_tx_info *info;
struct _carl9170_tx_superframe *txc = (void *) skb->data;
int i;
bool ampdu;
bool no_ack;
info = IEEE80211_SKB_CB(skb);
ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
/* Set the rate control probe flag for all (sub-) frames.
* This is because the TX_STATS_AMPDU flag is only set on
* the last frame, so it has to be inherited.
*/
info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
/* NOTE: For the first rate, the ERP & AMPDU flags are directly
* taken from mac_control. For all fallback rate, the firmware
* updates the mac_control flags from the rate info field.
*/
for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
__le32 phy_set;
txrate = &sinfo->control.rates[i];
if (txrate->idx < 0)
break;
phy_set = carl9170_tx_physet(ar, info, txrate);
if (i == 0) {
__le16 mac_tmp = cpu_to_le16(0);
/* first rate - part of the hw's frame header */
txc->f.phy_control = phy_set;
if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS)
mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
else if (carl9170_tx_cts_check(ar, txrate))
mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
txc->f.mac_control |= mac_tmp;
} else {
/* fallback rates are stored in the firmware's
* retry rate set array.
*/
txc->s.rr[i - 1] = phy_set;
}
SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
txrate->count);
if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
CARL9170_TX_SUPER_RI_ERP_PROT_S);
else if (carl9170_tx_cts_check(ar, txrate))
txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
CARL9170_TX_SUPER_RI_ERP_PROT_S);
if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS))
txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU;
}
}
static int carl9170_tx_prepare(struct ar9170 *ar,
struct ieee80211_sta *sta,
struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
struct _carl9170_tx_superframe *txc;
struct carl9170_vif_info *cvif;
struct ieee80211_tx_info *info;
struct carl9170_tx_info *arinfo;
unsigned int hw_queue;
__le16 mac_tmp;
u16 len;
BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
CARL9170_TX_SUPERDESC_LEN);
BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
AR9170_TX_HWDESC_LEN);
BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
((CARL9170_TX_SUPER_MISC_VIF_ID >>
CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
hw_queue = ar9170_qmap[carl9170_get_queue(ar, skb)];
hdr = (void *)skb->data;
info = IEEE80211_SKB_CB(skb);
len = skb->len;
/*
* Note: If the frame was sent through a monitor interface,
* the ieee80211_vif pointer can be NULL.
*/
if (likely(info->control.vif))
cvif = (void *) info->control.vif->drv_priv;
else
cvif = NULL;
txc = (void *)skb_push(skb, sizeof(*txc));
memset(txc, 0, sizeof(*txc));
SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
if (likely(cvif))
SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;
if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
AR9170_TX_MAC_BACKOFF);
mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
AR9170_TX_MAC_QOS);
if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK))
mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
if (info->control.hw_key) {
len += info->control.hw_key->icv_len;
switch (info->control.hw_key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
case WLAN_CIPHER_SUITE_TKIP:
mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
break;
case WLAN_CIPHER_SUITE_CCMP:
mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
break;
default:
WARN_ON(1);
goto err_out;
}
}
if (info->flags & IEEE80211_TX_CTL_AMPDU) {
unsigned int density, factor;
if (unlikely(!sta || !cvif))
goto err_out;
factor = min_t(unsigned int, 1u, sta->ht_cap.ampdu_factor);
density = sta->ht_cap.ampdu_density;
if (density) {
/*
* Watch out!
*
* Otus uses slightly different density values than
* those from the 802.11n spec.
*/
density = max_t(unsigned int, density + 1, 7u);
}
SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
txc->s.ampdu_settings, density);
SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
txc->s.ampdu_settings, factor);
}
txc->s.len = cpu_to_le16(skb->len);
txc->f.length = cpu_to_le16(len + FCS_LEN);
txc->f.mac_control = mac_tmp;
arinfo = (void *)info->rate_driver_data;
arinfo->timeout = jiffies;
arinfo->ar = ar;
kref_init(&arinfo->ref);
return 0;
err_out:
skb_pull(skb, sizeof(*txc));
return -EINVAL;
}
static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
{
struct _carl9170_tx_superframe *super;
super = (void *) skb->data;
super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
}
static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
{
struct _carl9170_tx_superframe *super;
int tmp;
super = (void *) skb->data;
tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
CARL9170_TX_SUPER_AMPDU_DENSITY_S;
/*
* If you haven't noticed carl9170_tx_prepare has already filled
* in all ampdu spacing & factor parameters.
* Now it's the time to check whenever the settings have to be
* updated by the firmware, or if everything is still the same.
*
* There's no sane way to handle different density values with
* this hardware, so we may as well just do the compare in the
* driver.
*/
if (tmp != ar->current_density) {
ar->current_density = tmp;
super->s.ampdu_settings |=
CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
}
tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
CARL9170_TX_SUPER_AMPDU_FACTOR_S;
if (tmp != ar->current_factor) {
ar->current_factor = tmp;
super->s.ampdu_settings |=
CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
}
}
static void carl9170_tx_ampdu(struct ar9170 *ar)
{
struct sk_buff_head agg;
struct carl9170_sta_tid *tid_info;
struct sk_buff *skb, *first;
struct ieee80211_tx_info *tx_info_first;
unsigned int i = 0, done_ampdus = 0;
u16 seq, queue, tmpssn;
atomic_inc(&ar->tx_ampdu_scheduler);
ar->tx_ampdu_schedule = false;
if (atomic_read(&ar->tx_ampdu_upload))
return;
if (!ar->tx_ampdu_list_len)
return;
__skb_queue_head_init(&agg);
rcu_read_lock();
tid_info = rcu_dereference(ar->tx_ampdu_iter);
if (WARN_ON_ONCE(!tid_info)) {
rcu_read_unlock();
return;
}
retry:
list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
i++;
if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
continue;
queue = TID_TO_WME_AC(tid_info->tid);
spin_lock_bh(&tid_info->lock);
if (tid_info->state != CARL9170_TID_STATE_XMIT)
goto processed;
tid_info->counter++;
first = skb_peek(&tid_info->queue);
tmpssn = carl9170_get_seq(first);
seq = tid_info->snx;
if (unlikely(tmpssn != seq)) {
tid_info->state = CARL9170_TID_STATE_IDLE;
goto processed;
}
tx_info_first = NULL;
while ((skb = skb_peek(&tid_info->queue))) {
/* strict 0, 1, ..., n - 1, n frame sequence order */
if (unlikely(carl9170_get_seq(skb) != seq))
break;
/* don't upload more than AMPDU FACTOR allows. */
if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
(tid_info->max - 1)))
break;
if (!tx_info_first) {
carl9170_tx_get_rates(ar, tid_info->vif,
tid_info->sta, first);
tx_info_first = IEEE80211_SKB_CB(first);
}
carl9170_tx_apply_rateset(ar, tx_info_first, skb);
atomic_inc(&ar->tx_ampdu_upload);
tid_info->snx = seq = SEQ_NEXT(seq);
__skb_unlink(skb, &tid_info->queue);
__skb_queue_tail(&agg, skb);
if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
break;
}
if (skb_queue_empty(&tid_info->queue) ||
carl9170_get_seq(skb_peek(&tid_info->queue)) !=
tid_info->snx) {
/* stop TID, if A-MPDU frames are still missing,
* or whenever the queue is empty.
*/
tid_info->state = CARL9170_TID_STATE_IDLE;
}
done_ampdus++;
processed:
spin_unlock_bh(&tid_info->lock);
if (skb_queue_empty(&agg))
continue;
/* apply ampdu spacing & factor settings */
carl9170_set_ampdu_params(ar, skb_peek(&agg));
/* set aggregation push bit */
carl9170_set_immba(ar, skb_peek_tail(&agg));
spin_lock_bh(&ar->tx_pending[queue].lock);
skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
spin_unlock_bh(&ar->tx_pending[queue].lock);
ar->tx_schedule = true;
}
if ((done_ampdus++ == 0) && (i++ == 0))
goto retry;
rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
rcu_read_unlock();
}
static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
struct sk_buff_head *queue)
{
struct sk_buff *skb;
struct ieee80211_tx_info *info;
struct carl9170_tx_info *arinfo;
BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
spin_lock_bh(&queue->lock);
skb = skb_peek(queue);
if (unlikely(!skb))
goto err_unlock;
if (carl9170_alloc_dev_space(ar, skb))
goto err_unlock;
__skb_unlink(skb, queue);
spin_unlock_bh(&queue->lock);
info = IEEE80211_SKB_CB(skb);
arinfo = (void *) info->rate_driver_data;
arinfo->timeout = jiffies;
return skb;
err_unlock:
spin_unlock_bh(&queue->lock);
return NULL;
}
void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
{
struct _carl9170_tx_superframe *super;
uint8_t q = 0;
ar->tx_dropped++;
super = (void *)skb->data;
SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
ar9170_qmap[carl9170_get_queue(ar, skb)]);
__carl9170_tx_process_status(ar, super->s.cookie, q);
}
static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
{
struct ieee80211_sta *sta;
struct carl9170_sta_info *sta_info;
struct ieee80211_tx_info *tx_info;
rcu_read_lock();
sta = __carl9170_get_tx_sta(ar, skb);
if (!sta)
goto out_rcu;
sta_info = (void *) sta->drv_priv;
tx_info = IEEE80211_SKB_CB(skb);
if (unlikely(sta_info->sleeping) &&
!(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
IEEE80211_TX_CTL_CLEAR_PS_FILT))) {
rcu_read_unlock();
if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
atomic_dec(&ar->tx_ampdu_upload);
tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
carl9170_release_dev_space(ar, skb);
carl9170_tx_status(ar, skb, false);
return true;
}
out_rcu:
rcu_read_unlock();
return false;
}
static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb)
{
struct _carl9170_tx_superframe *super = (void *) skb->data;
struct ieee80211_bar *bar = (void *) super->frame_data;
if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
skb->len >= sizeof(struct ieee80211_bar)) {
struct carl9170_bar_list_entry *entry;
unsigned int queue = skb_get_queue_mapping(skb);
entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
if (!WARN_ON_ONCE(!entry)) {
entry->skb = skb;
spin_lock_bh(&ar->bar_list_lock[queue]);
list_add_tail_rcu(&entry->list, &ar->bar_list[queue]);
spin_unlock_bh(&ar->bar_list_lock[queue]);
}
}
}
static void carl9170_tx(struct ar9170 *ar)
{
struct sk_buff *skb;
unsigned int i, q;
bool schedule_garbagecollector = false;
ar->tx_schedule = false;
if (unlikely(!IS_STARTED(ar)))
return;
carl9170_usb_handle_tx_err(ar);
for (i = 0; i < ar->hw->queues; i++) {
while (!skb_queue_empty(&ar->tx_pending[i])) {
skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
if (unlikely(!skb))
break;
if (unlikely(carl9170_tx_ps_drop(ar, skb)))
continue;
carl9170_bar_check(ar, skb);
atomic_inc(&ar->tx_total_pending);
q = __carl9170_get_queue(ar, i);
/*
* NB: tx_status[i] vs. tx_status[q],
* TODO: Move into pick_skb or alloc_dev_space.
*/
skb_queue_tail(&ar->tx_status[q], skb);
/*
* increase ref count to "2".
* Ref counting is the easiest way to solve the
* race between the urb's completion routine:
* carl9170_tx_callback
* and wlan tx status functions:
* carl9170_tx_status/janitor.
*/
carl9170_tx_get_skb(skb);
carl9170_usb_tx(ar, skb);
schedule_garbagecollector = true;
}
}
if (!schedule_garbagecollector)
return;
ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
msecs_to_jiffies(CARL9170_TX_TIMEOUT));
}
static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
struct ieee80211_sta *sta, struct sk_buff *skb,
struct ieee80211_tx_info *txinfo)
{
struct carl9170_sta_info *sta_info;
struct carl9170_sta_tid *agg;
struct sk_buff *iter;
u16 tid, seq, qseq, off;
bool run = false;
tid = carl9170_get_tid(skb);
seq = carl9170_get_seq(skb);
sta_info = (void *) sta->drv_priv;
rcu_read_lock();
agg = rcu_dereference(sta_info->agg[tid]);
if (!agg)
goto err_unlock_rcu;
spin_lock_bh(&agg->lock);
if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
goto err_unlock;
/* check if sequence is within the BA window */
if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
goto err_unlock;
if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
goto err_unlock;
off = SEQ_DIFF(seq, agg->bsn);
if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
goto err_unlock;
if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
__skb_queue_tail(&agg->queue, skb);
agg->hsn = seq;
goto queued;
}
skb_queue_reverse_walk(&agg->queue, iter) {
qseq = carl9170_get_seq(iter);
if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
__skb_queue_after(&agg->queue, iter, skb);
goto queued;
}
}
__skb_queue_head(&agg->queue, skb);
queued:
if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
agg->state = CARL9170_TID_STATE_XMIT;
run = true;
}
}
spin_unlock_bh(&agg->lock);
rcu_read_unlock();
return run;
err_unlock:
spin_unlock_bh(&agg->lock);
err_unlock_rcu:
rcu_read_unlock();
txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU;
carl9170_tx_status(ar, skb, false);
ar->tx_dropped++;
return false;
}
void carl9170_op_tx(struct ieee80211_hw *hw,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ar9170 *ar = hw->priv;
struct ieee80211_tx_info *info;
struct ieee80211_sta *sta = control->sta;
struct ieee80211_vif *vif;
bool run;
if (unlikely(!IS_STARTED(ar)))
goto err_free;
info = IEEE80211_SKB_CB(skb);
vif = info->control.vif;
if (unlikely(carl9170_tx_prepare(ar, sta, skb)))
goto err_free;
carl9170_tx_accounting(ar, skb);
/*
* from now on, one has to use carl9170_tx_status to free
* all ressouces which are associated with the frame.
*/
if (sta) {
struct carl9170_sta_info *stai = (void *) sta->drv_priv;
atomic_inc(&stai->pending_frames);
}
if (info->flags & IEEE80211_TX_CTL_AMPDU) {
/* to static code analyzers and reviewers:
* mac80211 guarantees that a valid "sta"
* reference is present, if a frame is to
* be part of an ampdu. Hence any extra
* sta == NULL checks are redundant in this
* special case.
*/
run = carl9170_tx_ampdu_queue(ar, sta, skb, info);
if (run)
carl9170_tx_ampdu(ar);
} else {
unsigned int queue = skb_get_queue_mapping(skb);
carl9170_tx_get_rates(ar, vif, sta, skb);
carl9170_tx_apply_rateset(ar, info, skb);
skb_queue_tail(&ar->tx_pending[queue], skb);
}
carl9170_tx(ar);
return;
err_free:
ar->tx_dropped++;
ieee80211_free_txskb(ar->hw, skb);
}
void carl9170_tx_scheduler(struct ar9170 *ar)
{
if (ar->tx_ampdu_schedule)
carl9170_tx_ampdu(ar);
if (ar->tx_schedule)
carl9170_tx(ar);
}
/* caller has to take rcu_read_lock */
static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar)
{
struct carl9170_vif_info *cvif;
int i = 1;
/* The AR9170 hardware has no fancy beacon queue or some
* other scheduling mechanism. So, the driver has to make
* due by setting the two beacon timers (pretbtt and tbtt)
* once and then swapping the beacon address in the HW's
* register file each time the pretbtt fires.
*/
cvif = rcu_dereference(ar->beacon_iter);
if (ar->vifs > 0 && cvif) {
do {
list_for_each_entry_continue_rcu(cvif, &ar->vif_list,
list) {
if (cvif->active && cvif->enable_beacon)
goto out;
}
} while (ar->beacon_enabled && i--);
}
out:
RCU_INIT_POINTER(ar->beacon_iter, cvif);
return cvif;
}
static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb,
u32 *ht1, u32 *plcp)
{
struct ieee80211_tx_info *txinfo;
struct ieee80211_tx_rate *rate;
unsigned int power, chains;
bool ht_rate;
txinfo = IEEE80211_SKB_CB(skb);
rate = &txinfo->control.rates[0];
ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS);
carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains);
*ht1 = AR9170_MAC_BCN_HT1_TX_ANT0;
if (chains == AR9170_TX_PHY_TXCHAIN_2)
*ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1;
SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7);
SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power);
SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains);
if (ht_rate) {
*ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
*plcp |= AR9170_MAC_BCN_HT2_SGI;
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
*ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED;
*plcp |= AR9170_MAC_BCN_HT2_BW40;
} else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
*ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP;
*plcp |= AR9170_MAC_BCN_HT2_BW40;
}
SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN);
} else {
if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M)
*plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
else
*plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
}
return ht_rate;
}
int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
{
struct sk_buff *skb = NULL;
struct carl9170_vif_info *cvif;
__le32 *data, *old = NULL;
u32 word, ht1, plcp, off, addr, len;
int i = 0, err = 0;
bool ht_rate;
rcu_read_lock();
cvif = carl9170_pick_beaconing_vif(ar);
if (!cvif)
goto out_unlock;
skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
NULL, NULL);
if (!skb) {
err = -ENOMEM;
goto err_free;
}
spin_lock_bh(&ar->beacon_lock);
data = (__le32 *)skb->data;
if (cvif->beacon)
old = (__le32 *)cvif->beacon->data;
off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
addr = ar->fw.beacon_addr + off;
len = roundup(skb->len + FCS_LEN, 4);
if ((off + len) > ar->fw.beacon_max_len) {
if (net_ratelimit()) {
wiphy_err(ar->hw->wiphy, "beacon does not "
"fit into device memory!\n");
}
err = -EINVAL;
goto err_unlock;
}
if (len > AR9170_MAC_BCN_LENGTH_MAX) {
if (net_ratelimit()) {
wiphy_err(ar->hw->wiphy, "no support for beacons "
"bigger than %d (yours:%d).\n",
AR9170_MAC_BCN_LENGTH_MAX, len);
}
err = -EMSGSIZE;
goto err_unlock;
}
ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp);
carl9170_async_regwrite_begin(ar);
carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1);
if (ht_rate)
carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp);
else
carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp);
for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
/*
* XXX: This accesses beyond skb data for up
* to the last 3 bytes!!
*/
if (old && (data[i] == old[i]))
continue;
word = le32_to_cpu(data[i]);
carl9170_async_regwrite(addr + 4 * i, word);
}
carl9170_async_regwrite_finish();
dev_kfree_skb_any(cvif->beacon);
cvif->beacon = NULL;
err = carl9170_async_regwrite_result();
if (!err)
cvif->beacon = skb;
spin_unlock_bh(&ar->beacon_lock);
if (err)
goto err_free;
if (submit) {
err = carl9170_bcn_ctrl(ar, cvif->id,
CARL9170_BCN_CTRL_CAB_TRIGGER,
addr, skb->len + FCS_LEN);
if (err)
goto err_free;
}
out_unlock:
rcu_read_unlock();
return 0;
err_unlock:
spin_unlock_bh(&ar->beacon_lock);
err_free:
rcu_read_unlock();
dev_kfree_skb_any(skb);
return err;
}