tegrakernel/kernel/kernel-4.9/include/linux/mm.h

2548 lines
80 KiB
C

#ifndef _LINUX_MM_H
#define _LINUX_MM_H
#include <linux/errno.h>
#ifdef __KERNEL__
#include <linux/mmdebug.h>
#include <linux/gfp.h>
#include <linux/bug.h>
#include <linux/list.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/atomic.h>
#include <linux/debug_locks.h>
#include <linux/mm_types.h>
#include <linux/range.h>
#include <linux/pfn.h>
#include <linux/percpu-refcount.h>
#include <linux/bit_spinlock.h>
#include <linux/shrinker.h>
#include <linux/resource.h>
#include <linux/page_ext.h>
#include <linux/err.h>
#include <linux/page_ref.h>
#include <linux/memremap.h>
struct mempolicy;
struct anon_vma;
struct anon_vma_chain;
struct file_ra_state;
struct user_struct;
struct writeback_control;
struct bdi_writeback;
#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
extern unsigned long max_mapnr;
static inline void set_max_mapnr(unsigned long limit)
{
max_mapnr = limit;
}
#else
static inline void set_max_mapnr(unsigned long limit) { }
#endif
extern unsigned long totalram_pages;
extern void * high_memory;
extern int page_cluster;
#ifdef CONFIG_SYSCTL
extern int sysctl_legacy_va_layout;
#else
#define sysctl_legacy_va_layout 0
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
extern const int mmap_rnd_bits_min;
extern const int mmap_rnd_bits_max;
extern int mmap_rnd_bits __read_mostly;
#endif
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
extern const int mmap_rnd_compat_bits_min;
extern const int mmap_rnd_compat_bits_max;
extern int mmap_rnd_compat_bits __read_mostly;
#endif
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#ifndef __pa_symbol
#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
#endif
#ifndef page_to_virt
#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
#endif
#ifndef lm_alias
#define lm_alias(x) __va(__pa_symbol(x))
#endif
/*
* To prevent common memory management code establishing
* a zero page mapping on a read fault.
* This macro should be defined within <asm/pgtable.h>.
* s390 does this to prevent multiplexing of hardware bits
* related to the physical page in case of virtualization.
*/
#ifndef mm_forbids_zeropage
#define mm_forbids_zeropage(X) (0)
#endif
/*
* Default maximum number of active map areas, this limits the number of vmas
* per mm struct. Users can overwrite this number by sysctl but there is a
* problem.
*
* When a program's coredump is generated as ELF format, a section is created
* per a vma. In ELF, the number of sections is represented in unsigned short.
* This means the number of sections should be smaller than 65535 at coredump.
* Because the kernel adds some informative sections to a image of program at
* generating coredump, we need some margin. The number of extra sections is
* 1-3 now and depends on arch. We use "5" as safe margin, here.
*
* ELF extended numbering allows more than 65535 sections, so 16-bit bound is
* not a hard limit any more. Although some userspace tools can be surprised by
* that.
*/
#define MAPCOUNT_ELF_CORE_MARGIN (5)
#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
extern int sysctl_max_map_count;
extern unsigned long sysctl_user_reserve_kbytes;
extern unsigned long sysctl_admin_reserve_kbytes;
extern int sysctl_overcommit_memory;
extern int sysctl_overcommit_ratio;
extern unsigned long sysctl_overcommit_kbytes;
extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
size_t *, loff_t *);
extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
size_t *, loff_t *);
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
/* to align the pointer to the (next) page boundary */
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
/*
* Linux kernel virtual memory manager primitives.
* The idea being to have a "virtual" mm in the same way
* we have a virtual fs - giving a cleaner interface to the
* mm details, and allowing different kinds of memory mappings
* (from shared memory to executable loading to arbitrary
* mmap() functions).
*/
extern struct kmem_cache *vm_area_cachep;
#ifndef CONFIG_MMU
extern struct rb_root nommu_region_tree;
extern struct rw_semaphore nommu_region_sem;
extern unsigned int kobjsize(const void *objp);
#endif
/*
* vm_flags in vm_area_struct, see mm_types.h.
* When changing, update also include/trace/events/mmflags.h
*/
#define VM_NONE 0x00000000
#define VM_READ 0x00000001 /* currently active flags */
#define VM_WRITE 0x00000002
#define VM_EXEC 0x00000004
#define VM_SHARED 0x00000008
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
#define VM_MAYWRITE 0x00000020
#define VM_MAYEXEC 0x00000040
#define VM_MAYSHARE 0x00000080
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
#define VM_LOCKED 0x00002000
#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
/* Used by sys_madvise() */
#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
#define VM_ARCH_2 0x02000000
#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
#ifdef CONFIG_MEM_SOFT_DIRTY
# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
#else
# define VM_SOFTDIRTY 0
#endif
#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
#if defined(CONFIG_X86)
# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
#endif
#elif defined(CONFIG_PPC)
# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
#elif defined(CONFIG_PARISC)
# define VM_GROWSUP VM_ARCH_1
#elif defined(CONFIG_METAG)
# define VM_GROWSUP VM_ARCH_1
#elif defined(CONFIG_IA64)
# define VM_GROWSUP VM_ARCH_1
#elif !defined(CONFIG_MMU)
# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
#endif
#if defined(CONFIG_X86)
/* MPX specific bounds table or bounds directory */
# define VM_MPX VM_ARCH_2
#endif
#ifndef VM_GROWSUP
# define VM_GROWSUP VM_NONE
#endif
/* Bits set in the VMA until the stack is in its final location */
#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
#endif
#ifdef CONFIG_STACK_GROWSUP
#define VM_STACK VM_GROWSUP
#else
#define VM_STACK VM_GROWSDOWN
#endif
#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
/*
* Special vmas that are non-mergable, non-mlock()able.
* Note: mm/huge_memory.c VM_NO_THP depends on this definition.
*/
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
/* This mask defines which mm->def_flags a process can inherit its parent */
#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
/* This mask is used to clear all the VMA flags used by mlock */
#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
/*
* mapping from the currently active vm_flags protection bits (the
* low four bits) to a page protection mask..
*/
extern pgprot_t protection_map[16];
#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
#define FAULT_FLAG_TRIED 0x20 /* Second try */
#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
#define FAULT_FLAG_NO_CMA 0x200 /* don't use CMA pages */
/*
* vm_fault is filled by the the pagefault handler and passed to the vma's
* ->fault function. The vma's ->fault is responsible for returning a bitmask
* of VM_FAULT_xxx flags that give details about how the fault was handled.
*
* MM layer fills up gfp_mask for page allocations but fault handler might
* alter it if its implementation requires a different allocation context.
*
* pgoff should be used in favour of virtual_address, if possible.
*/
struct vm_fault {
unsigned int flags; /* FAULT_FLAG_xxx flags */
gfp_t gfp_mask; /* gfp mask to be used for allocations */
pgoff_t pgoff; /* Logical page offset based on vma */
void __user *virtual_address; /* Faulting virtual address */
struct page *cow_page; /* Handler may choose to COW */
struct page *page; /* ->fault handlers should return a
* page here, unless VM_FAULT_NOPAGE
* is set (which is also implied by
* VM_FAULT_ERROR).
*/
void *entry; /* ->fault handler can alternatively
* return locked DAX entry. In that
* case handler should return
* VM_FAULT_DAX_LOCKED and fill in
* entry here.
*/
};
/*
* Page fault context: passes though page fault handler instead of endless list
* of function arguments.
*/
struct fault_env {
struct vm_area_struct *vma; /* Target VMA */
unsigned long address; /* Faulting virtual address */
unsigned int flags; /* FAULT_FLAG_xxx flags */
pmd_t *pmd; /* Pointer to pmd entry matching
* the 'address'
*/
pte_t *pte; /* Pointer to pte entry matching
* the 'address'. NULL if the page
* table hasn't been allocated.
*/
spinlock_t *ptl; /* Page table lock.
* Protects pte page table if 'pte'
* is not NULL, otherwise pmd.
*/
pgtable_t prealloc_pte; /* Pre-allocated pte page table.
* vm_ops->map_pages() calls
* alloc_set_pte() from atomic context.
* do_fault_around() pre-allocates
* page table to avoid allocation from
* atomic context.
*/
};
/*
* These are the virtual MM functions - opening of an area, closing and
* unmapping it (needed to keep files on disk up-to-date etc), pointer
* to the functions called when a no-page or a wp-page exception occurs.
*/
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
int (*split)(struct vm_area_struct * area, unsigned long addr);
int (*mremap)(struct vm_area_struct * area);
int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
pmd_t *, unsigned int flags);
void (*map_pages)(struct fault_env *fe,
pgoff_t start_pgoff, pgoff_t end_pgoff);
/* notification that a previously read-only page is about to become
* writable, if an error is returned it will cause a SIGBUS */
int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
/* called by access_process_vm when get_user_pages() fails, typically
* for use by special VMAs that can switch between memory and hardware
*/
int (*access)(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);
/* Called by the /proc/PID/maps code to ask the vma whether it
* has a special name. Returning non-NULL will also cause this
* vma to be dumped unconditionally. */
const char *(*name)(struct vm_area_struct *vma);
#ifdef CONFIG_NUMA
/*
* set_policy() op must add a reference to any non-NULL @new mempolicy
* to hold the policy upon return. Caller should pass NULL @new to
* remove a policy and fall back to surrounding context--i.e. do not
* install a MPOL_DEFAULT policy, nor the task or system default
* mempolicy.
*/
int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
/*
* get_policy() op must add reference [mpol_get()] to any policy at
* (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
* in mm/mempolicy.c will do this automatically.
* get_policy() must NOT add a ref if the policy at (vma,addr) is not
* marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
* If no [shared/vma] mempolicy exists at the addr, get_policy() op
* must return NULL--i.e., do not "fallback" to task or system default
* policy.
*/
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
unsigned long addr);
#endif
/*
* Called by vm_normal_page() for special PTEs to find the
* page for @addr. This is useful if the default behavior
* (using pte_page()) would not find the correct page.
*/
struct page *(*find_special_page)(struct vm_area_struct *vma,
unsigned long addr);
/* called when driver allows fixing ptes with none protections */
bool (*fixup_prot)(struct vm_area_struct *vma, unsigned long addr,
pgoff_t pgoff);
};
struct mmu_gather;
struct inode;
#define page_private(page) ((page)->private)
#define set_page_private(page, v) ((page)->private = (v))
#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
static inline int pmd_devmap(pmd_t pmd)
{
return 0;
}
#endif
/*
* FIXME: take this include out, include page-flags.h in
* files which need it (119 of them)
*/
#include <linux/page-flags.h>
#include <linux/huge_mm.h>
/*
* Methods to modify the page usage count.
*
* What counts for a page usage:
* - cache mapping (page->mapping)
* - private data (page->private)
* - page mapped in a task's page tables, each mapping
* is counted separately
*
* Also, many kernel routines increase the page count before a critical
* routine so they can be sure the page doesn't go away from under them.
*/
/*
* Drop a ref, return true if the refcount fell to zero (the page has no users)
*/
static inline int put_page_testzero(struct page *page)
{
VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
return page_ref_dec_and_test(page);
}
/*
* Try to grab a ref unless the page has a refcount of zero, return false if
* that is the case.
* This can be called when MMU is off so it must not access
* any of the virtual mappings.
*/
static inline int get_page_unless_zero(struct page *page)
{
return page_ref_add_unless(page, 1, 0);
}
extern int page_is_ram(unsigned long pfn);
enum {
REGION_INTERSECTS,
REGION_DISJOINT,
REGION_MIXED,
};
int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
unsigned long desc);
/* Support for virtually mapped pages */
struct page *vmalloc_to_page(const void *addr);
unsigned long vmalloc_to_pfn(const void *addr);
/*
* Determine if an address is within the vmalloc range
*
* On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
* is no special casing required.
*/
static inline bool is_vmalloc_addr(const void *x)
{
#ifdef CONFIG_MMU
unsigned long addr = (unsigned long)x;
return addr >= VMALLOC_START && addr < VMALLOC_END;
#else
return false;
#endif
}
#ifdef CONFIG_MMU
extern int is_vmalloc_or_module_addr(const void *x);
#else
static inline int is_vmalloc_or_module_addr(const void *x)
{
return 0;
}
#endif
extern void kvfree(const void *addr);
/*
* Mapcount of compound page as a whole, does not include mapped sub-pages.
*
* Must be called only for compound pages or any their tail sub-pages.
*/
static inline int compound_mapcount(struct page *page)
{
VM_BUG_ON_PAGE(!PageCompound(page), page);
page = compound_head(page);
return atomic_read(compound_mapcount_ptr(page)) + 1;
}
/*
* The atomic page->_mapcount, starts from -1: so that transitions
* both from it and to it can be tracked, using atomic_inc_and_test
* and atomic_add_negative(-1).
*/
static inline void page_mapcount_reset(struct page *page)
{
atomic_set(&(page)->_mapcount, -1);
}
int __page_mapcount(struct page *page);
/*
* Mapcount of 0-order page; when compound sub-page, includes
* compound_mapcount().
*
* Result is undefined for pages which cannot be mapped into userspace.
* For example SLAB or special types of pages. See function page_has_type().
* They use this place in struct page differently.
*/
static inline int page_mapcount(struct page *page)
{
if (unlikely(PageCompound(page)))
return __page_mapcount(page);
return atomic_read(&page->_mapcount) + 1;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int total_mapcount(struct page *page);
int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
#else
static inline int total_mapcount(struct page *page)
{
return page_mapcount(page);
}
static inline int page_trans_huge_mapcount(struct page *page,
int *total_mapcount)
{
int mapcount = page_mapcount(page);
if (total_mapcount)
*total_mapcount = mapcount;
return mapcount;
}
#endif
static inline struct page *virt_to_head_page(const void *x)
{
struct page *page = virt_to_page(x);
return compound_head(page);
}
void __put_page(struct page *page);
void put_pages_list(struct list_head *pages);
void split_page(struct page *page, unsigned int order);
/*
* Compound pages have a destructor function. Provide a
* prototype for that function and accessor functions.
* These are _only_ valid on the head of a compound page.
*/
typedef void compound_page_dtor(struct page *);
/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
enum compound_dtor_id {
NULL_COMPOUND_DTOR,
COMPOUND_PAGE_DTOR,
#ifdef CONFIG_HUGETLB_PAGE
HUGETLB_PAGE_DTOR,
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
TRANSHUGE_PAGE_DTOR,
#endif
NR_COMPOUND_DTORS,
};
extern compound_page_dtor * const compound_page_dtors[];
static inline void set_compound_page_dtor(struct page *page,
enum compound_dtor_id compound_dtor)
{
VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
page[1].compound_dtor = compound_dtor;
}
static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
{
VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
return compound_page_dtors[page[1].compound_dtor];
}
static inline unsigned int compound_order(struct page *page)
{
if (!PageHead(page))
return 0;
return page[1].compound_order;
}
static inline void set_compound_order(struct page *page, unsigned int order)
{
page[1].compound_order = order;
}
void free_compound_page(struct page *page);
#ifdef CONFIG_MMU
/*
* Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
* servicing faults for write access. In the normal case, do always want
* pte_mkwrite. But get_user_pages can cause write faults for mappings
* that do not have writing enabled, when used by access_process_vm.
*/
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
{
if (likely(vma->vm_flags & VM_WRITE))
pte = pte_mkwrite(pte);
return pte;
}
int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg,
struct page *page);
#endif
/*
* Multiple processes may "see" the same page. E.g. for untouched
* mappings of /dev/null, all processes see the same page full of
* zeroes, and text pages of executables and shared libraries have
* only one copy in memory, at most, normally.
*
* For the non-reserved pages, page_count(page) denotes a reference count.
* page_count() == 0 means the page is free. page->lru is then used for
* freelist management in the buddy allocator.
* page_count() > 0 means the page has been allocated.
*
* Pages are allocated by the slab allocator in order to provide memory
* to kmalloc and kmem_cache_alloc. In this case, the management of the
* page, and the fields in 'struct page' are the responsibility of mm/slab.c
* unless a particular usage is carefully commented. (the responsibility of
* freeing the kmalloc memory is the caller's, of course).
*
* A page may be used by anyone else who does a __get_free_page().
* In this case, page_count still tracks the references, and should only
* be used through the normal accessor functions. The top bits of page->flags
* and page->virtual store page management information, but all other fields
* are unused and could be used privately, carefully. The management of this
* page is the responsibility of the one who allocated it, and those who have
* subsequently been given references to it.
*
* The other pages (we may call them "pagecache pages") are completely
* managed by the Linux memory manager: I/O, buffers, swapping etc.
* The following discussion applies only to them.
*
* A pagecache page contains an opaque `private' member, which belongs to the
* page's address_space. Usually, this is the address of a circular list of
* the page's disk buffers. PG_private must be set to tell the VM to call
* into the filesystem to release these pages.
*
* A page may belong to an inode's memory mapping. In this case, page->mapping
* is the pointer to the inode, and page->index is the file offset of the page,
* in units of PAGE_SIZE.
*
* If pagecache pages are not associated with an inode, they are said to be
* anonymous pages. These may become associated with the swapcache, and in that
* case PG_swapcache is set, and page->private is an offset into the swapcache.
*
* In either case (swapcache or inode backed), the pagecache itself holds one
* reference to the page. Setting PG_private should also increment the
* refcount. The each user mapping also has a reference to the page.
*
* The pagecache pages are stored in a per-mapping radix tree, which is
* rooted at mapping->page_tree, and indexed by offset.
* Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
* lists, we instead now tag pages as dirty/writeback in the radix tree.
*
* All pagecache pages may be subject to I/O:
* - inode pages may need to be read from disk,
* - inode pages which have been modified and are MAP_SHARED may need
* to be written back to the inode on disk,
* - anonymous pages (including MAP_PRIVATE file mappings) which have been
* modified may need to be swapped out to swap space and (later) to be read
* back into memory.
*/
/*
* The zone field is never updated after free_area_init_core()
* sets it, so none of the operations on it need to be atomic.
*/
/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
/*
* Define the bit shifts to access each section. For non-existent
* sections we define the shift as 0; that plus a 0 mask ensures
* the compiler will optimise away reference to them.
*/
#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
#ifdef NODE_NOT_IN_PAGE_FLAGS
#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
SECTIONS_PGOFF : ZONES_PGOFF)
#else
#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
NODES_PGOFF : ZONES_PGOFF)
#endif
#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
#endif
#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
static inline enum zone_type page_zonenum(const struct page *page)
{
return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
}
#ifdef CONFIG_ZONE_DEVICE
void get_zone_device_page(struct page *page);
void put_zone_device_page(struct page *page);
static inline bool is_zone_device_page(const struct page *page)
{
return page_zonenum(page) == ZONE_DEVICE;
}
static inline bool is_device_private_page(const struct page *page);
static inline bool is_device_public_page(const struct page *page);
#else
static inline void get_zone_device_page(struct page *page)
{
}
static inline void put_zone_device_page(struct page *page)
{
}
static inline bool is_zone_device_page(const struct page *page)
{
return false;
}
static inline bool is_device_private_page(const struct page *page)
{
return false;
}
static inline bool is_device_public_page(const struct page *page)
{
return false;
}
#endif
/* 127: arbitrary random number, small enough to assemble well */
#define page_ref_zero_or_close_to_overflow(page) \
((unsigned int) page_ref_count(page) + 127u <= 127u)
static inline void get_page(struct page *page)
{
page = compound_head(page);
/*
* Getting a normal page or the head of a compound page
* requires to already have an elevated page->_refcount.
*/
VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
page_ref_inc(page);
if (unlikely(is_zone_device_page(page)))
get_zone_device_page(page);
}
static inline __must_check bool try_get_page(struct page *page)
{
page = compound_head(page);
if (WARN_ON_ONCE(page_ref_count(page) <= 0))
return false;
page_ref_inc(page);
return true;
}
static inline void put_page(struct page *page)
{
page = compound_head(page);
/*
* For private device pages we need to catch refcount transition from
* 2 to 1, when refcount reach one it means the private device page is
* free and we need to inform the device driver through callback. See
* include/linux/memremap.h and HMM for details.
*/
if (unlikely(is_zone_device_page(page))) {
put_zone_device_page(page);
return;
}
if (put_page_testzero(page))
__put_page(page);
}
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTION_IN_PAGE_FLAGS
#endif
/*
* The identification function is mainly used by the buddy allocator for
* determining if two pages could be buddies. We are not really identifying
* the zone since we could be using the section number id if we do not have
* node id available in page flags.
* We only guarantee that it will return the same value for two combinable
* pages in a zone.
*/
static inline int page_zone_id(struct page *page)
{
return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
}
static inline int zone_to_nid(struct zone *zone)
{
#ifdef CONFIG_NUMA
return zone->node;
#else
return 0;
#endif
}
#ifdef NODE_NOT_IN_PAGE_FLAGS
extern int page_to_nid(const struct page *page);
#else
static inline int page_to_nid(const struct page *page)
{
return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
}
#endif
#ifdef CONFIG_NUMA_BALANCING
static inline int cpu_pid_to_cpupid(int cpu, int pid)
{
return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
}
static inline int cpupid_to_pid(int cpupid)
{
return cpupid & LAST__PID_MASK;
}
static inline int cpupid_to_cpu(int cpupid)
{
return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
}
static inline int cpupid_to_nid(int cpupid)
{
return cpu_to_node(cpupid_to_cpu(cpupid));
}
static inline bool cpupid_pid_unset(int cpupid)
{
return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
}
static inline bool cpupid_cpu_unset(int cpupid)
{
return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
}
static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
{
return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
}
#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
{
return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
}
static inline int page_cpupid_last(struct page *page)
{
return page->_last_cpupid;
}
static inline void page_cpupid_reset_last(struct page *page)
{
page->_last_cpupid = -1 & LAST_CPUPID_MASK;
}
#else
static inline int page_cpupid_last(struct page *page)
{
return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
}
extern int page_cpupid_xchg_last(struct page *page, int cpupid);
static inline void page_cpupid_reset_last(struct page *page)
{
page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
}
#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
#else /* !CONFIG_NUMA_BALANCING */
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
{
return page_to_nid(page); /* XXX */
}
static inline int page_cpupid_last(struct page *page)
{
return page_to_nid(page); /* XXX */
}
static inline int cpupid_to_nid(int cpupid)
{
return -1;
}
static inline int cpupid_to_pid(int cpupid)
{
return -1;
}
static inline int cpupid_to_cpu(int cpupid)
{
return -1;
}
static inline int cpu_pid_to_cpupid(int nid, int pid)
{
return -1;
}
static inline bool cpupid_pid_unset(int cpupid)
{
return 1;
}
static inline void page_cpupid_reset_last(struct page *page)
{
}
static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
{
return false;
}
#endif /* CONFIG_NUMA_BALANCING */
static inline struct zone *page_zone(const struct page *page)
{
return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
}
static inline pg_data_t *page_pgdat(const struct page *page)
{
return NODE_DATA(page_to_nid(page));
}
#ifdef SECTION_IN_PAGE_FLAGS
static inline void set_page_section(struct page *page, unsigned long section)
{
page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
}
static inline unsigned long page_to_section(const struct page *page)
{
return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
}
#endif
static inline void set_page_zone(struct page *page, enum zone_type zone)
{
page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
}
static inline void set_page_node(struct page *page, unsigned long node)
{
page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
}
static inline void set_page_links(struct page *page, enum zone_type zone,
unsigned long node, unsigned long pfn)
{
set_page_zone(page, zone);
set_page_node(page, node);
#ifdef SECTION_IN_PAGE_FLAGS
set_page_section(page, pfn_to_section_nr(pfn));
#endif
}
#ifdef CONFIG_MEMCG
static inline struct mem_cgroup *page_memcg(struct page *page)
{
return page->mem_cgroup;
}
static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return READ_ONCE(page->mem_cgroup);
}
#else
static inline struct mem_cgroup *page_memcg(struct page *page)
{
return NULL;
}
static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
{
WARN_ON_ONCE(!rcu_read_lock_held());
return NULL;
}
#endif
/*
* Some inline functions in vmstat.h depend on page_zone()
*/
#include <linux/vmstat.h>
static __always_inline void *lowmem_page_address(const struct page *page)
{
return page_to_virt(page);
}
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
#define HASHED_PAGE_VIRTUAL
#endif
#if defined(WANT_PAGE_VIRTUAL)
static inline void *page_address(const struct page *page)
{
return page->virtual;
}
static inline void set_page_address(struct page *page, void *address)
{
page->virtual = address;
}
#define page_address_init() do { } while(0)
#endif
#if defined(HASHED_PAGE_VIRTUAL)
void *page_address(const struct page *page);
void set_page_address(struct page *page, void *virtual);
void page_address_init(void);
#endif
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address) do { } while(0)
#define page_address_init() do { } while(0)
#endif
extern void *page_rmapping(struct page *page);
extern struct anon_vma *page_anon_vma(struct page *page);
extern struct address_space *page_mapping(struct page *page);
extern struct address_space *__page_file_mapping(struct page *);
static inline
struct address_space *page_file_mapping(struct page *page)
{
if (unlikely(PageSwapCache(page)))
return __page_file_mapping(page);
return page->mapping;
}
extern pgoff_t __page_file_index(struct page *page);
/*
* Return the pagecache index of the passed page. Regular pagecache pages
* use ->index whereas swapcache pages use swp_offset(->private)
*/
static inline pgoff_t page_index(struct page *page)
{
if (unlikely(PageSwapCache(page)))
return __page_file_index(page);
return page->index;
}
bool page_mapped(struct page *page);
struct address_space *page_mapping(struct page *page);
/*
* Return true only if the page has been allocated with
* ALLOC_NO_WATERMARKS and the low watermark was not
* met implying that the system is under some pressure.
*/
static inline bool page_is_pfmemalloc(struct page *page)
{
/*
* Page index cannot be this large so this must be
* a pfmemalloc page.
*/
return page->index == -1UL;
}
/*
* Only to be called by the page allocator on a freshly allocated
* page.
*/
static inline void set_page_pfmemalloc(struct page *page)
{
page->index = -1UL;
}
static inline void clear_page_pfmemalloc(struct page *page)
{
page->index = 0;
}
/*
* Different kinds of faults, as returned by handle_mm_fault().
* Used to decide whether a process gets delivered SIGBUS or
* just gets major/minor fault counters bumped up.
*/
#define VM_FAULT_OOM 0x0001
#define VM_FAULT_SIGBUS 0x0002
#define VM_FAULT_MAJOR 0x0004
#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
#define VM_FAULT_SIGSEGV 0x0040
#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
#define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
VM_FAULT_FALLBACK)
/* Encode hstate index for a hwpoisoned large page */
#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
/*
* Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
*/
extern void pagefault_out_of_memory(void);
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
/*
* Flags passed to show_mem() and show_free_areas() to suppress output in
* various contexts.
*/
#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
extern void show_free_areas(unsigned int flags);
extern bool skip_free_areas_node(unsigned int flags, int nid);
void shmem_set_file(struct vm_area_struct *vma, struct file *file);
int shmem_zero_setup(struct vm_area_struct *);
#ifdef CONFIG_SHMEM
bool shmem_mapping(struct address_space *mapping);
#else
static inline bool shmem_mapping(struct address_space *mapping)
{
return false;
}
#endif
extern bool can_do_mlock(void);
extern int user_shm_lock(size_t, struct user_struct *);
extern void user_shm_unlock(size_t, struct user_struct *);
/*
* Parameter block passed down to zap_pte_range in exceptional cases.
*/
struct zap_details {
struct address_space *check_mapping; /* Check page->mapping if set */
pgoff_t first_index; /* Lowest page->index to unmap */
pgoff_t last_index; /* Highest page->index to unmap */
bool ignore_dirty; /* Ignore dirty pages */
bool check_swap_entries; /* Check also swap entries */
};
struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
pte_t pte, bool with_public_device);
#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t pmd);
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
unsigned long size);
void zap_page_range(struct vm_area_struct *vma, unsigned long address,
unsigned long size, struct zap_details *);
void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
unsigned long start, unsigned long end);
/*
* This has to be called after a get_task_mm()/mmget_not_zero()
* followed by taking the mmap_sem for writing before modifying the
* vmas or anything the coredump pretends not to change from under it.
*
* It also has to be called when mmgrab() is used in the context of
* the process, but then the mm_count refcount is transferred outside
* the context of the process to run down_write() on that pinned mm.
*
* NOTE: find_extend_vma() called from GUP context is the only place
* that can modify the "mm" (notably the vm_start/end) under mmap_sem
* for reading and outside the context of the process, so it is also
* the only case that holds the mmap_sem for reading that must call
* this function. Generally if the mmap_sem is hold for reading
* there's no need of this check after get_task_mm()/mmget_not_zero().
*
* This function can be obsoleted and the check can be removed, after
* the coredump code will hold the mmap_sem for writing before
* invoking the ->core_dump methods.
*/
static inline bool mmget_still_valid(struct mm_struct *mm)
{
return likely(!mm->core_state);
}
/**
* mm_walk - callbacks for walk_page_range
* @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
* this handler is required to be able to handle
* pmd_trans_huge() pmds. They may simply choose to
* split_huge_page() instead of handling it explicitly.
* @pte_entry: if set, called for each non-empty PTE (4th-level) entry
* @pte_hole: if set, called for each hole at all levels
* @hugetlb_entry: if set, called for each hugetlb entry
* @test_walk: caller specific callback function to determine whether
* we walk over the current vma or not. Returning 0
* value means "do page table walk over the current vma,"
* and a negative one means "abort current page table walk
* right now." 1 means "skip the current vma."
* @mm: mm_struct representing the target process of page table walk
* @vma: vma currently walked (NULL if walking outside vmas)
* @private: private data for callbacks' usage
*
* (see the comment on walk_page_range() for more details)
*/
struct mm_walk {
int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
unsigned long next, struct mm_walk *walk);
int (*pte_entry)(pte_t *pte, unsigned long addr,
unsigned long next, struct mm_walk *walk);
int (*pte_hole)(unsigned long addr, unsigned long next,
struct mm_walk *walk);
int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long next,
struct mm_walk *walk);
int (*test_walk)(unsigned long addr, unsigned long next,
struct mm_walk *walk);
struct mm_struct *mm;
struct vm_area_struct *vma;
void *private;
};
int walk_page_range(unsigned long addr, unsigned long end,
struct mm_walk *walk);
int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
unsigned long end, unsigned long floor, unsigned long ceiling);
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *vma);
void unmap_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen, int even_cows);
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
unsigned long *pfn);
int follow_phys(struct vm_area_struct *vma, unsigned long address,
unsigned int flags, unsigned long *prot, resource_size_t *phys);
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
void *buf, int len, int write);
static inline void unmap_shared_mapping_range(struct address_space *mapping,
loff_t const holebegin, loff_t const holelen)
{
unmap_mapping_range(mapping, holebegin, holelen, 0);
}
extern void truncate_pagecache(struct inode *inode, loff_t new);
extern void truncate_setsize(struct inode *inode, loff_t newsize);
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
int truncate_inode_page(struct address_space *mapping, struct page *page);
int generic_error_remove_page(struct address_space *mapping, struct page *page);
int invalidate_inode_page(struct page *page);
#ifdef CONFIG_MMU
extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
unsigned int flags);
extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
unsigned long address, unsigned int fault_flags,
bool *unlocked);
#else
static inline int handle_mm_fault(struct vm_area_struct *vma,
unsigned long address, unsigned int flags)
{
/* should never happen if there's no MMU */
BUG();
return VM_FAULT_SIGBUS;
}
static inline int fixup_user_fault(struct task_struct *tsk,
struct mm_struct *mm, unsigned long address,
unsigned int fault_flags, bool *unlocked)
{
/* should never happen if there's no MMU */
BUG();
return -EFAULT;
}
#endif
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
unsigned int gup_flags);
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
void *buf, int len, unsigned int gup_flags);
extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
unsigned long addr, void *buf, int len, unsigned int gup_flags);
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas);
long get_user_pages(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas);
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages, int *locked);
long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags);
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
struct page **pages, unsigned int gup_flags);
#ifdef CONFIG_FS_DAX
long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
unsigned int gup_flags, struct page **pages,
struct vm_area_struct **vmas);
#else
static inline long get_user_pages_longterm(unsigned long start,
unsigned long nr_pages, unsigned int gup_flags,
struct page **pages, struct vm_area_struct **vmas)
{
return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
}
#endif /* CONFIG_FS_DAX */
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
struct page **pages);
/* Container for pinned pfns / pages */
struct frame_vector {
unsigned int nr_allocated; /* Number of frames we have space for */
unsigned int nr_frames; /* Number of frames stored in ptrs array */
bool got_ref; /* Did we pin pages by getting page ref? */
bool is_pfns; /* Does array contain pages or pfns? */
void *ptrs[0]; /* Array of pinned pfns / pages. Use
* pfns_vector_pages() or pfns_vector_pfns()
* for access */
};
struct frame_vector *frame_vector_create(unsigned int nr_frames);
void frame_vector_destroy(struct frame_vector *vec);
int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
unsigned int gup_flags, struct frame_vector *vec);
void put_vaddr_frames(struct frame_vector *vec);
int frame_vector_to_pages(struct frame_vector *vec);
void frame_vector_to_pfns(struct frame_vector *vec);
static inline unsigned int frame_vector_count(struct frame_vector *vec)
{
return vec->nr_frames;
}
static inline struct page **frame_vector_pages(struct frame_vector *vec)
{
if (vec->is_pfns) {
int err = frame_vector_to_pages(vec);
if (err)
return ERR_PTR(err);
}
return (struct page **)(vec->ptrs);
}
static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
{
if (!vec->is_pfns)
frame_vector_to_pfns(vec);
return (unsigned long *)(vec->ptrs);
}
struct kvec;
int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
struct page **pages);
int get_kernel_page(unsigned long start, int write, struct page **pages);
struct page *get_dump_page(unsigned long addr);
extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
extern void do_invalidatepage(struct page *page, unsigned int offset,
unsigned int length);
int __set_page_dirty_nobuffers(struct page *page);
int __set_page_dirty_no_writeback(struct page *page);
int redirty_page_for_writepage(struct writeback_control *wbc,
struct page *page);
void account_page_dirtied(struct page *page, struct address_space *mapping);
void account_page_cleaned(struct page *page, struct address_space *mapping,
struct bdi_writeback *wb);
int set_page_dirty(struct page *page);
int set_page_dirty_lock(struct page *page);
void cancel_dirty_page(struct page *page);
int clear_page_dirty_for_io(struct page *page);
int get_cmdline(struct task_struct *task, char *buffer, int buflen);
static inline bool vma_is_anonymous(struct vm_area_struct *vma)
{
return !vma->vm_ops;
}
int vma_is_stack_for_current(struct vm_area_struct *vma);
extern unsigned long move_page_tables(struct vm_area_struct *vma,
unsigned long old_addr, struct vm_area_struct *new_vma,
unsigned long new_addr, unsigned long len,
bool need_rmap_locks);
extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgprot_t newprot,
int dirty_accountable, int prot_numa);
extern int mprotect_fixup(struct vm_area_struct *vma,
struct vm_area_struct **pprev, unsigned long start,
unsigned long end, unsigned long newflags);
/*
* doesn't attempt to fault and will return short.
*/
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
struct page **pages);
/*
* per-process(per-mm_struct) statistics.
*/
static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
{
long val = atomic_long_read(&mm->rss_stat.count[member]);
#ifdef SPLIT_RSS_COUNTING
/*
* counter is updated in asynchronous manner and may go to minus.
* But it's never be expected number for users.
*/
if (val < 0)
val = 0;
#endif
return (unsigned long)val;
}
static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
{
atomic_long_add(value, &mm->rss_stat.count[member]);
}
static inline void inc_mm_counter(struct mm_struct *mm, int member)
{
atomic_long_inc(&mm->rss_stat.count[member]);
}
static inline void dec_mm_counter(struct mm_struct *mm, int member)
{
atomic_long_dec(&mm->rss_stat.count[member]);
}
/* Optimized variant when page is already known not to be PageAnon */
static inline int mm_counter_file(struct page *page)
{
if (PageSwapBacked(page))
return MM_SHMEMPAGES;
return MM_FILEPAGES;
}
static inline int mm_counter(struct page *page)
{
if (PageAnon(page))
return MM_ANONPAGES;
return mm_counter_file(page);
}
static inline unsigned long get_mm_rss(struct mm_struct *mm)
{
return get_mm_counter(mm, MM_FILEPAGES) +
get_mm_counter(mm, MM_ANONPAGES) +
get_mm_counter(mm, MM_SHMEMPAGES);
}
static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
{
return max(mm->hiwater_rss, get_mm_rss(mm));
}
static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
{
return max(mm->hiwater_vm, mm->total_vm);
}
static inline void update_hiwater_rss(struct mm_struct *mm)
{
unsigned long _rss = get_mm_rss(mm);
if ((mm)->hiwater_rss < _rss)
(mm)->hiwater_rss = _rss;
}
static inline void update_hiwater_vm(struct mm_struct *mm)
{
if (mm->hiwater_vm < mm->total_vm)
mm->hiwater_vm = mm->total_vm;
}
static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
{
mm->hiwater_rss = get_mm_rss(mm);
}
static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
struct mm_struct *mm)
{
unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
if (*maxrss < hiwater_rss)
*maxrss = hiwater_rss;
}
#if defined(SPLIT_RSS_COUNTING)
void sync_mm_rss(struct mm_struct *mm);
#else
static inline void sync_mm_rss(struct mm_struct *mm)
{
}
#endif
#ifndef __HAVE_ARCH_PTE_DEVMAP
static inline int pte_devmap(pte_t pte)
{
return 0;
}
#endif
int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
spinlock_t **ptl);
static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
spinlock_t **ptl)
{
pte_t *ptep;
__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
return ptep;
}
#ifdef __PAGETABLE_PUD_FOLDED
static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
unsigned long address)
{
return 0;
}
#else
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
#endif
#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
unsigned long address)
{
return 0;
}
static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
{
return 0;
}
static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
#else
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
static inline void mm_nr_pmds_init(struct mm_struct *mm)
{
atomic_long_set(&mm->nr_pmds, 0);
}
static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
{
return atomic_long_read(&mm->nr_pmds);
}
static inline void mm_inc_nr_pmds(struct mm_struct *mm)
{
atomic_long_inc(&mm->nr_pmds);
}
static inline void mm_dec_nr_pmds(struct mm_struct *mm)
{
atomic_long_dec(&mm->nr_pmds);
}
#endif
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
/*
* The following ifdef needed to get the 4level-fixup.h header to work.
* Remove it when 4level-fixup.h has been removed.
*/
#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
NULL: pud_offset(pgd, address);
}
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
NULL: pmd_offset(pud, address);
}
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
#if USE_SPLIT_PTE_PTLOCKS
#if ALLOC_SPLIT_PTLOCKS
void __init ptlock_cache_init(void);
extern bool ptlock_alloc(struct page *page);
extern void ptlock_free(struct page *page);
static inline spinlock_t *ptlock_ptr(struct page *page)
{
return page->ptl;
}
#else /* ALLOC_SPLIT_PTLOCKS */
static inline void ptlock_cache_init(void)
{
}
static inline bool ptlock_alloc(struct page *page)
{
return true;
}
static inline void ptlock_free(struct page *page)
{
}
static inline spinlock_t *ptlock_ptr(struct page *page)
{
return &page->ptl;
}
#endif /* ALLOC_SPLIT_PTLOCKS */
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return ptlock_ptr(pmd_page(*pmd));
}
static inline bool ptlock_init(struct page *page)
{
/*
* prep_new_page() initialize page->private (and therefore page->ptl)
* with 0. Make sure nobody took it in use in between.
*
* It can happen if arch try to use slab for page table allocation:
* slab code uses page->slab_cache, which share storage with page->ptl.
*/
VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
if (!ptlock_alloc(page))
return false;
spin_lock_init(ptlock_ptr(page));
return true;
}
/* Reset page->mapping so free_pages_check won't complain. */
static inline void pte_lock_deinit(struct page *page)
{
page->mapping = NULL;
ptlock_free(page);
}
#else /* !USE_SPLIT_PTE_PTLOCKS */
/*
* We use mm->page_table_lock to guard all pagetable pages of the mm.
*/
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return &mm->page_table_lock;
}
static inline void ptlock_cache_init(void) {}
static inline bool ptlock_init(struct page *page) { return true; }
static inline void pte_lock_deinit(struct page *page) {}
#endif /* USE_SPLIT_PTE_PTLOCKS */
static inline void pgtable_init(void)
{
ptlock_cache_init();
pgtable_cache_init();
}
static inline bool pgtable_page_ctor(struct page *page)
{
if (!ptlock_init(page))
return false;
inc_zone_page_state(page, NR_PAGETABLE);
return true;
}
static inline void pgtable_page_dtor(struct page *page)
{
pte_lock_deinit(page);
dec_zone_page_state(page, NR_PAGETABLE);
}
#define pte_offset_map_lock(mm, pmd, address, ptlp) \
({ \
spinlock_t *__ptl = pte_lockptr(mm, pmd); \
pte_t *__pte = pte_offset_map(pmd, address); \
*(ptlp) = __ptl; \
spin_lock(__ptl); \
__pte; \
})
#define pte_unmap_unlock(pte, ptl) do { \
spin_unlock(ptl); \
pte_unmap(pte); \
} while (0)
#define pte_alloc(mm, pmd, address) \
(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
#define pte_alloc_map(mm, pmd, address) \
(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
(pte_alloc(mm, pmd, address) ? \
NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
#define pte_alloc_kernel(pmd, address) \
((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
NULL: pte_offset_kernel(pmd, address))
#if USE_SPLIT_PMD_PTLOCKS
static struct page *pmd_to_page(pmd_t *pmd)
{
unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
return virt_to_page((void *)((unsigned long) pmd & mask));
}
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return ptlock_ptr(pmd_to_page(pmd));
}
static inline bool pgtable_pmd_page_ctor(struct page *page)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
page->pmd_huge_pte = NULL;
#endif
return ptlock_init(page);
}
static inline void pgtable_pmd_page_dtor(struct page *page)
{
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
#endif
ptlock_free(page);
}
#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
#else
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
{
return &mm->page_table_lock;
}
static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
static inline void pgtable_pmd_page_dtor(struct page *page) {}
#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
#endif
static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
{
spinlock_t *ptl = pmd_lockptr(mm, pmd);
spin_lock(ptl);
return ptl;
}
extern void free_area_init(unsigned long * zones_size);
extern void free_area_init_node(int nid, unsigned long * zones_size,
unsigned long zone_start_pfn, unsigned long *zholes_size);
extern void free_initmem(void);
/*
* Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
* into the buddy system. The freed pages will be poisoned with pattern
* "poison" if it's within range [0, UCHAR_MAX].
* Return pages freed into the buddy system.
*/
extern unsigned long free_reserved_area(void *start, void *end,
int poison, char *s);
#ifdef CONFIG_HIGHMEM
/*
* Free a highmem page into the buddy system, adjusting totalhigh_pages
* and totalram_pages.
*/
extern void free_highmem_page(struct page *page);
#endif
extern void adjust_managed_page_count(struct page *page, long count);
extern void mem_init_print_info(const char *str);
extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
/* Free the reserved page into the buddy system, so it gets managed. */
static inline void __free_reserved_page(struct page *page)
{
ClearPageReserved(page);
init_page_count(page);
__free_page(page);
}
static inline void free_reserved_page(struct page *page)
{
__free_reserved_page(page);
adjust_managed_page_count(page, 1);
}
static inline void mark_page_reserved(struct page *page)
{
SetPageReserved(page);
adjust_managed_page_count(page, -1);
}
/*
* Default method to free all the __init memory into the buddy system.
* The freed pages will be poisoned with pattern "poison" if it's within
* range [0, UCHAR_MAX].
* Return pages freed into the buddy system.
*/
static inline unsigned long free_initmem_default(int poison)
{
extern char __init_begin[], __init_end[];
return free_reserved_area(&__init_begin, &__init_end,
poison, "unused kernel");
}
static inline unsigned long get_num_physpages(void)
{
int nid;
unsigned long phys_pages = 0;
for_each_online_node(nid)
phys_pages += node_present_pages(nid);
return phys_pages;
}
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
/*
* With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
* zones, allocate the backing mem_map and account for memory holes in a more
* architecture independent manner. This is a substitute for creating the
* zone_sizes[] and zholes_size[] arrays and passing them to
* free_area_init_node()
*
* An architecture is expected to register range of page frames backed by
* physical memory with memblock_add[_node]() before calling
* free_area_init_nodes() passing in the PFN each zone ends at. At a basic
* usage, an architecture is expected to do something like
*
* unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
* max_highmem_pfn};
* for_each_valid_physical_page_range()
* memblock_add_node(base, size, nid)
* free_area_init_nodes(max_zone_pfns);
*
* free_bootmem_with_active_regions() calls free_bootmem_node() for each
* registered physical page range. Similarly
* sparse_memory_present_with_active_regions() calls memory_present() for
* each range when SPARSEMEM is enabled.
*
* See mm/page_alloc.c for more information on each function exposed by
* CONFIG_HAVE_MEMBLOCK_NODE_MAP.
*/
extern void free_area_init_nodes(unsigned long *max_zone_pfn);
unsigned long node_map_pfn_alignment(void);
unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
unsigned long end_pfn);
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
unsigned long end_pfn);
extern void get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn);
extern unsigned long find_min_pfn_with_active_regions(void);
extern void free_bootmem_with_active_regions(int nid,
unsigned long max_low_pfn);
extern void sparse_memory_present_with_active_regions(int nid);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
!defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
static inline int __early_pfn_to_nid(unsigned long pfn,
struct mminit_pfnnid_cache *state)
{
return 0;
}
#else
/* please see mm/page_alloc.c */
extern int __meminit early_pfn_to_nid(unsigned long pfn);
/* there is a per-arch backend function. */
extern int __meminit __early_pfn_to_nid(unsigned long pfn,
struct mminit_pfnnid_cache *state);
#endif
extern void set_dma_reserve(unsigned long new_dma_reserve);
extern void memmap_init_zone(unsigned long, int, unsigned long,
unsigned long, enum memmap_context);
extern void setup_per_zone_wmarks(void);
extern int __meminit init_per_zone_wmark_min(void);
extern void mem_init(void);
extern void __init mmap_init(void);
extern void show_mem(unsigned int flags);
extern long si_mem_available(void);
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);
#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
extern unsigned long arch_reserved_kernel_pages(void);
#endif
extern __printf(2, 3)
void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
extern void setup_per_cpu_pageset(void);
extern void zone_pcp_update(struct zone *zone);
extern void zone_pcp_reset(struct zone *zone);
/* page_alloc.c */
extern int min_free_kbytes;
extern int watermark_scale_factor;
/* nommu.c */
extern atomic_long_t mmap_pages_allocated;
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
/* interval_tree.c */
void vma_interval_tree_insert(struct vm_area_struct *node,
struct rb_root *root);
void vma_interval_tree_insert_after(struct vm_area_struct *node,
struct vm_area_struct *prev,
struct rb_root *root);
void vma_interval_tree_remove(struct vm_area_struct *node,
struct rb_root *root);
struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
unsigned long start, unsigned long last);
struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
unsigned long start, unsigned long last);
#define vma_interval_tree_foreach(vma, root, start, last) \
for (vma = vma_interval_tree_iter_first(root, start, last); \
vma; vma = vma_interval_tree_iter_next(vma, start, last))
void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
struct rb_root *root);
void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
struct rb_root *root);
struct anon_vma_chain *anon_vma_interval_tree_iter_first(
struct rb_root *root, unsigned long start, unsigned long last);
struct anon_vma_chain *anon_vma_interval_tree_iter_next(
struct anon_vma_chain *node, unsigned long start, unsigned long last);
#ifdef CONFIG_DEBUG_VM_RB
void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
#endif
#define anon_vma_interval_tree_foreach(avc, root, start, last) \
for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
/* mmap.c */
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
struct vm_area_struct *expand);
static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
{
return __vma_adjust(vma, start, end, pgoff, insert, NULL);
}
extern struct vm_area_struct *vma_merge(struct mm_struct *,
struct vm_area_struct *prev, unsigned long addr, unsigned long end,
unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
struct mempolicy *, struct vm_userfaultfd_ctx, const char __user *);
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
extern int split_vma(struct mm_struct *,
struct vm_area_struct *, unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
struct rb_node **, struct rb_node *);
extern void unlink_file_vma(struct vm_area_struct *);
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
unsigned long addr, unsigned long len, pgoff_t pgoff,
bool *need_rmap_locks);
extern void exit_mmap(struct mm_struct *);
static inline int check_data_rlimit(unsigned long rlim,
unsigned long new,
unsigned long start,
unsigned long end_data,
unsigned long start_data)
{
if (rlim < RLIM_INFINITY) {
if (((new - start) + (end_data - start_data)) > rlim)
return -ENOSPC;
}
return 0;
}
extern int mm_take_all_locks(struct mm_struct *mm);
extern void mm_drop_all_locks(struct mm_struct *mm);
extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
extern struct file *get_mm_exe_file(struct mm_struct *mm);
extern struct file *get_task_exe_file(struct task_struct *task);
extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
const struct vm_special_mapping *sm);
extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long flags,
const struct vm_special_mapping *spec);
/* This is an obsolete alternative to _install_special_mapping. */
extern int install_special_mapping(struct mm_struct *mm,
unsigned long addr, unsigned long len,
unsigned long flags, struct page **pages);
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
extern unsigned long mmap_region(struct file *file, unsigned long addr,
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
extern unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot, unsigned long flags,
vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
extern int do_munmap(struct mm_struct *, unsigned long, size_t);
static inline unsigned long
do_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot, unsigned long flags,
unsigned long pgoff, unsigned long *populate)
{
return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
}
#ifdef CONFIG_MMU
extern int __mm_populate(unsigned long addr, unsigned long len,
int ignore_errors);
static inline void mm_populate(unsigned long addr, unsigned long len)
{
/* Ignore errors */
(void) __mm_populate(addr, len, 1);
}
#else
static inline void mm_populate(unsigned long addr, unsigned long len) {}
#endif
/* These take the mm semaphore themselves */
extern int __must_check vm_brk(unsigned long, unsigned long);
extern int vm_munmap(unsigned long, size_t);
extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
unsigned long, unsigned long,
unsigned long, unsigned long);
struct vm_unmapped_area_info {
#define VM_UNMAPPED_AREA_TOPDOWN 1
unsigned long flags;
unsigned long length;
unsigned long low_limit;
unsigned long high_limit;
unsigned long align_mask;
unsigned long align_offset;
};
extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
/*
* Search for an unmapped address range.
*
* We are looking for a range that:
* - does not intersect with any VMA;
* - is contained within the [low_limit, high_limit) interval;
* - is at least the desired size.
* - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
*/
static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info *info)
{
if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
return unmapped_area_topdown(info);
else
return unmapped_area(info);
}
/* truncate.c */
extern void truncate_inode_pages(struct address_space *, loff_t);
extern void truncate_inode_pages_range(struct address_space *,
loff_t lstart, loff_t lend);
extern void truncate_inode_pages_final(struct address_space *);
/* generic vm_area_ops exported for stackable file systems */
extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
extern void filemap_map_pages(struct fault_env *fe,
pgoff_t start_pgoff, pgoff_t end_pgoff);
extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
/* mm/page-writeback.c */
int write_one_page(struct page *page, int wait);
void task_dirty_inc(struct task_struct *tsk);
/* readahead.c */
#define VM_MAX_READAHEAD 128 /* kbytes */
#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
pgoff_t offset, unsigned long nr_to_read);
void page_cache_sync_readahead(struct address_space *mapping,
struct file_ra_state *ra,
struct file *filp,
pgoff_t offset,
unsigned long size);
void page_cache_async_readahead(struct address_space *mapping,
struct file_ra_state *ra,
struct file *filp,
struct page *pg,
pgoff_t offset,
unsigned long size);
extern unsigned long stack_guard_gap;
/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
extern int expand_downwards(struct vm_area_struct *vma,
unsigned long address);
#if VM_GROWSUP
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
#else
#define expand_upwards(vma, address) (0)
#endif
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
struct vm_area_struct **pprev);
/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
NULL if none. Assume start_addr < end_addr. */
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
{
struct vm_area_struct * vma = find_vma(mm,start_addr);
if (vma && end_addr <= vma->vm_start)
vma = NULL;
return vma;
}
static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
{
unsigned long vm_start = vma->vm_start;
if (vma->vm_flags & VM_GROWSDOWN) {
vm_start -= stack_guard_gap;
if (vm_start > vma->vm_start)
vm_start = 0;
}
return vm_start;
}
static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
{
unsigned long vm_end = vma->vm_end;
if (vma->vm_flags & VM_GROWSUP) {
vm_end += stack_guard_gap;
if (vm_end < vma->vm_end)
vm_end = -PAGE_SIZE;
}
return vm_end;
}
static inline unsigned long vma_pages(struct vm_area_struct *vma)
{
return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
}
/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
unsigned long vm_start, unsigned long vm_end)
{
struct vm_area_struct *vma = find_vma(mm, vm_start);
if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
vma = NULL;
return vma;
}
static inline bool range_in_vma(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
return (vma && vma->vm_start <= start && end <= vma->vm_end);
}
#ifdef CONFIG_MMU
pgprot_t vm_get_page_prot(unsigned long vm_flags);
void vma_set_page_prot(struct vm_area_struct *vma);
#else
static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
{
return __pgprot(0);
}
static inline void vma_set_page_prot(struct vm_area_struct *vma)
{
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
}
#endif
#ifdef CONFIG_NUMA_BALANCING
unsigned long change_prot_numa(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
#endif
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
unsigned long pfn, unsigned long size, pgprot_t);
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn);
int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn, pgprot_t pgprot);
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
pfn_t pfn);
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
struct page *follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int foll_flags,
unsigned int *page_mask);
static inline struct page *follow_page(struct vm_area_struct *vma,
unsigned long address, unsigned int foll_flags)
{
unsigned int unused_page_mask;
return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
}
#define FOLL_WRITE 0x01 /* check pte is writable */
#define FOLL_TOUCH 0x02 /* mark page accessed */
#define FOLL_GET 0x04 /* do get_page on page */
#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
* and return without waiting upon it */
#define FOLL_POPULATE 0x40 /* fault in page */
#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
#define FOLL_MLOCK 0x1000 /* lock present pages */
#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
#define FOLL_COW 0x4000 /* internal GUP flag */
#define FOLL_ANON 0x8000 /* don't do file mappings */
typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
void *data);
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
unsigned long size, pte_fn_t fn, void *data);
#ifdef CONFIG_PAGE_POISONING
extern bool page_poisoning_enabled(void);
extern void kernel_poison_pages(struct page *page, int numpages, int enable);
extern bool page_is_poisoned(struct page *page);
#else
static inline bool page_poisoning_enabled(void) { return false; }
static inline void kernel_poison_pages(struct page *page, int numpages,
int enable) { }
static inline bool page_is_poisoned(struct page *page) { return false; }
#endif
#ifdef CONFIG_DEBUG_PAGEALLOC
extern bool _debug_pagealloc_enabled;
extern void __kernel_map_pages(struct page *page, int numpages, int enable);
static inline bool debug_pagealloc_enabled(void)
{
return _debug_pagealloc_enabled;
}
static inline void
kernel_map_pages(struct page *page, int numpages, int enable)
{
if (!debug_pagealloc_enabled())
return;
__kernel_map_pages(page, numpages, enable);
}
#ifdef CONFIG_HIBERNATION
extern bool kernel_page_present(struct page *page);
#endif /* CONFIG_HIBERNATION */
#else /* CONFIG_DEBUG_PAGEALLOC */
static inline void
kernel_map_pages(struct page *page, int numpages, int enable) {}
#ifdef CONFIG_HIBERNATION
static inline bool kernel_page_present(struct page *page) { return true; }
#endif /* CONFIG_HIBERNATION */
static inline bool debug_pagealloc_enabled(void)
{
return false;
}
#endif /* CONFIG_DEBUG_PAGEALLOC */
#ifdef __HAVE_ARCH_GATE_AREA
extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
extern int in_gate_area_no_mm(unsigned long addr);
extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
#else
static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
{
return NULL;
}
static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
{
return 0;
}
#endif /* __HAVE_ARCH_GATE_AREA */
extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
#ifdef CONFIG_SYSCTL
extern int sysctl_drop_caches;
int drop_caches_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
#endif
void drop_slab(void);
void drop_slab_node(int nid);
#ifndef CONFIG_MMU
#define randomize_va_space 0
#else
extern int randomize_va_space;
#endif
const char * arch_vma_name(struct vm_area_struct *vma);
void print_vma_addr(char *prefix, unsigned long rip);
void sparse_mem_maps_populate_node(struct page **map_map,
unsigned long pnum_begin,
unsigned long pnum_end,
unsigned long map_count,
int nodeid);
struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
void *vmemmap_alloc_block(unsigned long size, int node);
struct vmem_altmap;
void *__vmemmap_alloc_block_buf(unsigned long size, int node,
struct vmem_altmap *altmap);
static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
{
return __vmemmap_alloc_block_buf(size, node, NULL);
}
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
int vmemmap_populate_basepages(unsigned long start, unsigned long end,
int node);
int vmemmap_populate(unsigned long start, unsigned long end, int node);
void vmemmap_populate_print_last(void);
#ifdef CONFIG_MEMORY_HOTPLUG
void vmemmap_free(unsigned long start, unsigned long end);
#endif
void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
unsigned long size);
enum mf_flags {
MF_COUNT_INCREASED = 1 << 0,
MF_ACTION_REQUIRED = 1 << 1,
MF_MUST_KILL = 1 << 2,
MF_SOFT_OFFLINE = 1 << 3,
};
extern int memory_failure(unsigned long pfn, int trapno, int flags);
extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
extern int unpoison_memory(unsigned long pfn);
extern int get_hwpoison_page(struct page *page);
#define put_hwpoison_page(page) put_page(page)
extern int sysctl_memory_failure_early_kill;
extern int sysctl_memory_failure_recovery;
extern void shake_page(struct page *p, int access);
extern atomic_long_t num_poisoned_pages;
extern int soft_offline_page(struct page *page, int flags);
/*
* Error handlers for various types of pages.
*/
enum mf_result {
MF_IGNORED, /* Error: cannot be handled */
MF_FAILED, /* Error: handling failed */
MF_DELAYED, /* Will be handled later */
MF_RECOVERED, /* Successfully recovered */
};
enum mf_action_page_type {
MF_MSG_KERNEL,
MF_MSG_KERNEL_HIGH_ORDER,
MF_MSG_SLAB,
MF_MSG_DIFFERENT_COMPOUND,
MF_MSG_POISONED_HUGE,
MF_MSG_HUGE,
MF_MSG_FREE_HUGE,
MF_MSG_UNMAP_FAILED,
MF_MSG_DIRTY_SWAPCACHE,
MF_MSG_CLEAN_SWAPCACHE,
MF_MSG_DIRTY_MLOCKED_LRU,
MF_MSG_CLEAN_MLOCKED_LRU,
MF_MSG_DIRTY_UNEVICTABLE_LRU,
MF_MSG_CLEAN_UNEVICTABLE_LRU,
MF_MSG_DIRTY_LRU,
MF_MSG_CLEAN_LRU,
MF_MSG_TRUNCATED_LRU,
MF_MSG_BUDDY,
MF_MSG_BUDDY_2ND,
MF_MSG_UNKNOWN,
};
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
extern void clear_huge_page(struct page *page,
unsigned long addr,
unsigned int pages_per_huge_page);
extern void copy_user_huge_page(struct page *dst, struct page *src,
unsigned long addr, struct vm_area_struct *vma,
unsigned int pages_per_huge_page);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
extern struct page_ext_operations debug_guardpage_ops;
extern struct page_ext_operations page_poisoning_ops;
#ifdef CONFIG_DEBUG_PAGEALLOC
extern unsigned int _debug_guardpage_minorder;
extern bool _debug_guardpage_enabled;
static inline unsigned int debug_guardpage_minorder(void)
{
return _debug_guardpage_minorder;
}
static inline bool debug_guardpage_enabled(void)
{
return _debug_guardpage_enabled;
}
static inline bool page_is_guard(struct page *page)
{
struct page_ext *page_ext;
if (!debug_guardpage_enabled())
return false;
page_ext = lookup_page_ext(page);
if (unlikely(!page_ext))
return false;
return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
}
#else
static inline unsigned int debug_guardpage_minorder(void) { return 0; }
static inline bool debug_guardpage_enabled(void) { return false; }
static inline bool page_is_guard(struct page *page) { return false; }
#endif /* CONFIG_DEBUG_PAGEALLOC */
#if MAX_NUMNODES > 1
void __init setup_nr_node_ids(void);
#else
static inline void setup_nr_node_ids(void) {}
#endif
#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */