tegrakernel/kernel/kernel-4.9/net/core/pktgen.c

3987 lines
98 KiB
C

/*
* Authors:
* Copyright 2001, 2002 by Robert Olsson <robert.olsson@its.uu.se>
* Uppsala University and
* Swedish University of Agricultural Sciences
*
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
* Ben Greear <greearb@candelatech.com>
* Jens Låås <jens.laas@data.slu.se>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*
* A tool for loading the network with preconfigurated packets.
* The tool is implemented as a linux module. Parameters are output
* device, delay (to hard_xmit), number of packets, and whether
* to use multiple SKBs or just the same one.
* pktgen uses the installed interface's output routine.
*
* Additional hacking by:
*
* Jens.Laas@data.slu.se
* Improved by ANK. 010120.
* Improved by ANK even more. 010212.
* MAC address typo fixed. 010417 --ro
* Integrated. 020301 --DaveM
* Added multiskb option 020301 --DaveM
* Scaling of results. 020417--sigurdur@linpro.no
* Significant re-work of the module:
* * Convert to threaded model to more efficiently be able to transmit
* and receive on multiple interfaces at once.
* * Converted many counters to __u64 to allow longer runs.
* * Allow configuration of ranges, like min/max IP address, MACs,
* and UDP-ports, for both source and destination, and can
* set to use a random distribution or sequentially walk the range.
* * Can now change most values after starting.
* * Place 12-byte packet in UDP payload with magic number,
* sequence number, and timestamp.
* * Add receiver code that detects dropped pkts, re-ordered pkts, and
* latencies (with micro-second) precision.
* * Add IOCTL interface to easily get counters & configuration.
* --Ben Greear <greearb@candelatech.com>
*
* Renamed multiskb to clone_skb and cleaned up sending core for two distinct
* skb modes. A clone_skb=0 mode for Ben "ranges" work and a clone_skb != 0
* as a "fastpath" with a configurable number of clones after alloc's.
* clone_skb=0 means all packets are allocated this also means ranges time
* stamps etc can be used. clone_skb=100 means 1 malloc is followed by 100
* clones.
*
* Also moved to /proc/net/pktgen/
* --ro
*
* Sept 10: Fixed threading/locking. Lots of bone-headed and more clever
* mistakes. Also merged in DaveM's patch in the -pre6 patch.
* --Ben Greear <greearb@candelatech.com>
*
* Integrated to 2.5.x 021029 --Lucio Maciel (luciomaciel@zipmail.com.br)
*
*
* 021124 Finished major redesign and rewrite for new functionality.
* See Documentation/networking/pktgen.txt for how to use this.
*
* The new operation:
* For each CPU one thread/process is created at start. This process checks
* for running devices in the if_list and sends packets until count is 0 it
* also the thread checks the thread->control which is used for inter-process
* communication. controlling process "posts" operations to the threads this
* way.
* The if_list is RCU protected, and the if_lock remains to protect updating
* of if_list, from "add_device" as it invoked from userspace (via proc write).
*
* By design there should only be *one* "controlling" process. In practice
* multiple write accesses gives unpredictable result. Understood by "write"
* to /proc gives result code thats should be read be the "writer".
* For practical use this should be no problem.
*
* Note when adding devices to a specific CPU there good idea to also assign
* /proc/irq/XX/smp_affinity so TX-interrupts gets bound to the same CPU.
* --ro
*
* Fix refcount off by one if first packet fails, potential null deref,
* memleak 030710- KJP
*
* First "ranges" functionality for ipv6 030726 --ro
*
* Included flow support. 030802 ANK.
*
* Fixed unaligned access on IA-64 Grant Grundler <grundler@parisc-linux.org>
*
* Remove if fix from added Harald Welte <laforge@netfilter.org> 040419
* ia64 compilation fix from Aron Griffis <aron@hp.com> 040604
*
* New xmit() return, do_div and misc clean up by Stephen Hemminger
* <shemminger@osdl.org> 040923
*
* Randy Dunlap fixed u64 printk compiler warning
*
* Remove FCS from BW calculation. Lennert Buytenhek <buytenh@wantstofly.org>
* New time handling. Lennert Buytenhek <buytenh@wantstofly.org> 041213
*
* Corrections from Nikolai Malykh (nmalykh@bilim.com)
* Removed unused flags F_SET_SRCMAC & F_SET_SRCIP 041230
*
* interruptible_sleep_on_timeout() replaced Nishanth Aravamudan <nacc@us.ibm.com>
* 050103
*
* MPLS support by Steven Whitehouse <steve@chygwyn.com>
*
* 802.1Q/Q-in-Q support by Francesco Fondelli (FF) <francesco.fondelli@gmail.com>
*
* Fixed src_mac command to set source mac of packet to value specified in
* command by Adit Ranadive <adit.262@gmail.com>
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/sys.h>
#include <linux/types.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/unistd.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/capability.h>
#include <linux/hrtimer.h>
#include <linux/freezer.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/inet.h>
#include <linux/inetdevice.h>
#include <linux/rtnetlink.h>
#include <linux/if_arp.h>
#include <linux/if_vlan.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/udp.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/wait.h>
#include <linux/etherdevice.h>
#include <linux/kthread.h>
#include <linux/prefetch.h>
#include <net/net_namespace.h>
#include <net/checksum.h>
#include <net/ipv6.h>
#include <net/udp.h>
#include <net/ip6_checksum.h>
#include <net/addrconf.h>
#ifdef CONFIG_XFRM
#include <net/xfrm.h>
#endif
#include <net/netns/generic.h>
#include <asm/byteorder.h>
#include <linux/rcupdate.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/timex.h>
#include <linux/uaccess.h>
#include <asm/dma.h>
#include <asm/div64.h> /* do_div */
#define VERSION "2.75"
#define IP_NAME_SZ 32
#define MAX_MPLS_LABELS 16 /* This is the max label stack depth */
#define MPLS_STACK_BOTTOM htonl(0x00000100)
#define func_enter() pr_debug("entering %s\n", __func__);
/* Device flag bits */
#define F_IPSRC_RND (1<<0) /* IP-Src Random */
#define F_IPDST_RND (1<<1) /* IP-Dst Random */
#define F_UDPSRC_RND (1<<2) /* UDP-Src Random */
#define F_UDPDST_RND (1<<3) /* UDP-Dst Random */
#define F_MACSRC_RND (1<<4) /* MAC-Src Random */
#define F_MACDST_RND (1<<5) /* MAC-Dst Random */
#define F_TXSIZE_RND (1<<6) /* Transmit size is random */
#define F_IPV6 (1<<7) /* Interface in IPV6 Mode */
#define F_MPLS_RND (1<<8) /* Random MPLS labels */
#define F_VID_RND (1<<9) /* Random VLAN ID */
#define F_SVID_RND (1<<10) /* Random SVLAN ID */
#define F_FLOW_SEQ (1<<11) /* Sequential flows */
#define F_IPSEC_ON (1<<12) /* ipsec on for flows */
#define F_QUEUE_MAP_RND (1<<13) /* queue map Random */
#define F_QUEUE_MAP_CPU (1<<14) /* queue map mirrors smp_processor_id() */
#define F_NODE (1<<15) /* Node memory alloc*/
#define F_UDPCSUM (1<<16) /* Include UDP checksum */
#define F_NO_TIMESTAMP (1<<17) /* Don't timestamp packets (default TS) */
/* Thread control flag bits */
#define T_STOP (1<<0) /* Stop run */
#define T_RUN (1<<1) /* Start run */
#define T_REMDEVALL (1<<2) /* Remove all devs */
#define T_REMDEV (1<<3) /* Remove one dev */
/* Xmit modes */
#define M_START_XMIT 0 /* Default normal TX */
#define M_NETIF_RECEIVE 1 /* Inject packets into stack */
#define M_QUEUE_XMIT 2 /* Inject packet into qdisc */
/* If lock -- protects updating of if_list */
#define if_lock(t) mutex_lock(&(t->if_lock));
#define if_unlock(t) mutex_unlock(&(t->if_lock));
/* Used to help with determining the pkts on receive */
#define PKTGEN_MAGIC 0xbe9be955
#define PG_PROC_DIR "pktgen"
#define PGCTRL "pgctrl"
#define MAX_CFLOWS 65536
#define VLAN_TAG_SIZE(x) ((x)->vlan_id == 0xffff ? 0 : 4)
#define SVLAN_TAG_SIZE(x) ((x)->svlan_id == 0xffff ? 0 : 4)
struct flow_state {
__be32 cur_daddr;
int count;
#ifdef CONFIG_XFRM
struct xfrm_state *x;
#endif
__u32 flags;
};
/* flow flag bits */
#define F_INIT (1<<0) /* flow has been initialized */
struct pktgen_dev {
/*
* Try to keep frequent/infrequent used vars. separated.
*/
struct proc_dir_entry *entry; /* proc file */
struct pktgen_thread *pg_thread;/* the owner */
struct list_head list; /* chaining in the thread's run-queue */
struct rcu_head rcu; /* freed by RCU */
int running; /* if false, the test will stop */
/* If min != max, then we will either do a linear iteration, or
* we will do a random selection from within the range.
*/
__u32 flags;
int xmit_mode;
int min_pkt_size;
int max_pkt_size;
int pkt_overhead; /* overhead for MPLS, VLANs, IPSEC etc */
int nfrags;
int removal_mark; /* non-zero => the device is marked for
* removal by worker thread */
struct page *page;
u64 delay; /* nano-seconds */
__u64 count; /* Default No packets to send */
__u64 sofar; /* How many pkts we've sent so far */
__u64 tx_bytes; /* How many bytes we've transmitted */
__u64 errors; /* Errors when trying to transmit, */
/* runtime counters relating to clone_skb */
__u32 clone_count;
int last_ok; /* Was last skb sent?
* Or a failed transmit of some sort?
* This will keep sequence numbers in order
*/
ktime_t next_tx;
ktime_t started_at;
ktime_t stopped_at;
u64 idle_acc; /* nano-seconds */
__u32 seq_num;
int clone_skb; /*
* Use multiple SKBs during packet gen.
* If this number is greater than 1, then
* that many copies of the same packet will be
* sent before a new packet is allocated.
* If you want to send 1024 identical packets
* before creating a new packet,
* set clone_skb to 1024.
*/
char dst_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
char dst_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
char src_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
char src_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */
struct in6_addr in6_saddr;
struct in6_addr in6_daddr;
struct in6_addr cur_in6_daddr;
struct in6_addr cur_in6_saddr;
/* For ranges */
struct in6_addr min_in6_daddr;
struct in6_addr max_in6_daddr;
struct in6_addr min_in6_saddr;
struct in6_addr max_in6_saddr;
/* If we're doing ranges, random or incremental, then this
* defines the min/max for those ranges.
*/
__be32 saddr_min; /* inclusive, source IP address */
__be32 saddr_max; /* exclusive, source IP address */
__be32 daddr_min; /* inclusive, dest IP address */
__be32 daddr_max; /* exclusive, dest IP address */
__u16 udp_src_min; /* inclusive, source UDP port */
__u16 udp_src_max; /* exclusive, source UDP port */
__u16 udp_dst_min; /* inclusive, dest UDP port */
__u16 udp_dst_max; /* exclusive, dest UDP port */
/* DSCP + ECN */
__u8 tos; /* six MSB of (former) IPv4 TOS
are for dscp codepoint */
__u8 traffic_class; /* ditto for the (former) Traffic Class in IPv6
(see RFC 3260, sec. 4) */
/* MPLS */
unsigned int nr_labels; /* Depth of stack, 0 = no MPLS */
__be32 labels[MAX_MPLS_LABELS];
/* VLAN/SVLAN (802.1Q/Q-in-Q) */
__u8 vlan_p;
__u8 vlan_cfi;
__u16 vlan_id; /* 0xffff means no vlan tag */
__u8 svlan_p;
__u8 svlan_cfi;
__u16 svlan_id; /* 0xffff means no svlan tag */
__u32 src_mac_count; /* How many MACs to iterate through */
__u32 dst_mac_count; /* How many MACs to iterate through */
unsigned char dst_mac[ETH_ALEN];
unsigned char src_mac[ETH_ALEN];
__u32 cur_dst_mac_offset;
__u32 cur_src_mac_offset;
__be32 cur_saddr;
__be32 cur_daddr;
__u16 ip_id;
__u16 cur_udp_dst;
__u16 cur_udp_src;
__u16 cur_queue_map;
__u32 cur_pkt_size;
__u32 last_pkt_size;
__u8 hh[14];
/* = {
0x00, 0x80, 0xC8, 0x79, 0xB3, 0xCB,
We fill in SRC address later
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x08, 0x00
};
*/
__u16 pad; /* pad out the hh struct to an even 16 bytes */
struct sk_buff *skb; /* skb we are to transmit next, used for when we
* are transmitting the same one multiple times
*/
struct net_device *odev; /* The out-going device.
* Note that the device should have it's
* pg_info pointer pointing back to this
* device.
* Set when the user specifies the out-going
* device name (not when the inject is
* started as it used to do.)
*/
char odevname[32];
struct flow_state *flows;
unsigned int cflows; /* Concurrent flows (config) */
unsigned int lflow; /* Flow length (config) */
unsigned int nflows; /* accumulated flows (stats) */
unsigned int curfl; /* current sequenced flow (state)*/
u16 queue_map_min;
u16 queue_map_max;
__u32 skb_priority; /* skb priority field */
unsigned int burst; /* number of duplicated packets to burst */
int node; /* Memory node */
#ifdef CONFIG_XFRM
__u8 ipsmode; /* IPSEC mode (config) */
__u8 ipsproto; /* IPSEC type (config) */
__u32 spi;
struct dst_entry dst;
struct dst_ops dstops;
#endif
char result[512];
};
struct pktgen_hdr {
__be32 pgh_magic;
__be32 seq_num;
__be32 tv_sec;
__be32 tv_usec;
};
static int pg_net_id __read_mostly;
struct pktgen_net {
struct net *net;
struct proc_dir_entry *proc_dir;
struct list_head pktgen_threads;
bool pktgen_exiting;
};
struct pktgen_thread {
struct mutex if_lock; /* for list of devices */
struct list_head if_list; /* All device here */
struct list_head th_list;
struct task_struct *tsk;
char result[512];
/* Field for thread to receive "posted" events terminate,
stop ifs etc. */
u32 control;
int cpu;
wait_queue_head_t queue;
struct completion start_done;
struct pktgen_net *net;
};
#define REMOVE 1
#define FIND 0
static const char version[] =
"Packet Generator for packet performance testing. "
"Version: " VERSION "\n";
static int pktgen_remove_device(struct pktgen_thread *t, struct pktgen_dev *i);
static int pktgen_add_device(struct pktgen_thread *t, const char *ifname);
static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t,
const char *ifname, bool exact);
static int pktgen_device_event(struct notifier_block *, unsigned long, void *);
static void pktgen_run_all_threads(struct pktgen_net *pn);
static void pktgen_reset_all_threads(struct pktgen_net *pn);
static void pktgen_stop_all_threads_ifs(struct pktgen_net *pn);
static void pktgen_stop(struct pktgen_thread *t);
static void pktgen_clear_counters(struct pktgen_dev *pkt_dev);
/* Module parameters, defaults. */
static int pg_count_d __read_mostly = 1000;
static int pg_delay_d __read_mostly;
static int pg_clone_skb_d __read_mostly;
static int debug __read_mostly;
static DEFINE_MUTEX(pktgen_thread_lock);
static struct notifier_block pktgen_notifier_block = {
.notifier_call = pktgen_device_event,
};
/*
* /proc handling functions
*
*/
static int pgctrl_show(struct seq_file *seq, void *v)
{
seq_puts(seq, version);
return 0;
}
static ssize_t pgctrl_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
char data[128];
struct pktgen_net *pn = net_generic(current->nsproxy->net_ns, pg_net_id);
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (count == 0)
return -EINVAL;
if (count > sizeof(data))
count = sizeof(data);
if (copy_from_user(data, buf, count))
return -EFAULT;
data[count - 1] = 0; /* Strip trailing '\n' and terminate string */
if (!strcmp(data, "stop"))
pktgen_stop_all_threads_ifs(pn);
else if (!strcmp(data, "start"))
pktgen_run_all_threads(pn);
else if (!strcmp(data, "reset"))
pktgen_reset_all_threads(pn);
else
return -EINVAL;
return count;
}
static int pgctrl_open(struct inode *inode, struct file *file)
{
return single_open(file, pgctrl_show, PDE_DATA(inode));
}
static const struct file_operations pktgen_fops = {
.owner = THIS_MODULE,
.open = pgctrl_open,
.read = seq_read,
.llseek = seq_lseek,
.write = pgctrl_write,
.release = single_release,
};
static int pktgen_if_show(struct seq_file *seq, void *v)
{
const struct pktgen_dev *pkt_dev = seq->private;
ktime_t stopped;
u64 idle;
seq_printf(seq,
"Params: count %llu min_pkt_size: %u max_pkt_size: %u\n",
(unsigned long long)pkt_dev->count, pkt_dev->min_pkt_size,
pkt_dev->max_pkt_size);
seq_printf(seq,
" frags: %d delay: %llu clone_skb: %d ifname: %s\n",
pkt_dev->nfrags, (unsigned long long) pkt_dev->delay,
pkt_dev->clone_skb, pkt_dev->odevname);
seq_printf(seq, " flows: %u flowlen: %u\n", pkt_dev->cflows,
pkt_dev->lflow);
seq_printf(seq,
" queue_map_min: %u queue_map_max: %u\n",
pkt_dev->queue_map_min,
pkt_dev->queue_map_max);
if (pkt_dev->skb_priority)
seq_printf(seq, " skb_priority: %u\n",
pkt_dev->skb_priority);
if (pkt_dev->flags & F_IPV6) {
seq_printf(seq,
" saddr: %pI6c min_saddr: %pI6c max_saddr: %pI6c\n"
" daddr: %pI6c min_daddr: %pI6c max_daddr: %pI6c\n",
&pkt_dev->in6_saddr,
&pkt_dev->min_in6_saddr, &pkt_dev->max_in6_saddr,
&pkt_dev->in6_daddr,
&pkt_dev->min_in6_daddr, &pkt_dev->max_in6_daddr);
} else {
seq_printf(seq,
" dst_min: %s dst_max: %s\n",
pkt_dev->dst_min, pkt_dev->dst_max);
seq_printf(seq,
" src_min: %s src_max: %s\n",
pkt_dev->src_min, pkt_dev->src_max);
}
seq_puts(seq, " src_mac: ");
seq_printf(seq, "%pM ",
is_zero_ether_addr(pkt_dev->src_mac) ?
pkt_dev->odev->dev_addr : pkt_dev->src_mac);
seq_puts(seq, "dst_mac: ");
seq_printf(seq, "%pM\n", pkt_dev->dst_mac);
seq_printf(seq,
" udp_src_min: %d udp_src_max: %d"
" udp_dst_min: %d udp_dst_max: %d\n",
pkt_dev->udp_src_min, pkt_dev->udp_src_max,
pkt_dev->udp_dst_min, pkt_dev->udp_dst_max);
seq_printf(seq,
" src_mac_count: %d dst_mac_count: %d\n",
pkt_dev->src_mac_count, pkt_dev->dst_mac_count);
if (pkt_dev->nr_labels) {
unsigned int i;
seq_puts(seq, " mpls: ");
for (i = 0; i < pkt_dev->nr_labels; i++)
seq_printf(seq, "%08x%s", ntohl(pkt_dev->labels[i]),
i == pkt_dev->nr_labels-1 ? "\n" : ", ");
}
if (pkt_dev->vlan_id != 0xffff)
seq_printf(seq, " vlan_id: %u vlan_p: %u vlan_cfi: %u\n",
pkt_dev->vlan_id, pkt_dev->vlan_p,
pkt_dev->vlan_cfi);
if (pkt_dev->svlan_id != 0xffff)
seq_printf(seq, " svlan_id: %u vlan_p: %u vlan_cfi: %u\n",
pkt_dev->svlan_id, pkt_dev->svlan_p,
pkt_dev->svlan_cfi);
if (pkt_dev->tos)
seq_printf(seq, " tos: 0x%02x\n", pkt_dev->tos);
if (pkt_dev->traffic_class)
seq_printf(seq, " traffic_class: 0x%02x\n", pkt_dev->traffic_class);
if (pkt_dev->burst > 1)
seq_printf(seq, " burst: %d\n", pkt_dev->burst);
if (pkt_dev->node >= 0)
seq_printf(seq, " node: %d\n", pkt_dev->node);
if (pkt_dev->xmit_mode == M_NETIF_RECEIVE)
seq_puts(seq, " xmit_mode: netif_receive\n");
else if (pkt_dev->xmit_mode == M_QUEUE_XMIT)
seq_puts(seq, " xmit_mode: xmit_queue\n");
seq_puts(seq, " Flags: ");
if (pkt_dev->flags & F_IPV6)
seq_puts(seq, "IPV6 ");
if (pkt_dev->flags & F_IPSRC_RND)
seq_puts(seq, "IPSRC_RND ");
if (pkt_dev->flags & F_IPDST_RND)
seq_puts(seq, "IPDST_RND ");
if (pkt_dev->flags & F_TXSIZE_RND)
seq_puts(seq, "TXSIZE_RND ");
if (pkt_dev->flags & F_UDPSRC_RND)
seq_puts(seq, "UDPSRC_RND ");
if (pkt_dev->flags & F_UDPDST_RND)
seq_puts(seq, "UDPDST_RND ");
if (pkt_dev->flags & F_UDPCSUM)
seq_puts(seq, "UDPCSUM ");
if (pkt_dev->flags & F_NO_TIMESTAMP)
seq_puts(seq, "NO_TIMESTAMP ");
if (pkt_dev->flags & F_MPLS_RND)
seq_puts(seq, "MPLS_RND ");
if (pkt_dev->flags & F_QUEUE_MAP_RND)
seq_puts(seq, "QUEUE_MAP_RND ");
if (pkt_dev->flags & F_QUEUE_MAP_CPU)
seq_puts(seq, "QUEUE_MAP_CPU ");
if (pkt_dev->cflows) {
if (pkt_dev->flags & F_FLOW_SEQ)
seq_puts(seq, "FLOW_SEQ "); /*in sequence flows*/
else
seq_puts(seq, "FLOW_RND ");
}
#ifdef CONFIG_XFRM
if (pkt_dev->flags & F_IPSEC_ON) {
seq_puts(seq, "IPSEC ");
if (pkt_dev->spi)
seq_printf(seq, "spi:%u", pkt_dev->spi);
}
#endif
if (pkt_dev->flags & F_MACSRC_RND)
seq_puts(seq, "MACSRC_RND ");
if (pkt_dev->flags & F_MACDST_RND)
seq_puts(seq, "MACDST_RND ");
if (pkt_dev->flags & F_VID_RND)
seq_puts(seq, "VID_RND ");
if (pkt_dev->flags & F_SVID_RND)
seq_puts(seq, "SVID_RND ");
if (pkt_dev->flags & F_NODE)
seq_puts(seq, "NODE_ALLOC ");
seq_puts(seq, "\n");
/* not really stopped, more like last-running-at */
stopped = pkt_dev->running ? ktime_get() : pkt_dev->stopped_at;
idle = pkt_dev->idle_acc;
do_div(idle, NSEC_PER_USEC);
seq_printf(seq,
"Current:\n pkts-sofar: %llu errors: %llu\n",
(unsigned long long)pkt_dev->sofar,
(unsigned long long)pkt_dev->errors);
seq_printf(seq,
" started: %lluus stopped: %lluus idle: %lluus\n",
(unsigned long long) ktime_to_us(pkt_dev->started_at),
(unsigned long long) ktime_to_us(stopped),
(unsigned long long) idle);
seq_printf(seq,
" seq_num: %d cur_dst_mac_offset: %d cur_src_mac_offset: %d\n",
pkt_dev->seq_num, pkt_dev->cur_dst_mac_offset,
pkt_dev->cur_src_mac_offset);
if (pkt_dev->flags & F_IPV6) {
seq_printf(seq, " cur_saddr: %pI6c cur_daddr: %pI6c\n",
&pkt_dev->cur_in6_saddr,
&pkt_dev->cur_in6_daddr);
} else
seq_printf(seq, " cur_saddr: %pI4 cur_daddr: %pI4\n",
&pkt_dev->cur_saddr, &pkt_dev->cur_daddr);
seq_printf(seq, " cur_udp_dst: %d cur_udp_src: %d\n",
pkt_dev->cur_udp_dst, pkt_dev->cur_udp_src);
seq_printf(seq, " cur_queue_map: %u\n", pkt_dev->cur_queue_map);
seq_printf(seq, " flows: %u\n", pkt_dev->nflows);
if (pkt_dev->result[0])
seq_printf(seq, "Result: %s\n", pkt_dev->result);
else
seq_puts(seq, "Result: Idle\n");
return 0;
}
static int hex32_arg(const char __user *user_buffer, unsigned long maxlen,
__u32 *num)
{
int i = 0;
*num = 0;
for (; i < maxlen; i++) {
int value;
char c;
*num <<= 4;
if (get_user(c, &user_buffer[i]))
return -EFAULT;
value = hex_to_bin(c);
if (value >= 0)
*num |= value;
else
break;
}
return i;
}
static int count_trail_chars(const char __user * user_buffer,
unsigned int maxlen)
{
int i;
for (i = 0; i < maxlen; i++) {
char c;
if (get_user(c, &user_buffer[i]))
return -EFAULT;
switch (c) {
case '\"':
case '\n':
case '\r':
case '\t':
case ' ':
case '=':
break;
default:
goto done;
}
}
done:
return i;
}
static long num_arg(const char __user *user_buffer, unsigned long maxlen,
unsigned long *num)
{
int i;
*num = 0;
for (i = 0; i < maxlen; i++) {
char c;
if (get_user(c, &user_buffer[i]))
return -EFAULT;
if ((c >= '0') && (c <= '9')) {
*num *= 10;
*num += c - '0';
} else
break;
}
return i;
}
static int strn_len(const char __user * user_buffer, unsigned int maxlen)
{
int i;
for (i = 0; i < maxlen; i++) {
char c;
if (get_user(c, &user_buffer[i]))
return -EFAULT;
switch (c) {
case '\"':
case '\n':
case '\r':
case '\t':
case ' ':
goto done_str;
default:
break;
}
}
done_str:
return i;
}
static ssize_t get_labels(const char __user *buffer, struct pktgen_dev *pkt_dev)
{
unsigned int n = 0;
char c;
ssize_t i = 0;
int len;
pkt_dev->nr_labels = 0;
do {
__u32 tmp;
len = hex32_arg(&buffer[i], 8, &tmp);
if (len <= 0)
return len;
pkt_dev->labels[n] = htonl(tmp);
if (pkt_dev->labels[n] & MPLS_STACK_BOTTOM)
pkt_dev->flags |= F_MPLS_RND;
i += len;
if (get_user(c, &buffer[i]))
return -EFAULT;
i++;
n++;
if (n >= MAX_MPLS_LABELS)
return -E2BIG;
} while (c == ',');
pkt_dev->nr_labels = n;
return i;
}
static ssize_t pktgen_if_write(struct file *file,
const char __user * user_buffer, size_t count,
loff_t * offset)
{
struct seq_file *seq = file->private_data;
struct pktgen_dev *pkt_dev = seq->private;
int i, max, len;
char name[16], valstr[32];
unsigned long value = 0;
char *pg_result = NULL;
int tmp = 0;
char buf[128];
pg_result = &(pkt_dev->result[0]);
if (count < 1) {
pr_warn("wrong command format\n");
return -EINVAL;
}
max = count;
tmp = count_trail_chars(user_buffer, max);
if (tmp < 0) {
pr_warn("illegal format\n");
return tmp;
}
i = tmp;
/* Read variable name */
len = strn_len(&user_buffer[i], sizeof(name) - 1);
if (len < 0)
return len;
memset(name, 0, sizeof(name));
if (copy_from_user(name, &user_buffer[i], len))
return -EFAULT;
i += len;
max = count - i;
len = count_trail_chars(&user_buffer[i], max);
if (len < 0)
return len;
i += len;
if (debug) {
size_t copy = min_t(size_t, count, 1023);
char tb[copy + 1];
if (copy_from_user(tb, user_buffer, copy))
return -EFAULT;
tb[copy] = 0;
pr_debug("%s,%lu buffer -:%s:-\n",
name, (unsigned long)count, tb);
}
if (!strcmp(name, "min_pkt_size")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (value < 14 + 20 + 8)
value = 14 + 20 + 8;
if (value != pkt_dev->min_pkt_size) {
pkt_dev->min_pkt_size = value;
pkt_dev->cur_pkt_size = value;
}
sprintf(pg_result, "OK: min_pkt_size=%u",
pkt_dev->min_pkt_size);
return count;
}
if (!strcmp(name, "max_pkt_size")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (value < 14 + 20 + 8)
value = 14 + 20 + 8;
if (value != pkt_dev->max_pkt_size) {
pkt_dev->max_pkt_size = value;
pkt_dev->cur_pkt_size = value;
}
sprintf(pg_result, "OK: max_pkt_size=%u",
pkt_dev->max_pkt_size);
return count;
}
/* Shortcut for min = max */
if (!strcmp(name, "pkt_size")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (value < 14 + 20 + 8)
value = 14 + 20 + 8;
if (value != pkt_dev->min_pkt_size) {
pkt_dev->min_pkt_size = value;
pkt_dev->max_pkt_size = value;
pkt_dev->cur_pkt_size = value;
}
sprintf(pg_result, "OK: pkt_size=%u", pkt_dev->min_pkt_size);
return count;
}
if (!strcmp(name, "debug")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
debug = value;
sprintf(pg_result, "OK: debug=%u", debug);
return count;
}
if (!strcmp(name, "frags")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
pkt_dev->nfrags = value;
sprintf(pg_result, "OK: frags=%u", pkt_dev->nfrags);
return count;
}
if (!strcmp(name, "delay")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (value == 0x7FFFFFFF)
pkt_dev->delay = ULLONG_MAX;
else
pkt_dev->delay = (u64)value;
sprintf(pg_result, "OK: delay=%llu",
(unsigned long long) pkt_dev->delay);
return count;
}
if (!strcmp(name, "rate")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (!value)
return len;
pkt_dev->delay = pkt_dev->min_pkt_size*8*NSEC_PER_USEC/value;
if (debug)
pr_info("Delay set at: %llu ns\n", pkt_dev->delay);
sprintf(pg_result, "OK: rate=%lu", value);
return count;
}
if (!strcmp(name, "ratep")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (!value)
return len;
pkt_dev->delay = NSEC_PER_SEC/value;
if (debug)
pr_info("Delay set at: %llu ns\n", pkt_dev->delay);
sprintf(pg_result, "OK: rate=%lu", value);
return count;
}
if (!strcmp(name, "udp_src_min")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (value != pkt_dev->udp_src_min) {
pkt_dev->udp_src_min = value;
pkt_dev->cur_udp_src = value;
}
sprintf(pg_result, "OK: udp_src_min=%u", pkt_dev->udp_src_min);
return count;
}
if (!strcmp(name, "udp_dst_min")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (value != pkt_dev->udp_dst_min) {
pkt_dev->udp_dst_min = value;
pkt_dev->cur_udp_dst = value;
}
sprintf(pg_result, "OK: udp_dst_min=%u", pkt_dev->udp_dst_min);
return count;
}
if (!strcmp(name, "udp_src_max")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (value != pkt_dev->udp_src_max) {
pkt_dev->udp_src_max = value;
pkt_dev->cur_udp_src = value;
}
sprintf(pg_result, "OK: udp_src_max=%u", pkt_dev->udp_src_max);
return count;
}
if (!strcmp(name, "udp_dst_max")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (value != pkt_dev->udp_dst_max) {
pkt_dev->udp_dst_max = value;
pkt_dev->cur_udp_dst = value;
}
sprintf(pg_result, "OK: udp_dst_max=%u", pkt_dev->udp_dst_max);
return count;
}
if (!strcmp(name, "clone_skb")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
if ((value > 0) &&
((pkt_dev->xmit_mode == M_NETIF_RECEIVE) ||
!(pkt_dev->odev->priv_flags & IFF_TX_SKB_SHARING)))
return -ENOTSUPP;
i += len;
pkt_dev->clone_skb = value;
sprintf(pg_result, "OK: clone_skb=%d", pkt_dev->clone_skb);
return count;
}
if (!strcmp(name, "count")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
pkt_dev->count = value;
sprintf(pg_result, "OK: count=%llu",
(unsigned long long)pkt_dev->count);
return count;
}
if (!strcmp(name, "src_mac_count")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (pkt_dev->src_mac_count != value) {
pkt_dev->src_mac_count = value;
pkt_dev->cur_src_mac_offset = 0;
}
sprintf(pg_result, "OK: src_mac_count=%d",
pkt_dev->src_mac_count);
return count;
}
if (!strcmp(name, "dst_mac_count")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (pkt_dev->dst_mac_count != value) {
pkt_dev->dst_mac_count = value;
pkt_dev->cur_dst_mac_offset = 0;
}
sprintf(pg_result, "OK: dst_mac_count=%d",
pkt_dev->dst_mac_count);
return count;
}
if (!strcmp(name, "burst")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if ((value > 1) &&
((pkt_dev->xmit_mode == M_QUEUE_XMIT) ||
((pkt_dev->xmit_mode == M_START_XMIT) &&
(!(pkt_dev->odev->priv_flags & IFF_TX_SKB_SHARING)))))
return -ENOTSUPP;
pkt_dev->burst = value < 1 ? 1 : value;
sprintf(pg_result, "OK: burst=%d", pkt_dev->burst);
return count;
}
if (!strcmp(name, "node")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (node_possible(value)) {
pkt_dev->node = value;
sprintf(pg_result, "OK: node=%d", pkt_dev->node);
if (pkt_dev->page) {
put_page(pkt_dev->page);
pkt_dev->page = NULL;
}
}
else
sprintf(pg_result, "ERROR: node not possible");
return count;
}
if (!strcmp(name, "xmit_mode")) {
char f[32];
memset(f, 0, 32);
len = strn_len(&user_buffer[i], sizeof(f) - 1);
if (len < 0)
return len;
if (copy_from_user(f, &user_buffer[i], len))
return -EFAULT;
i += len;
if (strcmp(f, "start_xmit") == 0) {
pkt_dev->xmit_mode = M_START_XMIT;
} else if (strcmp(f, "netif_receive") == 0) {
/* clone_skb set earlier, not supported in this mode */
if (pkt_dev->clone_skb > 0)
return -ENOTSUPP;
pkt_dev->xmit_mode = M_NETIF_RECEIVE;
/* make sure new packet is allocated every time
* pktgen_xmit() is called
*/
pkt_dev->last_ok = 1;
/* override clone_skb if user passed default value
* at module loading time
*/
pkt_dev->clone_skb = 0;
} else if (strcmp(f, "queue_xmit") == 0) {
pkt_dev->xmit_mode = M_QUEUE_XMIT;
pkt_dev->last_ok = 1;
} else {
sprintf(pg_result,
"xmit_mode -:%s:- unknown\nAvailable modes: %s",
f, "start_xmit, netif_receive\n");
return count;
}
sprintf(pg_result, "OK: xmit_mode=%s", f);
return count;
}
if (!strcmp(name, "flag")) {
char f[32];
memset(f, 0, 32);
len = strn_len(&user_buffer[i], sizeof(f) - 1);
if (len < 0)
return len;
if (copy_from_user(f, &user_buffer[i], len))
return -EFAULT;
i += len;
if (strcmp(f, "IPSRC_RND") == 0)
pkt_dev->flags |= F_IPSRC_RND;
else if (strcmp(f, "!IPSRC_RND") == 0)
pkt_dev->flags &= ~F_IPSRC_RND;
else if (strcmp(f, "TXSIZE_RND") == 0)
pkt_dev->flags |= F_TXSIZE_RND;
else if (strcmp(f, "!TXSIZE_RND") == 0)
pkt_dev->flags &= ~F_TXSIZE_RND;
else if (strcmp(f, "IPDST_RND") == 0)
pkt_dev->flags |= F_IPDST_RND;
else if (strcmp(f, "!IPDST_RND") == 0)
pkt_dev->flags &= ~F_IPDST_RND;
else if (strcmp(f, "UDPSRC_RND") == 0)
pkt_dev->flags |= F_UDPSRC_RND;
else if (strcmp(f, "!UDPSRC_RND") == 0)
pkt_dev->flags &= ~F_UDPSRC_RND;
else if (strcmp(f, "UDPDST_RND") == 0)
pkt_dev->flags |= F_UDPDST_RND;
else if (strcmp(f, "!UDPDST_RND") == 0)
pkt_dev->flags &= ~F_UDPDST_RND;
else if (strcmp(f, "MACSRC_RND") == 0)
pkt_dev->flags |= F_MACSRC_RND;
else if (strcmp(f, "!MACSRC_RND") == 0)
pkt_dev->flags &= ~F_MACSRC_RND;
else if (strcmp(f, "MACDST_RND") == 0)
pkt_dev->flags |= F_MACDST_RND;
else if (strcmp(f, "!MACDST_RND") == 0)
pkt_dev->flags &= ~F_MACDST_RND;
else if (strcmp(f, "MPLS_RND") == 0)
pkt_dev->flags |= F_MPLS_RND;
else if (strcmp(f, "!MPLS_RND") == 0)
pkt_dev->flags &= ~F_MPLS_RND;
else if (strcmp(f, "VID_RND") == 0)
pkt_dev->flags |= F_VID_RND;
else if (strcmp(f, "!VID_RND") == 0)
pkt_dev->flags &= ~F_VID_RND;
else if (strcmp(f, "SVID_RND") == 0)
pkt_dev->flags |= F_SVID_RND;
else if (strcmp(f, "!SVID_RND") == 0)
pkt_dev->flags &= ~F_SVID_RND;
else if (strcmp(f, "FLOW_SEQ") == 0)
pkt_dev->flags |= F_FLOW_SEQ;
else if (strcmp(f, "QUEUE_MAP_RND") == 0)
pkt_dev->flags |= F_QUEUE_MAP_RND;
else if (strcmp(f, "!QUEUE_MAP_RND") == 0)
pkt_dev->flags &= ~F_QUEUE_MAP_RND;
else if (strcmp(f, "QUEUE_MAP_CPU") == 0)
pkt_dev->flags |= F_QUEUE_MAP_CPU;
else if (strcmp(f, "!QUEUE_MAP_CPU") == 0)
pkt_dev->flags &= ~F_QUEUE_MAP_CPU;
#ifdef CONFIG_XFRM
else if (strcmp(f, "IPSEC") == 0)
pkt_dev->flags |= F_IPSEC_ON;
#endif
else if (strcmp(f, "!IPV6") == 0)
pkt_dev->flags &= ~F_IPV6;
else if (strcmp(f, "NODE_ALLOC") == 0)
pkt_dev->flags |= F_NODE;
else if (strcmp(f, "!NODE_ALLOC") == 0)
pkt_dev->flags &= ~F_NODE;
else if (strcmp(f, "UDPCSUM") == 0)
pkt_dev->flags |= F_UDPCSUM;
else if (strcmp(f, "!UDPCSUM") == 0)
pkt_dev->flags &= ~F_UDPCSUM;
else if (strcmp(f, "NO_TIMESTAMP") == 0)
pkt_dev->flags |= F_NO_TIMESTAMP;
else if (strcmp(f, "!NO_TIMESTAMP") == 0)
pkt_dev->flags &= ~F_NO_TIMESTAMP;
else {
sprintf(pg_result,
"Flag -:%s:- unknown\nAvailable flags, (prepend ! to un-set flag):\n%s",
f,
"IPSRC_RND, IPDST_RND, UDPSRC_RND, UDPDST_RND, "
"MACSRC_RND, MACDST_RND, TXSIZE_RND, IPV6, "
"MPLS_RND, VID_RND, SVID_RND, FLOW_SEQ, "
"QUEUE_MAP_RND, QUEUE_MAP_CPU, UDPCSUM, "
"NO_TIMESTAMP, "
#ifdef CONFIG_XFRM
"IPSEC, "
#endif
"NODE_ALLOC\n");
return count;
}
sprintf(pg_result, "OK: flags=0x%x", pkt_dev->flags);
return count;
}
if (!strcmp(name, "dst_min") || !strcmp(name, "dst")) {
len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_min) - 1);
if (len < 0)
return len;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
if (strcmp(buf, pkt_dev->dst_min) != 0) {
memset(pkt_dev->dst_min, 0, sizeof(pkt_dev->dst_min));
strncpy(pkt_dev->dst_min, buf, len);
pkt_dev->daddr_min = in_aton(pkt_dev->dst_min);
pkt_dev->cur_daddr = pkt_dev->daddr_min;
}
if (debug)
pr_debug("dst_min set to: %s\n", pkt_dev->dst_min);
i += len;
sprintf(pg_result, "OK: dst_min=%s", pkt_dev->dst_min);
return count;
}
if (!strcmp(name, "dst_max")) {
len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_max) - 1);
if (len < 0)
return len;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
if (strcmp(buf, pkt_dev->dst_max) != 0) {
memset(pkt_dev->dst_max, 0, sizeof(pkt_dev->dst_max));
strncpy(pkt_dev->dst_max, buf, len);
pkt_dev->daddr_max = in_aton(pkt_dev->dst_max);
pkt_dev->cur_daddr = pkt_dev->daddr_max;
}
if (debug)
pr_debug("dst_max set to: %s\n", pkt_dev->dst_max);
i += len;
sprintf(pg_result, "OK: dst_max=%s", pkt_dev->dst_max);
return count;
}
if (!strcmp(name, "dst6")) {
len = strn_len(&user_buffer[i], sizeof(buf) - 1);
if (len < 0)
return len;
pkt_dev->flags |= F_IPV6;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
in6_pton(buf, -1, pkt_dev->in6_daddr.s6_addr, -1, NULL);
snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->in6_daddr);
pkt_dev->cur_in6_daddr = pkt_dev->in6_daddr;
if (debug)
pr_debug("dst6 set to: %s\n", buf);
i += len;
sprintf(pg_result, "OK: dst6=%s", buf);
return count;
}
if (!strcmp(name, "dst6_min")) {
len = strn_len(&user_buffer[i], sizeof(buf) - 1);
if (len < 0)
return len;
pkt_dev->flags |= F_IPV6;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
in6_pton(buf, -1, pkt_dev->min_in6_daddr.s6_addr, -1, NULL);
snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->min_in6_daddr);
pkt_dev->cur_in6_daddr = pkt_dev->min_in6_daddr;
if (debug)
pr_debug("dst6_min set to: %s\n", buf);
i += len;
sprintf(pg_result, "OK: dst6_min=%s", buf);
return count;
}
if (!strcmp(name, "dst6_max")) {
len = strn_len(&user_buffer[i], sizeof(buf) - 1);
if (len < 0)
return len;
pkt_dev->flags |= F_IPV6;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
in6_pton(buf, -1, pkt_dev->max_in6_daddr.s6_addr, -1, NULL);
snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->max_in6_daddr);
if (debug)
pr_debug("dst6_max set to: %s\n", buf);
i += len;
sprintf(pg_result, "OK: dst6_max=%s", buf);
return count;
}
if (!strcmp(name, "src6")) {
len = strn_len(&user_buffer[i], sizeof(buf) - 1);
if (len < 0)
return len;
pkt_dev->flags |= F_IPV6;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
in6_pton(buf, -1, pkt_dev->in6_saddr.s6_addr, -1, NULL);
snprintf(buf, sizeof(buf), "%pI6c", &pkt_dev->in6_saddr);
pkt_dev->cur_in6_saddr = pkt_dev->in6_saddr;
if (debug)
pr_debug("src6 set to: %s\n", buf);
i += len;
sprintf(pg_result, "OK: src6=%s", buf);
return count;
}
if (!strcmp(name, "src_min")) {
len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_min) - 1);
if (len < 0)
return len;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
if (strcmp(buf, pkt_dev->src_min) != 0) {
memset(pkt_dev->src_min, 0, sizeof(pkt_dev->src_min));
strncpy(pkt_dev->src_min, buf, len);
pkt_dev->saddr_min = in_aton(pkt_dev->src_min);
pkt_dev->cur_saddr = pkt_dev->saddr_min;
}
if (debug)
pr_debug("src_min set to: %s\n", pkt_dev->src_min);
i += len;
sprintf(pg_result, "OK: src_min=%s", pkt_dev->src_min);
return count;
}
if (!strcmp(name, "src_max")) {
len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_max) - 1);
if (len < 0)
return len;
if (copy_from_user(buf, &user_buffer[i], len))
return -EFAULT;
buf[len] = 0;
if (strcmp(buf, pkt_dev->src_max) != 0) {
memset(pkt_dev->src_max, 0, sizeof(pkt_dev->src_max));
strncpy(pkt_dev->src_max, buf, len);
pkt_dev->saddr_max = in_aton(pkt_dev->src_max);
pkt_dev->cur_saddr = pkt_dev->saddr_max;
}
if (debug)
pr_debug("src_max set to: %s\n", pkt_dev->src_max);
i += len;
sprintf(pg_result, "OK: src_max=%s", pkt_dev->src_max);
return count;
}
if (!strcmp(name, "dst_mac")) {
len = strn_len(&user_buffer[i], sizeof(valstr) - 1);
if (len < 0)
return len;
memset(valstr, 0, sizeof(valstr));
if (copy_from_user(valstr, &user_buffer[i], len))
return -EFAULT;
if (!mac_pton(valstr, pkt_dev->dst_mac))
return -EINVAL;
/* Set up Dest MAC */
ether_addr_copy(&pkt_dev->hh[0], pkt_dev->dst_mac);
sprintf(pg_result, "OK: dstmac %pM", pkt_dev->dst_mac);
return count;
}
if (!strcmp(name, "src_mac")) {
len = strn_len(&user_buffer[i], sizeof(valstr) - 1);
if (len < 0)
return len;
memset(valstr, 0, sizeof(valstr));
if (copy_from_user(valstr, &user_buffer[i], len))
return -EFAULT;
if (!mac_pton(valstr, pkt_dev->src_mac))
return -EINVAL;
/* Set up Src MAC */
ether_addr_copy(&pkt_dev->hh[6], pkt_dev->src_mac);
sprintf(pg_result, "OK: srcmac %pM", pkt_dev->src_mac);
return count;
}
if (!strcmp(name, "clear_counters")) {
pktgen_clear_counters(pkt_dev);
sprintf(pg_result, "OK: Clearing counters.\n");
return count;
}
if (!strcmp(name, "flows")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
if (value > MAX_CFLOWS)
value = MAX_CFLOWS;
pkt_dev->cflows = value;
sprintf(pg_result, "OK: flows=%u", pkt_dev->cflows);
return count;
}
#ifdef CONFIG_XFRM
if (!strcmp(name, "spi")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
pkt_dev->spi = value;
sprintf(pg_result, "OK: spi=%u", pkt_dev->spi);
return count;
}
#endif
if (!strcmp(name, "flowlen")) {
len = num_arg(&user_buffer[i], 10, &value);
if (len < 0)
return len;
i += len;
pkt_dev->lflow = value;
sprintf(pg_result, "OK: flowlen=%u", pkt_dev->lflow);
return count;
}
if (!strcmp(name, "queue_map_min")) {
len = num_arg(&user_buffer[i], 5, &value);
if (len < 0)
return len;
i += len;
pkt_dev->queue_map_min = value;
sprintf(pg_result, "OK: queue_map_min=%u", pkt_dev->queue_map_min);
return count;
}
if (!strcmp(name, "queue_map_max")) {
len = num_arg(&user_buffer[i], 5, &value);
if (len < 0)
return len;
i += len;
pkt_dev->queue_map_max = value;
sprintf(pg_result, "OK: queue_map_max=%u", pkt_dev->queue_map_max);
return count;
}
if (!strcmp(name, "mpls")) {
unsigned int n, cnt;
len = get_labels(&user_buffer[i], pkt_dev);
if (len < 0)
return len;
i += len;
cnt = sprintf(pg_result, "OK: mpls=");
for (n = 0; n < pkt_dev->nr_labels; n++)
cnt += sprintf(pg_result + cnt,
"%08x%s", ntohl(pkt_dev->labels[n]),
n == pkt_dev->nr_labels-1 ? "" : ",");
if (pkt_dev->nr_labels && pkt_dev->vlan_id != 0xffff) {
pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */
pkt_dev->svlan_id = 0xffff;
if (debug)
pr_debug("VLAN/SVLAN auto turned off\n");
}
return count;
}
if (!strcmp(name, "vlan_id")) {
len = num_arg(&user_buffer[i], 4, &value);
if (len < 0)
return len;
i += len;
if (value <= 4095) {
pkt_dev->vlan_id = value; /* turn on VLAN */
if (debug)
pr_debug("VLAN turned on\n");
if (debug && pkt_dev->nr_labels)
pr_debug("MPLS auto turned off\n");
pkt_dev->nr_labels = 0; /* turn off MPLS */
sprintf(pg_result, "OK: vlan_id=%u", pkt_dev->vlan_id);
} else {
pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */
pkt_dev->svlan_id = 0xffff;
if (debug)
pr_debug("VLAN/SVLAN turned off\n");
}
return count;
}
if (!strcmp(name, "vlan_p")) {
len = num_arg(&user_buffer[i], 1, &value);
if (len < 0)
return len;
i += len;
if ((value <= 7) && (pkt_dev->vlan_id != 0xffff)) {
pkt_dev->vlan_p = value;
sprintf(pg_result, "OK: vlan_p=%u", pkt_dev->vlan_p);
} else {
sprintf(pg_result, "ERROR: vlan_p must be 0-7");
}
return count;
}
if (!strcmp(name, "vlan_cfi")) {
len = num_arg(&user_buffer[i], 1, &value);
if (len < 0)
return len;
i += len;
if ((value <= 1) && (pkt_dev->vlan_id != 0xffff)) {
pkt_dev->vlan_cfi = value;
sprintf(pg_result, "OK: vlan_cfi=%u", pkt_dev->vlan_cfi);
} else {
sprintf(pg_result, "ERROR: vlan_cfi must be 0-1");
}
return count;
}
if (!strcmp(name, "svlan_id")) {
len = num_arg(&user_buffer[i], 4, &value);
if (len < 0)
return len;
i += len;
if ((value <= 4095) && ((pkt_dev->vlan_id != 0xffff))) {
pkt_dev->svlan_id = value; /* turn on SVLAN */
if (debug)
pr_debug("SVLAN turned on\n");
if (debug && pkt_dev->nr_labels)
pr_debug("MPLS auto turned off\n");
pkt_dev->nr_labels = 0; /* turn off MPLS */
sprintf(pg_result, "OK: svlan_id=%u", pkt_dev->svlan_id);
} else {
pkt_dev->vlan_id = 0xffff; /* turn off VLAN/SVLAN */
pkt_dev->svlan_id = 0xffff;
if (debug)
pr_debug("VLAN/SVLAN turned off\n");
}
return count;
}
if (!strcmp(name, "svlan_p")) {
len = num_arg(&user_buffer[i], 1, &value);
if (len < 0)
return len;
i += len;
if ((value <= 7) && (pkt_dev->svlan_id != 0xffff)) {
pkt_dev->svlan_p = value;
sprintf(pg_result, "OK: svlan_p=%u", pkt_dev->svlan_p);
} else {
sprintf(pg_result, "ERROR: svlan_p must be 0-7");
}
return count;
}
if (!strcmp(name, "svlan_cfi")) {
len = num_arg(&user_buffer[i], 1, &value);
if (len < 0)
return len;
i += len;
if ((value <= 1) && (pkt_dev->svlan_id != 0xffff)) {
pkt_dev->svlan_cfi = value;
sprintf(pg_result, "OK: svlan_cfi=%u", pkt_dev->svlan_cfi);
} else {
sprintf(pg_result, "ERROR: svlan_cfi must be 0-1");
}
return count;
}
if (!strcmp(name, "tos")) {
__u32 tmp_value = 0;
len = hex32_arg(&user_buffer[i], 2, &tmp_value);
if (len < 0)
return len;
i += len;
if (len == 2) {
pkt_dev->tos = tmp_value;
sprintf(pg_result, "OK: tos=0x%02x", pkt_dev->tos);
} else {
sprintf(pg_result, "ERROR: tos must be 00-ff");
}
return count;
}
if (!strcmp(name, "traffic_class")) {
__u32 tmp_value = 0;
len = hex32_arg(&user_buffer[i], 2, &tmp_value);
if (len < 0)
return len;
i += len;
if (len == 2) {
pkt_dev->traffic_class = tmp_value;
sprintf(pg_result, "OK: traffic_class=0x%02x", pkt_dev->traffic_class);
} else {
sprintf(pg_result, "ERROR: traffic_class must be 00-ff");
}
return count;
}
if (!strcmp(name, "skb_priority")) {
len = num_arg(&user_buffer[i], 9, &value);
if (len < 0)
return len;
i += len;
pkt_dev->skb_priority = value;
sprintf(pg_result, "OK: skb_priority=%i",
pkt_dev->skb_priority);
return count;
}
sprintf(pkt_dev->result, "No such parameter \"%s\"", name);
return -EINVAL;
}
static int pktgen_if_open(struct inode *inode, struct file *file)
{
return single_open(file, pktgen_if_show, PDE_DATA(inode));
}
static const struct file_operations pktgen_if_fops = {
.owner = THIS_MODULE,
.open = pktgen_if_open,
.read = seq_read,
.llseek = seq_lseek,
.write = pktgen_if_write,
.release = single_release,
};
static int pktgen_thread_show(struct seq_file *seq, void *v)
{
struct pktgen_thread *t = seq->private;
const struct pktgen_dev *pkt_dev;
BUG_ON(!t);
seq_puts(seq, "Running: ");
rcu_read_lock();
list_for_each_entry_rcu(pkt_dev, &t->if_list, list)
if (pkt_dev->running)
seq_printf(seq, "%s ", pkt_dev->odevname);
seq_puts(seq, "\nStopped: ");
list_for_each_entry_rcu(pkt_dev, &t->if_list, list)
if (!pkt_dev->running)
seq_printf(seq, "%s ", pkt_dev->odevname);
if (t->result[0])
seq_printf(seq, "\nResult: %s\n", t->result);
else
seq_puts(seq, "\nResult: NA\n");
rcu_read_unlock();
return 0;
}
static ssize_t pktgen_thread_write(struct file *file,
const char __user * user_buffer,
size_t count, loff_t * offset)
{
struct seq_file *seq = file->private_data;
struct pktgen_thread *t = seq->private;
int i, max, len, ret;
char name[40];
char *pg_result;
if (count < 1) {
// sprintf(pg_result, "Wrong command format");
return -EINVAL;
}
max = count;
len = count_trail_chars(user_buffer, max);
if (len < 0)
return len;
i = len;
/* Read variable name */
len = strn_len(&user_buffer[i], sizeof(name) - 1);
if (len < 0)
return len;
memset(name, 0, sizeof(name));
if (copy_from_user(name, &user_buffer[i], len))
return -EFAULT;
i += len;
max = count - i;
len = count_trail_chars(&user_buffer[i], max);
if (len < 0)
return len;
i += len;
if (debug)
pr_debug("t=%s, count=%lu\n", name, (unsigned long)count);
if (!t) {
pr_err("ERROR: No thread\n");
ret = -EINVAL;
goto out;
}
pg_result = &(t->result[0]);
if (!strcmp(name, "add_device")) {
char f[32];
memset(f, 0, 32);
len = strn_len(&user_buffer[i], sizeof(f) - 1);
if (len < 0) {
ret = len;
goto out;
}
if (copy_from_user(f, &user_buffer[i], len))
return -EFAULT;
i += len;
mutex_lock(&pktgen_thread_lock);
ret = pktgen_add_device(t, f);
mutex_unlock(&pktgen_thread_lock);
if (!ret) {
ret = count;
sprintf(pg_result, "OK: add_device=%s", f);
} else
sprintf(pg_result, "ERROR: can not add device %s", f);
goto out;
}
if (!strcmp(name, "rem_device_all")) {
mutex_lock(&pktgen_thread_lock);
t->control |= T_REMDEVALL;
mutex_unlock(&pktgen_thread_lock);
schedule_timeout_interruptible(msecs_to_jiffies(125)); /* Propagate thread->control */
ret = count;
sprintf(pg_result, "OK: rem_device_all");
goto out;
}
if (!strcmp(name, "max_before_softirq")) {
sprintf(pg_result, "OK: Note! max_before_softirq is obsoleted -- Do not use");
ret = count;
goto out;
}
ret = -EINVAL;
out:
return ret;
}
static int pktgen_thread_open(struct inode *inode, struct file *file)
{
return single_open(file, pktgen_thread_show, PDE_DATA(inode));
}
static const struct file_operations pktgen_thread_fops = {
.owner = THIS_MODULE,
.open = pktgen_thread_open,
.read = seq_read,
.llseek = seq_lseek,
.write = pktgen_thread_write,
.release = single_release,
};
/* Think find or remove for NN */
static struct pktgen_dev *__pktgen_NN_threads(const struct pktgen_net *pn,
const char *ifname, int remove)
{
struct pktgen_thread *t;
struct pktgen_dev *pkt_dev = NULL;
bool exact = (remove == FIND);
list_for_each_entry(t, &pn->pktgen_threads, th_list) {
pkt_dev = pktgen_find_dev(t, ifname, exact);
if (pkt_dev) {
if (remove) {
pkt_dev->removal_mark = 1;
t->control |= T_REMDEV;
}
break;
}
}
return pkt_dev;
}
/*
* mark a device for removal
*/
static void pktgen_mark_device(const struct pktgen_net *pn, const char *ifname)
{
struct pktgen_dev *pkt_dev = NULL;
const int max_tries = 10, msec_per_try = 125;
int i = 0;
mutex_lock(&pktgen_thread_lock);
pr_debug("%s: marking %s for removal\n", __func__, ifname);
while (1) {
pkt_dev = __pktgen_NN_threads(pn, ifname, REMOVE);
if (pkt_dev == NULL)
break; /* success */
mutex_unlock(&pktgen_thread_lock);
pr_debug("%s: waiting for %s to disappear....\n",
__func__, ifname);
schedule_timeout_interruptible(msecs_to_jiffies(msec_per_try));
mutex_lock(&pktgen_thread_lock);
if (++i >= max_tries) {
pr_err("%s: timed out after waiting %d msec for device %s to be removed\n",
__func__, msec_per_try * i, ifname);
break;
}
}
mutex_unlock(&pktgen_thread_lock);
}
static void pktgen_change_name(const struct pktgen_net *pn, struct net_device *dev)
{
struct pktgen_thread *t;
mutex_lock(&pktgen_thread_lock);
list_for_each_entry(t, &pn->pktgen_threads, th_list) {
struct pktgen_dev *pkt_dev;
if_lock(t);
list_for_each_entry(pkt_dev, &t->if_list, list) {
if (pkt_dev->odev != dev)
continue;
proc_remove(pkt_dev->entry);
pkt_dev->entry = proc_create_data(dev->name, 0600,
pn->proc_dir,
&pktgen_if_fops,
pkt_dev);
if (!pkt_dev->entry)
pr_err("can't move proc entry for '%s'\n",
dev->name);
break;
}
if_unlock(t);
}
mutex_unlock(&pktgen_thread_lock);
}
static int pktgen_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct pktgen_net *pn = net_generic(dev_net(dev), pg_net_id);
if (pn->pktgen_exiting)
return NOTIFY_DONE;
/* It is OK that we do not hold the group lock right now,
* as we run under the RTNL lock.
*/
switch (event) {
case NETDEV_CHANGENAME:
pktgen_change_name(pn, dev);
break;
case NETDEV_UNREGISTER:
pktgen_mark_device(pn, dev->name);
break;
}
return NOTIFY_DONE;
}
static struct net_device *pktgen_dev_get_by_name(const struct pktgen_net *pn,
struct pktgen_dev *pkt_dev,
const char *ifname)
{
char b[IFNAMSIZ+5];
int i;
for (i = 0; ifname[i] != '@'; i++) {
if (i == IFNAMSIZ)
break;
b[i] = ifname[i];
}
b[i] = 0;
return dev_get_by_name(pn->net, b);
}
/* Associate pktgen_dev with a device. */
static int pktgen_setup_dev(const struct pktgen_net *pn,
struct pktgen_dev *pkt_dev, const char *ifname)
{
struct net_device *odev;
int err;
/* Clean old setups */
if (pkt_dev->odev) {
dev_put(pkt_dev->odev);
pkt_dev->odev = NULL;
}
odev = pktgen_dev_get_by_name(pn, pkt_dev, ifname);
if (!odev) {
pr_err("no such netdevice: \"%s\"\n", ifname);
return -ENODEV;
}
if (odev->type != ARPHRD_ETHER) {
pr_err("not an ethernet device: \"%s\"\n", ifname);
err = -EINVAL;
} else if (!netif_running(odev)) {
pr_err("device is down: \"%s\"\n", ifname);
err = -ENETDOWN;
} else {
pkt_dev->odev = odev;
return 0;
}
dev_put(odev);
return err;
}
/* Read pkt_dev from the interface and set up internal pktgen_dev
* structure to have the right information to create/send packets
*/
static void pktgen_setup_inject(struct pktgen_dev *pkt_dev)
{
int ntxq;
if (!pkt_dev->odev) {
pr_err("ERROR: pkt_dev->odev == NULL in setup_inject\n");
sprintf(pkt_dev->result,
"ERROR: pkt_dev->odev == NULL in setup_inject.\n");
return;
}
/* make sure that we don't pick a non-existing transmit queue */
ntxq = pkt_dev->odev->real_num_tx_queues;
if (ntxq <= pkt_dev->queue_map_min) {
pr_warn("WARNING: Requested queue_map_min (zero-based) (%d) exceeds valid range [0 - %d] for (%d) queues on %s, resetting\n",
pkt_dev->queue_map_min, (ntxq ?: 1) - 1, ntxq,
pkt_dev->odevname);
pkt_dev->queue_map_min = (ntxq ?: 1) - 1;
}
if (pkt_dev->queue_map_max >= ntxq) {
pr_warn("WARNING: Requested queue_map_max (zero-based) (%d) exceeds valid range [0 - %d] for (%d) queues on %s, resetting\n",
pkt_dev->queue_map_max, (ntxq ?: 1) - 1, ntxq,
pkt_dev->odevname);
pkt_dev->queue_map_max = (ntxq ?: 1) - 1;
}
/* Default to the interface's mac if not explicitly set. */
if (is_zero_ether_addr(pkt_dev->src_mac))
ether_addr_copy(&(pkt_dev->hh[6]), pkt_dev->odev->dev_addr);
/* Set up Dest MAC */
ether_addr_copy(&(pkt_dev->hh[0]), pkt_dev->dst_mac);
if (pkt_dev->flags & F_IPV6) {
int i, set = 0, err = 1;
struct inet6_dev *idev;
if (pkt_dev->min_pkt_size == 0) {
pkt_dev->min_pkt_size = 14 + sizeof(struct ipv6hdr)
+ sizeof(struct udphdr)
+ sizeof(struct pktgen_hdr)
+ pkt_dev->pkt_overhead;
}
for (i = 0; i < IN6_ADDR_HSIZE; i++)
if (pkt_dev->cur_in6_saddr.s6_addr[i]) {
set = 1;
break;
}
if (!set) {
/*
* Use linklevel address if unconfigured.
*
* use ipv6_get_lladdr if/when it's get exported
*/
rcu_read_lock();
idev = __in6_dev_get(pkt_dev->odev);
if (idev) {
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
list_for_each_entry(ifp, &idev->addr_list, if_list) {
if ((ifp->scope & IFA_LINK) &&
!(ifp->flags & IFA_F_TENTATIVE)) {
pkt_dev->cur_in6_saddr = ifp->addr;
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
}
rcu_read_unlock();
if (err)
pr_err("ERROR: IPv6 link address not available\n");
}
} else {
if (pkt_dev->min_pkt_size == 0) {
pkt_dev->min_pkt_size = 14 + sizeof(struct iphdr)
+ sizeof(struct udphdr)
+ sizeof(struct pktgen_hdr)
+ pkt_dev->pkt_overhead;
}
pkt_dev->saddr_min = 0;
pkt_dev->saddr_max = 0;
if (strlen(pkt_dev->src_min) == 0) {
struct in_device *in_dev;
rcu_read_lock();
in_dev = __in_dev_get_rcu(pkt_dev->odev);
if (in_dev) {
if (in_dev->ifa_list) {
pkt_dev->saddr_min =
in_dev->ifa_list->ifa_address;
pkt_dev->saddr_max = pkt_dev->saddr_min;
}
}
rcu_read_unlock();
} else {
pkt_dev->saddr_min = in_aton(pkt_dev->src_min);
pkt_dev->saddr_max = in_aton(pkt_dev->src_max);
}
pkt_dev->daddr_min = in_aton(pkt_dev->dst_min);
pkt_dev->daddr_max = in_aton(pkt_dev->dst_max);
}
/* Initialize current values. */
pkt_dev->cur_pkt_size = pkt_dev->min_pkt_size;
if (pkt_dev->min_pkt_size > pkt_dev->max_pkt_size)
pkt_dev->max_pkt_size = pkt_dev->min_pkt_size;
pkt_dev->cur_dst_mac_offset = 0;
pkt_dev->cur_src_mac_offset = 0;
pkt_dev->cur_saddr = pkt_dev->saddr_min;
pkt_dev->cur_daddr = pkt_dev->daddr_min;
pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min;
pkt_dev->cur_udp_src = pkt_dev->udp_src_min;
pkt_dev->nflows = 0;
}
static void spin(struct pktgen_dev *pkt_dev, ktime_t spin_until)
{
ktime_t start_time, end_time;
s64 remaining;
struct hrtimer_sleeper t;
hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
hrtimer_set_expires(&t.timer, spin_until);
remaining = ktime_to_ns(hrtimer_expires_remaining(&t.timer));
if (remaining <= 0)
goto out;
start_time = ktime_get();
if (remaining < 100000) {
/* for small delays (<100us), just loop until limit is reached */
do {
end_time = ktime_get();
} while (ktime_compare(end_time, spin_until) < 0);
} else {
/* see do_nanosleep */
hrtimer_init_sleeper(&t, current);
do {
set_current_state(TASK_INTERRUPTIBLE);
hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
if (likely(t.task))
schedule();
hrtimer_cancel(&t.timer);
} while (t.task && pkt_dev->running && !signal_pending(current));
__set_current_state(TASK_RUNNING);
end_time = ktime_get();
}
pkt_dev->idle_acc += ktime_to_ns(ktime_sub(end_time, start_time));
out:
pkt_dev->next_tx = ktime_add_ns(spin_until, pkt_dev->delay);
destroy_hrtimer_on_stack(&t.timer);
}
static inline void set_pkt_overhead(struct pktgen_dev *pkt_dev)
{
pkt_dev->pkt_overhead = 0;
pkt_dev->pkt_overhead += pkt_dev->nr_labels*sizeof(u32);
pkt_dev->pkt_overhead += VLAN_TAG_SIZE(pkt_dev);
pkt_dev->pkt_overhead += SVLAN_TAG_SIZE(pkt_dev);
}
static inline int f_seen(const struct pktgen_dev *pkt_dev, int flow)
{
return !!(pkt_dev->flows[flow].flags & F_INIT);
}
static inline int f_pick(struct pktgen_dev *pkt_dev)
{
int flow = pkt_dev->curfl;
if (pkt_dev->flags & F_FLOW_SEQ) {
if (pkt_dev->flows[flow].count >= pkt_dev->lflow) {
/* reset time */
pkt_dev->flows[flow].count = 0;
pkt_dev->flows[flow].flags = 0;
pkt_dev->curfl += 1;
if (pkt_dev->curfl >= pkt_dev->cflows)
pkt_dev->curfl = 0; /*reset */
}
} else {
flow = prandom_u32() % pkt_dev->cflows;
pkt_dev->curfl = flow;
if (pkt_dev->flows[flow].count > pkt_dev->lflow) {
pkt_dev->flows[flow].count = 0;
pkt_dev->flows[flow].flags = 0;
}
}
return pkt_dev->curfl;
}
#ifdef CONFIG_XFRM
/* If there was already an IPSEC SA, we keep it as is, else
* we go look for it ...
*/
#define DUMMY_MARK 0
static void get_ipsec_sa(struct pktgen_dev *pkt_dev, int flow)
{
struct xfrm_state *x = pkt_dev->flows[flow].x;
struct pktgen_net *pn = net_generic(dev_net(pkt_dev->odev), pg_net_id);
if (!x) {
if (pkt_dev->spi) {
/* We need as quick as possible to find the right SA
* Searching with minimum criteria to archieve this.
*/
x = xfrm_state_lookup_byspi(pn->net, htonl(pkt_dev->spi), AF_INET);
} else {
/* slow path: we dont already have xfrm_state */
x = xfrm_stateonly_find(pn->net, DUMMY_MARK,
(xfrm_address_t *)&pkt_dev->cur_daddr,
(xfrm_address_t *)&pkt_dev->cur_saddr,
AF_INET,
pkt_dev->ipsmode,
pkt_dev->ipsproto, 0);
}
if (x) {
pkt_dev->flows[flow].x = x;
set_pkt_overhead(pkt_dev);
pkt_dev->pkt_overhead += x->props.header_len;
}
}
}
#endif
static void set_cur_queue_map(struct pktgen_dev *pkt_dev)
{
if (pkt_dev->flags & F_QUEUE_MAP_CPU)
pkt_dev->cur_queue_map = smp_processor_id();
else if (pkt_dev->queue_map_min <= pkt_dev->queue_map_max) {
__u16 t;
if (pkt_dev->flags & F_QUEUE_MAP_RND) {
t = prandom_u32() %
(pkt_dev->queue_map_max -
pkt_dev->queue_map_min + 1)
+ pkt_dev->queue_map_min;
} else {
t = pkt_dev->cur_queue_map + 1;
if (t > pkt_dev->queue_map_max)
t = pkt_dev->queue_map_min;
}
pkt_dev->cur_queue_map = t;
}
pkt_dev->cur_queue_map = pkt_dev->cur_queue_map % pkt_dev->odev->real_num_tx_queues;
}
/* Increment/randomize headers according to flags and current values
* for IP src/dest, UDP src/dst port, MAC-Addr src/dst
*/
static void mod_cur_headers(struct pktgen_dev *pkt_dev)
{
__u32 imn;
__u32 imx;
int flow = 0;
if (pkt_dev->cflows)
flow = f_pick(pkt_dev);
/* Deal with source MAC */
if (pkt_dev->src_mac_count > 1) {
__u32 mc;
__u32 tmp;
if (pkt_dev->flags & F_MACSRC_RND)
mc = prandom_u32() % pkt_dev->src_mac_count;
else {
mc = pkt_dev->cur_src_mac_offset++;
if (pkt_dev->cur_src_mac_offset >=
pkt_dev->src_mac_count)
pkt_dev->cur_src_mac_offset = 0;
}
tmp = pkt_dev->src_mac[5] + (mc & 0xFF);
pkt_dev->hh[11] = tmp;
tmp = (pkt_dev->src_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8));
pkt_dev->hh[10] = tmp;
tmp = (pkt_dev->src_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8));
pkt_dev->hh[9] = tmp;
tmp = (pkt_dev->src_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8));
pkt_dev->hh[8] = tmp;
tmp = (pkt_dev->src_mac[1] + (tmp >> 8));
pkt_dev->hh[7] = tmp;
}
/* Deal with Destination MAC */
if (pkt_dev->dst_mac_count > 1) {
__u32 mc;
__u32 tmp;
if (pkt_dev->flags & F_MACDST_RND)
mc = prandom_u32() % pkt_dev->dst_mac_count;
else {
mc = pkt_dev->cur_dst_mac_offset++;
if (pkt_dev->cur_dst_mac_offset >=
pkt_dev->dst_mac_count) {
pkt_dev->cur_dst_mac_offset = 0;
}
}
tmp = pkt_dev->dst_mac[5] + (mc & 0xFF);
pkt_dev->hh[5] = tmp;
tmp = (pkt_dev->dst_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8));
pkt_dev->hh[4] = tmp;
tmp = (pkt_dev->dst_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8));
pkt_dev->hh[3] = tmp;
tmp = (pkt_dev->dst_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8));
pkt_dev->hh[2] = tmp;
tmp = (pkt_dev->dst_mac[1] + (tmp >> 8));
pkt_dev->hh[1] = tmp;
}
if (pkt_dev->flags & F_MPLS_RND) {
unsigned int i;
for (i = 0; i < pkt_dev->nr_labels; i++)
if (pkt_dev->labels[i] & MPLS_STACK_BOTTOM)
pkt_dev->labels[i] = MPLS_STACK_BOTTOM |
((__force __be32)prandom_u32() &
htonl(0x000fffff));
}
if ((pkt_dev->flags & F_VID_RND) && (pkt_dev->vlan_id != 0xffff)) {
pkt_dev->vlan_id = prandom_u32() & (4096 - 1);
}
if ((pkt_dev->flags & F_SVID_RND) && (pkt_dev->svlan_id != 0xffff)) {
pkt_dev->svlan_id = prandom_u32() & (4096 - 1);
}
if (pkt_dev->udp_src_min < pkt_dev->udp_src_max) {
if (pkt_dev->flags & F_UDPSRC_RND)
pkt_dev->cur_udp_src = prandom_u32() %
(pkt_dev->udp_src_max - pkt_dev->udp_src_min)
+ pkt_dev->udp_src_min;
else {
pkt_dev->cur_udp_src++;
if (pkt_dev->cur_udp_src >= pkt_dev->udp_src_max)
pkt_dev->cur_udp_src = pkt_dev->udp_src_min;
}
}
if (pkt_dev->udp_dst_min < pkt_dev->udp_dst_max) {
if (pkt_dev->flags & F_UDPDST_RND) {
pkt_dev->cur_udp_dst = prandom_u32() %
(pkt_dev->udp_dst_max - pkt_dev->udp_dst_min)
+ pkt_dev->udp_dst_min;
} else {
pkt_dev->cur_udp_dst++;
if (pkt_dev->cur_udp_dst >= pkt_dev->udp_dst_max)
pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min;
}
}
if (!(pkt_dev->flags & F_IPV6)) {
imn = ntohl(pkt_dev->saddr_min);
imx = ntohl(pkt_dev->saddr_max);
if (imn < imx) {
__u32 t;
if (pkt_dev->flags & F_IPSRC_RND)
t = prandom_u32() % (imx - imn) + imn;
else {
t = ntohl(pkt_dev->cur_saddr);
t++;
if (t > imx)
t = imn;
}
pkt_dev->cur_saddr = htonl(t);
}
if (pkt_dev->cflows && f_seen(pkt_dev, flow)) {
pkt_dev->cur_daddr = pkt_dev->flows[flow].cur_daddr;
} else {
imn = ntohl(pkt_dev->daddr_min);
imx = ntohl(pkt_dev->daddr_max);
if (imn < imx) {
__u32 t;
__be32 s;
if (pkt_dev->flags & F_IPDST_RND) {
do {
t = prandom_u32() %
(imx - imn) + imn;
s = htonl(t);
} while (ipv4_is_loopback(s) ||
ipv4_is_multicast(s) ||
ipv4_is_lbcast(s) ||
ipv4_is_zeronet(s) ||
ipv4_is_local_multicast(s));
pkt_dev->cur_daddr = s;
} else {
t = ntohl(pkt_dev->cur_daddr);
t++;
if (t > imx) {
t = imn;
}
pkt_dev->cur_daddr = htonl(t);
}
}
if (pkt_dev->cflows) {
pkt_dev->flows[flow].flags |= F_INIT;
pkt_dev->flows[flow].cur_daddr =
pkt_dev->cur_daddr;
#ifdef CONFIG_XFRM
if (pkt_dev->flags & F_IPSEC_ON)
get_ipsec_sa(pkt_dev, flow);
#endif
pkt_dev->nflows++;
}
}
} else { /* IPV6 * */
if (!ipv6_addr_any(&pkt_dev->min_in6_daddr)) {
int i;
/* Only random destinations yet */
for (i = 0; i < 4; i++) {
pkt_dev->cur_in6_daddr.s6_addr32[i] =
(((__force __be32)prandom_u32() |
pkt_dev->min_in6_daddr.s6_addr32[i]) &
pkt_dev->max_in6_daddr.s6_addr32[i]);
}
}
}
if (pkt_dev->min_pkt_size < pkt_dev->max_pkt_size) {
__u32 t;
if (pkt_dev->flags & F_TXSIZE_RND) {
t = prandom_u32() %
(pkt_dev->max_pkt_size - pkt_dev->min_pkt_size)
+ pkt_dev->min_pkt_size;
} else {
t = pkt_dev->cur_pkt_size + 1;
if (t > pkt_dev->max_pkt_size)
t = pkt_dev->min_pkt_size;
}
pkt_dev->cur_pkt_size = t;
}
set_cur_queue_map(pkt_dev);
pkt_dev->flows[flow].count++;
}
#ifdef CONFIG_XFRM
static u32 pktgen_dst_metrics[RTAX_MAX + 1] = {
[RTAX_HOPLIMIT] = 0x5, /* Set a static hoplimit */
};
static int pktgen_output_ipsec(struct sk_buff *skb, struct pktgen_dev *pkt_dev)
{
struct xfrm_state *x = pkt_dev->flows[pkt_dev->curfl].x;
int err = 0;
struct net *net = dev_net(pkt_dev->odev);
if (!x)
return 0;
/* XXX: we dont support tunnel mode for now until
* we resolve the dst issue */
if ((x->props.mode != XFRM_MODE_TRANSPORT) && (pkt_dev->spi == 0))
return 0;
/* But when user specify an valid SPI, transformation
* supports both transport/tunnel mode + ESP/AH type.
*/
if ((x->props.mode == XFRM_MODE_TUNNEL) && (pkt_dev->spi != 0))
skb->_skb_refdst = (unsigned long)&pkt_dev->dst | SKB_DST_NOREF;
rcu_read_lock_bh();
err = x->outer_mode->output(x, skb);
rcu_read_unlock_bh();
if (err) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMOUTSTATEMODEERROR);
goto error;
}
err = x->type->output(x, skb);
if (err) {
XFRM_INC_STATS(net, LINUX_MIB_XFRMOUTSTATEPROTOERROR);
goto error;
}
spin_lock_bh(&x->lock);
x->curlft.bytes += skb->len;
x->curlft.packets++;
spin_unlock_bh(&x->lock);
error:
return err;
}
static void free_SAs(struct pktgen_dev *pkt_dev)
{
if (pkt_dev->cflows) {
/* let go of the SAs if we have them */
int i;
for (i = 0; i < pkt_dev->cflows; i++) {
struct xfrm_state *x = pkt_dev->flows[i].x;
if (x) {
xfrm_state_put(x);
pkt_dev->flows[i].x = NULL;
}
}
}
}
static int process_ipsec(struct pktgen_dev *pkt_dev,
struct sk_buff *skb, __be16 protocol)
{
if (pkt_dev->flags & F_IPSEC_ON) {
struct xfrm_state *x = pkt_dev->flows[pkt_dev->curfl].x;
int nhead = 0;
if (x) {
struct ethhdr *eth;
struct iphdr *iph;
int ret;
nhead = x->props.header_len - skb_headroom(skb);
if (nhead > 0) {
ret = pskb_expand_head(skb, nhead, 0, GFP_ATOMIC);
if (ret < 0) {
pr_err("Error expanding ipsec packet %d\n",
ret);
goto err;
}
}
/* ipsec is not expecting ll header */
skb_pull(skb, ETH_HLEN);
ret = pktgen_output_ipsec(skb, pkt_dev);
if (ret) {
pr_err("Error creating ipsec packet %d\n", ret);
goto err;
}
/* restore ll */
eth = (struct ethhdr *)skb_push(skb, ETH_HLEN);
memcpy(eth, pkt_dev->hh, 2 * ETH_ALEN);
eth->h_proto = protocol;
/* Update IPv4 header len as well as checksum value */
iph = ip_hdr(skb);
iph->tot_len = htons(skb->len - ETH_HLEN);
ip_send_check(iph);
}
}
return 1;
err:
kfree_skb(skb);
return 0;
}
#endif
static void mpls_push(__be32 *mpls, struct pktgen_dev *pkt_dev)
{
unsigned int i;
for (i = 0; i < pkt_dev->nr_labels; i++)
*mpls++ = pkt_dev->labels[i] & ~MPLS_STACK_BOTTOM;
mpls--;
*mpls |= MPLS_STACK_BOTTOM;
}
static inline __be16 build_tci(unsigned int id, unsigned int cfi,
unsigned int prio)
{
return htons(id | (cfi << 12) | (prio << 13));
}
static void pktgen_finalize_skb(struct pktgen_dev *pkt_dev, struct sk_buff *skb,
int datalen)
{
struct timeval timestamp;
struct pktgen_hdr *pgh;
pgh = (struct pktgen_hdr *)skb_put(skb, sizeof(*pgh));
datalen -= sizeof(*pgh);
if (pkt_dev->nfrags <= 0) {
memset(skb_put(skb, datalen), 0, datalen);
} else {
int frags = pkt_dev->nfrags;
int i, len;
int frag_len;
if (frags > MAX_SKB_FRAGS)
frags = MAX_SKB_FRAGS;
len = datalen - frags * PAGE_SIZE;
if (len > 0) {
memset(skb_put(skb, len), 0, len);
datalen = frags * PAGE_SIZE;
}
i = 0;
frag_len = (datalen/frags) < PAGE_SIZE ?
(datalen/frags) : PAGE_SIZE;
while (datalen > 0) {
if (unlikely(!pkt_dev->page)) {
int node = numa_node_id();
if (pkt_dev->node >= 0 && (pkt_dev->flags & F_NODE))
node = pkt_dev->node;
pkt_dev->page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
if (!pkt_dev->page)
break;
}
get_page(pkt_dev->page);
skb_frag_set_page(skb, i, pkt_dev->page);
skb_shinfo(skb)->frags[i].page_offset = 0;
/*last fragment, fill rest of data*/
if (i == (frags - 1))
skb_frag_size_set(&skb_shinfo(skb)->frags[i],
(datalen < PAGE_SIZE ? datalen : PAGE_SIZE));
else
skb_frag_size_set(&skb_shinfo(skb)->frags[i], frag_len);
datalen -= skb_frag_size(&skb_shinfo(skb)->frags[i]);
skb->len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
skb->data_len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
i++;
skb_shinfo(skb)->nr_frags = i;
}
}
/* Stamp the time, and sequence number,
* convert them to network byte order
*/
pgh->pgh_magic = htonl(PKTGEN_MAGIC);
pgh->seq_num = htonl(pkt_dev->seq_num);
if (pkt_dev->flags & F_NO_TIMESTAMP) {
pgh->tv_sec = 0;
pgh->tv_usec = 0;
} else {
do_gettimeofday(&timestamp);
pgh->tv_sec = htonl(timestamp.tv_sec);
pgh->tv_usec = htonl(timestamp.tv_usec);
}
}
static struct sk_buff *pktgen_alloc_skb(struct net_device *dev,
struct pktgen_dev *pkt_dev)
{
unsigned int extralen = LL_RESERVED_SPACE(dev);
struct sk_buff *skb = NULL;
unsigned int size;
size = pkt_dev->cur_pkt_size + 64 + extralen + pkt_dev->pkt_overhead;
if (pkt_dev->flags & F_NODE) {
int node = pkt_dev->node >= 0 ? pkt_dev->node : numa_node_id();
skb = __alloc_skb(NET_SKB_PAD + size, GFP_NOWAIT, 0, node);
if (likely(skb)) {
skb_reserve(skb, NET_SKB_PAD);
skb->dev = dev;
}
} else {
skb = __netdev_alloc_skb(dev, size, GFP_NOWAIT);
}
/* the caller pre-fetches from skb->data and reserves for the mac hdr */
if (likely(skb))
skb_reserve(skb, extralen - 16);
return skb;
}
static struct sk_buff *fill_packet_ipv4(struct net_device *odev,
struct pktgen_dev *pkt_dev)
{
struct sk_buff *skb = NULL;
__u8 *eth;
struct udphdr *udph;
int datalen, iplen;
struct iphdr *iph;
__be16 protocol = htons(ETH_P_IP);
__be32 *mpls;
__be16 *vlan_tci = NULL; /* Encapsulates priority and VLAN ID */
__be16 *vlan_encapsulated_proto = NULL; /* packet type ID field (or len) for VLAN tag */
__be16 *svlan_tci = NULL; /* Encapsulates priority and SVLAN ID */
__be16 *svlan_encapsulated_proto = NULL; /* packet type ID field (or len) for SVLAN tag */
u16 queue_map;
if (pkt_dev->nr_labels)
protocol = htons(ETH_P_MPLS_UC);
if (pkt_dev->vlan_id != 0xffff)
protocol = htons(ETH_P_8021Q);
/* Update any of the values, used when we're incrementing various
* fields.
*/
mod_cur_headers(pkt_dev);
queue_map = pkt_dev->cur_queue_map;
skb = pktgen_alloc_skb(odev, pkt_dev);
if (!skb) {
sprintf(pkt_dev->result, "No memory");
return NULL;
}
prefetchw(skb->data);
skb_reserve(skb, 16);
/* Reserve for ethernet and IP header */
eth = (__u8 *) skb_push(skb, 14);
mpls = (__be32 *)skb_put(skb, pkt_dev->nr_labels*sizeof(__u32));
if (pkt_dev->nr_labels)
mpls_push(mpls, pkt_dev);
if (pkt_dev->vlan_id != 0xffff) {
if (pkt_dev->svlan_id != 0xffff) {
svlan_tci = (__be16 *)skb_put(skb, sizeof(__be16));
*svlan_tci = build_tci(pkt_dev->svlan_id,
pkt_dev->svlan_cfi,
pkt_dev->svlan_p);
svlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16));
*svlan_encapsulated_proto = htons(ETH_P_8021Q);
}
vlan_tci = (__be16 *)skb_put(skb, sizeof(__be16));
*vlan_tci = build_tci(pkt_dev->vlan_id,
pkt_dev->vlan_cfi,
pkt_dev->vlan_p);
vlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16));
*vlan_encapsulated_proto = htons(ETH_P_IP);
}
skb_reset_mac_header(skb);
skb_set_network_header(skb, skb->len);
iph = (struct iphdr *) skb_put(skb, sizeof(struct iphdr));
skb_set_transport_header(skb, skb->len);
udph = (struct udphdr *) skb_put(skb, sizeof(struct udphdr));
skb_set_queue_mapping(skb, queue_map);
skb->priority = pkt_dev->skb_priority;
memcpy(eth, pkt_dev->hh, 12);
*(__be16 *) & eth[12] = protocol;
/* Eth + IPh + UDPh + mpls */
datalen = pkt_dev->cur_pkt_size - 14 - 20 - 8 -
pkt_dev->pkt_overhead;
if (datalen < 0 || datalen < sizeof(struct pktgen_hdr))
datalen = sizeof(struct pktgen_hdr);
udph->source = htons(pkt_dev->cur_udp_src);
udph->dest = htons(pkt_dev->cur_udp_dst);
udph->len = htons(datalen + 8); /* DATA + udphdr */
udph->check = 0;
iph->ihl = 5;
iph->version = 4;
iph->ttl = 32;
iph->tos = pkt_dev->tos;
iph->protocol = IPPROTO_UDP; /* UDP */
iph->saddr = pkt_dev->cur_saddr;
iph->daddr = pkt_dev->cur_daddr;
iph->id = htons(pkt_dev->ip_id);
pkt_dev->ip_id++;
iph->frag_off = 0;
iplen = 20 + 8 + datalen;
iph->tot_len = htons(iplen);
ip_send_check(iph);
skb->protocol = protocol;
skb->dev = odev;
skb->pkt_type = PACKET_HOST;
pktgen_finalize_skb(pkt_dev, skb, datalen);
if (!(pkt_dev->flags & F_UDPCSUM)) {
skb->ip_summed = CHECKSUM_NONE;
} else if (odev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM)) {
skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum = 0;
udp4_hwcsum(skb, iph->saddr, iph->daddr);
} else {
__wsum csum = skb_checksum(skb, skb_transport_offset(skb), datalen + 8, 0);
/* add protocol-dependent pseudo-header */
udph->check = csum_tcpudp_magic(iph->saddr, iph->daddr,
datalen + 8, IPPROTO_UDP, csum);
if (udph->check == 0)
udph->check = CSUM_MANGLED_0;
}
#ifdef CONFIG_XFRM
if (!process_ipsec(pkt_dev, skb, protocol))
return NULL;
#endif
return skb;
}
static struct sk_buff *fill_packet_ipv6(struct net_device *odev,
struct pktgen_dev *pkt_dev)
{
struct sk_buff *skb = NULL;
__u8 *eth;
struct udphdr *udph;
int datalen, udplen;
struct ipv6hdr *iph;
__be16 protocol = htons(ETH_P_IPV6);
__be32 *mpls;
__be16 *vlan_tci = NULL; /* Encapsulates priority and VLAN ID */
__be16 *vlan_encapsulated_proto = NULL; /* packet type ID field (or len) for VLAN tag */
__be16 *svlan_tci = NULL; /* Encapsulates priority and SVLAN ID */
__be16 *svlan_encapsulated_proto = NULL; /* packet type ID field (or len) for SVLAN tag */
u16 queue_map;
if (pkt_dev->nr_labels)
protocol = htons(ETH_P_MPLS_UC);
if (pkt_dev->vlan_id != 0xffff)
protocol = htons(ETH_P_8021Q);
/* Update any of the values, used when we're incrementing various
* fields.
*/
mod_cur_headers(pkt_dev);
queue_map = pkt_dev->cur_queue_map;
skb = pktgen_alloc_skb(odev, pkt_dev);
if (!skb) {
sprintf(pkt_dev->result, "No memory");
return NULL;
}
prefetchw(skb->data);
skb_reserve(skb, 16);
/* Reserve for ethernet and IP header */
eth = (__u8 *) skb_push(skb, 14);
mpls = (__be32 *)skb_put(skb, pkt_dev->nr_labels*sizeof(__u32));
if (pkt_dev->nr_labels)
mpls_push(mpls, pkt_dev);
if (pkt_dev->vlan_id != 0xffff) {
if (pkt_dev->svlan_id != 0xffff) {
svlan_tci = (__be16 *)skb_put(skb, sizeof(__be16));
*svlan_tci = build_tci(pkt_dev->svlan_id,
pkt_dev->svlan_cfi,
pkt_dev->svlan_p);
svlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16));
*svlan_encapsulated_proto = htons(ETH_P_8021Q);
}
vlan_tci = (__be16 *)skb_put(skb, sizeof(__be16));
*vlan_tci = build_tci(pkt_dev->vlan_id,
pkt_dev->vlan_cfi,
pkt_dev->vlan_p);
vlan_encapsulated_proto = (__be16 *)skb_put(skb, sizeof(__be16));
*vlan_encapsulated_proto = htons(ETH_P_IPV6);
}
skb_reset_mac_header(skb);
skb_set_network_header(skb, skb->len);
iph = (struct ipv6hdr *) skb_put(skb, sizeof(struct ipv6hdr));
skb_set_transport_header(skb, skb->len);
udph = (struct udphdr *) skb_put(skb, sizeof(struct udphdr));
skb_set_queue_mapping(skb, queue_map);
skb->priority = pkt_dev->skb_priority;
memcpy(eth, pkt_dev->hh, 12);
*(__be16 *) &eth[12] = protocol;
/* Eth + IPh + UDPh + mpls */
datalen = pkt_dev->cur_pkt_size - 14 -
sizeof(struct ipv6hdr) - sizeof(struct udphdr) -
pkt_dev->pkt_overhead;
if (datalen < 0 || datalen < sizeof(struct pktgen_hdr)) {
datalen = sizeof(struct pktgen_hdr);
net_info_ratelimited("increased datalen to %d\n", datalen);
}
udplen = datalen + sizeof(struct udphdr);
udph->source = htons(pkt_dev->cur_udp_src);
udph->dest = htons(pkt_dev->cur_udp_dst);
udph->len = htons(udplen);
udph->check = 0;
*(__be32 *) iph = htonl(0x60000000); /* Version + flow */
if (pkt_dev->traffic_class) {
/* Version + traffic class + flow (0) */
*(__be32 *)iph |= htonl(0x60000000 | (pkt_dev->traffic_class << 20));
}
iph->hop_limit = 32;
iph->payload_len = htons(udplen);
iph->nexthdr = IPPROTO_UDP;
iph->daddr = pkt_dev->cur_in6_daddr;
iph->saddr = pkt_dev->cur_in6_saddr;
skb->protocol = protocol;
skb->dev = odev;
skb->pkt_type = PACKET_HOST;
pktgen_finalize_skb(pkt_dev, skb, datalen);
if (!(pkt_dev->flags & F_UDPCSUM)) {
skb->ip_summed = CHECKSUM_NONE;
} else if (odev->features & (NETIF_F_HW_CSUM | NETIF_F_IPV6_CSUM)) {
skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum_start = skb_transport_header(skb) - skb->head;
skb->csum_offset = offsetof(struct udphdr, check);
udph->check = ~csum_ipv6_magic(&iph->saddr, &iph->daddr, udplen, IPPROTO_UDP, 0);
} else {
__wsum csum = skb_checksum(skb, skb_transport_offset(skb), udplen, 0);
/* add protocol-dependent pseudo-header */
udph->check = csum_ipv6_magic(&iph->saddr, &iph->daddr, udplen, IPPROTO_UDP, csum);
if (udph->check == 0)
udph->check = CSUM_MANGLED_0;
}
return skb;
}
static struct sk_buff *fill_packet(struct net_device *odev,
struct pktgen_dev *pkt_dev)
{
if (pkt_dev->flags & F_IPV6)
return fill_packet_ipv6(odev, pkt_dev);
else
return fill_packet_ipv4(odev, pkt_dev);
}
static void pktgen_clear_counters(struct pktgen_dev *pkt_dev)
{
pkt_dev->seq_num = 1;
pkt_dev->idle_acc = 0;
pkt_dev->sofar = 0;
pkt_dev->tx_bytes = 0;
pkt_dev->errors = 0;
}
/* Set up structure for sending pkts, clear counters */
static void pktgen_run(struct pktgen_thread *t)
{
struct pktgen_dev *pkt_dev;
int started = 0;
func_enter();
rcu_read_lock();
list_for_each_entry_rcu(pkt_dev, &t->if_list, list) {
/*
* setup odev and create initial packet.
*/
pktgen_setup_inject(pkt_dev);
if (pkt_dev->odev) {
pktgen_clear_counters(pkt_dev);
pkt_dev->skb = NULL;
pkt_dev->started_at = pkt_dev->next_tx = ktime_get();
set_pkt_overhead(pkt_dev);
strcpy(pkt_dev->result, "Starting");
pkt_dev->running = 1; /* Cranke yeself! */
started++;
} else
strcpy(pkt_dev->result, "Error starting");
}
rcu_read_unlock();
if (started)
t->control &= ~(T_STOP);
}
static void pktgen_stop_all_threads_ifs(struct pktgen_net *pn)
{
struct pktgen_thread *t;
func_enter();
mutex_lock(&pktgen_thread_lock);
list_for_each_entry(t, &pn->pktgen_threads, th_list)
t->control |= T_STOP;
mutex_unlock(&pktgen_thread_lock);
}
static int thread_is_running(const struct pktgen_thread *t)
{
const struct pktgen_dev *pkt_dev;
rcu_read_lock();
list_for_each_entry_rcu(pkt_dev, &t->if_list, list)
if (pkt_dev->running) {
rcu_read_unlock();
return 1;
}
rcu_read_unlock();
return 0;
}
static int pktgen_wait_thread_run(struct pktgen_thread *t)
{
while (thread_is_running(t)) {
/* note: 't' will still be around even after the unlock/lock
* cycle because pktgen_thread threads are only cleared at
* net exit
*/
mutex_unlock(&pktgen_thread_lock);
msleep_interruptible(100);
mutex_lock(&pktgen_thread_lock);
if (signal_pending(current))
goto signal;
}
return 1;
signal:
return 0;
}
static int pktgen_wait_all_threads_run(struct pktgen_net *pn)
{
struct pktgen_thread *t;
int sig = 1;
/* prevent from racing with rmmod */
if (!try_module_get(THIS_MODULE))
return sig;
mutex_lock(&pktgen_thread_lock);
list_for_each_entry(t, &pn->pktgen_threads, th_list) {
sig = pktgen_wait_thread_run(t);
if (sig == 0)
break;
}
if (sig == 0)
list_for_each_entry(t, &pn->pktgen_threads, th_list)
t->control |= (T_STOP);
mutex_unlock(&pktgen_thread_lock);
module_put(THIS_MODULE);
return sig;
}
static void pktgen_run_all_threads(struct pktgen_net *pn)
{
struct pktgen_thread *t;
func_enter();
mutex_lock(&pktgen_thread_lock);
list_for_each_entry(t, &pn->pktgen_threads, th_list)
t->control |= (T_RUN);
mutex_unlock(&pktgen_thread_lock);
/* Propagate thread->control */
schedule_timeout_interruptible(msecs_to_jiffies(125));
pktgen_wait_all_threads_run(pn);
}
static void pktgen_reset_all_threads(struct pktgen_net *pn)
{
struct pktgen_thread *t;
func_enter();
mutex_lock(&pktgen_thread_lock);
list_for_each_entry(t, &pn->pktgen_threads, th_list)
t->control |= (T_REMDEVALL);
mutex_unlock(&pktgen_thread_lock);
/* Propagate thread->control */
schedule_timeout_interruptible(msecs_to_jiffies(125));
pktgen_wait_all_threads_run(pn);
}
static void show_results(struct pktgen_dev *pkt_dev, int nr_frags)
{
__u64 bps, mbps, pps;
char *p = pkt_dev->result;
ktime_t elapsed = ktime_sub(pkt_dev->stopped_at,
pkt_dev->started_at);
ktime_t idle = ns_to_ktime(pkt_dev->idle_acc);
p += sprintf(p, "OK: %llu(c%llu+d%llu) usec, %llu (%dbyte,%dfrags)\n",
(unsigned long long)ktime_to_us(elapsed),
(unsigned long long)ktime_to_us(ktime_sub(elapsed, idle)),
(unsigned long long)ktime_to_us(idle),
(unsigned long long)pkt_dev->sofar,
pkt_dev->cur_pkt_size, nr_frags);
pps = div64_u64(pkt_dev->sofar * NSEC_PER_SEC,
ktime_to_ns(elapsed));
bps = pps * 8 * pkt_dev->cur_pkt_size;
mbps = bps;
do_div(mbps, 1000000);
p += sprintf(p, " %llupps %lluMb/sec (%llubps) errors: %llu",
(unsigned long long)pps,
(unsigned long long)mbps,
(unsigned long long)bps,
(unsigned long long)pkt_dev->errors);
}
/* Set stopped-at timer, remove from running list, do counters & statistics */
static int pktgen_stop_device(struct pktgen_dev *pkt_dev)
{
int nr_frags = pkt_dev->skb ? skb_shinfo(pkt_dev->skb)->nr_frags : -1;
if (!pkt_dev->running) {
pr_warn("interface: %s is already stopped\n",
pkt_dev->odevname);
return -EINVAL;
}
pkt_dev->running = 0;
kfree_skb(pkt_dev->skb);
pkt_dev->skb = NULL;
pkt_dev->stopped_at = ktime_get();
show_results(pkt_dev, nr_frags);
return 0;
}
static struct pktgen_dev *next_to_run(struct pktgen_thread *t)
{
struct pktgen_dev *pkt_dev, *best = NULL;
rcu_read_lock();
list_for_each_entry_rcu(pkt_dev, &t->if_list, list) {
if (!pkt_dev->running)
continue;
if (best == NULL)
best = pkt_dev;
else if (ktime_compare(pkt_dev->next_tx, best->next_tx) < 0)
best = pkt_dev;
}
rcu_read_unlock();
return best;
}
static void pktgen_stop(struct pktgen_thread *t)
{
struct pktgen_dev *pkt_dev;
func_enter();
rcu_read_lock();
list_for_each_entry_rcu(pkt_dev, &t->if_list, list) {
pktgen_stop_device(pkt_dev);
}
rcu_read_unlock();
}
/*
* one of our devices needs to be removed - find it
* and remove it
*/
static void pktgen_rem_one_if(struct pktgen_thread *t)
{
struct list_head *q, *n;
struct pktgen_dev *cur;
func_enter();
list_for_each_safe(q, n, &t->if_list) {
cur = list_entry(q, struct pktgen_dev, list);
if (!cur->removal_mark)
continue;
kfree_skb(cur->skb);
cur->skb = NULL;
pktgen_remove_device(t, cur);
break;
}
}
static void pktgen_rem_all_ifs(struct pktgen_thread *t)
{
struct list_head *q, *n;
struct pktgen_dev *cur;
func_enter();
/* Remove all devices, free mem */
list_for_each_safe(q, n, &t->if_list) {
cur = list_entry(q, struct pktgen_dev, list);
kfree_skb(cur->skb);
cur->skb = NULL;
pktgen_remove_device(t, cur);
}
}
static void pktgen_rem_thread(struct pktgen_thread *t)
{
/* Remove from the thread list */
remove_proc_entry(t->tsk->comm, t->net->proc_dir);
}
static void pktgen_resched(struct pktgen_dev *pkt_dev)
{
ktime_t idle_start = ktime_get();
schedule();
pkt_dev->idle_acc += ktime_to_ns(ktime_sub(ktime_get(), idle_start));
}
static void pktgen_wait_for_skb(struct pktgen_dev *pkt_dev)
{
ktime_t idle_start = ktime_get();
while (atomic_read(&(pkt_dev->skb->users)) != 1) {
if (signal_pending(current))
break;
if (need_resched())
pktgen_resched(pkt_dev);
else
cpu_relax();
}
pkt_dev->idle_acc += ktime_to_ns(ktime_sub(ktime_get(), idle_start));
}
static void pktgen_xmit(struct pktgen_dev *pkt_dev)
{
unsigned int burst = ACCESS_ONCE(pkt_dev->burst);
struct net_device *odev = pkt_dev->odev;
struct netdev_queue *txq;
struct sk_buff *skb;
int ret;
/* If device is offline, then don't send */
if (unlikely(!netif_running(odev) || !netif_carrier_ok(odev))) {
pktgen_stop_device(pkt_dev);
return;
}
/* This is max DELAY, this has special meaning of
* "never transmit"
*/
if (unlikely(pkt_dev->delay == ULLONG_MAX)) {
pkt_dev->next_tx = ktime_add_ns(ktime_get(), ULONG_MAX);
return;
}
/* If no skb or clone count exhausted then get new one */
if (!pkt_dev->skb || (pkt_dev->last_ok &&
++pkt_dev->clone_count >= pkt_dev->clone_skb)) {
/* build a new pkt */
kfree_skb(pkt_dev->skb);
pkt_dev->skb = fill_packet(odev, pkt_dev);
if (pkt_dev->skb == NULL) {
pr_err("ERROR: couldn't allocate skb in fill_packet\n");
schedule();
pkt_dev->clone_count--; /* back out increment, OOM */
return;
}
pkt_dev->last_pkt_size = pkt_dev->skb->len;
pkt_dev->clone_count = 0; /* reset counter */
}
if (pkt_dev->delay && pkt_dev->last_ok)
spin(pkt_dev, pkt_dev->next_tx);
if (pkt_dev->xmit_mode == M_NETIF_RECEIVE) {
skb = pkt_dev->skb;
skb->protocol = eth_type_trans(skb, skb->dev);
atomic_add(burst, &skb->users);
local_bh_disable();
do {
ret = netif_receive_skb(skb);
if (ret == NET_RX_DROP)
pkt_dev->errors++;
pkt_dev->sofar++;
pkt_dev->seq_num++;
if (atomic_read(&skb->users) != burst) {
/* skb was queued by rps/rfs or taps,
* so cannot reuse this skb
*/
atomic_sub(burst - 1, &skb->users);
/* get out of the loop and wait
* until skb is consumed
*/
break;
}
/* skb was 'freed' by stack, so clean few
* bits and reuse it
*/
#ifdef CONFIG_NET_CLS_ACT
skb->tc_verd = 0; /* reset reclass/redir ttl */
#endif
} while (--burst > 0);
goto out; /* Skips xmit_mode M_START_XMIT */
} else if (pkt_dev->xmit_mode == M_QUEUE_XMIT) {
local_bh_disable();
atomic_inc(&pkt_dev->skb->users);
ret = dev_queue_xmit(pkt_dev->skb);
switch (ret) {
case NET_XMIT_SUCCESS:
pkt_dev->sofar++;
pkt_dev->seq_num++;
pkt_dev->tx_bytes += pkt_dev->last_pkt_size;
break;
case NET_XMIT_DROP:
case NET_XMIT_CN:
/* These are all valid return codes for a qdisc but
* indicate packets are being dropped or will likely
* be dropped soon.
*/
case NETDEV_TX_BUSY:
/* qdisc may call dev_hard_start_xmit directly in cases
* where no queues exist e.g. loopback device, virtual
* devices, etc. In this case we need to handle
* NETDEV_TX_ codes.
*/
default:
pkt_dev->errors++;
net_info_ratelimited("%s xmit error: %d\n",
pkt_dev->odevname, ret);
break;
}
goto out;
}
txq = skb_get_tx_queue(odev, pkt_dev->skb);
local_bh_disable();
HARD_TX_LOCK(odev, txq, smp_processor_id());
if (unlikely(netif_xmit_frozen_or_drv_stopped(txq))) {
ret = NETDEV_TX_BUSY;
pkt_dev->last_ok = 0;
goto unlock;
}
atomic_add(burst, &pkt_dev->skb->users);
xmit_more:
ret = netdev_start_xmit(pkt_dev->skb, odev, txq, --burst > 0);
switch (ret) {
case NETDEV_TX_OK:
pkt_dev->last_ok = 1;
pkt_dev->sofar++;
pkt_dev->seq_num++;
pkt_dev->tx_bytes += pkt_dev->last_pkt_size;
if (burst > 0 && !netif_xmit_frozen_or_drv_stopped(txq))
goto xmit_more;
break;
case NET_XMIT_DROP:
case NET_XMIT_CN:
/* skb has been consumed */
pkt_dev->errors++;
break;
default: /* Drivers are not supposed to return other values! */
net_info_ratelimited("%s xmit error: %d\n",
pkt_dev->odevname, ret);
pkt_dev->errors++;
/* fallthru */
case NETDEV_TX_BUSY:
/* Retry it next time */
atomic_dec(&(pkt_dev->skb->users));
pkt_dev->last_ok = 0;
}
if (unlikely(burst))
atomic_sub(burst, &pkt_dev->skb->users);
unlock:
HARD_TX_UNLOCK(odev, txq);
out:
local_bh_enable();
/* If pkt_dev->count is zero, then run forever */
if ((pkt_dev->count != 0) && (pkt_dev->sofar >= pkt_dev->count)) {
pktgen_wait_for_skb(pkt_dev);
/* Done with this */
pktgen_stop_device(pkt_dev);
}
}
/*
* Main loop of the thread goes here
*/
static int pktgen_thread_worker(void *arg)
{
DEFINE_WAIT(wait);
struct pktgen_thread *t = arg;
struct pktgen_dev *pkt_dev = NULL;
int cpu = t->cpu;
BUG_ON(smp_processor_id() != cpu);
init_waitqueue_head(&t->queue);
complete(&t->start_done);
pr_debug("starting pktgen/%d: pid=%d\n", cpu, task_pid_nr(current));
set_freezable();
while (!kthread_should_stop()) {
pkt_dev = next_to_run(t);
if (unlikely(!pkt_dev && t->control == 0)) {
if (t->net->pktgen_exiting)
break;
wait_event_interruptible_timeout(t->queue,
t->control != 0,
HZ/10);
try_to_freeze();
continue;
}
if (likely(pkt_dev)) {
pktgen_xmit(pkt_dev);
if (need_resched())
pktgen_resched(pkt_dev);
else
cpu_relax();
}
if (t->control & T_STOP) {
pktgen_stop(t);
t->control &= ~(T_STOP);
}
if (t->control & T_RUN) {
pktgen_run(t);
t->control &= ~(T_RUN);
}
if (t->control & T_REMDEVALL) {
pktgen_rem_all_ifs(t);
t->control &= ~(T_REMDEVALL);
}
if (t->control & T_REMDEV) {
pktgen_rem_one_if(t);
t->control &= ~(T_REMDEV);
}
try_to_freeze();
}
pr_debug("%s stopping all device\n", t->tsk->comm);
pktgen_stop(t);
pr_debug("%s removing all device\n", t->tsk->comm);
pktgen_rem_all_ifs(t);
pr_debug("%s removing thread\n", t->tsk->comm);
pktgen_rem_thread(t);
return 0;
}
static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t,
const char *ifname, bool exact)
{
struct pktgen_dev *p, *pkt_dev = NULL;
size_t len = strlen(ifname);
rcu_read_lock();
list_for_each_entry_rcu(p, &t->if_list, list)
if (strncmp(p->odevname, ifname, len) == 0) {
if (p->odevname[len]) {
if (exact || p->odevname[len] != '@')
continue;
}
pkt_dev = p;
break;
}
rcu_read_unlock();
pr_debug("find_dev(%s) returning %p\n", ifname, pkt_dev);
return pkt_dev;
}
/*
* Adds a dev at front of if_list.
*/
static int add_dev_to_thread(struct pktgen_thread *t,
struct pktgen_dev *pkt_dev)
{
int rv = 0;
/* This function cannot be called concurrently, as its called
* under pktgen_thread_lock mutex, but it can run from
* userspace on another CPU than the kthread. The if_lock()
* is used here to sync with concurrent instances of
* _rem_dev_from_if_list() invoked via kthread, which is also
* updating the if_list */
if_lock(t);
if (pkt_dev->pg_thread) {
pr_err("ERROR: already assigned to a thread\n");
rv = -EBUSY;
goto out;
}
pkt_dev->running = 0;
pkt_dev->pg_thread = t;
list_add_rcu(&pkt_dev->list, &t->if_list);
out:
if_unlock(t);
return rv;
}
/* Called under thread lock */
static int pktgen_add_device(struct pktgen_thread *t, const char *ifname)
{
struct pktgen_dev *pkt_dev;
int err;
int node = cpu_to_node(t->cpu);
/* We don't allow a device to be on several threads */
pkt_dev = __pktgen_NN_threads(t->net, ifname, FIND);
if (pkt_dev) {
pr_err("ERROR: interface already used\n");
return -EBUSY;
}
pkt_dev = kzalloc_node(sizeof(struct pktgen_dev), GFP_KERNEL, node);
if (!pkt_dev)
return -ENOMEM;
strcpy(pkt_dev->odevname, ifname);
pkt_dev->flows = vzalloc_node(MAX_CFLOWS * sizeof(struct flow_state),
node);
if (pkt_dev->flows == NULL) {
kfree(pkt_dev);
return -ENOMEM;
}
pkt_dev->removal_mark = 0;
pkt_dev->nfrags = 0;
pkt_dev->delay = pg_delay_d;
pkt_dev->count = pg_count_d;
pkt_dev->sofar = 0;
pkt_dev->udp_src_min = 9; /* sink port */
pkt_dev->udp_src_max = 9;
pkt_dev->udp_dst_min = 9;
pkt_dev->udp_dst_max = 9;
pkt_dev->vlan_p = 0;
pkt_dev->vlan_cfi = 0;
pkt_dev->vlan_id = 0xffff;
pkt_dev->svlan_p = 0;
pkt_dev->svlan_cfi = 0;
pkt_dev->svlan_id = 0xffff;
pkt_dev->burst = 1;
pkt_dev->node = -1;
err = pktgen_setup_dev(t->net, pkt_dev, ifname);
if (err)
goto out1;
if (pkt_dev->odev->priv_flags & IFF_TX_SKB_SHARING)
pkt_dev->clone_skb = pg_clone_skb_d;
pkt_dev->entry = proc_create_data(ifname, 0600, t->net->proc_dir,
&pktgen_if_fops, pkt_dev);
if (!pkt_dev->entry) {
pr_err("cannot create %s/%s procfs entry\n",
PG_PROC_DIR, ifname);
err = -EINVAL;
goto out2;
}
#ifdef CONFIG_XFRM
pkt_dev->ipsmode = XFRM_MODE_TRANSPORT;
pkt_dev->ipsproto = IPPROTO_ESP;
/* xfrm tunnel mode needs additional dst to extract outter
* ip header protocol/ttl/id field, here creat a phony one.
* instead of looking for a valid rt, which definitely hurting
* performance under such circumstance.
*/
pkt_dev->dstops.family = AF_INET;
pkt_dev->dst.dev = pkt_dev->odev;
dst_init_metrics(&pkt_dev->dst, pktgen_dst_metrics, false);
pkt_dev->dst.child = &pkt_dev->dst;
pkt_dev->dst.ops = &pkt_dev->dstops;
#endif
return add_dev_to_thread(t, pkt_dev);
out2:
dev_put(pkt_dev->odev);
out1:
#ifdef CONFIG_XFRM
free_SAs(pkt_dev);
#endif
vfree(pkt_dev->flows);
kfree(pkt_dev);
return err;
}
static int __net_init pktgen_create_thread(int cpu, struct pktgen_net *pn)
{
struct pktgen_thread *t;
struct proc_dir_entry *pe;
struct task_struct *p;
t = kzalloc_node(sizeof(struct pktgen_thread), GFP_KERNEL,
cpu_to_node(cpu));
if (!t) {
pr_err("ERROR: out of memory, can't create new thread\n");
return -ENOMEM;
}
mutex_init(&t->if_lock);
t->cpu = cpu;
INIT_LIST_HEAD(&t->if_list);
list_add_tail(&t->th_list, &pn->pktgen_threads);
init_completion(&t->start_done);
p = kthread_create_on_node(pktgen_thread_worker,
t,
cpu_to_node(cpu),
"kpktgend_%d", cpu);
if (IS_ERR(p)) {
pr_err("kernel_thread() failed for cpu %d\n", t->cpu);
list_del(&t->th_list);
kfree(t);
return PTR_ERR(p);
}
kthread_bind(p, cpu);
t->tsk = p;
pe = proc_create_data(t->tsk->comm, 0600, pn->proc_dir,
&pktgen_thread_fops, t);
if (!pe) {
pr_err("cannot create %s/%s procfs entry\n",
PG_PROC_DIR, t->tsk->comm);
kthread_stop(p);
list_del(&t->th_list);
kfree(t);
return -EINVAL;
}
t->net = pn;
get_task_struct(p);
wake_up_process(p);
wait_for_completion(&t->start_done);
return 0;
}
/*
* Removes a device from the thread if_list.
*/
static void _rem_dev_from_if_list(struct pktgen_thread *t,
struct pktgen_dev *pkt_dev)
{
struct list_head *q, *n;
struct pktgen_dev *p;
if_lock(t);
list_for_each_safe(q, n, &t->if_list) {
p = list_entry(q, struct pktgen_dev, list);
if (p == pkt_dev)
list_del_rcu(&p->list);
}
if_unlock(t);
}
static int pktgen_remove_device(struct pktgen_thread *t,
struct pktgen_dev *pkt_dev)
{
pr_debug("remove_device pkt_dev=%p\n", pkt_dev);
if (pkt_dev->running) {
pr_warn("WARNING: trying to remove a running interface, stopping it now\n");
pktgen_stop_device(pkt_dev);
}
/* Dis-associate from the interface */
if (pkt_dev->odev) {
dev_put(pkt_dev->odev);
pkt_dev->odev = NULL;
}
/* Remove proc before if_list entry, because add_device uses
* list to determine if interface already exist, avoid race
* with proc_create_data() */
proc_remove(pkt_dev->entry);
/* And update the thread if_list */
_rem_dev_from_if_list(t, pkt_dev);
#ifdef CONFIG_XFRM
free_SAs(pkt_dev);
#endif
vfree(pkt_dev->flows);
if (pkt_dev->page)
put_page(pkt_dev->page);
kfree_rcu(pkt_dev, rcu);
return 0;
}
static int __net_init pg_net_init(struct net *net)
{
struct pktgen_net *pn = net_generic(net, pg_net_id);
struct proc_dir_entry *pe;
int cpu, ret = 0;
pn->net = net;
INIT_LIST_HEAD(&pn->pktgen_threads);
pn->pktgen_exiting = false;
pn->proc_dir = proc_mkdir(PG_PROC_DIR, pn->net->proc_net);
if (!pn->proc_dir) {
pr_warn("cannot create /proc/net/%s\n", PG_PROC_DIR);
return -ENODEV;
}
pe = proc_create(PGCTRL, 0600, pn->proc_dir, &pktgen_fops);
if (pe == NULL) {
pr_err("cannot create %s procfs entry\n", PGCTRL);
ret = -EINVAL;
goto remove;
}
for_each_online_cpu(cpu) {
int err;
err = pktgen_create_thread(cpu, pn);
if (err)
pr_warn("Cannot create thread for cpu %d (%d)\n",
cpu, err);
}
if (list_empty(&pn->pktgen_threads)) {
pr_err("Initialization failed for all threads\n");
ret = -ENODEV;
goto remove_entry;
}
return 0;
remove_entry:
remove_proc_entry(PGCTRL, pn->proc_dir);
remove:
remove_proc_entry(PG_PROC_DIR, pn->net->proc_net);
return ret;
}
static void __net_exit pg_net_exit(struct net *net)
{
struct pktgen_net *pn = net_generic(net, pg_net_id);
struct pktgen_thread *t;
struct list_head *q, *n;
LIST_HEAD(list);
/* Stop all interfaces & threads */
pn->pktgen_exiting = true;
mutex_lock(&pktgen_thread_lock);
list_splice_init(&pn->pktgen_threads, &list);
mutex_unlock(&pktgen_thread_lock);
list_for_each_safe(q, n, &list) {
t = list_entry(q, struct pktgen_thread, th_list);
list_del(&t->th_list);
kthread_stop(t->tsk);
put_task_struct(t->tsk);
kfree(t);
}
remove_proc_entry(PGCTRL, pn->proc_dir);
remove_proc_entry(PG_PROC_DIR, pn->net->proc_net);
}
static struct pernet_operations pg_net_ops = {
.init = pg_net_init,
.exit = pg_net_exit,
.id = &pg_net_id,
.size = sizeof(struct pktgen_net),
};
static int __init pg_init(void)
{
int ret = 0;
pr_info("%s", version);
ret = register_pernet_subsys(&pg_net_ops);
if (ret)
return ret;
ret = register_netdevice_notifier(&pktgen_notifier_block);
if (ret)
unregister_pernet_subsys(&pg_net_ops);
return ret;
}
static void __exit pg_cleanup(void)
{
unregister_netdevice_notifier(&pktgen_notifier_block);
unregister_pernet_subsys(&pg_net_ops);
/* Don't need rcu_barrier() due to use of kfree_rcu() */
}
module_init(pg_init);
module_exit(pg_cleanup);
MODULE_AUTHOR("Robert Olsson <robert.olsson@its.uu.se>");
MODULE_DESCRIPTION("Packet Generator tool");
MODULE_LICENSE("GPL");
MODULE_VERSION(VERSION);
module_param(pg_count_d, int, 0);
MODULE_PARM_DESC(pg_count_d, "Default number of packets to inject");
module_param(pg_delay_d, int, 0);
MODULE_PARM_DESC(pg_delay_d, "Default delay between packets (nanoseconds)");
module_param(pg_clone_skb_d, int, 0);
MODULE_PARM_DESC(pg_clone_skb_d, "Default number of copies of the same packet");
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Enable debugging of pktgen module");