tegrakernel/kernel/kernel-4.9/drivers/usb/dwc2/hcd_ddma.c

1377 lines
38 KiB
C

/*
* hcd_ddma.c - DesignWare HS OTG Controller descriptor DMA routines
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file contains the Descriptor DMA implementation for Host mode
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>
#include "core.h"
#include "hcd.h"
static u16 dwc2_frame_list_idx(u16 frame)
{
return frame & (FRLISTEN_64_SIZE - 1);
}
static u16 dwc2_desclist_idx_inc(u16 idx, u16 inc, u8 speed)
{
return (idx + inc) &
((speed == USB_SPEED_HIGH ? MAX_DMA_DESC_NUM_HS_ISOC :
MAX_DMA_DESC_NUM_GENERIC) - 1);
}
static u16 dwc2_desclist_idx_dec(u16 idx, u16 inc, u8 speed)
{
return (idx - inc) &
((speed == USB_SPEED_HIGH ? MAX_DMA_DESC_NUM_HS_ISOC :
MAX_DMA_DESC_NUM_GENERIC) - 1);
}
static u16 dwc2_max_desc_num(struct dwc2_qh *qh)
{
return (qh->ep_type == USB_ENDPOINT_XFER_ISOC &&
qh->dev_speed == USB_SPEED_HIGH) ?
MAX_DMA_DESC_NUM_HS_ISOC : MAX_DMA_DESC_NUM_GENERIC;
}
static u16 dwc2_frame_incr_val(struct dwc2_qh *qh)
{
return qh->dev_speed == USB_SPEED_HIGH ?
(qh->host_interval + 8 - 1) / 8 : qh->host_interval;
}
static int dwc2_desc_list_alloc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
gfp_t flags)
{
struct kmem_cache *desc_cache;
if (qh->ep_type == USB_ENDPOINT_XFER_ISOC
&& qh->dev_speed == USB_SPEED_HIGH)
desc_cache = hsotg->desc_hsisoc_cache;
else
desc_cache = hsotg->desc_gen_cache;
qh->desc_list_sz = sizeof(struct dwc2_hcd_dma_desc) *
dwc2_max_desc_num(qh);
qh->desc_list = kmem_cache_zalloc(desc_cache, flags | GFP_DMA);
if (!qh->desc_list)
return -ENOMEM;
qh->desc_list_dma = dma_map_single(hsotg->dev, qh->desc_list,
qh->desc_list_sz,
DMA_TO_DEVICE);
qh->n_bytes = kzalloc(sizeof(u32) * dwc2_max_desc_num(qh), flags);
if (!qh->n_bytes) {
dma_unmap_single(hsotg->dev, qh->desc_list_dma,
qh->desc_list_sz,
DMA_FROM_DEVICE);
kmem_cache_free(desc_cache, qh->desc_list);
qh->desc_list = NULL;
return -ENOMEM;
}
return 0;
}
static void dwc2_desc_list_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
struct kmem_cache *desc_cache;
if (qh->ep_type == USB_ENDPOINT_XFER_ISOC
&& qh->dev_speed == USB_SPEED_HIGH)
desc_cache = hsotg->desc_hsisoc_cache;
else
desc_cache = hsotg->desc_gen_cache;
if (qh->desc_list) {
dma_unmap_single(hsotg->dev, qh->desc_list_dma,
qh->desc_list_sz, DMA_FROM_DEVICE);
kmem_cache_free(desc_cache, qh->desc_list);
qh->desc_list = NULL;
}
kfree(qh->n_bytes);
qh->n_bytes = NULL;
}
static int dwc2_frame_list_alloc(struct dwc2_hsotg *hsotg, gfp_t mem_flags)
{
if (hsotg->frame_list)
return 0;
hsotg->frame_list_sz = 4 * FRLISTEN_64_SIZE;
hsotg->frame_list = kzalloc(hsotg->frame_list_sz, GFP_ATOMIC | GFP_DMA);
if (!hsotg->frame_list)
return -ENOMEM;
hsotg->frame_list_dma = dma_map_single(hsotg->dev, hsotg->frame_list,
hsotg->frame_list_sz,
DMA_TO_DEVICE);
return 0;
}
static void dwc2_frame_list_free(struct dwc2_hsotg *hsotg)
{
unsigned long flags;
spin_lock_irqsave(&hsotg->lock, flags);
if (!hsotg->frame_list) {
spin_unlock_irqrestore(&hsotg->lock, flags);
return;
}
dma_unmap_single(hsotg->dev, hsotg->frame_list_dma,
hsotg->frame_list_sz, DMA_FROM_DEVICE);
kfree(hsotg->frame_list);
hsotg->frame_list = NULL;
spin_unlock_irqrestore(&hsotg->lock, flags);
}
static void dwc2_per_sched_enable(struct dwc2_hsotg *hsotg, u32 fr_list_en)
{
u32 hcfg;
unsigned long flags;
spin_lock_irqsave(&hsotg->lock, flags);
hcfg = dwc2_readl(hsotg->regs + HCFG);
if (hcfg & HCFG_PERSCHEDENA) {
/* already enabled */
spin_unlock_irqrestore(&hsotg->lock, flags);
return;
}
dwc2_writel(hsotg->frame_list_dma, hsotg->regs + HFLBADDR);
hcfg &= ~HCFG_FRLISTEN_MASK;
hcfg |= fr_list_en | HCFG_PERSCHEDENA;
dev_vdbg(hsotg->dev, "Enabling Periodic schedule\n");
dwc2_writel(hcfg, hsotg->regs + HCFG);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
static void dwc2_per_sched_disable(struct dwc2_hsotg *hsotg)
{
u32 hcfg;
unsigned long flags;
spin_lock_irqsave(&hsotg->lock, flags);
hcfg = dwc2_readl(hsotg->regs + HCFG);
if (!(hcfg & HCFG_PERSCHEDENA)) {
/* already disabled */
spin_unlock_irqrestore(&hsotg->lock, flags);
return;
}
hcfg &= ~HCFG_PERSCHEDENA;
dev_vdbg(hsotg->dev, "Disabling Periodic schedule\n");
dwc2_writel(hcfg, hsotg->regs + HCFG);
spin_unlock_irqrestore(&hsotg->lock, flags);
}
/*
* Activates/Deactivates FrameList entries for the channel based on endpoint
* servicing period
*/
static void dwc2_update_frame_list(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
int enable)
{
struct dwc2_host_chan *chan;
u16 i, j, inc;
if (!hsotg) {
pr_err("hsotg = %p\n", hsotg);
return;
}
if (!qh->channel) {
dev_err(hsotg->dev, "qh->channel = %p\n", qh->channel);
return;
}
if (!hsotg->frame_list) {
dev_err(hsotg->dev, "hsotg->frame_list = %p\n",
hsotg->frame_list);
return;
}
chan = qh->channel;
inc = dwc2_frame_incr_val(qh);
if (qh->ep_type == USB_ENDPOINT_XFER_ISOC)
i = dwc2_frame_list_idx(qh->next_active_frame);
else
i = 0;
j = i;
do {
if (enable)
hsotg->frame_list[j] |= 1 << chan->hc_num;
else
hsotg->frame_list[j] &= ~(1 << chan->hc_num);
j = (j + inc) & (FRLISTEN_64_SIZE - 1);
} while (j != i);
/*
* Sync frame list since controller will access it if periodic
* channel is currently enabled.
*/
dma_sync_single_for_device(hsotg->dev,
hsotg->frame_list_dma,
hsotg->frame_list_sz,
DMA_TO_DEVICE);
if (!enable)
return;
chan->schinfo = 0;
if (chan->speed == USB_SPEED_HIGH && qh->host_interval) {
j = 1;
/* TODO - check this */
inc = (8 + qh->host_interval - 1) / qh->host_interval;
for (i = 0; i < inc; i++) {
chan->schinfo |= j;
j = j << qh->host_interval;
}
} else {
chan->schinfo = 0xff;
}
}
static void dwc2_release_channel_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
struct dwc2_host_chan *chan = qh->channel;
if (dwc2_qh_is_non_per(qh)) {
if (hsotg->core_params->uframe_sched > 0)
hsotg->available_host_channels++;
else
hsotg->non_periodic_channels--;
} else {
dwc2_update_frame_list(hsotg, qh, 0);
hsotg->available_host_channels++;
}
/*
* The condition is added to prevent double cleanup try in case of
* device disconnect. See channel cleanup in dwc2_hcd_disconnect().
*/
if (chan->qh) {
if (!list_empty(&chan->hc_list_entry))
list_del(&chan->hc_list_entry);
dwc2_hc_cleanup(hsotg, chan);
list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
chan->qh = NULL;
}
qh->channel = NULL;
qh->ntd = 0;
if (qh->desc_list)
memset(qh->desc_list, 0, sizeof(struct dwc2_hcd_dma_desc) *
dwc2_max_desc_num(qh));
}
/**
* dwc2_hcd_qh_init_ddma() - Initializes a QH structure's Descriptor DMA
* related members
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: The QH to init
*
* Return: 0 if successful, negative error code otherwise
*
* Allocates memory for the descriptor list. For the first periodic QH,
* allocates memory for the FrameList and enables periodic scheduling.
*/
int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
gfp_t mem_flags)
{
int retval;
if (qh->do_split) {
dev_err(hsotg->dev,
"SPLIT Transfers are not supported in Descriptor DMA mode.\n");
retval = -EINVAL;
goto err0;
}
retval = dwc2_desc_list_alloc(hsotg, qh, mem_flags);
if (retval)
goto err0;
if (qh->ep_type == USB_ENDPOINT_XFER_ISOC ||
qh->ep_type == USB_ENDPOINT_XFER_INT) {
if (!hsotg->frame_list) {
retval = dwc2_frame_list_alloc(hsotg, mem_flags);
if (retval)
goto err1;
/* Enable periodic schedule on first periodic QH */
dwc2_per_sched_enable(hsotg, HCFG_FRLISTEN_64);
}
}
qh->ntd = 0;
return 0;
err1:
dwc2_desc_list_free(hsotg, qh);
err0:
return retval;
}
/**
* dwc2_hcd_qh_free_ddma() - Frees a QH structure's Descriptor DMA related
* members
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: The QH to free
*
* Frees descriptor list memory associated with the QH. If QH is periodic and
* the last, frees FrameList memory and disables periodic scheduling.
*/
void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
unsigned long flags;
dwc2_desc_list_free(hsotg, qh);
/*
* Channel still assigned due to some reasons.
* Seen on Isoc URB dequeue. Channel halted but no subsequent
* ChHalted interrupt to release the channel. Afterwards
* when it comes here from endpoint disable routine
* channel remains assigned.
*/
spin_lock_irqsave(&hsotg->lock, flags);
if (qh->channel)
dwc2_release_channel_ddma(hsotg, qh);
spin_unlock_irqrestore(&hsotg->lock, flags);
if ((qh->ep_type == USB_ENDPOINT_XFER_ISOC ||
qh->ep_type == USB_ENDPOINT_XFER_INT) &&
(hsotg->core_params->uframe_sched > 0 ||
!hsotg->periodic_channels) && hsotg->frame_list) {
dwc2_per_sched_disable(hsotg);
dwc2_frame_list_free(hsotg);
}
}
static u8 dwc2_frame_to_desc_idx(struct dwc2_qh *qh, u16 frame_idx)
{
if (qh->dev_speed == USB_SPEED_HIGH)
/* Descriptor set (8 descriptors) index which is 8-aligned */
return (frame_idx & ((MAX_DMA_DESC_NUM_HS_ISOC / 8) - 1)) * 8;
else
return frame_idx & (MAX_DMA_DESC_NUM_GENERIC - 1);
}
/*
* Determine starting frame for Isochronous transfer.
* Few frames skipped to prevent race condition with HC.
*/
static u16 dwc2_calc_starting_frame(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh, u16 *skip_frames)
{
u16 frame;
hsotg->frame_number = dwc2_hcd_get_frame_number(hsotg);
/*
* next_active_frame is always frame number (not uFrame) both in FS
* and HS!
*/
/*
* skip_frames is used to limit activated descriptors number
* to avoid the situation when HC services the last activated
* descriptor firstly.
* Example for FS:
* Current frame is 1, scheduled frame is 3. Since HC always fetches
* the descriptor corresponding to curr_frame+1, the descriptor
* corresponding to frame 2 will be fetched. If the number of
* descriptors is max=64 (or greather) the list will be fully programmed
* with Active descriptors and it is possible case (rare) that the
* latest descriptor(considering rollback) corresponding to frame 2 will
* be serviced first. HS case is more probable because, in fact, up to
* 11 uframes (16 in the code) may be skipped.
*/
if (qh->dev_speed == USB_SPEED_HIGH) {
/*
* Consider uframe counter also, to start xfer asap. If half of
* the frame elapsed skip 2 frames otherwise just 1 frame.
* Starting descriptor index must be 8-aligned, so if the
* current frame is near to complete the next one is skipped as
* well.
*/
if (dwc2_micro_frame_num(hsotg->frame_number) >= 5) {
*skip_frames = 2 * 8;
frame = dwc2_frame_num_inc(hsotg->frame_number,
*skip_frames);
} else {
*skip_frames = 1 * 8;
frame = dwc2_frame_num_inc(hsotg->frame_number,
*skip_frames);
}
frame = dwc2_full_frame_num(frame);
} else {
/*
* Two frames are skipped for FS - the current and the next.
* But for descriptor programming, 1 frame (descriptor) is
* enough, see example above.
*/
*skip_frames = 1;
frame = dwc2_frame_num_inc(hsotg->frame_number, 2);
}
return frame;
}
/*
* Calculate initial descriptor index for isochronous transfer based on
* scheduled frame
*/
static u16 dwc2_recalc_initial_desc_idx(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
u16 frame, fr_idx, fr_idx_tmp, skip_frames;
/*
* With current ISOC processing algorithm the channel is being released
* when no more QTDs in the list (qh->ntd == 0). Thus this function is
* called only when qh->ntd == 0 and qh->channel == 0.
*
* So qh->channel != NULL branch is not used and just not removed from
* the source file. It is required for another possible approach which
* is, do not disable and release the channel when ISOC session
* completed, just move QH to inactive schedule until new QTD arrives.
* On new QTD, the QH moved back to 'ready' schedule, starting frame and
* therefore starting desc_index are recalculated. In this case channel
* is released only on ep_disable.
*/
/*
* Calculate starting descriptor index. For INTERRUPT endpoint it is
* always 0.
*/
if (qh->channel) {
frame = dwc2_calc_starting_frame(hsotg, qh, &skip_frames);
/*
* Calculate initial descriptor index based on FrameList current
* bitmap and servicing period
*/
fr_idx_tmp = dwc2_frame_list_idx(frame);
fr_idx = (FRLISTEN_64_SIZE +
dwc2_frame_list_idx(qh->next_active_frame) -
fr_idx_tmp) % dwc2_frame_incr_val(qh);
fr_idx = (fr_idx + fr_idx_tmp) % FRLISTEN_64_SIZE;
} else {
qh->next_active_frame = dwc2_calc_starting_frame(hsotg, qh,
&skip_frames);
fr_idx = dwc2_frame_list_idx(qh->next_active_frame);
}
qh->td_first = qh->td_last = dwc2_frame_to_desc_idx(qh, fr_idx);
return skip_frames;
}
#define ISOC_URB_GIVEBACK_ASAP
#define MAX_ISOC_XFER_SIZE_FS 1023
#define MAX_ISOC_XFER_SIZE_HS 3072
#define DESCNUM_THRESHOLD 4
static void dwc2_fill_host_isoc_dma_desc(struct dwc2_hsotg *hsotg,
struct dwc2_qtd *qtd,
struct dwc2_qh *qh, u32 max_xfer_size,
u16 idx)
{
struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[idx];
struct dwc2_hcd_iso_packet_desc *frame_desc;
memset(dma_desc, 0, sizeof(*dma_desc));
frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last];
if (frame_desc->length > max_xfer_size)
qh->n_bytes[idx] = max_xfer_size;
else
qh->n_bytes[idx] = frame_desc->length;
dma_desc->buf = (u32)(qtd->urb->dma + frame_desc->offset);
dma_desc->status = qh->n_bytes[idx] << HOST_DMA_ISOC_NBYTES_SHIFT &
HOST_DMA_ISOC_NBYTES_MASK;
/* Set active bit */
dma_desc->status |= HOST_DMA_A;
qh->ntd++;
qtd->isoc_frame_index_last++;
#ifdef ISOC_URB_GIVEBACK_ASAP
/* Set IOC for each descriptor corresponding to last frame of URB */
if (qtd->isoc_frame_index_last == qtd->urb->packet_count)
dma_desc->status |= HOST_DMA_IOC;
#endif
dma_sync_single_for_device(hsotg->dev,
qh->desc_list_dma +
(idx * sizeof(struct dwc2_hcd_dma_desc)),
sizeof(struct dwc2_hcd_dma_desc),
DMA_TO_DEVICE);
}
static void dwc2_init_isoc_dma_desc(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh, u16 skip_frames)
{
struct dwc2_qtd *qtd;
u32 max_xfer_size;
u16 idx, inc, n_desc = 0, ntd_max = 0;
u16 cur_idx;
u16 next_idx;
idx = qh->td_last;
inc = qh->host_interval;
hsotg->frame_number = dwc2_hcd_get_frame_number(hsotg);
cur_idx = dwc2_frame_list_idx(hsotg->frame_number);
next_idx = dwc2_desclist_idx_inc(qh->td_last, inc, qh->dev_speed);
/*
* Ensure current frame number didn't overstep last scheduled
* descriptor. If it happens, the only way to recover is to move
* qh->td_last to current frame number + 1.
* So that next isoc descriptor will be scheduled on frame number + 1
* and not on a past frame.
*/
if (dwc2_frame_idx_num_gt(cur_idx, next_idx) || (cur_idx == next_idx)) {
if (inc < 32) {
dev_vdbg(hsotg->dev,
"current frame number overstep last descriptor\n");
qh->td_last = dwc2_desclist_idx_inc(cur_idx, inc,
qh->dev_speed);
idx = qh->td_last;
}
}
if (qh->host_interval) {
ntd_max = (dwc2_max_desc_num(qh) + qh->host_interval - 1) /
qh->host_interval;
if (skip_frames && !qh->channel)
ntd_max -= skip_frames / qh->host_interval;
}
max_xfer_size = qh->dev_speed == USB_SPEED_HIGH ?
MAX_ISOC_XFER_SIZE_HS : MAX_ISOC_XFER_SIZE_FS;
list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) {
if (qtd->in_process &&
qtd->isoc_frame_index_last ==
qtd->urb->packet_count)
continue;
qtd->isoc_td_first = idx;
while (qh->ntd < ntd_max && qtd->isoc_frame_index_last <
qtd->urb->packet_count) {
dwc2_fill_host_isoc_dma_desc(hsotg, qtd, qh,
max_xfer_size, idx);
idx = dwc2_desclist_idx_inc(idx, inc, qh->dev_speed);
n_desc++;
}
qtd->isoc_td_last = idx;
qtd->in_process = 1;
}
qh->td_last = idx;
#ifdef ISOC_URB_GIVEBACK_ASAP
/* Set IOC for last descriptor if descriptor list is full */
if (qh->ntd == ntd_max) {
idx = dwc2_desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
qh->desc_list[idx].status |= HOST_DMA_IOC;
dma_sync_single_for_device(hsotg->dev,
qh->desc_list_dma + (idx *
sizeof(struct dwc2_hcd_dma_desc)),
sizeof(struct dwc2_hcd_dma_desc),
DMA_TO_DEVICE);
}
#else
/*
* Set IOC bit only for one descriptor. Always try to be ahead of HW
* processing, i.e. on IOC generation driver activates next descriptor
* but core continues to process descriptors following the one with IOC
* set.
*/
if (n_desc > DESCNUM_THRESHOLD)
/*
* Move IOC "up". Required even if there is only one QTD
* in the list, because QTDs might continue to be queued,
* but during the activation it was only one queued.
* Actually more than one QTD might be in the list if this
* function called from XferCompletion - QTDs was queued during
* HW processing of the previous descriptor chunk.
*/
idx = dwc2_desclist_idx_dec(idx, inc * ((qh->ntd + 1) / 2),
qh->dev_speed);
else
/*
* Set the IOC for the latest descriptor if either number of
* descriptors is not greater than threshold or no more new
* descriptors activated
*/
idx = dwc2_desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
qh->desc_list[idx].status |= HOST_DMA_IOC;
dma_sync_single_for_device(hsotg->dev,
qh->desc_list_dma +
(idx * sizeof(struct dwc2_hcd_dma_desc)),
sizeof(struct dwc2_hcd_dma_desc),
DMA_TO_DEVICE);
#endif
}
static void dwc2_fill_host_dma_desc(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
struct dwc2_qtd *qtd, struct dwc2_qh *qh,
int n_desc)
{
struct dwc2_hcd_dma_desc *dma_desc = &qh->desc_list[n_desc];
int len = chan->xfer_len;
if (len > MAX_DMA_DESC_SIZE - (chan->max_packet - 1))
len = MAX_DMA_DESC_SIZE - (chan->max_packet - 1);
if (chan->ep_is_in) {
int num_packets;
if (len > 0 && chan->max_packet)
num_packets = (len + chan->max_packet - 1)
/ chan->max_packet;
else
/* Need 1 packet for transfer length of 0 */
num_packets = 1;
/* Always program an integral # of packets for IN transfers */
len = num_packets * chan->max_packet;
}
dma_desc->status = len << HOST_DMA_NBYTES_SHIFT & HOST_DMA_NBYTES_MASK;
qh->n_bytes[n_desc] = len;
if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL &&
qtd->control_phase == DWC2_CONTROL_SETUP)
dma_desc->status |= HOST_DMA_SUP;
dma_desc->buf = (u32)chan->xfer_dma;
dma_sync_single_for_device(hsotg->dev,
qh->desc_list_dma +
(n_desc * sizeof(struct dwc2_hcd_dma_desc)),
sizeof(struct dwc2_hcd_dma_desc),
DMA_TO_DEVICE);
/*
* Last (or only) descriptor of IN transfer with actual size less
* than MaxPacket
*/
if (len > chan->xfer_len) {
chan->xfer_len = 0;
} else {
chan->xfer_dma += len;
chan->xfer_len -= len;
}
}
static void dwc2_init_non_isoc_dma_desc(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh)
{
struct dwc2_qtd *qtd;
struct dwc2_host_chan *chan = qh->channel;
int n_desc = 0;
dev_vdbg(hsotg->dev, "%s(): qh=%p dma=%08lx len=%d\n", __func__, qh,
(unsigned long)chan->xfer_dma, chan->xfer_len);
/*
* Start with chan->xfer_dma initialized in assign_and_init_hc(), then
* if SG transfer consists of multiple URBs, this pointer is re-assigned
* to the buffer of the currently processed QTD. For non-SG request
* there is always one QTD active.
*/
list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry) {
dev_vdbg(hsotg->dev, "qtd=%p\n", qtd);
if (n_desc) {
/* SG request - more than 1 QTD */
chan->xfer_dma = qtd->urb->dma +
qtd->urb->actual_length;
chan->xfer_len = qtd->urb->length -
qtd->urb->actual_length;
dev_vdbg(hsotg->dev, "buf=%08lx len=%d\n",
(unsigned long)chan->xfer_dma, chan->xfer_len);
}
qtd->n_desc = 0;
do {
if (n_desc > 1) {
qh->desc_list[n_desc - 1].status |= HOST_DMA_A;
dev_vdbg(hsotg->dev,
"set A bit in desc %d (%p)\n",
n_desc - 1,
&qh->desc_list[n_desc - 1]);
dma_sync_single_for_device(hsotg->dev,
qh->desc_list_dma +
((n_desc - 1) *
sizeof(struct dwc2_hcd_dma_desc)),
sizeof(struct dwc2_hcd_dma_desc),
DMA_TO_DEVICE);
}
dwc2_fill_host_dma_desc(hsotg, chan, qtd, qh, n_desc);
dev_vdbg(hsotg->dev,
"desc %d (%p) buf=%08x status=%08x\n",
n_desc, &qh->desc_list[n_desc],
qh->desc_list[n_desc].buf,
qh->desc_list[n_desc].status);
qtd->n_desc++;
n_desc++;
} while (chan->xfer_len > 0 &&
n_desc != MAX_DMA_DESC_NUM_GENERIC);
dev_vdbg(hsotg->dev, "n_desc=%d\n", n_desc);
qtd->in_process = 1;
if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL)
break;
if (n_desc == MAX_DMA_DESC_NUM_GENERIC)
break;
}
if (n_desc) {
qh->desc_list[n_desc - 1].status |=
HOST_DMA_IOC | HOST_DMA_EOL | HOST_DMA_A;
dev_vdbg(hsotg->dev, "set IOC/EOL/A bits in desc %d (%p)\n",
n_desc - 1, &qh->desc_list[n_desc - 1]);
dma_sync_single_for_device(hsotg->dev,
qh->desc_list_dma + (n_desc - 1) *
sizeof(struct dwc2_hcd_dma_desc),
sizeof(struct dwc2_hcd_dma_desc),
DMA_TO_DEVICE);
if (n_desc > 1) {
qh->desc_list[0].status |= HOST_DMA_A;
dev_vdbg(hsotg->dev, "set A bit in desc 0 (%p)\n",
&qh->desc_list[0]);
dma_sync_single_for_device(hsotg->dev,
qh->desc_list_dma,
sizeof(struct dwc2_hcd_dma_desc),
DMA_TO_DEVICE);
}
chan->ntd = n_desc;
}
}
/**
* dwc2_hcd_start_xfer_ddma() - Starts a transfer in Descriptor DMA mode
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @qh: The QH to init
*
* Return: 0 if successful, negative error code otherwise
*
* For Control and Bulk endpoints, initializes descriptor list and starts the
* transfer. For Interrupt and Isochronous endpoints, initializes descriptor
* list then updates FrameList, marking appropriate entries as active.
*
* For Isochronous endpoints the starting descriptor index is calculated based
* on the scheduled frame, but only on the first transfer descriptor within a
* session. Then the transfer is started via enabling the channel.
*
* For Isochronous endpoints the channel is not halted on XferComplete
* interrupt so remains assigned to the endpoint(QH) until session is done.
*/
void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
{
/* Channel is already assigned */
struct dwc2_host_chan *chan = qh->channel;
u16 skip_frames = 0;
switch (chan->ep_type) {
case USB_ENDPOINT_XFER_CONTROL:
case USB_ENDPOINT_XFER_BULK:
dwc2_init_non_isoc_dma_desc(hsotg, qh);
dwc2_hc_start_transfer_ddma(hsotg, chan);
break;
case USB_ENDPOINT_XFER_INT:
dwc2_init_non_isoc_dma_desc(hsotg, qh);
dwc2_update_frame_list(hsotg, qh, 1);
dwc2_hc_start_transfer_ddma(hsotg, chan);
break;
case USB_ENDPOINT_XFER_ISOC:
if (!qh->ntd)
skip_frames = dwc2_recalc_initial_desc_idx(hsotg, qh);
dwc2_init_isoc_dma_desc(hsotg, qh, skip_frames);
if (!chan->xfer_started) {
dwc2_update_frame_list(hsotg, qh, 1);
/*
* Always set to max, instead of actual size. Otherwise
* ntd will be changed with channel being enabled. Not
* recommended.
*/
chan->ntd = dwc2_max_desc_num(qh);
/* Enable channel only once for ISOC */
dwc2_hc_start_transfer_ddma(hsotg, chan);
}
break;
default:
break;
}
}
#define DWC2_CMPL_DONE 1
#define DWC2_CMPL_STOP 2
static int dwc2_cmpl_host_isoc_dma_desc(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
struct dwc2_qtd *qtd,
struct dwc2_qh *qh, u16 idx)
{
struct dwc2_hcd_dma_desc *dma_desc;
struct dwc2_hcd_iso_packet_desc *frame_desc;
u16 remain = 0;
int rc = 0;
if (!qtd->urb)
return -EINVAL;
dma_sync_single_for_cpu(hsotg->dev, qh->desc_list_dma + (idx *
sizeof(struct dwc2_hcd_dma_desc)),
sizeof(struct dwc2_hcd_dma_desc),
DMA_FROM_DEVICE);
dma_desc = &qh->desc_list[idx];
frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last];
dma_desc->buf = (u32)(qtd->urb->dma + frame_desc->offset);
if (chan->ep_is_in)
remain = (dma_desc->status & HOST_DMA_ISOC_NBYTES_MASK) >>
HOST_DMA_ISOC_NBYTES_SHIFT;
if ((dma_desc->status & HOST_DMA_STS_MASK) == HOST_DMA_STS_PKTERR) {
/*
* XactError, or unable to complete all the transactions
* in the scheduled micro-frame/frame, both indicated by
* HOST_DMA_STS_PKTERR
*/
qtd->urb->error_count++;
frame_desc->actual_length = qh->n_bytes[idx] - remain;
frame_desc->status = -EPROTO;
} else {
/* Success */
frame_desc->actual_length = qh->n_bytes[idx] - remain;
frame_desc->status = 0;
}
if (++qtd->isoc_frame_index == qtd->urb->packet_count) {
/*
* urb->status is not used for isoc transfers here. The
* individual frame_desc status are used instead.
*/
dwc2_host_complete(hsotg, qtd, 0);
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
/*
* This check is necessary because urb_dequeue can be called
* from urb complete callback (sound driver for example). All
* pending URBs are dequeued there, so no need for further
* processing.
*/
if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE)
return -1;
rc = DWC2_CMPL_DONE;
}
qh->ntd--;
/* Stop if IOC requested descriptor reached */
if (dma_desc->status & HOST_DMA_IOC)
rc = DWC2_CMPL_STOP;
return rc;
}
static void dwc2_complete_isoc_xfer_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
enum dwc2_halt_status halt_status)
{
struct dwc2_hcd_iso_packet_desc *frame_desc;
struct dwc2_qtd *qtd, *qtd_tmp;
struct dwc2_qh *qh;
u16 idx;
int rc;
qh = chan->qh;
idx = qh->td_first;
if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) {
list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry)
qtd->in_process = 0;
return;
}
if (halt_status == DWC2_HC_XFER_AHB_ERR ||
halt_status == DWC2_HC_XFER_BABBLE_ERR) {
/*
* Channel is halted in these error cases, considered as serious
* issues.
* Complete all URBs marking all frames as failed, irrespective
* whether some of the descriptors (frames) succeeded or not.
* Pass error code to completion routine as well, to update
* urb->status, some of class drivers might use it to stop
* queing transfer requests.
*/
int err = halt_status == DWC2_HC_XFER_AHB_ERR ?
-EIO : -EOVERFLOW;
list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
qtd_list_entry) {
if (qtd->urb) {
for (idx = 0; idx < qtd->urb->packet_count;
idx++) {
frame_desc = &qtd->urb->iso_descs[idx];
frame_desc->status = err;
}
dwc2_host_complete(hsotg, qtd, err);
}
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
}
return;
}
list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) {
if (!qtd->in_process)
break;
/*
* Ensure idx corresponds to descriptor where first urb of this
* qtd was added. In fact, during isoc desc init, dwc2 may skip
* an index if current frame number is already over this index.
*/
if (idx != qtd->isoc_td_first) {
dev_vdbg(hsotg->dev,
"try to complete %d instead of %d\n",
idx, qtd->isoc_td_first);
idx = qtd->isoc_td_first;
}
do {
struct dwc2_qtd *qtd_next;
u16 cur_idx;
rc = dwc2_cmpl_host_isoc_dma_desc(hsotg, chan, qtd, qh,
idx);
if (rc < 0)
return;
idx = dwc2_desclist_idx_inc(idx, qh->host_interval,
chan->speed);
if (!rc)
continue;
if (rc == DWC2_CMPL_DONE)
break;
/* rc == DWC2_CMPL_STOP */
if (qh->host_interval >= 32)
goto stop_scan;
qh->td_first = idx;
cur_idx = dwc2_frame_list_idx(hsotg->frame_number);
qtd_next = list_first_entry(&qh->qtd_list,
struct dwc2_qtd,
qtd_list_entry);
if (dwc2_frame_idx_num_gt(cur_idx,
qtd_next->isoc_td_last))
break;
goto stop_scan;
} while (idx != qh->td_first);
}
stop_scan:
qh->td_first = idx;
}
static int dwc2_update_non_isoc_urb_state_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
struct dwc2_qtd *qtd,
struct dwc2_hcd_dma_desc *dma_desc,
enum dwc2_halt_status halt_status,
u32 n_bytes, int *xfer_done)
{
struct dwc2_hcd_urb *urb = qtd->urb;
u16 remain = 0;
if (chan->ep_is_in)
remain = (dma_desc->status & HOST_DMA_NBYTES_MASK) >>
HOST_DMA_NBYTES_SHIFT;
dev_vdbg(hsotg->dev, "remain=%d dwc2_urb=%p\n", remain, urb);
if (halt_status == DWC2_HC_XFER_AHB_ERR) {
dev_err(hsotg->dev, "EIO\n");
urb->status = -EIO;
return 1;
}
if ((dma_desc->status & HOST_DMA_STS_MASK) == HOST_DMA_STS_PKTERR) {
switch (halt_status) {
case DWC2_HC_XFER_STALL:
dev_vdbg(hsotg->dev, "Stall\n");
urb->status = -EPIPE;
break;
case DWC2_HC_XFER_BABBLE_ERR:
dev_err(hsotg->dev, "Babble\n");
urb->status = -EOVERFLOW;
break;
case DWC2_HC_XFER_XACT_ERR:
dev_err(hsotg->dev, "XactErr\n");
urb->status = -EPROTO;
break;
default:
dev_err(hsotg->dev,
"%s: Unhandled descriptor error status (%d)\n",
__func__, halt_status);
break;
}
return 1;
}
if (dma_desc->status & HOST_DMA_A) {
dev_vdbg(hsotg->dev,
"Active descriptor encountered on channel %d\n",
chan->hc_num);
return 0;
}
if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL) {
if (qtd->control_phase == DWC2_CONTROL_DATA) {
urb->actual_length += n_bytes - remain;
if (remain || urb->actual_length >= urb->length) {
/*
* For Control Data stage do not set urb->status
* to 0, to prevent URB callback. Set it when
* Status phase is done. See below.
*/
*xfer_done = 1;
}
} else if (qtd->control_phase == DWC2_CONTROL_STATUS) {
urb->status = 0;
*xfer_done = 1;
}
/* No handling for SETUP stage */
} else {
/* BULK and INTR */
urb->actual_length += n_bytes - remain;
dev_vdbg(hsotg->dev, "length=%d actual=%d\n", urb->length,
urb->actual_length);
if (remain || urb->actual_length >= urb->length) {
urb->status = 0;
*xfer_done = 1;
}
}
return 0;
}
static int dwc2_process_non_isoc_desc(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
int chnum, struct dwc2_qtd *qtd,
int desc_num,
enum dwc2_halt_status halt_status,
int *xfer_done)
{
struct dwc2_qh *qh = chan->qh;
struct dwc2_hcd_urb *urb = qtd->urb;
struct dwc2_hcd_dma_desc *dma_desc;
u32 n_bytes;
int failed;
dev_vdbg(hsotg->dev, "%s()\n", __func__);
if (!urb)
return -EINVAL;
dma_sync_single_for_cpu(hsotg->dev,
qh->desc_list_dma + (desc_num *
sizeof(struct dwc2_hcd_dma_desc)),
sizeof(struct dwc2_hcd_dma_desc),
DMA_FROM_DEVICE);
dma_desc = &qh->desc_list[desc_num];
n_bytes = qh->n_bytes[desc_num];
dev_vdbg(hsotg->dev,
"qtd=%p dwc2_urb=%p desc_num=%d desc=%p n_bytes=%d\n",
qtd, urb, desc_num, dma_desc, n_bytes);
failed = dwc2_update_non_isoc_urb_state_ddma(hsotg, chan, qtd, dma_desc,
halt_status, n_bytes,
xfer_done);
if (failed || (*xfer_done && urb->status != -EINPROGRESS)) {
dwc2_host_complete(hsotg, qtd, urb->status);
dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
dev_vdbg(hsotg->dev, "failed=%1x xfer_done=%1x\n",
failed, *xfer_done);
return failed;
}
if (qh->ep_type == USB_ENDPOINT_XFER_CONTROL) {
switch (qtd->control_phase) {
case DWC2_CONTROL_SETUP:
if (urb->length > 0)
qtd->control_phase = DWC2_CONTROL_DATA;
else
qtd->control_phase = DWC2_CONTROL_STATUS;
dev_vdbg(hsotg->dev,
" Control setup transaction done\n");
break;
case DWC2_CONTROL_DATA:
if (*xfer_done) {
qtd->control_phase = DWC2_CONTROL_STATUS;
dev_vdbg(hsotg->dev,
" Control data transfer done\n");
} else if (desc_num + 1 == qtd->n_desc) {
/*
* Last descriptor for Control data stage which
* is not completed yet
*/
dwc2_hcd_save_data_toggle(hsotg, chan, chnum,
qtd);
}
break;
default:
break;
}
}
return 0;
}
static void dwc2_complete_non_isoc_xfer_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan,
int chnum,
enum dwc2_halt_status halt_status)
{
struct list_head *qtd_item, *qtd_tmp;
struct dwc2_qh *qh = chan->qh;
struct dwc2_qtd *qtd = NULL;
int xfer_done;
int desc_num = 0;
if (chan->halt_status == DWC2_HC_XFER_URB_DEQUEUE) {
list_for_each_entry(qtd, &qh->qtd_list, qtd_list_entry)
qtd->in_process = 0;
return;
}
list_for_each_safe(qtd_item, qtd_tmp, &qh->qtd_list) {
int i;
int qtd_desc_count;
qtd = list_entry(qtd_item, struct dwc2_qtd, qtd_list_entry);
xfer_done = 0;
qtd_desc_count = qtd->n_desc;
for (i = 0; i < qtd_desc_count; i++) {
if (dwc2_process_non_isoc_desc(hsotg, chan, chnum, qtd,
desc_num, halt_status,
&xfer_done)) {
qtd = NULL;
goto stop_scan;
}
desc_num++;
}
}
stop_scan:
if (qh->ep_type != USB_ENDPOINT_XFER_CONTROL) {
/*
* Resetting the data toggle for bulk and interrupt endpoints
* in case of stall. See handle_hc_stall_intr().
*/
if (halt_status == DWC2_HC_XFER_STALL)
qh->data_toggle = DWC2_HC_PID_DATA0;
else
dwc2_hcd_save_data_toggle(hsotg, chan, chnum, NULL);
}
if (halt_status == DWC2_HC_XFER_COMPLETE) {
if (chan->hcint & HCINTMSK_NYET) {
/*
* Got a NYET on the last transaction of the transfer.
* It means that the endpoint should be in the PING
* state at the beginning of the next transfer.
*/
qh->ping_state = 1;
}
}
}
/**
* dwc2_hcd_complete_xfer_ddma() - Scans the descriptor list, updates URB's
* status and calls completion routine for the URB if it's done. Called from
* interrupt handlers.
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @chan: Host channel the transfer is completed on
* @chnum: Index of Host channel registers
* @halt_status: Reason the channel is being halted or just XferComplete
* for isochronous transfers
*
* Releases the channel to be used by other transfers.
* In case of Isochronous endpoint the channel is not halted until the end of
* the session, i.e. QTD list is empty.
* If periodic channel released the FrameList is updated accordingly.
* Calls transaction selection routines to activate pending transfers.
*/
void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan, int chnum,
enum dwc2_halt_status halt_status)
{
struct dwc2_qh *qh = chan->qh;
int continue_isoc_xfer = 0;
enum dwc2_transaction_type tr_type;
if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
dwc2_complete_isoc_xfer_ddma(hsotg, chan, halt_status);
/* Release the channel if halted or session completed */
if (halt_status != DWC2_HC_XFER_COMPLETE ||
list_empty(&qh->qtd_list)) {
struct dwc2_qtd *qtd, *qtd_tmp;
/*
* Kill all remainings QTDs since channel has been
* halted.
*/
list_for_each_entry_safe(qtd, qtd_tmp,
&qh->qtd_list,
qtd_list_entry) {
dwc2_host_complete(hsotg, qtd,
-ECONNRESET);
dwc2_hcd_qtd_unlink_and_free(hsotg,
qtd, qh);
}
/* Halt the channel if session completed */
if (halt_status == DWC2_HC_XFER_COMPLETE)
dwc2_hc_halt(hsotg, chan, halt_status);
dwc2_release_channel_ddma(hsotg, qh);
dwc2_hcd_qh_unlink(hsotg, qh);
} else {
/* Keep in assigned schedule to continue transfer */
list_move_tail(&qh->qh_list_entry,
&hsotg->periodic_sched_assigned);
/*
* If channel has been halted during giveback of urb
* then prevent any new scheduling.
*/
if (!chan->halt_status)
continue_isoc_xfer = 1;
}
/*
* Todo: Consider the case when period exceeds FrameList size.
* Frame Rollover interrupt should be used.
*/
} else {
/*
* Scan descriptor list to complete the URB(s), then release
* the channel
*/
dwc2_complete_non_isoc_xfer_ddma(hsotg, chan, chnum,
halt_status);
dwc2_release_channel_ddma(hsotg, qh);
dwc2_hcd_qh_unlink(hsotg, qh);
if (!list_empty(&qh->qtd_list)) {
/*
* Add back to inactive non-periodic schedule on normal
* completion
*/
dwc2_hcd_qh_add(hsotg, qh);
}
}
tr_type = dwc2_hcd_select_transactions(hsotg);
if (tr_type != DWC2_TRANSACTION_NONE || continue_isoc_xfer) {
if (continue_isoc_xfer) {
if (tr_type == DWC2_TRANSACTION_NONE)
tr_type = DWC2_TRANSACTION_PERIODIC;
else if (tr_type == DWC2_TRANSACTION_NON_PERIODIC)
tr_type = DWC2_TRANSACTION_ALL;
}
dwc2_hcd_queue_transactions(hsotg, tr_type);
}
}