2807 lines
76 KiB
C
2807 lines
76 KiB
C
/*
|
|
* MUSB OTG driver host support
|
|
*
|
|
* Copyright 2005 Mentor Graphics Corporation
|
|
* Copyright (C) 2005-2006 by Texas Instruments
|
|
* Copyright (C) 2006-2007 Nokia Corporation
|
|
* Copyright (C) 2008-2009 MontaVista Software, Inc. <source@mvista.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
|
|
* 02110-1301 USA
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
|
|
* NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/list.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "musb_core.h"
|
|
#include "musb_host.h"
|
|
#include "musb_trace.h"
|
|
|
|
/* MUSB HOST status 22-mar-2006
|
|
*
|
|
* - There's still lots of partial code duplication for fault paths, so
|
|
* they aren't handled as consistently as they need to be.
|
|
*
|
|
* - PIO mostly behaved when last tested.
|
|
* + including ep0, with all usbtest cases 9, 10
|
|
* + usbtest 14 (ep0out) doesn't seem to run at all
|
|
* + double buffered OUT/TX endpoints saw stalls(!) with certain usbtest
|
|
* configurations, but otherwise double buffering passes basic tests.
|
|
* + for 2.6.N, for N > ~10, needs API changes for hcd framework.
|
|
*
|
|
* - DMA (CPPI) ... partially behaves, not currently recommended
|
|
* + about 1/15 the speed of typical EHCI implementations (PCI)
|
|
* + RX, all too often reqpkt seems to misbehave after tx
|
|
* + TX, no known issues (other than evident silicon issue)
|
|
*
|
|
* - DMA (Mentor/OMAP) ...has at least toggle update problems
|
|
*
|
|
* - [23-feb-2009] minimal traffic scheduling to avoid bulk RX packet
|
|
* starvation ... nothing yet for TX, interrupt, or bulk.
|
|
*
|
|
* - Not tested with HNP, but some SRP paths seem to behave.
|
|
*
|
|
* NOTE 24-August-2006:
|
|
*
|
|
* - Bulk traffic finally uses both sides of hardware ep1, freeing up an
|
|
* extra endpoint for periodic use enabling hub + keybd + mouse. That
|
|
* mostly works, except that with "usbnet" it's easy to trigger cases
|
|
* with "ping" where RX loses. (a) ping to davinci, even "ping -f",
|
|
* fine; but (b) ping _from_ davinci, even "ping -c 1", ICMP RX loses
|
|
* although ARP RX wins. (That test was done with a full speed link.)
|
|
*/
|
|
|
|
|
|
/*
|
|
* NOTE on endpoint usage:
|
|
*
|
|
* CONTROL transfers all go through ep0. BULK ones go through dedicated IN
|
|
* and OUT endpoints ... hardware is dedicated for those "async" queue(s).
|
|
* (Yes, bulk _could_ use more of the endpoints than that, and would even
|
|
* benefit from it.)
|
|
*
|
|
* INTERUPPT and ISOCHRONOUS transfers are scheduled to the other endpoints.
|
|
* So far that scheduling is both dumb and optimistic: the endpoint will be
|
|
* "claimed" until its software queue is no longer refilled. No multiplexing
|
|
* of transfers between endpoints, or anything clever.
|
|
*/
|
|
|
|
struct musb *hcd_to_musb(struct usb_hcd *hcd)
|
|
{
|
|
return *(struct musb **) hcd->hcd_priv;
|
|
}
|
|
|
|
|
|
static void musb_ep_program(struct musb *musb, u8 epnum,
|
|
struct urb *urb, int is_out,
|
|
u8 *buf, u32 offset, u32 len);
|
|
|
|
/*
|
|
* Clear TX fifo. Needed to avoid BABBLE errors.
|
|
*/
|
|
static void musb_h_tx_flush_fifo(struct musb_hw_ep *ep)
|
|
{
|
|
struct musb *musb = ep->musb;
|
|
void __iomem *epio = ep->regs;
|
|
u16 csr;
|
|
int retries = 1000;
|
|
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
while (csr & MUSB_TXCSR_FIFONOTEMPTY) {
|
|
csr |= MUSB_TXCSR_FLUSHFIFO | MUSB_TXCSR_TXPKTRDY;
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
|
|
/*
|
|
* FIXME: sometimes the tx fifo flush failed, it has been
|
|
* observed during device disconnect on AM335x.
|
|
*
|
|
* To reproduce the issue, ensure tx urb(s) are queued when
|
|
* unplug the usb device which is connected to AM335x usb
|
|
* host port.
|
|
*
|
|
* I found using a usb-ethernet device and running iperf
|
|
* (client on AM335x) has very high chance to trigger it.
|
|
*
|
|
* Better to turn on musb_dbg() in musb_cleanup_urb() with
|
|
* CPPI enabled to see the issue when aborting the tx channel.
|
|
*/
|
|
if (dev_WARN_ONCE(musb->controller, retries-- < 1,
|
|
"Could not flush host TX%d fifo: csr: %04x\n",
|
|
ep->epnum, csr))
|
|
return;
|
|
mdelay(1);
|
|
}
|
|
}
|
|
|
|
static void musb_h_ep0_flush_fifo(struct musb_hw_ep *ep)
|
|
{
|
|
void __iomem *epio = ep->regs;
|
|
u16 csr;
|
|
int retries = 5;
|
|
|
|
/* scrub any data left in the fifo */
|
|
do {
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
if (!(csr & (MUSB_CSR0_TXPKTRDY | MUSB_CSR0_RXPKTRDY)))
|
|
break;
|
|
musb_writew(epio, MUSB_TXCSR, MUSB_CSR0_FLUSHFIFO);
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
udelay(10);
|
|
} while (--retries);
|
|
|
|
WARN(!retries, "Could not flush host TX%d fifo: csr: %04x\n",
|
|
ep->epnum, csr);
|
|
|
|
/* and reset for the next transfer */
|
|
musb_writew(epio, MUSB_TXCSR, 0);
|
|
}
|
|
|
|
/*
|
|
* Start transmit. Caller is responsible for locking shared resources.
|
|
* musb must be locked.
|
|
*/
|
|
static inline void musb_h_tx_start(struct musb_hw_ep *ep)
|
|
{
|
|
u16 txcsr;
|
|
|
|
/* NOTE: no locks here; caller should lock and select EP */
|
|
if (ep->epnum) {
|
|
txcsr = musb_readw(ep->regs, MUSB_TXCSR);
|
|
txcsr |= MUSB_TXCSR_TXPKTRDY | MUSB_TXCSR_H_WZC_BITS;
|
|
musb_writew(ep->regs, MUSB_TXCSR, txcsr);
|
|
} else {
|
|
txcsr = MUSB_CSR0_H_SETUPPKT | MUSB_CSR0_TXPKTRDY;
|
|
musb_writew(ep->regs, MUSB_CSR0, txcsr);
|
|
}
|
|
|
|
}
|
|
|
|
static inline void musb_h_tx_dma_start(struct musb_hw_ep *ep)
|
|
{
|
|
u16 txcsr;
|
|
|
|
/* NOTE: no locks here; caller should lock and select EP */
|
|
txcsr = musb_readw(ep->regs, MUSB_TXCSR);
|
|
txcsr |= MUSB_TXCSR_DMAENAB | MUSB_TXCSR_H_WZC_BITS;
|
|
if (is_cppi_enabled(ep->musb))
|
|
txcsr |= MUSB_TXCSR_DMAMODE;
|
|
musb_writew(ep->regs, MUSB_TXCSR, txcsr);
|
|
}
|
|
|
|
static void musb_ep_set_qh(struct musb_hw_ep *ep, int is_in, struct musb_qh *qh)
|
|
{
|
|
if (is_in != 0 || ep->is_shared_fifo)
|
|
ep->in_qh = qh;
|
|
if (is_in == 0 || ep->is_shared_fifo)
|
|
ep->out_qh = qh;
|
|
}
|
|
|
|
static struct musb_qh *musb_ep_get_qh(struct musb_hw_ep *ep, int is_in)
|
|
{
|
|
return is_in ? ep->in_qh : ep->out_qh;
|
|
}
|
|
|
|
/*
|
|
* Start the URB at the front of an endpoint's queue
|
|
* end must be claimed from the caller.
|
|
*
|
|
* Context: controller locked, irqs blocked
|
|
*/
|
|
static void
|
|
musb_start_urb(struct musb *musb, int is_in, struct musb_qh *qh)
|
|
{
|
|
u16 frame;
|
|
u32 len;
|
|
void __iomem *mbase = musb->mregs;
|
|
struct urb *urb = next_urb(qh);
|
|
void *buf = urb->transfer_buffer;
|
|
u32 offset = 0;
|
|
struct musb_hw_ep *hw_ep = qh->hw_ep;
|
|
int epnum = hw_ep->epnum;
|
|
|
|
/* initialize software qh state */
|
|
qh->offset = 0;
|
|
qh->segsize = 0;
|
|
|
|
/* gather right source of data */
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
/* control transfers always start with SETUP */
|
|
is_in = 0;
|
|
musb->ep0_stage = MUSB_EP0_START;
|
|
buf = urb->setup_packet;
|
|
len = 8;
|
|
break;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
qh->iso_idx = 0;
|
|
qh->frame = 0;
|
|
offset = urb->iso_frame_desc[0].offset;
|
|
len = urb->iso_frame_desc[0].length;
|
|
break;
|
|
default: /* bulk, interrupt */
|
|
/* actual_length may be nonzero on retry paths */
|
|
buf = urb->transfer_buffer + urb->actual_length;
|
|
len = urb->transfer_buffer_length - urb->actual_length;
|
|
}
|
|
|
|
trace_musb_urb_start(musb, urb);
|
|
|
|
/* Configure endpoint */
|
|
musb_ep_set_qh(hw_ep, is_in, qh);
|
|
musb_ep_program(musb, epnum, urb, !is_in, buf, offset, len);
|
|
|
|
/* transmit may have more work: start it when it is time */
|
|
if (is_in)
|
|
return;
|
|
|
|
/* determine if the time is right for a periodic transfer */
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
case USB_ENDPOINT_XFER_INT:
|
|
musb_dbg(musb, "check whether there's still time for periodic Tx");
|
|
frame = musb_readw(mbase, MUSB_FRAME);
|
|
/* FIXME this doesn't implement that scheduling policy ...
|
|
* or handle framecounter wrapping
|
|
*/
|
|
if (1) { /* Always assume URB_ISO_ASAP */
|
|
/* REVISIT the SOF irq handler shouldn't duplicate
|
|
* this code; and we don't init urb->start_frame...
|
|
*/
|
|
qh->frame = 0;
|
|
goto start;
|
|
} else {
|
|
qh->frame = urb->start_frame;
|
|
/* enable SOF interrupt so we can count down */
|
|
musb_dbg(musb, "SOF for %d", epnum);
|
|
#if 1 /* ifndef CONFIG_ARCH_DAVINCI */
|
|
musb_writeb(mbase, MUSB_INTRUSBE, 0xff);
|
|
#endif
|
|
}
|
|
break;
|
|
default:
|
|
start:
|
|
musb_dbg(musb, "Start TX%d %s", epnum,
|
|
hw_ep->tx_channel ? "dma" : "pio");
|
|
|
|
if (!hw_ep->tx_channel)
|
|
musb_h_tx_start(hw_ep);
|
|
else if (is_cppi_enabled(musb) || tusb_dma_omap(musb))
|
|
musb_h_tx_dma_start(hw_ep);
|
|
}
|
|
}
|
|
|
|
/* Context: caller owns controller lock, IRQs are blocked */
|
|
static void musb_giveback(struct musb *musb, struct urb *urb, int status)
|
|
__releases(musb->lock)
|
|
__acquires(musb->lock)
|
|
{
|
|
trace_musb_urb_gb(musb, urb);
|
|
|
|
usb_hcd_unlink_urb_from_ep(musb->hcd, urb);
|
|
spin_unlock(&musb->lock);
|
|
usb_hcd_giveback_urb(musb->hcd, urb, status);
|
|
spin_lock(&musb->lock);
|
|
}
|
|
|
|
/* For bulk/interrupt endpoints only */
|
|
static inline void musb_save_toggle(struct musb_qh *qh, int is_in,
|
|
struct urb *urb)
|
|
{
|
|
void __iomem *epio = qh->hw_ep->regs;
|
|
u16 csr;
|
|
|
|
/*
|
|
* FIXME: the current Mentor DMA code seems to have
|
|
* problems getting toggle correct.
|
|
*/
|
|
|
|
if (is_in)
|
|
csr = musb_readw(epio, MUSB_RXCSR) & MUSB_RXCSR_H_DATATOGGLE;
|
|
else
|
|
csr = musb_readw(epio, MUSB_TXCSR) & MUSB_TXCSR_H_DATATOGGLE;
|
|
|
|
usb_settoggle(urb->dev, qh->epnum, !is_in, csr ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* Advance this hardware endpoint's queue, completing the specified URB and
|
|
* advancing to either the next URB queued to that qh, or else invalidating
|
|
* that qh and advancing to the next qh scheduled after the current one.
|
|
*
|
|
* Context: caller owns controller lock, IRQs are blocked
|
|
*/
|
|
static void musb_advance_schedule(struct musb *musb, struct urb *urb,
|
|
struct musb_hw_ep *hw_ep, int is_in)
|
|
{
|
|
struct musb_qh *qh = musb_ep_get_qh(hw_ep, is_in);
|
|
struct musb_hw_ep *ep = qh->hw_ep;
|
|
int ready = qh->is_ready;
|
|
int status;
|
|
|
|
status = (urb->status == -EINPROGRESS) ? 0 : urb->status;
|
|
|
|
/* save toggle eagerly, for paranoia */
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
case USB_ENDPOINT_XFER_INT:
|
|
musb_save_toggle(qh, is_in, urb);
|
|
break;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
if (status == 0 && urb->error_count)
|
|
status = -EXDEV;
|
|
break;
|
|
}
|
|
|
|
qh->is_ready = 0;
|
|
musb_giveback(musb, urb, status);
|
|
qh->is_ready = ready;
|
|
|
|
/* reclaim resources (and bandwidth) ASAP; deschedule it, and
|
|
* invalidate qh as soon as list_empty(&hep->urb_list)
|
|
*/
|
|
if (list_empty(&qh->hep->urb_list)) {
|
|
struct list_head *head;
|
|
struct dma_controller *dma = musb->dma_controller;
|
|
|
|
if (is_in) {
|
|
ep->rx_reinit = 1;
|
|
if (ep->rx_channel) {
|
|
dma->channel_release(ep->rx_channel);
|
|
ep->rx_channel = NULL;
|
|
}
|
|
} else {
|
|
ep->tx_reinit = 1;
|
|
if (ep->tx_channel) {
|
|
dma->channel_release(ep->tx_channel);
|
|
ep->tx_channel = NULL;
|
|
}
|
|
}
|
|
|
|
/* Clobber old pointers to this qh */
|
|
musb_ep_set_qh(ep, is_in, NULL);
|
|
qh->hep->hcpriv = NULL;
|
|
|
|
switch (qh->type) {
|
|
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
/* fifo policy for these lists, except that NAKing
|
|
* should rotate a qh to the end (for fairness).
|
|
*/
|
|
if (qh->mux == 1) {
|
|
head = qh->ring.prev;
|
|
list_del(&qh->ring);
|
|
kfree(qh);
|
|
qh = first_qh(head);
|
|
break;
|
|
}
|
|
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
case USB_ENDPOINT_XFER_INT:
|
|
/* this is where periodic bandwidth should be
|
|
* de-allocated if it's tracked and allocated;
|
|
* and where we'd update the schedule tree...
|
|
*/
|
|
kfree(qh);
|
|
qh = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (qh != NULL && qh->is_ready) {
|
|
musb_dbg(musb, "... next ep%d %cX urb %p",
|
|
hw_ep->epnum, is_in ? 'R' : 'T', next_urb(qh));
|
|
musb_start_urb(musb, is_in, qh);
|
|
}
|
|
}
|
|
|
|
static u16 musb_h_flush_rxfifo(struct musb_hw_ep *hw_ep, u16 csr)
|
|
{
|
|
/* we don't want fifo to fill itself again;
|
|
* ignore dma (various models),
|
|
* leave toggle alone (may not have been saved yet)
|
|
*/
|
|
csr |= MUSB_RXCSR_FLUSHFIFO | MUSB_RXCSR_RXPKTRDY;
|
|
csr &= ~(MUSB_RXCSR_H_REQPKT
|
|
| MUSB_RXCSR_H_AUTOREQ
|
|
| MUSB_RXCSR_AUTOCLEAR);
|
|
|
|
/* write 2x to allow double buffering */
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
|
|
|
|
/* flush writebuffer */
|
|
return musb_readw(hw_ep->regs, MUSB_RXCSR);
|
|
}
|
|
|
|
/*
|
|
* PIO RX for a packet (or part of it).
|
|
*/
|
|
static bool
|
|
musb_host_packet_rx(struct musb *musb, struct urb *urb, u8 epnum, u8 iso_err)
|
|
{
|
|
u16 rx_count;
|
|
u8 *buf;
|
|
u16 csr;
|
|
bool done = false;
|
|
u32 length;
|
|
int do_flush = 0;
|
|
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct musb_qh *qh = hw_ep->in_qh;
|
|
int pipe = urb->pipe;
|
|
void *buffer = urb->transfer_buffer;
|
|
|
|
/* musb_ep_select(mbase, epnum); */
|
|
rx_count = musb_readw(epio, MUSB_RXCOUNT);
|
|
musb_dbg(musb, "RX%d count %d, buffer %p len %d/%d", epnum, rx_count,
|
|
urb->transfer_buffer, qh->offset,
|
|
urb->transfer_buffer_length);
|
|
|
|
/* unload FIFO */
|
|
if (usb_pipeisoc(pipe)) {
|
|
int status = 0;
|
|
struct usb_iso_packet_descriptor *d;
|
|
|
|
if (iso_err) {
|
|
status = -EILSEQ;
|
|
urb->error_count++;
|
|
}
|
|
|
|
d = urb->iso_frame_desc + qh->iso_idx;
|
|
buf = buffer + d->offset;
|
|
length = d->length;
|
|
if (rx_count > length) {
|
|
if (status == 0) {
|
|
status = -EOVERFLOW;
|
|
urb->error_count++;
|
|
}
|
|
musb_dbg(musb, "OVERFLOW %d into %d", rx_count, length);
|
|
do_flush = 1;
|
|
} else
|
|
length = rx_count;
|
|
urb->actual_length += length;
|
|
d->actual_length = length;
|
|
|
|
d->status = status;
|
|
|
|
/* see if we are done */
|
|
done = (++qh->iso_idx >= urb->number_of_packets);
|
|
} else {
|
|
/* non-isoch */
|
|
buf = buffer + qh->offset;
|
|
length = urb->transfer_buffer_length - qh->offset;
|
|
if (rx_count > length) {
|
|
if (urb->status == -EINPROGRESS)
|
|
urb->status = -EOVERFLOW;
|
|
musb_dbg(musb, "OVERFLOW %d into %d", rx_count, length);
|
|
do_flush = 1;
|
|
} else
|
|
length = rx_count;
|
|
urb->actual_length += length;
|
|
qh->offset += length;
|
|
|
|
/* see if we are done */
|
|
done = (urb->actual_length == urb->transfer_buffer_length)
|
|
|| (rx_count < qh->maxpacket)
|
|
|| (urb->status != -EINPROGRESS);
|
|
if (done
|
|
&& (urb->status == -EINPROGRESS)
|
|
&& (urb->transfer_flags & URB_SHORT_NOT_OK)
|
|
&& (urb->actual_length
|
|
< urb->transfer_buffer_length))
|
|
urb->status = -EREMOTEIO;
|
|
}
|
|
|
|
musb_read_fifo(hw_ep, length, buf);
|
|
|
|
csr = musb_readw(epio, MUSB_RXCSR);
|
|
csr |= MUSB_RXCSR_H_WZC_BITS;
|
|
if (unlikely(do_flush))
|
|
musb_h_flush_rxfifo(hw_ep, csr);
|
|
else {
|
|
/* REVISIT this assumes AUTOCLEAR is never set */
|
|
csr &= ~(MUSB_RXCSR_RXPKTRDY | MUSB_RXCSR_H_REQPKT);
|
|
if (!done)
|
|
csr |= MUSB_RXCSR_H_REQPKT;
|
|
musb_writew(epio, MUSB_RXCSR, csr);
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
/* we don't always need to reinit a given side of an endpoint...
|
|
* when we do, use tx/rx reinit routine and then construct a new CSR
|
|
* to address data toggle, NYET, and DMA or PIO.
|
|
*
|
|
* it's possible that driver bugs (especially for DMA) or aborting a
|
|
* transfer might have left the endpoint busier than it should be.
|
|
* the busy/not-empty tests are basically paranoia.
|
|
*/
|
|
static void
|
|
musb_rx_reinit(struct musb *musb, struct musb_qh *qh, u8 epnum)
|
|
{
|
|
struct musb_hw_ep *ep = musb->endpoints + epnum;
|
|
u16 csr;
|
|
|
|
/* NOTE: we know the "rx" fifo reinit never triggers for ep0.
|
|
* That always uses tx_reinit since ep0 repurposes TX register
|
|
* offsets; the initial SETUP packet is also a kind of OUT.
|
|
*/
|
|
|
|
/* if programmed for Tx, put it in RX mode */
|
|
if (ep->is_shared_fifo) {
|
|
csr = musb_readw(ep->regs, MUSB_TXCSR);
|
|
if (csr & MUSB_TXCSR_MODE) {
|
|
musb_h_tx_flush_fifo(ep);
|
|
csr = musb_readw(ep->regs, MUSB_TXCSR);
|
|
musb_writew(ep->regs, MUSB_TXCSR,
|
|
csr | MUSB_TXCSR_FRCDATATOG);
|
|
}
|
|
|
|
/*
|
|
* Clear the MODE bit (and everything else) to enable Rx.
|
|
* NOTE: we mustn't clear the DMAMODE bit before DMAENAB.
|
|
*/
|
|
if (csr & MUSB_TXCSR_DMAMODE)
|
|
musb_writew(ep->regs, MUSB_TXCSR, MUSB_TXCSR_DMAMODE);
|
|
musb_writew(ep->regs, MUSB_TXCSR, 0);
|
|
|
|
/* scrub all previous state, clearing toggle */
|
|
}
|
|
csr = musb_readw(ep->regs, MUSB_RXCSR);
|
|
if (csr & MUSB_RXCSR_RXPKTRDY)
|
|
WARNING("rx%d, packet/%d ready?\n", ep->epnum,
|
|
musb_readw(ep->regs, MUSB_RXCOUNT));
|
|
|
|
musb_h_flush_rxfifo(ep, MUSB_RXCSR_CLRDATATOG);
|
|
|
|
/* target addr and (for multipoint) hub addr/port */
|
|
if (musb->is_multipoint) {
|
|
musb_write_rxfunaddr(musb, epnum, qh->addr_reg);
|
|
musb_write_rxhubaddr(musb, epnum, qh->h_addr_reg);
|
|
musb_write_rxhubport(musb, epnum, qh->h_port_reg);
|
|
} else
|
|
musb_writeb(musb->mregs, MUSB_FADDR, qh->addr_reg);
|
|
|
|
/* protocol/endpoint, interval/NAKlimit, i/o size */
|
|
musb_writeb(ep->regs, MUSB_RXTYPE, qh->type_reg);
|
|
musb_writeb(ep->regs, MUSB_RXINTERVAL, qh->intv_reg);
|
|
/* NOTE: bulk combining rewrites high bits of maxpacket */
|
|
/* Set RXMAXP with the FIFO size of the endpoint
|
|
* to disable double buffer mode.
|
|
*/
|
|
if (musb->double_buffer_not_ok)
|
|
musb_writew(ep->regs, MUSB_RXMAXP, ep->max_packet_sz_rx);
|
|
else
|
|
musb_writew(ep->regs, MUSB_RXMAXP,
|
|
qh->maxpacket | ((qh->hb_mult - 1) << 11));
|
|
|
|
ep->rx_reinit = 0;
|
|
}
|
|
|
|
static void musb_tx_dma_set_mode_mentor(struct dma_controller *dma,
|
|
struct musb_hw_ep *hw_ep, struct musb_qh *qh,
|
|
struct urb *urb, u32 offset,
|
|
u32 *length, u8 *mode)
|
|
{
|
|
struct dma_channel *channel = hw_ep->tx_channel;
|
|
void __iomem *epio = hw_ep->regs;
|
|
u16 pkt_size = qh->maxpacket;
|
|
u16 csr;
|
|
|
|
if (*length > channel->max_len)
|
|
*length = channel->max_len;
|
|
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
if (*length > pkt_size) {
|
|
*mode = 1;
|
|
csr |= MUSB_TXCSR_DMAMODE | MUSB_TXCSR_DMAENAB;
|
|
/* autoset shouldn't be set in high bandwidth */
|
|
/*
|
|
* Enable Autoset according to table
|
|
* below
|
|
* bulk_split hb_mult Autoset_Enable
|
|
* 0 1 Yes(Normal)
|
|
* 0 >1 No(High BW ISO)
|
|
* 1 1 Yes(HS bulk)
|
|
* 1 >1 Yes(FS bulk)
|
|
*/
|
|
if (qh->hb_mult == 1 || (qh->hb_mult > 1 &&
|
|
can_bulk_split(hw_ep->musb, qh->type)))
|
|
csr |= MUSB_TXCSR_AUTOSET;
|
|
} else {
|
|
*mode = 0;
|
|
csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAMODE);
|
|
csr |= MUSB_TXCSR_DMAENAB; /* against programmer's guide */
|
|
}
|
|
channel->desired_mode = *mode;
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
}
|
|
|
|
static void musb_tx_dma_set_mode_cppi_tusb(struct dma_controller *dma,
|
|
struct musb_hw_ep *hw_ep,
|
|
struct musb_qh *qh,
|
|
struct urb *urb,
|
|
u32 offset,
|
|
u32 *length,
|
|
u8 *mode)
|
|
{
|
|
struct dma_channel *channel = hw_ep->tx_channel;
|
|
|
|
channel->actual_len = 0;
|
|
|
|
/*
|
|
* TX uses "RNDIS" mode automatically but needs help
|
|
* to identify the zero-length-final-packet case.
|
|
*/
|
|
*mode = (urb->transfer_flags & URB_ZERO_PACKET) ? 1 : 0;
|
|
}
|
|
|
|
static bool musb_tx_dma_program(struct dma_controller *dma,
|
|
struct musb_hw_ep *hw_ep, struct musb_qh *qh,
|
|
struct urb *urb, u32 offset, u32 length)
|
|
{
|
|
struct dma_channel *channel = hw_ep->tx_channel;
|
|
u16 pkt_size = qh->maxpacket;
|
|
u8 mode;
|
|
|
|
if (musb_dma_inventra(hw_ep->musb) || musb_dma_ux500(hw_ep->musb))
|
|
musb_tx_dma_set_mode_mentor(dma, hw_ep, qh, urb, offset,
|
|
&length, &mode);
|
|
else if (is_cppi_enabled(hw_ep->musb) || tusb_dma_omap(hw_ep->musb))
|
|
musb_tx_dma_set_mode_cppi_tusb(dma, hw_ep, qh, urb, offset,
|
|
&length, &mode);
|
|
else
|
|
return false;
|
|
|
|
qh->segsize = length;
|
|
|
|
/*
|
|
* Ensure the data reaches to main memory before starting
|
|
* DMA transfer
|
|
*/
|
|
wmb();
|
|
|
|
if (!dma->channel_program(channel, pkt_size, mode,
|
|
urb->transfer_dma + offset, length)) {
|
|
void __iomem *epio = hw_ep->regs;
|
|
u16 csr;
|
|
|
|
dma->channel_release(channel);
|
|
hw_ep->tx_channel = NULL;
|
|
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
csr &= ~(MUSB_TXCSR_AUTOSET | MUSB_TXCSR_DMAENAB);
|
|
musb_writew(epio, MUSB_TXCSR, csr | MUSB_TXCSR_H_WZC_BITS);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Program an HDRC endpoint as per the given URB
|
|
* Context: irqs blocked, controller lock held
|
|
*/
|
|
static void musb_ep_program(struct musb *musb, u8 epnum,
|
|
struct urb *urb, int is_out,
|
|
u8 *buf, u32 offset, u32 len)
|
|
{
|
|
struct dma_controller *dma_controller;
|
|
struct dma_channel *dma_channel;
|
|
u8 dma_ok;
|
|
void __iomem *mbase = musb->mregs;
|
|
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct musb_qh *qh = musb_ep_get_qh(hw_ep, !is_out);
|
|
u16 packet_sz = qh->maxpacket;
|
|
u8 use_dma = 1;
|
|
u16 csr;
|
|
|
|
musb_dbg(musb, "%s hw%d urb %p spd%d dev%d ep%d%s "
|
|
"h_addr%02x h_port%02x bytes %d",
|
|
is_out ? "-->" : "<--",
|
|
epnum, urb, urb->dev->speed,
|
|
qh->addr_reg, qh->epnum, is_out ? "out" : "in",
|
|
qh->h_addr_reg, qh->h_port_reg,
|
|
len);
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
|
|
if (is_out && !len) {
|
|
use_dma = 0;
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
csr &= ~MUSB_TXCSR_DMAENAB;
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
hw_ep->tx_channel = NULL;
|
|
}
|
|
|
|
/* candidate for DMA? */
|
|
dma_controller = musb->dma_controller;
|
|
if (use_dma && is_dma_capable() && epnum && dma_controller) {
|
|
dma_channel = is_out ? hw_ep->tx_channel : hw_ep->rx_channel;
|
|
if (!dma_channel) {
|
|
dma_channel = dma_controller->channel_alloc(
|
|
dma_controller, hw_ep, is_out);
|
|
if (is_out)
|
|
hw_ep->tx_channel = dma_channel;
|
|
else
|
|
hw_ep->rx_channel = dma_channel;
|
|
}
|
|
} else
|
|
dma_channel = NULL;
|
|
|
|
/* make sure we clear DMAEnab, autoSet bits from previous run */
|
|
|
|
/* OUT/transmit/EP0 or IN/receive? */
|
|
if (is_out) {
|
|
u16 csr;
|
|
u16 int_txe;
|
|
u16 load_count;
|
|
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
|
|
/* disable interrupt in case we flush */
|
|
int_txe = musb->intrtxe;
|
|
musb_writew(mbase, MUSB_INTRTXE, int_txe & ~(1 << epnum));
|
|
|
|
/* general endpoint setup */
|
|
if (epnum) {
|
|
/* flush all old state, set default */
|
|
/*
|
|
* We could be flushing valid
|
|
* packets in double buffering
|
|
* case
|
|
*/
|
|
if (!hw_ep->tx_double_buffered)
|
|
musb_h_tx_flush_fifo(hw_ep);
|
|
|
|
/*
|
|
* We must not clear the DMAMODE bit before or in
|
|
* the same cycle with the DMAENAB bit, so we clear
|
|
* the latter first...
|
|
*/
|
|
csr &= ~(MUSB_TXCSR_H_NAKTIMEOUT
|
|
| MUSB_TXCSR_AUTOSET
|
|
| MUSB_TXCSR_DMAENAB
|
|
| MUSB_TXCSR_FRCDATATOG
|
|
| MUSB_TXCSR_H_RXSTALL
|
|
| MUSB_TXCSR_H_ERROR
|
|
| MUSB_TXCSR_TXPKTRDY
|
|
);
|
|
csr |= MUSB_TXCSR_MODE;
|
|
|
|
if (!hw_ep->tx_double_buffered) {
|
|
if (usb_gettoggle(urb->dev, qh->epnum, 1))
|
|
csr |= MUSB_TXCSR_H_WR_DATATOGGLE
|
|
| MUSB_TXCSR_H_DATATOGGLE;
|
|
else
|
|
csr |= MUSB_TXCSR_CLRDATATOG;
|
|
}
|
|
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
/* REVISIT may need to clear FLUSHFIFO ... */
|
|
csr &= ~MUSB_TXCSR_DMAMODE;
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
} else {
|
|
/* endpoint 0: just flush */
|
|
musb_h_ep0_flush_fifo(hw_ep);
|
|
}
|
|
|
|
/* target addr and (for multipoint) hub addr/port */
|
|
if (musb->is_multipoint) {
|
|
musb_write_txfunaddr(musb, epnum, qh->addr_reg);
|
|
musb_write_txhubaddr(musb, epnum, qh->h_addr_reg);
|
|
musb_write_txhubport(musb, epnum, qh->h_port_reg);
|
|
/* FIXME if !epnum, do the same for RX ... */
|
|
} else
|
|
musb_writeb(mbase, MUSB_FADDR, qh->addr_reg);
|
|
|
|
/* protocol/endpoint/interval/NAKlimit */
|
|
if (epnum) {
|
|
musb_writeb(epio, MUSB_TXTYPE, qh->type_reg);
|
|
if (musb->double_buffer_not_ok) {
|
|
musb_writew(epio, MUSB_TXMAXP,
|
|
hw_ep->max_packet_sz_tx);
|
|
} else if (can_bulk_split(musb, qh->type)) {
|
|
qh->hb_mult = hw_ep->max_packet_sz_tx
|
|
/ packet_sz;
|
|
musb_writew(epio, MUSB_TXMAXP, packet_sz
|
|
| ((qh->hb_mult) - 1) << 11);
|
|
} else {
|
|
musb_writew(epio, MUSB_TXMAXP,
|
|
qh->maxpacket |
|
|
((qh->hb_mult - 1) << 11));
|
|
}
|
|
musb_writeb(epio, MUSB_TXINTERVAL, qh->intv_reg);
|
|
} else {
|
|
musb_writeb(epio, MUSB_NAKLIMIT0, qh->intv_reg);
|
|
if (musb->is_multipoint)
|
|
musb_writeb(epio, MUSB_TYPE0,
|
|
qh->type_reg);
|
|
}
|
|
|
|
if (can_bulk_split(musb, qh->type))
|
|
load_count = min((u32) hw_ep->max_packet_sz_tx,
|
|
len);
|
|
else
|
|
load_count = min((u32) packet_sz, len);
|
|
|
|
if (dma_channel && musb_tx_dma_program(dma_controller,
|
|
hw_ep, qh, urb, offset, len))
|
|
load_count = 0;
|
|
|
|
if (load_count) {
|
|
/* PIO to load FIFO */
|
|
qh->segsize = load_count;
|
|
if (!buf) {
|
|
sg_miter_start(&qh->sg_miter, urb->sg, 1,
|
|
SG_MITER_ATOMIC
|
|
| SG_MITER_FROM_SG);
|
|
if (!sg_miter_next(&qh->sg_miter)) {
|
|
dev_err(musb->controller,
|
|
"error: sg"
|
|
"list empty\n");
|
|
sg_miter_stop(&qh->sg_miter);
|
|
goto finish;
|
|
}
|
|
buf = qh->sg_miter.addr + urb->sg->offset +
|
|
urb->actual_length;
|
|
load_count = min_t(u32, load_count,
|
|
qh->sg_miter.length);
|
|
musb_write_fifo(hw_ep, load_count, buf);
|
|
qh->sg_miter.consumed = load_count;
|
|
sg_miter_stop(&qh->sg_miter);
|
|
} else
|
|
musb_write_fifo(hw_ep, load_count, buf);
|
|
}
|
|
finish:
|
|
/* re-enable interrupt */
|
|
musb_writew(mbase, MUSB_INTRTXE, int_txe);
|
|
|
|
/* IN/receive */
|
|
} else {
|
|
u16 csr;
|
|
|
|
if (hw_ep->rx_reinit) {
|
|
musb_rx_reinit(musb, qh, epnum);
|
|
|
|
/* init new state: toggle and NYET, maybe DMA later */
|
|
if (usb_gettoggle(urb->dev, qh->epnum, 0))
|
|
csr = MUSB_RXCSR_H_WR_DATATOGGLE
|
|
| MUSB_RXCSR_H_DATATOGGLE;
|
|
else
|
|
csr = 0;
|
|
if (qh->type == USB_ENDPOINT_XFER_INT)
|
|
csr |= MUSB_RXCSR_DISNYET;
|
|
|
|
} else {
|
|
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
|
|
|
|
if (csr & (MUSB_RXCSR_RXPKTRDY
|
|
| MUSB_RXCSR_DMAENAB
|
|
| MUSB_RXCSR_H_REQPKT))
|
|
ERR("broken !rx_reinit, ep%d csr %04x\n",
|
|
hw_ep->epnum, csr);
|
|
|
|
/* scrub any stale state, leaving toggle alone */
|
|
csr &= MUSB_RXCSR_DISNYET;
|
|
}
|
|
|
|
/* kick things off */
|
|
|
|
if ((is_cppi_enabled(musb) || tusb_dma_omap(musb)) && dma_channel) {
|
|
/* Candidate for DMA */
|
|
dma_channel->actual_len = 0L;
|
|
qh->segsize = len;
|
|
|
|
/* AUTOREQ is in a DMA register */
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
|
|
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
|
|
|
|
/*
|
|
* Unless caller treats short RX transfers as
|
|
* errors, we dare not queue multiple transfers.
|
|
*/
|
|
dma_ok = dma_controller->channel_program(dma_channel,
|
|
packet_sz, !(urb->transfer_flags &
|
|
URB_SHORT_NOT_OK),
|
|
urb->transfer_dma + offset,
|
|
qh->segsize);
|
|
if (!dma_ok) {
|
|
dma_controller->channel_release(dma_channel);
|
|
hw_ep->rx_channel = dma_channel = NULL;
|
|
} else
|
|
csr |= MUSB_RXCSR_DMAENAB;
|
|
}
|
|
|
|
csr |= MUSB_RXCSR_H_REQPKT;
|
|
musb_dbg(musb, "RXCSR%d := %04x", epnum, csr);
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, csr);
|
|
csr = musb_readw(hw_ep->regs, MUSB_RXCSR);
|
|
}
|
|
}
|
|
|
|
/* Schedule next QH from musb->in_bulk/out_bulk and move the current qh to
|
|
* the end; avoids starvation for other endpoints.
|
|
*/
|
|
static void musb_bulk_nak_timeout(struct musb *musb, struct musb_hw_ep *ep,
|
|
int is_in)
|
|
{
|
|
struct dma_channel *dma;
|
|
struct urb *urb;
|
|
void __iomem *mbase = musb->mregs;
|
|
void __iomem *epio = ep->regs;
|
|
struct musb_qh *cur_qh, *next_qh;
|
|
u16 rx_csr, tx_csr;
|
|
|
|
musb_ep_select(mbase, ep->epnum);
|
|
if (is_in) {
|
|
dma = is_dma_capable() ? ep->rx_channel : NULL;
|
|
|
|
/*
|
|
* Need to stop the transaction by clearing REQPKT first
|
|
* then the NAK Timeout bit ref MUSBMHDRC USB 2.0 HIGH-SPEED
|
|
* DUAL-ROLE CONTROLLER Programmer's Guide, section 9.2.2
|
|
*/
|
|
rx_csr = musb_readw(epio, MUSB_RXCSR);
|
|
rx_csr |= MUSB_RXCSR_H_WZC_BITS;
|
|
rx_csr &= ~MUSB_RXCSR_H_REQPKT;
|
|
musb_writew(epio, MUSB_RXCSR, rx_csr);
|
|
rx_csr &= ~MUSB_RXCSR_DATAERROR;
|
|
musb_writew(epio, MUSB_RXCSR, rx_csr);
|
|
|
|
cur_qh = first_qh(&musb->in_bulk);
|
|
} else {
|
|
dma = is_dma_capable() ? ep->tx_channel : NULL;
|
|
|
|
/* clear nak timeout bit */
|
|
tx_csr = musb_readw(epio, MUSB_TXCSR);
|
|
tx_csr |= MUSB_TXCSR_H_WZC_BITS;
|
|
tx_csr &= ~MUSB_TXCSR_H_NAKTIMEOUT;
|
|
musb_writew(epio, MUSB_TXCSR, tx_csr);
|
|
|
|
cur_qh = first_qh(&musb->out_bulk);
|
|
}
|
|
if (cur_qh) {
|
|
urb = next_urb(cur_qh);
|
|
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
|
|
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
|
|
musb->dma_controller->channel_abort(dma);
|
|
urb->actual_length += dma->actual_len;
|
|
dma->actual_len = 0L;
|
|
}
|
|
musb_save_toggle(cur_qh, is_in, urb);
|
|
|
|
if (is_in) {
|
|
/* move cur_qh to end of queue */
|
|
list_move_tail(&cur_qh->ring, &musb->in_bulk);
|
|
|
|
/* get the next qh from musb->in_bulk */
|
|
next_qh = first_qh(&musb->in_bulk);
|
|
|
|
/* set rx_reinit and schedule the next qh */
|
|
ep->rx_reinit = 1;
|
|
} else {
|
|
/* move cur_qh to end of queue */
|
|
list_move_tail(&cur_qh->ring, &musb->out_bulk);
|
|
|
|
/* get the next qh from musb->out_bulk */
|
|
next_qh = first_qh(&musb->out_bulk);
|
|
|
|
/* set tx_reinit and schedule the next qh */
|
|
ep->tx_reinit = 1;
|
|
}
|
|
|
|
if (next_qh)
|
|
musb_start_urb(musb, is_in, next_qh);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Service the default endpoint (ep0) as host.
|
|
* Return true until it's time to start the status stage.
|
|
*/
|
|
static bool musb_h_ep0_continue(struct musb *musb, u16 len, struct urb *urb)
|
|
{
|
|
bool more = false;
|
|
u8 *fifo_dest = NULL;
|
|
u16 fifo_count = 0;
|
|
struct musb_hw_ep *hw_ep = musb->control_ep;
|
|
struct musb_qh *qh = hw_ep->in_qh;
|
|
struct usb_ctrlrequest *request;
|
|
|
|
switch (musb->ep0_stage) {
|
|
case MUSB_EP0_IN:
|
|
fifo_dest = urb->transfer_buffer + urb->actual_length;
|
|
fifo_count = min_t(size_t, len, urb->transfer_buffer_length -
|
|
urb->actual_length);
|
|
if (fifo_count < len)
|
|
urb->status = -EOVERFLOW;
|
|
|
|
musb_read_fifo(hw_ep, fifo_count, fifo_dest);
|
|
|
|
urb->actual_length += fifo_count;
|
|
if (len < qh->maxpacket) {
|
|
/* always terminate on short read; it's
|
|
* rarely reported as an error.
|
|
*/
|
|
} else if (urb->actual_length <
|
|
urb->transfer_buffer_length)
|
|
more = true;
|
|
break;
|
|
case MUSB_EP0_START:
|
|
request = (struct usb_ctrlrequest *) urb->setup_packet;
|
|
|
|
if (!request->wLength) {
|
|
musb_dbg(musb, "start no-DATA");
|
|
break;
|
|
} else if (request->bRequestType & USB_DIR_IN) {
|
|
musb_dbg(musb, "start IN-DATA");
|
|
musb->ep0_stage = MUSB_EP0_IN;
|
|
more = true;
|
|
break;
|
|
} else {
|
|
musb_dbg(musb, "start OUT-DATA");
|
|
musb->ep0_stage = MUSB_EP0_OUT;
|
|
more = true;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case MUSB_EP0_OUT:
|
|
fifo_count = min_t(size_t, qh->maxpacket,
|
|
urb->transfer_buffer_length -
|
|
urb->actual_length);
|
|
if (fifo_count) {
|
|
fifo_dest = (u8 *) (urb->transfer_buffer
|
|
+ urb->actual_length);
|
|
musb_dbg(musb, "Sending %d byte%s to ep0 fifo %p",
|
|
fifo_count,
|
|
(fifo_count == 1) ? "" : "s",
|
|
fifo_dest);
|
|
musb_write_fifo(hw_ep, fifo_count, fifo_dest);
|
|
|
|
urb->actual_length += fifo_count;
|
|
more = true;
|
|
}
|
|
break;
|
|
default:
|
|
ERR("bogus ep0 stage %d\n", musb->ep0_stage);
|
|
break;
|
|
}
|
|
|
|
return more;
|
|
}
|
|
|
|
/*
|
|
* Handle default endpoint interrupt as host. Only called in IRQ time
|
|
* from musb_interrupt().
|
|
*
|
|
* called with controller irqlocked
|
|
*/
|
|
irqreturn_t musb_h_ep0_irq(struct musb *musb)
|
|
{
|
|
struct urb *urb;
|
|
u16 csr, len;
|
|
int status = 0;
|
|
void __iomem *mbase = musb->mregs;
|
|
struct musb_hw_ep *hw_ep = musb->control_ep;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct musb_qh *qh = hw_ep->in_qh;
|
|
bool complete = false;
|
|
irqreturn_t retval = IRQ_NONE;
|
|
|
|
/* ep0 only has one queue, "in" */
|
|
urb = next_urb(qh);
|
|
|
|
musb_ep_select(mbase, 0);
|
|
csr = musb_readw(epio, MUSB_CSR0);
|
|
len = (csr & MUSB_CSR0_RXPKTRDY)
|
|
? musb_readb(epio, MUSB_COUNT0)
|
|
: 0;
|
|
|
|
musb_dbg(musb, "<== csr0 %04x, qh %p, count %d, urb %p, stage %d",
|
|
csr, qh, len, urb, musb->ep0_stage);
|
|
|
|
/* if we just did status stage, we are done */
|
|
if (MUSB_EP0_STATUS == musb->ep0_stage) {
|
|
retval = IRQ_HANDLED;
|
|
complete = true;
|
|
}
|
|
|
|
/* prepare status */
|
|
if (csr & MUSB_CSR0_H_RXSTALL) {
|
|
musb_dbg(musb, "STALLING ENDPOINT");
|
|
status = -EPIPE;
|
|
|
|
} else if (csr & MUSB_CSR0_H_ERROR) {
|
|
musb_dbg(musb, "no response, csr0 %04x", csr);
|
|
status = -EPROTO;
|
|
|
|
} else if (csr & MUSB_CSR0_H_NAKTIMEOUT) {
|
|
musb_dbg(musb, "control NAK timeout");
|
|
|
|
/* NOTE: this code path would be a good place to PAUSE a
|
|
* control transfer, if another one is queued, so that
|
|
* ep0 is more likely to stay busy. That's already done
|
|
* for bulk RX transfers.
|
|
*
|
|
* if (qh->ring.next != &musb->control), then
|
|
* we have a candidate... NAKing is *NOT* an error
|
|
*/
|
|
musb_writew(epio, MUSB_CSR0, 0);
|
|
retval = IRQ_HANDLED;
|
|
}
|
|
|
|
if (status) {
|
|
musb_dbg(musb, "aborting");
|
|
retval = IRQ_HANDLED;
|
|
if (urb)
|
|
urb->status = status;
|
|
complete = true;
|
|
|
|
/* use the proper sequence to abort the transfer */
|
|
if (csr & MUSB_CSR0_H_REQPKT) {
|
|
csr &= ~MUSB_CSR0_H_REQPKT;
|
|
musb_writew(epio, MUSB_CSR0, csr);
|
|
csr &= ~MUSB_CSR0_H_NAKTIMEOUT;
|
|
musb_writew(epio, MUSB_CSR0, csr);
|
|
} else {
|
|
musb_h_ep0_flush_fifo(hw_ep);
|
|
}
|
|
|
|
musb_writeb(epio, MUSB_NAKLIMIT0, 0);
|
|
|
|
/* clear it */
|
|
musb_writew(epio, MUSB_CSR0, 0);
|
|
}
|
|
|
|
if (unlikely(!urb)) {
|
|
/* stop endpoint since we have no place for its data, this
|
|
* SHOULD NEVER HAPPEN! */
|
|
ERR("no URB for end 0\n");
|
|
|
|
musb_h_ep0_flush_fifo(hw_ep);
|
|
goto done;
|
|
}
|
|
|
|
if (!complete) {
|
|
/* call common logic and prepare response */
|
|
if (musb_h_ep0_continue(musb, len, urb)) {
|
|
/* more packets required */
|
|
csr = (MUSB_EP0_IN == musb->ep0_stage)
|
|
? MUSB_CSR0_H_REQPKT : MUSB_CSR0_TXPKTRDY;
|
|
} else {
|
|
/* data transfer complete; perform status phase */
|
|
if (usb_pipeout(urb->pipe)
|
|
|| !urb->transfer_buffer_length)
|
|
csr = MUSB_CSR0_H_STATUSPKT
|
|
| MUSB_CSR0_H_REQPKT;
|
|
else
|
|
csr = MUSB_CSR0_H_STATUSPKT
|
|
| MUSB_CSR0_TXPKTRDY;
|
|
|
|
/* disable ping token in status phase */
|
|
csr |= MUSB_CSR0_H_DIS_PING;
|
|
|
|
/* flag status stage */
|
|
musb->ep0_stage = MUSB_EP0_STATUS;
|
|
|
|
musb_dbg(musb, "ep0 STATUS, csr %04x", csr);
|
|
|
|
}
|
|
musb_writew(epio, MUSB_CSR0, csr);
|
|
retval = IRQ_HANDLED;
|
|
} else
|
|
musb->ep0_stage = MUSB_EP0_IDLE;
|
|
|
|
/* call completion handler if done */
|
|
if (complete)
|
|
musb_advance_schedule(musb, urb, hw_ep, 1);
|
|
done:
|
|
return retval;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_USB_INVENTRA_DMA
|
|
|
|
/* Host side TX (OUT) using Mentor DMA works as follows:
|
|
submit_urb ->
|
|
- if queue was empty, Program Endpoint
|
|
- ... which starts DMA to fifo in mode 1 or 0
|
|
|
|
DMA Isr (transfer complete) -> TxAvail()
|
|
- Stop DMA (~DmaEnab) (<--- Alert ... currently happens
|
|
only in musb_cleanup_urb)
|
|
- TxPktRdy has to be set in mode 0 or for
|
|
short packets in mode 1.
|
|
*/
|
|
|
|
#endif
|
|
|
|
/* Service a Tx-Available or dma completion irq for the endpoint */
|
|
void musb_host_tx(struct musb *musb, u8 epnum)
|
|
{
|
|
int pipe;
|
|
bool done = false;
|
|
u16 tx_csr;
|
|
size_t length = 0;
|
|
size_t offset = 0;
|
|
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct musb_qh *qh = hw_ep->out_qh;
|
|
struct urb *urb = next_urb(qh);
|
|
u32 status = 0;
|
|
void __iomem *mbase = musb->mregs;
|
|
struct dma_channel *dma;
|
|
bool transfer_pending = false;
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
tx_csr = musb_readw(epio, MUSB_TXCSR);
|
|
|
|
/* with CPPI, DMA sometimes triggers "extra" irqs */
|
|
if (!urb) {
|
|
musb_dbg(musb, "extra TX%d ready, csr %04x", epnum, tx_csr);
|
|
return;
|
|
}
|
|
|
|
pipe = urb->pipe;
|
|
dma = is_dma_capable() ? hw_ep->tx_channel : NULL;
|
|
trace_musb_urb_tx(musb, urb);
|
|
musb_dbg(musb, "OUT/TX%d end, csr %04x%s", epnum, tx_csr,
|
|
dma ? ", dma" : "");
|
|
|
|
/* check for errors */
|
|
if (tx_csr & MUSB_TXCSR_H_RXSTALL) {
|
|
/* dma was disabled, fifo flushed */
|
|
musb_dbg(musb, "TX end %d stall", epnum);
|
|
|
|
/* stall; record URB status */
|
|
status = -EPIPE;
|
|
|
|
} else if (tx_csr & MUSB_TXCSR_H_ERROR) {
|
|
/* (NON-ISO) dma was disabled, fifo flushed */
|
|
musb_dbg(musb, "TX 3strikes on ep=%d", epnum);
|
|
|
|
status = -ETIMEDOUT;
|
|
|
|
} else if (tx_csr & MUSB_TXCSR_H_NAKTIMEOUT) {
|
|
if (USB_ENDPOINT_XFER_BULK == qh->type && qh->mux == 1
|
|
&& !list_is_singular(&musb->out_bulk)) {
|
|
musb_dbg(musb, "NAK timeout on TX%d ep", epnum);
|
|
musb_bulk_nak_timeout(musb, hw_ep, 0);
|
|
} else {
|
|
musb_dbg(musb, "TX ep%d device not responding", epnum);
|
|
/* NOTE: this code path would be a good place to PAUSE a
|
|
* transfer, if there's some other (nonperiodic) tx urb
|
|
* that could use this fifo. (dma complicates it...)
|
|
* That's already done for bulk RX transfers.
|
|
*
|
|
* if (bulk && qh->ring.next != &musb->out_bulk), then
|
|
* we have a candidate... NAKing is *NOT* an error
|
|
*/
|
|
musb_ep_select(mbase, epnum);
|
|
musb_writew(epio, MUSB_TXCSR,
|
|
MUSB_TXCSR_H_WZC_BITS
|
|
| MUSB_TXCSR_TXPKTRDY);
|
|
}
|
|
return;
|
|
}
|
|
|
|
done:
|
|
if (status) {
|
|
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
|
|
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
|
|
musb->dma_controller->channel_abort(dma);
|
|
}
|
|
|
|
/* do the proper sequence to abort the transfer in the
|
|
* usb core; the dma engine should already be stopped.
|
|
*/
|
|
musb_h_tx_flush_fifo(hw_ep);
|
|
tx_csr &= ~(MUSB_TXCSR_AUTOSET
|
|
| MUSB_TXCSR_DMAENAB
|
|
| MUSB_TXCSR_H_ERROR
|
|
| MUSB_TXCSR_H_RXSTALL
|
|
| MUSB_TXCSR_H_NAKTIMEOUT
|
|
);
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
musb_writew(epio, MUSB_TXCSR, tx_csr);
|
|
/* REVISIT may need to clear FLUSHFIFO ... */
|
|
musb_writew(epio, MUSB_TXCSR, tx_csr);
|
|
musb_writeb(epio, MUSB_TXINTERVAL, 0);
|
|
|
|
done = true;
|
|
}
|
|
|
|
/* second cppi case */
|
|
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
|
|
musb_dbg(musb, "extra TX%d ready, csr %04x", epnum, tx_csr);
|
|
return;
|
|
}
|
|
|
|
if (is_dma_capable() && dma && !status) {
|
|
/*
|
|
* DMA has completed. But if we're using DMA mode 1 (multi
|
|
* packet DMA), we need a terminal TXPKTRDY interrupt before
|
|
* we can consider this transfer completed, lest we trash
|
|
* its last packet when writing the next URB's data. So we
|
|
* switch back to mode 0 to get that interrupt; we'll come
|
|
* back here once it happens.
|
|
*/
|
|
if (tx_csr & MUSB_TXCSR_DMAMODE) {
|
|
/*
|
|
* We shouldn't clear DMAMODE with DMAENAB set; so
|
|
* clear them in a safe order. That should be OK
|
|
* once TXPKTRDY has been set (and I've never seen
|
|
* it being 0 at this moment -- DMA interrupt latency
|
|
* is significant) but if it hasn't been then we have
|
|
* no choice but to stop being polite and ignore the
|
|
* programmer's guide... :-)
|
|
*
|
|
* Note that we must write TXCSR with TXPKTRDY cleared
|
|
* in order not to re-trigger the packet send (this bit
|
|
* can't be cleared by CPU), and there's another caveat:
|
|
* TXPKTRDY may be set shortly and then cleared in the
|
|
* double-buffered FIFO mode, so we do an extra TXCSR
|
|
* read for debouncing...
|
|
*/
|
|
tx_csr &= musb_readw(epio, MUSB_TXCSR);
|
|
if (tx_csr & MUSB_TXCSR_TXPKTRDY) {
|
|
tx_csr &= ~(MUSB_TXCSR_DMAENAB |
|
|
MUSB_TXCSR_TXPKTRDY);
|
|
musb_writew(epio, MUSB_TXCSR,
|
|
tx_csr | MUSB_TXCSR_H_WZC_BITS);
|
|
}
|
|
tx_csr &= ~(MUSB_TXCSR_DMAMODE |
|
|
MUSB_TXCSR_TXPKTRDY);
|
|
musb_writew(epio, MUSB_TXCSR,
|
|
tx_csr | MUSB_TXCSR_H_WZC_BITS);
|
|
|
|
/*
|
|
* There is no guarantee that we'll get an interrupt
|
|
* after clearing DMAMODE as we might have done this
|
|
* too late (after TXPKTRDY was cleared by controller).
|
|
* Re-read TXCSR as we have spoiled its previous value.
|
|
*/
|
|
tx_csr = musb_readw(epio, MUSB_TXCSR);
|
|
}
|
|
|
|
/*
|
|
* We may get here from a DMA completion or TXPKTRDY interrupt.
|
|
* In any case, we must check the FIFO status here and bail out
|
|
* only if the FIFO still has data -- that should prevent the
|
|
* "missed" TXPKTRDY interrupts and deal with double-buffered
|
|
* FIFO mode too...
|
|
*/
|
|
if (tx_csr & (MUSB_TXCSR_FIFONOTEMPTY | MUSB_TXCSR_TXPKTRDY)) {
|
|
musb_dbg(musb,
|
|
"DMA complete but FIFO not empty, CSR %04x",
|
|
tx_csr);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!status || dma || usb_pipeisoc(pipe)) {
|
|
if (dma)
|
|
length = dma->actual_len;
|
|
else
|
|
length = qh->segsize;
|
|
qh->offset += length;
|
|
|
|
if (usb_pipeisoc(pipe)) {
|
|
struct usb_iso_packet_descriptor *d;
|
|
|
|
d = urb->iso_frame_desc + qh->iso_idx;
|
|
d->actual_length = length;
|
|
d->status = status;
|
|
if (++qh->iso_idx >= urb->number_of_packets) {
|
|
done = true;
|
|
} else {
|
|
d++;
|
|
offset = d->offset;
|
|
length = d->length;
|
|
}
|
|
} else if (dma && urb->transfer_buffer_length == qh->offset) {
|
|
done = true;
|
|
} else {
|
|
/* see if we need to send more data, or ZLP */
|
|
if (qh->segsize < qh->maxpacket)
|
|
done = true;
|
|
else if (qh->offset == urb->transfer_buffer_length
|
|
&& !(urb->transfer_flags
|
|
& URB_ZERO_PACKET))
|
|
done = true;
|
|
if (!done) {
|
|
offset = qh->offset;
|
|
length = urb->transfer_buffer_length - offset;
|
|
transfer_pending = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* urb->status != -EINPROGRESS means request has been faulted,
|
|
* so we must abort this transfer after cleanup
|
|
*/
|
|
if (urb->status != -EINPROGRESS) {
|
|
done = true;
|
|
if (status == 0)
|
|
status = urb->status;
|
|
}
|
|
|
|
if (done) {
|
|
/* set status */
|
|
urb->status = status;
|
|
urb->actual_length = qh->offset;
|
|
musb_advance_schedule(musb, urb, hw_ep, USB_DIR_OUT);
|
|
return;
|
|
} else if ((usb_pipeisoc(pipe) || transfer_pending) && dma) {
|
|
if (musb_tx_dma_program(musb->dma_controller, hw_ep, qh, urb,
|
|
offset, length)) {
|
|
if (is_cppi_enabled(musb) || tusb_dma_omap(musb))
|
|
musb_h_tx_dma_start(hw_ep);
|
|
return;
|
|
}
|
|
} else if (tx_csr & MUSB_TXCSR_DMAENAB) {
|
|
musb_dbg(musb, "not complete, but DMA enabled?");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* PIO: start next packet in this URB.
|
|
*
|
|
* REVISIT: some docs say that when hw_ep->tx_double_buffered,
|
|
* (and presumably, FIFO is not half-full) we should write *two*
|
|
* packets before updating TXCSR; other docs disagree...
|
|
*/
|
|
if (length > qh->maxpacket)
|
|
length = qh->maxpacket;
|
|
/* Unmap the buffer so that CPU can use it */
|
|
usb_hcd_unmap_urb_for_dma(musb->hcd, urb);
|
|
|
|
/*
|
|
* We need to map sg if the transfer_buffer is
|
|
* NULL.
|
|
*/
|
|
if (!urb->transfer_buffer) {
|
|
/* sg_miter_start is already done in musb_ep_program */
|
|
if (!sg_miter_next(&qh->sg_miter)) {
|
|
dev_err(musb->controller, "error: sg list empty\n");
|
|
sg_miter_stop(&qh->sg_miter);
|
|
status = -EINVAL;
|
|
goto done;
|
|
}
|
|
length = min_t(u32, length, qh->sg_miter.length);
|
|
musb_write_fifo(hw_ep, length, qh->sg_miter.addr);
|
|
qh->sg_miter.consumed = length;
|
|
sg_miter_stop(&qh->sg_miter);
|
|
} else {
|
|
musb_write_fifo(hw_ep, length, urb->transfer_buffer + offset);
|
|
}
|
|
|
|
qh->segsize = length;
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
musb_writew(epio, MUSB_TXCSR,
|
|
MUSB_TXCSR_H_WZC_BITS | MUSB_TXCSR_TXPKTRDY);
|
|
}
|
|
|
|
#ifdef CONFIG_USB_TI_CPPI41_DMA
|
|
/* Seems to set up ISO for cppi41 and not advance len. See commit c57c41d */
|
|
static int musb_rx_dma_iso_cppi41(struct dma_controller *dma,
|
|
struct musb_hw_ep *hw_ep,
|
|
struct musb_qh *qh,
|
|
struct urb *urb,
|
|
size_t len)
|
|
{
|
|
struct dma_channel *channel = hw_ep->rx_channel;
|
|
void __iomem *epio = hw_ep->regs;
|
|
dma_addr_t *buf;
|
|
u32 length, res;
|
|
u16 val;
|
|
|
|
buf = (void *)urb->iso_frame_desc[qh->iso_idx].offset +
|
|
(u32)urb->transfer_dma;
|
|
|
|
length = urb->iso_frame_desc[qh->iso_idx].length;
|
|
|
|
val = musb_readw(epio, MUSB_RXCSR);
|
|
val |= MUSB_RXCSR_DMAENAB;
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, val);
|
|
|
|
res = dma->channel_program(channel, qh->maxpacket, 0,
|
|
(u32)buf, length);
|
|
|
|
return res;
|
|
}
|
|
#else
|
|
static inline int musb_rx_dma_iso_cppi41(struct dma_controller *dma,
|
|
struct musb_hw_ep *hw_ep,
|
|
struct musb_qh *qh,
|
|
struct urb *urb,
|
|
size_t len)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_USB_INVENTRA_DMA) || defined(CONFIG_USB_UX500_DMA) || \
|
|
defined(CONFIG_USB_TI_CPPI41_DMA)
|
|
/* Host side RX (IN) using Mentor DMA works as follows:
|
|
submit_urb ->
|
|
- if queue was empty, ProgramEndpoint
|
|
- first IN token is sent out (by setting ReqPkt)
|
|
LinuxIsr -> RxReady()
|
|
/\ => first packet is received
|
|
| - Set in mode 0 (DmaEnab, ~ReqPkt)
|
|
| -> DMA Isr (transfer complete) -> RxReady()
|
|
| - Ack receive (~RxPktRdy), turn off DMA (~DmaEnab)
|
|
| - if urb not complete, send next IN token (ReqPkt)
|
|
| | else complete urb.
|
|
| |
|
|
---------------------------
|
|
*
|
|
* Nuances of mode 1:
|
|
* For short packets, no ack (+RxPktRdy) is sent automatically
|
|
* (even if AutoClear is ON)
|
|
* For full packets, ack (~RxPktRdy) and next IN token (+ReqPkt) is sent
|
|
* automatically => major problem, as collecting the next packet becomes
|
|
* difficult. Hence mode 1 is not used.
|
|
*
|
|
* REVISIT
|
|
* All we care about at this driver level is that
|
|
* (a) all URBs terminate with REQPKT cleared and fifo(s) empty;
|
|
* (b) termination conditions are: short RX, or buffer full;
|
|
* (c) fault modes include
|
|
* - iff URB_SHORT_NOT_OK, short RX status is -EREMOTEIO.
|
|
* (and that endpoint's dma queue stops immediately)
|
|
* - overflow (full, PLUS more bytes in the terminal packet)
|
|
*
|
|
* So for example, usb-storage sets URB_SHORT_NOT_OK, and would
|
|
* thus be a great candidate for using mode 1 ... for all but the
|
|
* last packet of one URB's transfer.
|
|
*/
|
|
static int musb_rx_dma_inventra_cppi41(struct dma_controller *dma,
|
|
struct musb_hw_ep *hw_ep,
|
|
struct musb_qh *qh,
|
|
struct urb *urb,
|
|
size_t len)
|
|
{
|
|
struct dma_channel *channel = hw_ep->rx_channel;
|
|
void __iomem *epio = hw_ep->regs;
|
|
u16 val;
|
|
int pipe;
|
|
bool done;
|
|
|
|
pipe = urb->pipe;
|
|
|
|
if (usb_pipeisoc(pipe)) {
|
|
struct usb_iso_packet_descriptor *d;
|
|
|
|
d = urb->iso_frame_desc + qh->iso_idx;
|
|
d->actual_length = len;
|
|
|
|
/* even if there was an error, we did the dma
|
|
* for iso_frame_desc->length
|
|
*/
|
|
if (d->status != -EILSEQ && d->status != -EOVERFLOW)
|
|
d->status = 0;
|
|
|
|
if (++qh->iso_idx >= urb->number_of_packets) {
|
|
done = true;
|
|
} else {
|
|
/* REVISIT: Why ignore return value here? */
|
|
if (musb_dma_cppi41(hw_ep->musb))
|
|
done = musb_rx_dma_iso_cppi41(dma, hw_ep, qh,
|
|
urb, len);
|
|
done = false;
|
|
}
|
|
|
|
} else {
|
|
/* done if urb buffer is full or short packet is recd */
|
|
done = (urb->actual_length + len >=
|
|
urb->transfer_buffer_length
|
|
|| channel->actual_len < qh->maxpacket
|
|
|| channel->rx_packet_done);
|
|
}
|
|
|
|
/* send IN token for next packet, without AUTOREQ */
|
|
if (!done) {
|
|
val = musb_readw(epio, MUSB_RXCSR);
|
|
val |= MUSB_RXCSR_H_REQPKT;
|
|
musb_writew(epio, MUSB_RXCSR, MUSB_RXCSR_H_WZC_BITS | val);
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
/* Disadvantage of using mode 1:
|
|
* It's basically usable only for mass storage class; essentially all
|
|
* other protocols also terminate transfers on short packets.
|
|
*
|
|
* Details:
|
|
* An extra IN token is sent at the end of the transfer (due to AUTOREQ)
|
|
* If you try to use mode 1 for (transfer_buffer_length - 512), and try
|
|
* to use the extra IN token to grab the last packet using mode 0, then
|
|
* the problem is that you cannot be sure when the device will send the
|
|
* last packet and RxPktRdy set. Sometimes the packet is recd too soon
|
|
* such that it gets lost when RxCSR is re-set at the end of the mode 1
|
|
* transfer, while sometimes it is recd just a little late so that if you
|
|
* try to configure for mode 0 soon after the mode 1 transfer is
|
|
* completed, you will find rxcount 0. Okay, so you might think why not
|
|
* wait for an interrupt when the pkt is recd. Well, you won't get any!
|
|
*/
|
|
static int musb_rx_dma_in_inventra_cppi41(struct dma_controller *dma,
|
|
struct musb_hw_ep *hw_ep,
|
|
struct musb_qh *qh,
|
|
struct urb *urb,
|
|
size_t len,
|
|
u8 iso_err)
|
|
{
|
|
struct musb *musb = hw_ep->musb;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct dma_channel *channel = hw_ep->rx_channel;
|
|
u16 rx_count, val;
|
|
int length, pipe, done;
|
|
dma_addr_t buf;
|
|
|
|
rx_count = musb_readw(epio, MUSB_RXCOUNT);
|
|
pipe = urb->pipe;
|
|
|
|
if (usb_pipeisoc(pipe)) {
|
|
int d_status = 0;
|
|
struct usb_iso_packet_descriptor *d;
|
|
|
|
d = urb->iso_frame_desc + qh->iso_idx;
|
|
|
|
if (iso_err) {
|
|
d_status = -EILSEQ;
|
|
urb->error_count++;
|
|
}
|
|
if (rx_count > d->length) {
|
|
if (d_status == 0) {
|
|
d_status = -EOVERFLOW;
|
|
urb->error_count++;
|
|
}
|
|
musb_dbg(musb, "** OVERFLOW %d into %d",
|
|
rx_count, d->length);
|
|
|
|
length = d->length;
|
|
} else
|
|
length = rx_count;
|
|
d->status = d_status;
|
|
buf = urb->transfer_dma + d->offset;
|
|
} else {
|
|
length = rx_count;
|
|
buf = urb->transfer_dma + urb->actual_length;
|
|
}
|
|
|
|
channel->desired_mode = 0;
|
|
#ifdef USE_MODE1
|
|
/* because of the issue below, mode 1 will
|
|
* only rarely behave with correct semantics.
|
|
*/
|
|
if ((urb->transfer_flags & URB_SHORT_NOT_OK)
|
|
&& (urb->transfer_buffer_length - urb->actual_length)
|
|
> qh->maxpacket)
|
|
channel->desired_mode = 1;
|
|
if (rx_count < hw_ep->max_packet_sz_rx) {
|
|
length = rx_count;
|
|
channel->desired_mode = 0;
|
|
} else {
|
|
length = urb->transfer_buffer_length;
|
|
}
|
|
#endif
|
|
|
|
/* See comments above on disadvantages of using mode 1 */
|
|
val = musb_readw(epio, MUSB_RXCSR);
|
|
val &= ~MUSB_RXCSR_H_REQPKT;
|
|
|
|
if (channel->desired_mode == 0)
|
|
val &= ~MUSB_RXCSR_H_AUTOREQ;
|
|
else
|
|
val |= MUSB_RXCSR_H_AUTOREQ;
|
|
val |= MUSB_RXCSR_DMAENAB;
|
|
|
|
/* autoclear shouldn't be set in high bandwidth */
|
|
if (qh->hb_mult == 1)
|
|
val |= MUSB_RXCSR_AUTOCLEAR;
|
|
|
|
musb_writew(epio, MUSB_RXCSR, MUSB_RXCSR_H_WZC_BITS | val);
|
|
|
|
/* REVISIT if when actual_length != 0,
|
|
* transfer_buffer_length needs to be
|
|
* adjusted first...
|
|
*/
|
|
done = dma->channel_program(channel, qh->maxpacket,
|
|
channel->desired_mode,
|
|
buf, length);
|
|
|
|
if (!done) {
|
|
dma->channel_release(channel);
|
|
hw_ep->rx_channel = NULL;
|
|
channel = NULL;
|
|
val = musb_readw(epio, MUSB_RXCSR);
|
|
val &= ~(MUSB_RXCSR_DMAENAB
|
|
| MUSB_RXCSR_H_AUTOREQ
|
|
| MUSB_RXCSR_AUTOCLEAR);
|
|
musb_writew(epio, MUSB_RXCSR, val);
|
|
}
|
|
|
|
return done;
|
|
}
|
|
#else
|
|
static inline int musb_rx_dma_inventra_cppi41(struct dma_controller *dma,
|
|
struct musb_hw_ep *hw_ep,
|
|
struct musb_qh *qh,
|
|
struct urb *urb,
|
|
size_t len)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline int musb_rx_dma_in_inventra_cppi41(struct dma_controller *dma,
|
|
struct musb_hw_ep *hw_ep,
|
|
struct musb_qh *qh,
|
|
struct urb *urb,
|
|
size_t len,
|
|
u8 iso_err)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Service an RX interrupt for the given IN endpoint; docs cover bulk, iso,
|
|
* and high-bandwidth IN transfer cases.
|
|
*/
|
|
void musb_host_rx(struct musb *musb, u8 epnum)
|
|
{
|
|
struct urb *urb;
|
|
struct musb_hw_ep *hw_ep = musb->endpoints + epnum;
|
|
struct dma_controller *c = musb->dma_controller;
|
|
void __iomem *epio = hw_ep->regs;
|
|
struct musb_qh *qh = hw_ep->in_qh;
|
|
size_t xfer_len;
|
|
void __iomem *mbase = musb->mregs;
|
|
int pipe;
|
|
u16 rx_csr, val;
|
|
bool iso_err = false;
|
|
bool done = false;
|
|
u32 status;
|
|
struct dma_channel *dma;
|
|
unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
|
|
urb = next_urb(qh);
|
|
dma = is_dma_capable() ? hw_ep->rx_channel : NULL;
|
|
status = 0;
|
|
xfer_len = 0;
|
|
|
|
rx_csr = musb_readw(epio, MUSB_RXCSR);
|
|
val = rx_csr;
|
|
|
|
if (unlikely(!urb)) {
|
|
/* REVISIT -- THIS SHOULD NEVER HAPPEN ... but, at least
|
|
* usbtest #11 (unlinks) triggers it regularly, sometimes
|
|
* with fifo full. (Only with DMA??)
|
|
*/
|
|
musb_dbg(musb, "BOGUS RX%d ready, csr %04x, count %d",
|
|
epnum, val, musb_readw(epio, MUSB_RXCOUNT));
|
|
musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG);
|
|
return;
|
|
}
|
|
|
|
pipe = urb->pipe;
|
|
|
|
trace_musb_urb_rx(musb, urb);
|
|
|
|
/* check for errors, concurrent stall & unlink is not really
|
|
* handled yet! */
|
|
if (rx_csr & MUSB_RXCSR_H_RXSTALL) {
|
|
musb_dbg(musb, "RX end %d STALL", epnum);
|
|
|
|
/* stall; record URB status */
|
|
status = -EPIPE;
|
|
|
|
} else if (rx_csr & MUSB_RXCSR_H_ERROR) {
|
|
musb_dbg(musb, "end %d RX proto error", epnum);
|
|
|
|
status = -EPROTO;
|
|
musb_writeb(epio, MUSB_RXINTERVAL, 0);
|
|
|
|
rx_csr &= ~MUSB_RXCSR_H_ERROR;
|
|
musb_writew(epio, MUSB_RXCSR, rx_csr);
|
|
|
|
} else if (rx_csr & MUSB_RXCSR_DATAERROR) {
|
|
|
|
if (USB_ENDPOINT_XFER_ISOC != qh->type) {
|
|
musb_dbg(musb, "RX end %d NAK timeout", epnum);
|
|
|
|
/* NOTE: NAKing is *NOT* an error, so we want to
|
|
* continue. Except ... if there's a request for
|
|
* another QH, use that instead of starving it.
|
|
*
|
|
* Devices like Ethernet and serial adapters keep
|
|
* reads posted at all times, which will starve
|
|
* other devices without this logic.
|
|
*/
|
|
if (usb_pipebulk(urb->pipe)
|
|
&& qh->mux == 1
|
|
&& !list_is_singular(&musb->in_bulk)) {
|
|
musb_bulk_nak_timeout(musb, hw_ep, 1);
|
|
return;
|
|
}
|
|
musb_ep_select(mbase, epnum);
|
|
rx_csr |= MUSB_RXCSR_H_WZC_BITS;
|
|
rx_csr &= ~MUSB_RXCSR_DATAERROR;
|
|
musb_writew(epio, MUSB_RXCSR, rx_csr);
|
|
|
|
goto finish;
|
|
} else {
|
|
musb_dbg(musb, "RX end %d ISO data error", epnum);
|
|
/* packet error reported later */
|
|
iso_err = true;
|
|
}
|
|
} else if (rx_csr & MUSB_RXCSR_INCOMPRX) {
|
|
musb_dbg(musb, "end %d high bandwidth incomplete ISO packet RX",
|
|
epnum);
|
|
status = -EPROTO;
|
|
}
|
|
|
|
/* faults abort the transfer */
|
|
if (status) {
|
|
/* clean up dma and collect transfer count */
|
|
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
|
|
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
|
|
musb->dma_controller->channel_abort(dma);
|
|
xfer_len = dma->actual_len;
|
|
}
|
|
musb_h_flush_rxfifo(hw_ep, MUSB_RXCSR_CLRDATATOG);
|
|
musb_writeb(epio, MUSB_RXINTERVAL, 0);
|
|
done = true;
|
|
goto finish;
|
|
}
|
|
|
|
if (unlikely(dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY)) {
|
|
/* SHOULD NEVER HAPPEN ... but at least DaVinci has done it */
|
|
ERR("RX%d dma busy, csr %04x\n", epnum, rx_csr);
|
|
goto finish;
|
|
}
|
|
|
|
/* thorough shutdown for now ... given more precise fault handling
|
|
* and better queueing support, we might keep a DMA pipeline going
|
|
* while processing this irq for earlier completions.
|
|
*/
|
|
|
|
/* FIXME this is _way_ too much in-line logic for Mentor DMA */
|
|
if (!musb_dma_inventra(musb) && !musb_dma_ux500(musb) &&
|
|
(rx_csr & MUSB_RXCSR_H_REQPKT)) {
|
|
/* REVISIT this happened for a while on some short reads...
|
|
* the cleanup still needs investigation... looks bad...
|
|
* and also duplicates dma cleanup code above ... plus,
|
|
* shouldn't this be the "half full" double buffer case?
|
|
*/
|
|
if (dma_channel_status(dma) == MUSB_DMA_STATUS_BUSY) {
|
|
dma->status = MUSB_DMA_STATUS_CORE_ABORT;
|
|
musb->dma_controller->channel_abort(dma);
|
|
xfer_len = dma->actual_len;
|
|
done = true;
|
|
}
|
|
|
|
musb_dbg(musb, "RXCSR%d %04x, reqpkt, len %zu%s", epnum, rx_csr,
|
|
xfer_len, dma ? ", dma" : "");
|
|
rx_csr &= ~MUSB_RXCSR_H_REQPKT;
|
|
|
|
musb_ep_select(mbase, epnum);
|
|
musb_writew(epio, MUSB_RXCSR,
|
|
MUSB_RXCSR_H_WZC_BITS | rx_csr);
|
|
}
|
|
|
|
if (dma && (rx_csr & MUSB_RXCSR_DMAENAB)) {
|
|
xfer_len = dma->actual_len;
|
|
|
|
val &= ~(MUSB_RXCSR_DMAENAB
|
|
| MUSB_RXCSR_H_AUTOREQ
|
|
| MUSB_RXCSR_AUTOCLEAR
|
|
| MUSB_RXCSR_RXPKTRDY);
|
|
musb_writew(hw_ep->regs, MUSB_RXCSR, val);
|
|
|
|
if (musb_dma_inventra(musb) || musb_dma_ux500(musb) ||
|
|
musb_dma_cppi41(musb)) {
|
|
done = musb_rx_dma_inventra_cppi41(c, hw_ep, qh, urb, xfer_len);
|
|
musb_dbg(hw_ep->musb,
|
|
"ep %d dma %s, rxcsr %04x, rxcount %d",
|
|
epnum, done ? "off" : "reset",
|
|
musb_readw(epio, MUSB_RXCSR),
|
|
musb_readw(epio, MUSB_RXCOUNT));
|
|
} else {
|
|
done = true;
|
|
}
|
|
|
|
} else if (urb->status == -EINPROGRESS) {
|
|
/* if no errors, be sure a packet is ready for unloading */
|
|
if (unlikely(!(rx_csr & MUSB_RXCSR_RXPKTRDY))) {
|
|
status = -EPROTO;
|
|
ERR("Rx interrupt with no errors or packet!\n");
|
|
|
|
/* FIXME this is another "SHOULD NEVER HAPPEN" */
|
|
|
|
/* SCRUB (RX) */
|
|
/* do the proper sequence to abort the transfer */
|
|
musb_ep_select(mbase, epnum);
|
|
val &= ~MUSB_RXCSR_H_REQPKT;
|
|
musb_writew(epio, MUSB_RXCSR, val);
|
|
goto finish;
|
|
}
|
|
|
|
/* we are expecting IN packets */
|
|
if ((musb_dma_inventra(musb) || musb_dma_ux500(musb) ||
|
|
musb_dma_cppi41(musb)) && dma) {
|
|
musb_dbg(hw_ep->musb,
|
|
"RX%d count %d, buffer 0x%llx len %d/%d",
|
|
epnum, musb_readw(epio, MUSB_RXCOUNT),
|
|
(unsigned long long) urb->transfer_dma
|
|
+ urb->actual_length,
|
|
qh->offset,
|
|
urb->transfer_buffer_length);
|
|
|
|
if (musb_rx_dma_in_inventra_cppi41(c, hw_ep, qh, urb,
|
|
xfer_len, iso_err))
|
|
goto finish;
|
|
else
|
|
dev_err(musb->controller, "error: rx_dma failed\n");
|
|
}
|
|
|
|
if (!dma) {
|
|
unsigned int received_len;
|
|
|
|
/* Unmap the buffer so that CPU can use it */
|
|
usb_hcd_unmap_urb_for_dma(musb->hcd, urb);
|
|
|
|
/*
|
|
* We need to map sg if the transfer_buffer is
|
|
* NULL.
|
|
*/
|
|
if (!urb->transfer_buffer) {
|
|
qh->use_sg = true;
|
|
sg_miter_start(&qh->sg_miter, urb->sg, 1,
|
|
sg_flags);
|
|
}
|
|
|
|
if (qh->use_sg) {
|
|
if (!sg_miter_next(&qh->sg_miter)) {
|
|
dev_err(musb->controller, "error: sg list empty\n");
|
|
sg_miter_stop(&qh->sg_miter);
|
|
status = -EINVAL;
|
|
done = true;
|
|
goto finish;
|
|
}
|
|
urb->transfer_buffer = qh->sg_miter.addr;
|
|
received_len = urb->actual_length;
|
|
qh->offset = 0x0;
|
|
done = musb_host_packet_rx(musb, urb, epnum,
|
|
iso_err);
|
|
/* Calculate the number of bytes received */
|
|
received_len = urb->actual_length -
|
|
received_len;
|
|
qh->sg_miter.consumed = received_len;
|
|
sg_miter_stop(&qh->sg_miter);
|
|
} else {
|
|
done = musb_host_packet_rx(musb, urb,
|
|
epnum, iso_err);
|
|
}
|
|
musb_dbg(musb, "read %spacket", done ? "last " : "");
|
|
}
|
|
}
|
|
|
|
finish:
|
|
urb->actual_length += xfer_len;
|
|
qh->offset += xfer_len;
|
|
if (done) {
|
|
if (qh->use_sg) {
|
|
qh->use_sg = false;
|
|
urb->transfer_buffer = NULL;
|
|
}
|
|
|
|
if (urb->status == -EINPROGRESS)
|
|
urb->status = status;
|
|
musb_advance_schedule(musb, urb, hw_ep, USB_DIR_IN);
|
|
}
|
|
}
|
|
|
|
/* schedule nodes correspond to peripheral endpoints, like an OHCI QH.
|
|
* the software schedule associates multiple such nodes with a given
|
|
* host side hardware endpoint + direction; scheduling may activate
|
|
* that hardware endpoint.
|
|
*/
|
|
static int musb_schedule(
|
|
struct musb *musb,
|
|
struct musb_qh *qh,
|
|
int is_in)
|
|
{
|
|
int idle = 0;
|
|
int best_diff;
|
|
int best_end, epnum;
|
|
struct musb_hw_ep *hw_ep = NULL;
|
|
struct list_head *head = NULL;
|
|
u8 toggle;
|
|
u8 txtype;
|
|
struct urb *urb = next_urb(qh);
|
|
|
|
/* use fixed hardware for control and bulk */
|
|
if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
|
|
head = &musb->control;
|
|
hw_ep = musb->control_ep;
|
|
goto success;
|
|
}
|
|
|
|
/* else, periodic transfers get muxed to other endpoints */
|
|
|
|
/*
|
|
* We know this qh hasn't been scheduled, so all we need to do
|
|
* is choose which hardware endpoint to put it on ...
|
|
*
|
|
* REVISIT what we really want here is a regular schedule tree
|
|
* like e.g. OHCI uses.
|
|
*/
|
|
best_diff = 4096;
|
|
best_end = -1;
|
|
|
|
for (epnum = 1, hw_ep = musb->endpoints + 1;
|
|
epnum < musb->nr_endpoints;
|
|
epnum++, hw_ep++) {
|
|
int diff;
|
|
|
|
if (musb_ep_get_qh(hw_ep, is_in) != NULL)
|
|
continue;
|
|
|
|
if (hw_ep == musb->bulk_ep)
|
|
continue;
|
|
|
|
if (is_in)
|
|
diff = hw_ep->max_packet_sz_rx;
|
|
else
|
|
diff = hw_ep->max_packet_sz_tx;
|
|
diff -= (qh->maxpacket * qh->hb_mult);
|
|
|
|
if (diff >= 0 && best_diff > diff) {
|
|
|
|
/*
|
|
* Mentor controller has a bug in that if we schedule
|
|
* a BULK Tx transfer on an endpoint that had earlier
|
|
* handled ISOC then the BULK transfer has to start on
|
|
* a zero toggle. If the BULK transfer starts on a 1
|
|
* toggle then this transfer will fail as the mentor
|
|
* controller starts the Bulk transfer on a 0 toggle
|
|
* irrespective of the programming of the toggle bits
|
|
* in the TXCSR register. Check for this condition
|
|
* while allocating the EP for a Tx Bulk transfer. If
|
|
* so skip this EP.
|
|
*/
|
|
hw_ep = musb->endpoints + epnum;
|
|
toggle = usb_gettoggle(urb->dev, qh->epnum, !is_in);
|
|
txtype = (musb_readb(hw_ep->regs, MUSB_TXTYPE)
|
|
>> 4) & 0x3;
|
|
if (!is_in && (qh->type == USB_ENDPOINT_XFER_BULK) &&
|
|
toggle && (txtype == USB_ENDPOINT_XFER_ISOC))
|
|
continue;
|
|
|
|
best_diff = diff;
|
|
best_end = epnum;
|
|
}
|
|
}
|
|
/* use bulk reserved ep1 if no other ep is free */
|
|
if (best_end < 0 && qh->type == USB_ENDPOINT_XFER_BULK) {
|
|
hw_ep = musb->bulk_ep;
|
|
if (is_in)
|
|
head = &musb->in_bulk;
|
|
else
|
|
head = &musb->out_bulk;
|
|
|
|
/* Enable bulk RX/TX NAK timeout scheme when bulk requests are
|
|
* multiplexed. This scheme does not work in high speed to full
|
|
* speed scenario as NAK interrupts are not coming from a
|
|
* full speed device connected to a high speed device.
|
|
* NAK timeout interval is 8 (128 uframe or 16ms) for HS and
|
|
* 4 (8 frame or 8ms) for FS device.
|
|
*/
|
|
if (qh->dev)
|
|
qh->intv_reg =
|
|
(USB_SPEED_HIGH == qh->dev->speed) ? 8 : 4;
|
|
goto success;
|
|
} else if (best_end < 0) {
|
|
return -ENOSPC;
|
|
}
|
|
|
|
idle = 1;
|
|
qh->mux = 0;
|
|
hw_ep = musb->endpoints + best_end;
|
|
musb_dbg(musb, "qh %p periodic slot %d", qh, best_end);
|
|
success:
|
|
if (head) {
|
|
idle = list_empty(head);
|
|
list_add_tail(&qh->ring, head);
|
|
qh->mux = 1;
|
|
}
|
|
qh->hw_ep = hw_ep;
|
|
qh->hep->hcpriv = qh;
|
|
if (idle)
|
|
musb_start_urb(musb, is_in, qh);
|
|
return 0;
|
|
}
|
|
|
|
static int musb_urb_enqueue(
|
|
struct usb_hcd *hcd,
|
|
struct urb *urb,
|
|
gfp_t mem_flags)
|
|
{
|
|
unsigned long flags;
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
struct usb_host_endpoint *hep = urb->ep;
|
|
struct musb_qh *qh;
|
|
struct usb_endpoint_descriptor *epd = &hep->desc;
|
|
int ret;
|
|
unsigned type_reg;
|
|
unsigned interval;
|
|
|
|
/* host role must be active */
|
|
if (!is_host_active(musb) || !musb->is_active)
|
|
return -ENODEV;
|
|
|
|
trace_musb_urb_enq(musb, urb);
|
|
|
|
spin_lock_irqsave(&musb->lock, flags);
|
|
ret = usb_hcd_link_urb_to_ep(hcd, urb);
|
|
qh = ret ? NULL : hep->hcpriv;
|
|
if (qh)
|
|
urb->hcpriv = qh;
|
|
spin_unlock_irqrestore(&musb->lock, flags);
|
|
|
|
/* DMA mapping was already done, if needed, and this urb is on
|
|
* hep->urb_list now ... so we're done, unless hep wasn't yet
|
|
* scheduled onto a live qh.
|
|
*
|
|
* REVISIT best to keep hep->hcpriv valid until the endpoint gets
|
|
* disabled, testing for empty qh->ring and avoiding qh setup costs
|
|
* except for the first urb queued after a config change.
|
|
*/
|
|
if (qh || ret)
|
|
return ret;
|
|
|
|
/* Allocate and initialize qh, minimizing the work done each time
|
|
* hw_ep gets reprogrammed, or with irqs blocked. Then schedule it.
|
|
*
|
|
* REVISIT consider a dedicated qh kmem_cache, so it's harder
|
|
* for bugs in other kernel code to break this driver...
|
|
*/
|
|
qh = kzalloc(sizeof *qh, mem_flags);
|
|
if (!qh) {
|
|
spin_lock_irqsave(&musb->lock, flags);
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
spin_unlock_irqrestore(&musb->lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
qh->hep = hep;
|
|
qh->dev = urb->dev;
|
|
INIT_LIST_HEAD(&qh->ring);
|
|
qh->is_ready = 1;
|
|
|
|
qh->maxpacket = usb_endpoint_maxp(epd);
|
|
qh->type = usb_endpoint_type(epd);
|
|
|
|
/* Bits 11 & 12 of wMaxPacketSize encode high bandwidth multiplier.
|
|
* Some musb cores don't support high bandwidth ISO transfers; and
|
|
* we don't (yet!) support high bandwidth interrupt transfers.
|
|
*/
|
|
qh->hb_mult = 1 + ((qh->maxpacket >> 11) & 0x03);
|
|
if (qh->hb_mult > 1) {
|
|
int ok = (qh->type == USB_ENDPOINT_XFER_ISOC);
|
|
|
|
if (ok)
|
|
ok = (usb_pipein(urb->pipe) && musb->hb_iso_rx)
|
|
|| (usb_pipeout(urb->pipe) && musb->hb_iso_tx);
|
|
if (!ok) {
|
|
ret = -EMSGSIZE;
|
|
goto done;
|
|
}
|
|
qh->maxpacket &= 0x7ff;
|
|
}
|
|
|
|
qh->epnum = usb_endpoint_num(epd);
|
|
|
|
/* NOTE: urb->dev->devnum is wrong during SET_ADDRESS */
|
|
qh->addr_reg = (u8) usb_pipedevice(urb->pipe);
|
|
|
|
/* precompute rxtype/txtype/type0 register */
|
|
type_reg = (qh->type << 4) | qh->epnum;
|
|
switch (urb->dev->speed) {
|
|
case USB_SPEED_LOW:
|
|
type_reg |= 0xc0;
|
|
break;
|
|
case USB_SPEED_FULL:
|
|
type_reg |= 0x80;
|
|
break;
|
|
default:
|
|
type_reg |= 0x40;
|
|
}
|
|
qh->type_reg = type_reg;
|
|
|
|
/* Precompute RXINTERVAL/TXINTERVAL register */
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_INT:
|
|
/*
|
|
* Full/low speeds use the linear encoding,
|
|
* high speed uses the logarithmic encoding.
|
|
*/
|
|
if (urb->dev->speed <= USB_SPEED_FULL) {
|
|
interval = max_t(u8, epd->bInterval, 1);
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
/* ISO always uses logarithmic encoding */
|
|
interval = min_t(u8, epd->bInterval, 16);
|
|
break;
|
|
default:
|
|
/* REVISIT we actually want to use NAK limits, hinting to the
|
|
* transfer scheduling logic to try some other qh, e.g. try
|
|
* for 2 msec first:
|
|
*
|
|
* interval = (USB_SPEED_HIGH == urb->dev->speed) ? 16 : 2;
|
|
*
|
|
* The downside of disabling this is that transfer scheduling
|
|
* gets VERY unfair for nonperiodic transfers; a misbehaving
|
|
* peripheral could make that hurt. That's perfectly normal
|
|
* for reads from network or serial adapters ... so we have
|
|
* partial NAKlimit support for bulk RX.
|
|
*
|
|
* The upside of disabling it is simpler transfer scheduling.
|
|
*/
|
|
interval = 0;
|
|
}
|
|
qh->intv_reg = interval;
|
|
|
|
/* precompute addressing for external hub/tt ports */
|
|
if (musb->is_multipoint) {
|
|
struct usb_device *parent = urb->dev->parent;
|
|
|
|
if (parent != hcd->self.root_hub) {
|
|
qh->h_addr_reg = (u8) parent->devnum;
|
|
|
|
/* set up tt info if needed */
|
|
if (urb->dev->tt) {
|
|
qh->h_port_reg = (u8) urb->dev->ttport;
|
|
if (urb->dev->tt->hub)
|
|
qh->h_addr_reg =
|
|
(u8) urb->dev->tt->hub->devnum;
|
|
if (urb->dev->tt->multi)
|
|
qh->h_addr_reg |= 0x80;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* invariant: hep->hcpriv is null OR the qh that's already scheduled.
|
|
* until we get real dma queues (with an entry for each urb/buffer),
|
|
* we only have work to do in the former case.
|
|
*/
|
|
spin_lock_irqsave(&musb->lock, flags);
|
|
if (hep->hcpriv || !next_urb(qh)) {
|
|
/* some concurrent activity submitted another urb to hep...
|
|
* odd, rare, error prone, but legal.
|
|
*/
|
|
kfree(qh);
|
|
qh = NULL;
|
|
ret = 0;
|
|
} else
|
|
ret = musb_schedule(musb, qh,
|
|
epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK);
|
|
|
|
if (ret == 0) {
|
|
urb->hcpriv = qh;
|
|
/* FIXME set urb->start_frame for iso/intr, it's tested in
|
|
* musb_start_urb(), but otherwise only konicawc cares ...
|
|
*/
|
|
}
|
|
spin_unlock_irqrestore(&musb->lock, flags);
|
|
|
|
done:
|
|
if (ret != 0) {
|
|
spin_lock_irqsave(&musb->lock, flags);
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
spin_unlock_irqrestore(&musb->lock, flags);
|
|
kfree(qh);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* abort a transfer that's at the head of a hardware queue.
|
|
* called with controller locked, irqs blocked
|
|
* that hardware queue advances to the next transfer, unless prevented
|
|
*/
|
|
static int musb_cleanup_urb(struct urb *urb, struct musb_qh *qh)
|
|
{
|
|
struct musb_hw_ep *ep = qh->hw_ep;
|
|
struct musb *musb = ep->musb;
|
|
void __iomem *epio = ep->regs;
|
|
unsigned hw_end = ep->epnum;
|
|
void __iomem *regs = ep->musb->mregs;
|
|
int is_in = usb_pipein(urb->pipe);
|
|
int status = 0;
|
|
u16 csr;
|
|
struct dma_channel *dma = NULL;
|
|
|
|
musb_ep_select(regs, hw_end);
|
|
|
|
if (is_dma_capable()) {
|
|
dma = is_in ? ep->rx_channel : ep->tx_channel;
|
|
if (dma) {
|
|
status = ep->musb->dma_controller->channel_abort(dma);
|
|
musb_dbg(musb, "abort %cX%d DMA for urb %p --> %d",
|
|
is_in ? 'R' : 'T', ep->epnum,
|
|
urb, status);
|
|
urb->actual_length += dma->actual_len;
|
|
}
|
|
}
|
|
|
|
/* turn off DMA requests, discard state, stop polling ... */
|
|
if (ep->epnum && is_in) {
|
|
/* giveback saves bulk toggle */
|
|
csr = musb_h_flush_rxfifo(ep, 0);
|
|
|
|
/* clear the endpoint's irq status here to avoid bogus irqs */
|
|
if (is_dma_capable() && dma)
|
|
musb_platform_clear_ep_rxintr(musb, ep->epnum);
|
|
} else if (ep->epnum) {
|
|
musb_h_tx_flush_fifo(ep);
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
csr &= ~(MUSB_TXCSR_AUTOSET
|
|
| MUSB_TXCSR_DMAENAB
|
|
| MUSB_TXCSR_H_RXSTALL
|
|
| MUSB_TXCSR_H_NAKTIMEOUT
|
|
| MUSB_TXCSR_H_ERROR
|
|
| MUSB_TXCSR_TXPKTRDY);
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
/* REVISIT may need to clear FLUSHFIFO ... */
|
|
musb_writew(epio, MUSB_TXCSR, csr);
|
|
/* flush cpu writebuffer */
|
|
csr = musb_readw(epio, MUSB_TXCSR);
|
|
} else {
|
|
musb_h_ep0_flush_fifo(ep);
|
|
}
|
|
if (status == 0)
|
|
musb_advance_schedule(ep->musb, urb, ep, is_in);
|
|
return status;
|
|
}
|
|
|
|
static int musb_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
struct musb_qh *qh;
|
|
unsigned long flags;
|
|
int is_in = usb_pipein(urb->pipe);
|
|
int ret;
|
|
|
|
trace_musb_urb_deq(musb, urb);
|
|
|
|
spin_lock_irqsave(&musb->lock, flags);
|
|
ret = usb_hcd_check_unlink_urb(hcd, urb, status);
|
|
if (ret)
|
|
goto done;
|
|
|
|
qh = urb->hcpriv;
|
|
if (!qh)
|
|
goto done;
|
|
|
|
/*
|
|
* Any URB not actively programmed into endpoint hardware can be
|
|
* immediately given back; that's any URB not at the head of an
|
|
* endpoint queue, unless someday we get real DMA queues. And even
|
|
* if it's at the head, it might not be known to the hardware...
|
|
*
|
|
* Otherwise abort current transfer, pending DMA, etc.; urb->status
|
|
* has already been updated. This is a synchronous abort; it'd be
|
|
* OK to hold off until after some IRQ, though.
|
|
*
|
|
* NOTE: qh is invalid unless !list_empty(&hep->urb_list)
|
|
*/
|
|
if (!qh->is_ready
|
|
|| urb->urb_list.prev != &qh->hep->urb_list
|
|
|| musb_ep_get_qh(qh->hw_ep, is_in) != qh) {
|
|
int ready = qh->is_ready;
|
|
|
|
qh->is_ready = 0;
|
|
musb_giveback(musb, urb, 0);
|
|
qh->is_ready = ready;
|
|
|
|
/* If nothing else (usually musb_giveback) is using it
|
|
* and its URB list has emptied, recycle this qh.
|
|
*/
|
|
if (ready && list_empty(&qh->hep->urb_list)) {
|
|
qh->hep->hcpriv = NULL;
|
|
list_del(&qh->ring);
|
|
kfree(qh);
|
|
}
|
|
} else
|
|
ret = musb_cleanup_urb(urb, qh);
|
|
done:
|
|
spin_unlock_irqrestore(&musb->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
/* disable an endpoint */
|
|
static void
|
|
musb_h_disable(struct usb_hcd *hcd, struct usb_host_endpoint *hep)
|
|
{
|
|
u8 is_in = hep->desc.bEndpointAddress & USB_DIR_IN;
|
|
unsigned long flags;
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
struct musb_qh *qh;
|
|
struct urb *urb;
|
|
|
|
spin_lock_irqsave(&musb->lock, flags);
|
|
|
|
qh = hep->hcpriv;
|
|
if (qh == NULL)
|
|
goto exit;
|
|
|
|
/* NOTE: qh is invalid unless !list_empty(&hep->urb_list) */
|
|
|
|
/* Kick the first URB off the hardware, if needed */
|
|
qh->is_ready = 0;
|
|
if (musb_ep_get_qh(qh->hw_ep, is_in) == qh) {
|
|
urb = next_urb(qh);
|
|
|
|
/* make software (then hardware) stop ASAP */
|
|
if (!urb->unlinked)
|
|
urb->status = -ESHUTDOWN;
|
|
|
|
/* cleanup */
|
|
musb_cleanup_urb(urb, qh);
|
|
|
|
/* Then nuke all the others ... and advance the
|
|
* queue on hw_ep (e.g. bulk ring) when we're done.
|
|
*/
|
|
while (!list_empty(&hep->urb_list)) {
|
|
urb = next_urb(qh);
|
|
urb->status = -ESHUTDOWN;
|
|
musb_advance_schedule(musb, urb, qh->hw_ep, is_in);
|
|
}
|
|
} else {
|
|
/* Just empty the queue; the hardware is busy with
|
|
* other transfers, and since !qh->is_ready nothing
|
|
* will activate any of these as it advances.
|
|
*/
|
|
while (!list_empty(&hep->urb_list))
|
|
musb_giveback(musb, next_urb(qh), -ESHUTDOWN);
|
|
|
|
hep->hcpriv = NULL;
|
|
list_del(&qh->ring);
|
|
kfree(qh);
|
|
}
|
|
exit:
|
|
spin_unlock_irqrestore(&musb->lock, flags);
|
|
}
|
|
|
|
static int musb_h_get_frame_number(struct usb_hcd *hcd)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
|
|
return musb_readw(musb->mregs, MUSB_FRAME);
|
|
}
|
|
|
|
static int musb_h_start(struct usb_hcd *hcd)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
|
|
/* NOTE: musb_start() is called when the hub driver turns
|
|
* on port power, or when (OTG) peripheral starts.
|
|
*/
|
|
hcd->state = HC_STATE_RUNNING;
|
|
musb->port1_status = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void musb_h_stop(struct usb_hcd *hcd)
|
|
{
|
|
musb_stop(hcd_to_musb(hcd));
|
|
hcd->state = HC_STATE_HALT;
|
|
}
|
|
|
|
static int musb_bus_suspend(struct usb_hcd *hcd)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
u8 devctl;
|
|
int ret;
|
|
|
|
ret = musb_port_suspend(musb, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!is_host_active(musb))
|
|
return 0;
|
|
|
|
switch (musb->xceiv->otg->state) {
|
|
case OTG_STATE_A_SUSPEND:
|
|
return 0;
|
|
case OTG_STATE_A_WAIT_VRISE:
|
|
/* ID could be grounded even if there's no device
|
|
* on the other end of the cable. NOTE that the
|
|
* A_WAIT_VRISE timers are messy with MUSB...
|
|
*/
|
|
devctl = musb_readb(musb->mregs, MUSB_DEVCTL);
|
|
if ((devctl & MUSB_DEVCTL_VBUS) == MUSB_DEVCTL_VBUS)
|
|
musb->xceiv->otg->state = OTG_STATE_A_WAIT_BCON;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (musb->is_active) {
|
|
WARNING("trying to suspend as %s while active\n",
|
|
usb_otg_state_string(musb->xceiv->otg->state));
|
|
return -EBUSY;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
static int musb_bus_resume(struct usb_hcd *hcd)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
|
|
if (musb->config &&
|
|
musb->config->host_port_deassert_reset_at_resume)
|
|
musb_port_reset(musb, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_MUSB_PIO_ONLY
|
|
|
|
#define MUSB_USB_DMA_ALIGN 4
|
|
|
|
struct musb_temp_buffer {
|
|
void *kmalloc_ptr;
|
|
void *old_xfer_buffer;
|
|
u8 data[0];
|
|
};
|
|
|
|
static void musb_free_temp_buffer(struct urb *urb)
|
|
{
|
|
enum dma_data_direction dir;
|
|
struct musb_temp_buffer *temp;
|
|
size_t length;
|
|
|
|
if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
|
|
return;
|
|
|
|
dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
|
|
|
|
temp = container_of(urb->transfer_buffer, struct musb_temp_buffer,
|
|
data);
|
|
|
|
if (dir == DMA_FROM_DEVICE) {
|
|
if (usb_pipeisoc(urb->pipe))
|
|
length = urb->transfer_buffer_length;
|
|
else
|
|
length = urb->actual_length;
|
|
|
|
memcpy(temp->old_xfer_buffer, temp->data, length);
|
|
}
|
|
urb->transfer_buffer = temp->old_xfer_buffer;
|
|
kfree(temp->kmalloc_ptr);
|
|
|
|
urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
|
|
}
|
|
|
|
static int musb_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
|
|
{
|
|
enum dma_data_direction dir;
|
|
struct musb_temp_buffer *temp;
|
|
void *kmalloc_ptr;
|
|
size_t kmalloc_size;
|
|
|
|
if (urb->num_sgs || urb->sg ||
|
|
urb->transfer_buffer_length == 0 ||
|
|
!((uintptr_t)urb->transfer_buffer & (MUSB_USB_DMA_ALIGN - 1)))
|
|
return 0;
|
|
|
|
dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
|
|
|
|
/* Allocate a buffer with enough padding for alignment */
|
|
kmalloc_size = urb->transfer_buffer_length +
|
|
sizeof(struct musb_temp_buffer) + MUSB_USB_DMA_ALIGN - 1;
|
|
|
|
kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
|
|
if (!kmalloc_ptr)
|
|
return -ENOMEM;
|
|
|
|
/* Position our struct temp_buffer such that data is aligned */
|
|
temp = PTR_ALIGN(kmalloc_ptr, MUSB_USB_DMA_ALIGN);
|
|
|
|
|
|
temp->kmalloc_ptr = kmalloc_ptr;
|
|
temp->old_xfer_buffer = urb->transfer_buffer;
|
|
if (dir == DMA_TO_DEVICE)
|
|
memcpy(temp->data, urb->transfer_buffer,
|
|
urb->transfer_buffer_length);
|
|
urb->transfer_buffer = temp->data;
|
|
|
|
urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int musb_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
|
|
gfp_t mem_flags)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
int ret;
|
|
|
|
/*
|
|
* The DMA engine in RTL1.8 and above cannot handle
|
|
* DMA addresses that are not aligned to a 4 byte boundary.
|
|
* For such engine implemented (un)map_urb_for_dma hooks.
|
|
* Do not use these hooks for RTL<1.8
|
|
*/
|
|
if (musb->hwvers < MUSB_HWVERS_1800)
|
|
return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
|
|
|
|
ret = musb_alloc_temp_buffer(urb, mem_flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
|
|
if (ret)
|
|
musb_free_temp_buffer(urb);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void musb_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
struct musb *musb = hcd_to_musb(hcd);
|
|
|
|
usb_hcd_unmap_urb_for_dma(hcd, urb);
|
|
|
|
/* Do not use this hook for RTL<1.8 (see description above) */
|
|
if (musb->hwvers < MUSB_HWVERS_1800)
|
|
return;
|
|
|
|
musb_free_temp_buffer(urb);
|
|
}
|
|
#endif /* !CONFIG_MUSB_PIO_ONLY */
|
|
|
|
static const struct hc_driver musb_hc_driver = {
|
|
.description = "musb-hcd",
|
|
.product_desc = "MUSB HDRC host driver",
|
|
.hcd_priv_size = sizeof(struct musb *),
|
|
.flags = HCD_USB2 | HCD_MEMORY,
|
|
|
|
/* not using irq handler or reset hooks from usbcore, since
|
|
* those must be shared with peripheral code for OTG configs
|
|
*/
|
|
|
|
.start = musb_h_start,
|
|
.stop = musb_h_stop,
|
|
|
|
.get_frame_number = musb_h_get_frame_number,
|
|
|
|
.urb_enqueue = musb_urb_enqueue,
|
|
.urb_dequeue = musb_urb_dequeue,
|
|
.endpoint_disable = musb_h_disable,
|
|
|
|
#ifndef CONFIG_MUSB_PIO_ONLY
|
|
.map_urb_for_dma = musb_map_urb_for_dma,
|
|
.unmap_urb_for_dma = musb_unmap_urb_for_dma,
|
|
#endif
|
|
|
|
.hub_status_data = musb_hub_status_data,
|
|
.hub_control = musb_hub_control,
|
|
.bus_suspend = musb_bus_suspend,
|
|
.bus_resume = musb_bus_resume,
|
|
/* .start_port_reset = NULL, */
|
|
/* .hub_irq_enable = NULL, */
|
|
};
|
|
|
|
int musb_host_alloc(struct musb *musb)
|
|
{
|
|
struct device *dev = musb->controller;
|
|
|
|
/* usbcore sets dev->driver_data to hcd, and sometimes uses that... */
|
|
musb->hcd = usb_create_hcd(&musb_hc_driver, dev, dev_name(dev));
|
|
if (!musb->hcd)
|
|
return -EINVAL;
|
|
|
|
*musb->hcd->hcd_priv = (unsigned long) musb;
|
|
musb->hcd->self.uses_pio_for_control = 1;
|
|
musb->hcd->uses_new_polling = 1;
|
|
musb->hcd->has_tt = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void musb_host_cleanup(struct musb *musb)
|
|
{
|
|
if (musb->port_mode == MUSB_PORT_MODE_GADGET)
|
|
return;
|
|
usb_remove_hcd(musb->hcd);
|
|
}
|
|
|
|
void musb_host_free(struct musb *musb)
|
|
{
|
|
usb_put_hcd(musb->hcd);
|
|
}
|
|
|
|
int musb_host_setup(struct musb *musb, int power_budget)
|
|
{
|
|
int ret;
|
|
struct usb_hcd *hcd = musb->hcd;
|
|
|
|
if (musb->port_mode == MUSB_PORT_MODE_HOST) {
|
|
MUSB_HST_MODE(musb);
|
|
musb->xceiv->otg->default_a = 1;
|
|
musb->xceiv->otg->state = OTG_STATE_A_IDLE;
|
|
}
|
|
otg_set_host(musb->xceiv->otg, &hcd->self);
|
|
hcd->self.otg_port = 1;
|
|
musb->xceiv->otg->host = &hcd->self;
|
|
hcd->power_budget = 2 * (power_budget ? : 250);
|
|
|
|
ret = usb_add_hcd(hcd, 0, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
device_wakeup_enable(hcd->self.controller);
|
|
return 0;
|
|
}
|
|
|
|
void musb_host_resume_root_hub(struct musb *musb)
|
|
{
|
|
usb_hcd_resume_root_hub(musb->hcd);
|
|
}
|
|
|
|
void musb_host_poke_root_hub(struct musb *musb)
|
|
{
|
|
MUSB_HST_MODE(musb);
|
|
if (musb->hcd->status_urb)
|
|
usb_hcd_poll_rh_status(musb->hcd);
|
|
else
|
|
usb_hcd_resume_root_hub(musb->hcd);
|
|
}
|