2646 lines
71 KiB
C
2646 lines
71 KiB
C
/*
|
|
* Copyright (c) 2007-2014 Nicira, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include "flow.h"
|
|
#include "datapath.h"
|
|
#include <linux/uaccess.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <net/llc_pdu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/llc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/in.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/sctp.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/udp.h>
|
|
#include <linux/icmp.h>
|
|
#include <linux/icmpv6.h>
|
|
#include <linux/rculist.h>
|
|
#include <net/geneve.h>
|
|
#include <net/ip.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/ndisc.h>
|
|
#include <net/mpls.h>
|
|
#include <net/vxlan.h>
|
|
|
|
#include "flow_netlink.h"
|
|
|
|
struct ovs_len_tbl {
|
|
int len;
|
|
const struct ovs_len_tbl *next;
|
|
};
|
|
|
|
#define OVS_ATTR_NESTED -1
|
|
#define OVS_ATTR_VARIABLE -2
|
|
|
|
static void update_range(struct sw_flow_match *match,
|
|
size_t offset, size_t size, bool is_mask)
|
|
{
|
|
struct sw_flow_key_range *range;
|
|
size_t start = rounddown(offset, sizeof(long));
|
|
size_t end = roundup(offset + size, sizeof(long));
|
|
|
|
if (!is_mask)
|
|
range = &match->range;
|
|
else
|
|
range = &match->mask->range;
|
|
|
|
if (range->start == range->end) {
|
|
range->start = start;
|
|
range->end = end;
|
|
return;
|
|
}
|
|
|
|
if (range->start > start)
|
|
range->start = start;
|
|
|
|
if (range->end < end)
|
|
range->end = end;
|
|
}
|
|
|
|
#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
|
|
do { \
|
|
update_range(match, offsetof(struct sw_flow_key, field), \
|
|
sizeof((match)->key->field), is_mask); \
|
|
if (is_mask) \
|
|
(match)->mask->key.field = value; \
|
|
else \
|
|
(match)->key->field = value; \
|
|
} while (0)
|
|
|
|
#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
|
|
do { \
|
|
update_range(match, offset, len, is_mask); \
|
|
if (is_mask) \
|
|
memcpy((u8 *)&(match)->mask->key + offset, value_p, \
|
|
len); \
|
|
else \
|
|
memcpy((u8 *)(match)->key + offset, value_p, len); \
|
|
} while (0)
|
|
|
|
#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
|
|
SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
|
|
value_p, len, is_mask)
|
|
|
|
#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
|
|
do { \
|
|
update_range(match, offsetof(struct sw_flow_key, field), \
|
|
sizeof((match)->key->field), is_mask); \
|
|
if (is_mask) \
|
|
memset((u8 *)&(match)->mask->key.field, value, \
|
|
sizeof((match)->mask->key.field)); \
|
|
else \
|
|
memset((u8 *)&(match)->key->field, value, \
|
|
sizeof((match)->key->field)); \
|
|
} while (0)
|
|
|
|
static bool match_validate(const struct sw_flow_match *match,
|
|
u64 key_attrs, u64 mask_attrs, bool log)
|
|
{
|
|
u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
|
|
u64 mask_allowed = key_attrs; /* At most allow all key attributes */
|
|
|
|
/* The following mask attributes allowed only if they
|
|
* pass the validation tests. */
|
|
mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
|
|
| (1 << OVS_KEY_ATTR_IPV6)
|
|
| (1 << OVS_KEY_ATTR_TCP)
|
|
| (1 << OVS_KEY_ATTR_TCP_FLAGS)
|
|
| (1 << OVS_KEY_ATTR_UDP)
|
|
| (1 << OVS_KEY_ATTR_SCTP)
|
|
| (1 << OVS_KEY_ATTR_ICMP)
|
|
| (1 << OVS_KEY_ATTR_ICMPV6)
|
|
| (1 << OVS_KEY_ATTR_ARP)
|
|
| (1 << OVS_KEY_ATTR_ND)
|
|
| (1 << OVS_KEY_ATTR_MPLS));
|
|
|
|
/* Always allowed mask fields. */
|
|
mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
|
|
| (1 << OVS_KEY_ATTR_IN_PORT)
|
|
| (1 << OVS_KEY_ATTR_ETHERTYPE));
|
|
|
|
/* Check key attributes. */
|
|
if (match->key->eth.type == htons(ETH_P_ARP)
|
|
|| match->key->eth.type == htons(ETH_P_RARP)) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_ARP;
|
|
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
|
|
}
|
|
|
|
if (eth_p_mpls(match->key->eth.type)) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_MPLS;
|
|
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
|
|
}
|
|
|
|
if (match->key->eth.type == htons(ETH_P_IP)) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_IPV4;
|
|
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
|
|
|
|
if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
|
|
if (match->key->ip.proto == IPPROTO_UDP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_UDP;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_SCTP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_SCTP;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_TCP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_TCP;
|
|
key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff)) {
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
|
|
}
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_ICMP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_ICMP;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (match->key->eth.type == htons(ETH_P_IPV6)) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_IPV6;
|
|
if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
|
|
|
|
if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
|
|
if (match->key->ip.proto == IPPROTO_UDP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_UDP;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_SCTP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_SCTP;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_TCP) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_TCP;
|
|
key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff)) {
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
|
|
}
|
|
}
|
|
|
|
if (match->key->ip.proto == IPPROTO_ICMPV6) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
|
|
if (match->mask && (match->mask->key.ip.proto == 0xff))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
|
|
|
|
if (match->key->tp.src ==
|
|
htons(NDISC_NEIGHBOUR_SOLICITATION) ||
|
|
match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
|
|
key_expected |= 1 << OVS_KEY_ATTR_ND;
|
|
if (match->mask && (match->mask->key.tp.src == htons(0xff)))
|
|
mask_allowed |= 1 << OVS_KEY_ATTR_ND;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((key_attrs & key_expected) != key_expected) {
|
|
/* Key attributes check failed. */
|
|
OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
|
|
(unsigned long long)key_attrs,
|
|
(unsigned long long)key_expected);
|
|
return false;
|
|
}
|
|
|
|
if ((mask_attrs & mask_allowed) != mask_attrs) {
|
|
/* Mask attributes check failed. */
|
|
OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
|
|
(unsigned long long)mask_attrs,
|
|
(unsigned long long)mask_allowed);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t ovs_tun_key_attr_size(void)
|
|
{
|
|
/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
|
|
* updating this function.
|
|
*/
|
|
return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
|
|
+ nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
|
|
+ nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
|
|
+ nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
|
|
+ nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
|
|
+ nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
|
|
+ nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
|
|
+ nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
|
|
+ nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
|
|
/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
|
|
* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
|
|
*/
|
|
+ nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
|
|
+ nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
|
|
}
|
|
|
|
size_t ovs_key_attr_size(void)
|
|
{
|
|
/* Whenever adding new OVS_KEY_ FIELDS, we should consider
|
|
* updating this function.
|
|
*/
|
|
BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
|
|
|
|
return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
|
|
+ nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
|
|
+ ovs_tun_key_attr_size()
|
|
+ nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
|
|
+ nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
|
|
+ nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
|
|
+ nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
|
|
+ nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
|
|
+ nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
|
|
+ nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
|
|
+ nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
|
|
+ nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
|
|
+ nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
|
|
+ nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
|
|
+ nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
|
|
+ nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
|
|
+ nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
|
|
+ nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
|
|
+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
|
|
}
|
|
|
|
static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
|
|
[OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
|
|
};
|
|
|
|
static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
|
|
[OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
|
|
[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
|
|
[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
|
|
[OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
|
|
[OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
|
|
[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
|
|
[OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
|
|
[OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
|
|
[OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
|
|
[OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
|
|
[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
|
|
[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
|
|
.next = ovs_vxlan_ext_key_lens },
|
|
[OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
|
|
[OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
|
|
};
|
|
|
|
/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
|
|
static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
|
|
[OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
|
|
[OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
|
|
[OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
|
|
[OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
|
|
[OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
|
|
[OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
|
|
[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
|
|
[OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
|
|
[OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
|
|
[OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
|
|
[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
|
|
[OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
|
|
[OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
|
|
[OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
|
|
[OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
|
|
[OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
|
|
[OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
|
|
[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
|
|
[OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
|
|
[OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
|
|
.next = ovs_tunnel_key_lens, },
|
|
[OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) },
|
|
[OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
|
|
[OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
|
|
[OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
|
|
[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
|
|
};
|
|
|
|
static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
|
|
{
|
|
return expected_len == attr_len ||
|
|
expected_len == OVS_ATTR_NESTED ||
|
|
expected_len == OVS_ATTR_VARIABLE;
|
|
}
|
|
|
|
static bool is_all_zero(const u8 *fp, size_t size)
|
|
{
|
|
int i;
|
|
|
|
if (!fp)
|
|
return false;
|
|
|
|
for (i = 0; i < size; i++)
|
|
if (fp[i])
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int __parse_flow_nlattrs(const struct nlattr *attr,
|
|
const struct nlattr *a[],
|
|
u64 *attrsp, bool log, bool nz)
|
|
{
|
|
const struct nlattr *nla;
|
|
u64 attrs;
|
|
int rem;
|
|
|
|
attrs = *attrsp;
|
|
nla_for_each_nested(nla, attr, rem) {
|
|
u16 type = nla_type(nla);
|
|
int expected_len;
|
|
|
|
if (type > OVS_KEY_ATTR_MAX) {
|
|
OVS_NLERR(log, "Key type %d is out of range max %d",
|
|
type, OVS_KEY_ATTR_MAX);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (attrs & (1 << type)) {
|
|
OVS_NLERR(log, "Duplicate key (type %d).", type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
expected_len = ovs_key_lens[type].len;
|
|
if (!check_attr_len(nla_len(nla), expected_len)) {
|
|
OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
|
|
type, nla_len(nla), expected_len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!nz || !is_all_zero(nla_data(nla), nla_len(nla))) {
|
|
attrs |= 1 << type;
|
|
a[type] = nla;
|
|
}
|
|
}
|
|
if (rem) {
|
|
OVS_NLERR(log, "Message has %d unknown bytes.", rem);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*attrsp = attrs;
|
|
return 0;
|
|
}
|
|
|
|
static int parse_flow_mask_nlattrs(const struct nlattr *attr,
|
|
const struct nlattr *a[], u64 *attrsp,
|
|
bool log)
|
|
{
|
|
return __parse_flow_nlattrs(attr, a, attrsp, log, true);
|
|
}
|
|
|
|
static int parse_flow_nlattrs(const struct nlattr *attr,
|
|
const struct nlattr *a[], u64 *attrsp,
|
|
bool log)
|
|
{
|
|
return __parse_flow_nlattrs(attr, a, attrsp, log, false);
|
|
}
|
|
|
|
static int genev_tun_opt_from_nlattr(const struct nlattr *a,
|
|
struct sw_flow_match *match, bool is_mask,
|
|
bool log)
|
|
{
|
|
unsigned long opt_key_offset;
|
|
|
|
if (nla_len(a) > sizeof(match->key->tun_opts)) {
|
|
OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
|
|
nla_len(a), sizeof(match->key->tun_opts));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (nla_len(a) % 4 != 0) {
|
|
OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
|
|
nla_len(a));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* We need to record the length of the options passed
|
|
* down, otherwise packets with the same format but
|
|
* additional options will be silently matched.
|
|
*/
|
|
if (!is_mask) {
|
|
SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
|
|
false);
|
|
} else {
|
|
/* This is somewhat unusual because it looks at
|
|
* both the key and mask while parsing the
|
|
* attributes (and by extension assumes the key
|
|
* is parsed first). Normally, we would verify
|
|
* that each is the correct length and that the
|
|
* attributes line up in the validate function.
|
|
* However, that is difficult because this is
|
|
* variable length and we won't have the
|
|
* information later.
|
|
*/
|
|
if (match->key->tun_opts_len != nla_len(a)) {
|
|
OVS_NLERR(log, "Geneve option len %d != mask len %d",
|
|
match->key->tun_opts_len, nla_len(a));
|
|
return -EINVAL;
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
|
|
}
|
|
|
|
opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
|
|
SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
|
|
nla_len(a), is_mask);
|
|
return 0;
|
|
}
|
|
|
|
static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
|
|
struct sw_flow_match *match, bool is_mask,
|
|
bool log)
|
|
{
|
|
struct nlattr *a;
|
|
int rem;
|
|
unsigned long opt_key_offset;
|
|
struct vxlan_metadata opts;
|
|
|
|
BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
|
|
|
|
memset(&opts, 0, sizeof(opts));
|
|
nla_for_each_nested(a, attr, rem) {
|
|
int type = nla_type(a);
|
|
|
|
if (type > OVS_VXLAN_EXT_MAX) {
|
|
OVS_NLERR(log, "VXLAN extension %d out of range max %d",
|
|
type, OVS_VXLAN_EXT_MAX);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!check_attr_len(nla_len(a),
|
|
ovs_vxlan_ext_key_lens[type].len)) {
|
|
OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
|
|
type, nla_len(a),
|
|
ovs_vxlan_ext_key_lens[type].len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (type) {
|
|
case OVS_VXLAN_EXT_GBP:
|
|
opts.gbp = nla_get_u32(a);
|
|
break;
|
|
default:
|
|
OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
|
|
type);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
if (rem) {
|
|
OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
|
|
rem);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_mask)
|
|
SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
|
|
else
|
|
SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
|
|
|
|
opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
|
|
SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
|
|
is_mask);
|
|
return 0;
|
|
}
|
|
|
|
static int ip_tun_from_nlattr(const struct nlattr *attr,
|
|
struct sw_flow_match *match, bool is_mask,
|
|
bool log)
|
|
{
|
|
bool ttl = false, ipv4 = false, ipv6 = false;
|
|
__be16 tun_flags = 0;
|
|
int opts_type = 0;
|
|
struct nlattr *a;
|
|
int rem;
|
|
|
|
nla_for_each_nested(a, attr, rem) {
|
|
int type = nla_type(a);
|
|
int err;
|
|
|
|
if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
|
|
OVS_NLERR(log, "Tunnel attr %d out of range max %d",
|
|
type, OVS_TUNNEL_KEY_ATTR_MAX);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!check_attr_len(nla_len(a),
|
|
ovs_tunnel_key_lens[type].len)) {
|
|
OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
|
|
type, nla_len(a), ovs_tunnel_key_lens[type].len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (type) {
|
|
case OVS_TUNNEL_KEY_ATTR_ID:
|
|
SW_FLOW_KEY_PUT(match, tun_key.tun_id,
|
|
nla_get_be64(a), is_mask);
|
|
tun_flags |= TUNNEL_KEY;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
|
|
SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
|
|
nla_get_in_addr(a), is_mask);
|
|
ipv4 = true;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
|
|
SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
|
|
nla_get_in_addr(a), is_mask);
|
|
ipv4 = true;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
|
|
SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
|
|
nla_get_in6_addr(a), is_mask);
|
|
ipv6 = true;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
|
|
SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
|
|
nla_get_in6_addr(a), is_mask);
|
|
ipv6 = true;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_TOS:
|
|
SW_FLOW_KEY_PUT(match, tun_key.tos,
|
|
nla_get_u8(a), is_mask);
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_TTL:
|
|
SW_FLOW_KEY_PUT(match, tun_key.ttl,
|
|
nla_get_u8(a), is_mask);
|
|
ttl = true;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
|
|
tun_flags |= TUNNEL_DONT_FRAGMENT;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_CSUM:
|
|
tun_flags |= TUNNEL_CSUM;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_TP_SRC:
|
|
SW_FLOW_KEY_PUT(match, tun_key.tp_src,
|
|
nla_get_be16(a), is_mask);
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_TP_DST:
|
|
SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
|
|
nla_get_be16(a), is_mask);
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_OAM:
|
|
tun_flags |= TUNNEL_OAM;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
|
|
if (opts_type) {
|
|
OVS_NLERR(log, "Multiple metadata blocks provided");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
|
|
if (err)
|
|
return err;
|
|
|
|
tun_flags |= TUNNEL_GENEVE_OPT;
|
|
opts_type = type;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
|
|
if (opts_type) {
|
|
OVS_NLERR(log, "Multiple metadata blocks provided");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
|
|
if (err)
|
|
return err;
|
|
|
|
tun_flags |= TUNNEL_VXLAN_OPT;
|
|
opts_type = type;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_PAD:
|
|
break;
|
|
default:
|
|
OVS_NLERR(log, "Unknown IP tunnel attribute %d",
|
|
type);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
|
|
if (is_mask)
|
|
SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
|
|
else
|
|
SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
|
|
false);
|
|
|
|
if (rem > 0) {
|
|
OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
|
|
rem);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ipv4 && ipv6) {
|
|
OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_mask) {
|
|
if (!ipv4 && !ipv6) {
|
|
OVS_NLERR(log, "IP tunnel dst address not specified");
|
|
return -EINVAL;
|
|
}
|
|
if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
|
|
OVS_NLERR(log, "IPv4 tunnel dst address is zero");
|
|
return -EINVAL;
|
|
}
|
|
if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
|
|
OVS_NLERR(log, "IPv6 tunnel dst address is zero");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ttl) {
|
|
OVS_NLERR(log, "IP tunnel TTL not specified.");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return opts_type;
|
|
}
|
|
|
|
static int vxlan_opt_to_nlattr(struct sk_buff *skb,
|
|
const void *tun_opts, int swkey_tun_opts_len)
|
|
{
|
|
const struct vxlan_metadata *opts = tun_opts;
|
|
struct nlattr *nla;
|
|
|
|
nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
|
|
if (!nla)
|
|
return -EMSGSIZE;
|
|
|
|
if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
|
|
return -EMSGSIZE;
|
|
|
|
nla_nest_end(skb, nla);
|
|
return 0;
|
|
}
|
|
|
|
static int __ip_tun_to_nlattr(struct sk_buff *skb,
|
|
const struct ip_tunnel_key *output,
|
|
const void *tun_opts, int swkey_tun_opts_len,
|
|
unsigned short tun_proto)
|
|
{
|
|
if (output->tun_flags & TUNNEL_KEY &&
|
|
nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
|
|
OVS_TUNNEL_KEY_ATTR_PAD))
|
|
return -EMSGSIZE;
|
|
switch (tun_proto) {
|
|
case AF_INET:
|
|
if (output->u.ipv4.src &&
|
|
nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
|
|
output->u.ipv4.src))
|
|
return -EMSGSIZE;
|
|
if (output->u.ipv4.dst &&
|
|
nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
|
|
output->u.ipv4.dst))
|
|
return -EMSGSIZE;
|
|
break;
|
|
case AF_INET6:
|
|
if (!ipv6_addr_any(&output->u.ipv6.src) &&
|
|
nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
|
|
&output->u.ipv6.src))
|
|
return -EMSGSIZE;
|
|
if (!ipv6_addr_any(&output->u.ipv6.dst) &&
|
|
nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
|
|
&output->u.ipv6.dst))
|
|
return -EMSGSIZE;
|
|
break;
|
|
}
|
|
if (output->tos &&
|
|
nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
|
|
return -EMSGSIZE;
|
|
if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
|
|
return -EMSGSIZE;
|
|
if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
|
|
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
|
|
return -EMSGSIZE;
|
|
if ((output->tun_flags & TUNNEL_CSUM) &&
|
|
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
|
|
return -EMSGSIZE;
|
|
if (output->tp_src &&
|
|
nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
|
|
return -EMSGSIZE;
|
|
if (output->tp_dst &&
|
|
nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
|
|
return -EMSGSIZE;
|
|
if ((output->tun_flags & TUNNEL_OAM) &&
|
|
nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
|
|
return -EMSGSIZE;
|
|
if (swkey_tun_opts_len) {
|
|
if (output->tun_flags & TUNNEL_GENEVE_OPT &&
|
|
nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
|
|
swkey_tun_opts_len, tun_opts))
|
|
return -EMSGSIZE;
|
|
else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
|
|
vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ip_tun_to_nlattr(struct sk_buff *skb,
|
|
const struct ip_tunnel_key *output,
|
|
const void *tun_opts, int swkey_tun_opts_len,
|
|
unsigned short tun_proto)
|
|
{
|
|
struct nlattr *nla;
|
|
int err;
|
|
|
|
nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
|
|
if (!nla)
|
|
return -EMSGSIZE;
|
|
|
|
err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
|
|
tun_proto);
|
|
if (err)
|
|
return err;
|
|
|
|
nla_nest_end(skb, nla);
|
|
return 0;
|
|
}
|
|
|
|
int ovs_nla_put_tunnel_info(struct sk_buff *skb,
|
|
struct ip_tunnel_info *tun_info)
|
|
{
|
|
return __ip_tun_to_nlattr(skb, &tun_info->key,
|
|
ip_tunnel_info_opts(tun_info),
|
|
tun_info->options_len,
|
|
ip_tunnel_info_af(tun_info));
|
|
}
|
|
|
|
static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
|
|
const struct nlattr *a[],
|
|
bool is_mask, bool inner)
|
|
{
|
|
__be16 tci = 0;
|
|
__be16 tpid = 0;
|
|
|
|
if (a[OVS_KEY_ATTR_VLAN])
|
|
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
|
|
|
|
if (a[OVS_KEY_ATTR_ETHERTYPE])
|
|
tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
|
|
|
|
if (likely(!inner)) {
|
|
SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
|
|
SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
|
|
} else {
|
|
SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
|
|
SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
|
|
u64 key_attrs, bool inner,
|
|
const struct nlattr **a, bool log)
|
|
{
|
|
__be16 tci = 0;
|
|
|
|
if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
|
|
(key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
|
|
eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
|
|
/* Not a VLAN. */
|
|
return 0;
|
|
}
|
|
|
|
if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
|
|
(key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
|
|
OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (a[OVS_KEY_ATTR_VLAN])
|
|
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
|
|
|
|
if (!(tci & htons(VLAN_TAG_PRESENT))) {
|
|
if (tci) {
|
|
OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
|
|
(inner) ? "C-VLAN" : "VLAN");
|
|
return -EINVAL;
|
|
} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
|
|
/* Corner case for truncated VLAN header. */
|
|
OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
|
|
(inner) ? "C-VLAN" : "VLAN");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
|
|
u64 key_attrs, bool inner,
|
|
const struct nlattr **a, bool log)
|
|
{
|
|
__be16 tci = 0;
|
|
__be16 tpid = 0;
|
|
bool encap_valid = !!(match->key->eth.vlan.tci &
|
|
htons(VLAN_TAG_PRESENT));
|
|
bool i_encap_valid = !!(match->key->eth.cvlan.tci &
|
|
htons(VLAN_TAG_PRESENT));
|
|
|
|
if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
|
|
/* Not a VLAN. */
|
|
return 0;
|
|
}
|
|
|
|
if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
|
|
OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
|
|
(inner) ? "C-VLAN" : "VLAN");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (a[OVS_KEY_ATTR_VLAN])
|
|
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
|
|
|
|
if (a[OVS_KEY_ATTR_ETHERTYPE])
|
|
tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
|
|
|
|
if (tpid != htons(0xffff)) {
|
|
OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
|
|
(inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
|
|
return -EINVAL;
|
|
}
|
|
if (!(tci & htons(VLAN_TAG_PRESENT))) {
|
|
OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
|
|
(inner) ? "C-VLAN" : "VLAN");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
|
|
u64 *key_attrs, bool inner,
|
|
const struct nlattr **a, bool is_mask,
|
|
bool log)
|
|
{
|
|
int err;
|
|
const struct nlattr *encap;
|
|
|
|
if (!is_mask)
|
|
err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
|
|
a, log);
|
|
else
|
|
err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
|
|
a, log);
|
|
if (err <= 0)
|
|
return err;
|
|
|
|
err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
|
|
if (err)
|
|
return err;
|
|
|
|
*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
|
|
*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
|
|
*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
|
|
|
|
encap = a[OVS_KEY_ATTR_ENCAP];
|
|
|
|
if (!is_mask)
|
|
err = parse_flow_nlattrs(encap, a, key_attrs, log);
|
|
else
|
|
err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
|
|
u64 *key_attrs, const struct nlattr **a,
|
|
bool is_mask, bool log)
|
|
{
|
|
int err;
|
|
bool encap_valid = false;
|
|
|
|
err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
|
|
is_mask, log);
|
|
if (err)
|
|
return err;
|
|
|
|
encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
|
|
if (encap_valid) {
|
|
err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
|
|
is_mask, log);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
|
|
u64 *attrs, const struct nlattr **a,
|
|
bool is_mask, bool log)
|
|
{
|
|
if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
|
|
u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
|
|
|
|
SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
|
|
}
|
|
|
|
if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
|
|
u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
|
|
|
|
SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
|
|
}
|
|
|
|
if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
|
|
SW_FLOW_KEY_PUT(match, phy.priority,
|
|
nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
|
|
}
|
|
|
|
if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
|
|
u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
|
|
|
|
if (is_mask) {
|
|
in_port = 0xffffffff; /* Always exact match in_port. */
|
|
} else if (in_port >= DP_MAX_PORTS) {
|
|
OVS_NLERR(log, "Port %d exceeds max allowable %d",
|
|
in_port, DP_MAX_PORTS);
|
|
return -EINVAL;
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
|
|
} else if (!is_mask) {
|
|
SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
|
|
}
|
|
|
|
if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
|
|
uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
|
|
|
|
SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
|
|
}
|
|
if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
|
|
if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
|
|
is_mask, log) < 0)
|
|
return -EINVAL;
|
|
*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
|
|
}
|
|
|
|
if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
|
|
ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
|
|
u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
|
|
|
|
if (ct_state & ~CT_SUPPORTED_MASK) {
|
|
OVS_NLERR(log, "ct_state flags %08x unsupported",
|
|
ct_state);
|
|
return -EINVAL;
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
|
|
*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
|
|
}
|
|
if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
|
|
ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
|
|
u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
|
|
|
|
SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
|
|
*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
|
|
}
|
|
if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
|
|
ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
|
|
u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
|
|
|
|
SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
|
|
*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
|
|
}
|
|
if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
|
|
ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
|
|
const struct ovs_key_ct_labels *cl;
|
|
|
|
cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
|
|
SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
|
|
sizeof(*cl), is_mask);
|
|
*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
|
|
u64 attrs, const struct nlattr **a,
|
|
bool is_mask, bool log)
|
|
{
|
|
int err;
|
|
|
|
err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
|
|
if (err)
|
|
return err;
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
|
|
const struct ovs_key_ethernet *eth_key;
|
|
|
|
eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
|
|
SW_FLOW_KEY_MEMCPY(match, eth.src,
|
|
eth_key->eth_src, ETH_ALEN, is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, eth.dst,
|
|
eth_key->eth_dst, ETH_ALEN, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
|
|
/* VLAN attribute is always parsed before getting here since it
|
|
* may occur multiple times.
|
|
*/
|
|
OVS_NLERR(log, "VLAN attribute unexpected.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
|
|
__be16 eth_type;
|
|
|
|
eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
|
|
if (is_mask) {
|
|
/* Always exact match EtherType. */
|
|
eth_type = htons(0xffff);
|
|
} else if (!eth_proto_is_802_3(eth_type)) {
|
|
OVS_NLERR(log, "EtherType %x is less than min %x",
|
|
ntohs(eth_type), ETH_P_802_3_MIN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
|
|
} else if (!is_mask) {
|
|
SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
|
|
const struct ovs_key_ipv4 *ipv4_key;
|
|
|
|
ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
|
|
if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
|
|
OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
|
|
ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
|
|
return -EINVAL;
|
|
}
|
|
SW_FLOW_KEY_PUT(match, ip.proto,
|
|
ipv4_key->ipv4_proto, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.tos,
|
|
ipv4_key->ipv4_tos, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.ttl,
|
|
ipv4_key->ipv4_ttl, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.frag,
|
|
ipv4_key->ipv4_frag, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ipv4.addr.src,
|
|
ipv4_key->ipv4_src, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
|
|
ipv4_key->ipv4_dst, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
|
|
const struct ovs_key_ipv6 *ipv6_key;
|
|
|
|
ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
|
|
if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
|
|
OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
|
|
ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
|
|
OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
|
|
ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, ipv6.label,
|
|
ipv6_key->ipv6_label, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.proto,
|
|
ipv6_key->ipv6_proto, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.tos,
|
|
ipv6_key->ipv6_tclass, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.ttl,
|
|
ipv6_key->ipv6_hlimit, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.frag,
|
|
ipv6_key->ipv6_frag, is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
|
|
ipv6_key->ipv6_src,
|
|
sizeof(match->key->ipv6.addr.src),
|
|
is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
|
|
ipv6_key->ipv6_dst,
|
|
sizeof(match->key->ipv6.addr.dst),
|
|
is_mask);
|
|
|
|
attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
|
|
const struct ovs_key_arp *arp_key;
|
|
|
|
arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
|
|
if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
|
|
OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
|
|
arp_key->arp_op);
|
|
return -EINVAL;
|
|
}
|
|
|
|
SW_FLOW_KEY_PUT(match, ipv4.addr.src,
|
|
arp_key->arp_sip, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
|
|
arp_key->arp_tip, is_mask);
|
|
SW_FLOW_KEY_PUT(match, ip.proto,
|
|
ntohs(arp_key->arp_op), is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
|
|
arp_key->arp_sha, ETH_ALEN, is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
|
|
arp_key->arp_tha, ETH_ALEN, is_mask);
|
|
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ARP);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
|
|
const struct ovs_key_mpls *mpls_key;
|
|
|
|
mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
|
|
SW_FLOW_KEY_PUT(match, mpls.top_lse,
|
|
mpls_key->mpls_lse, is_mask);
|
|
|
|
attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
|
|
const struct ovs_key_tcp *tcp_key;
|
|
|
|
tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
|
|
SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
|
|
SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_TCP);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
|
|
SW_FLOW_KEY_PUT(match, tp.flags,
|
|
nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
|
|
is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
|
|
const struct ovs_key_udp *udp_key;
|
|
|
|
udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
|
|
SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
|
|
SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_UDP);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
|
|
const struct ovs_key_sctp *sctp_key;
|
|
|
|
sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
|
|
SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
|
|
SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
|
|
const struct ovs_key_icmp *icmp_key;
|
|
|
|
icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
|
|
SW_FLOW_KEY_PUT(match, tp.src,
|
|
htons(icmp_key->icmp_type), is_mask);
|
|
SW_FLOW_KEY_PUT(match, tp.dst,
|
|
htons(icmp_key->icmp_code), is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
|
|
const struct ovs_key_icmpv6 *icmpv6_key;
|
|
|
|
icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
|
|
SW_FLOW_KEY_PUT(match, tp.src,
|
|
htons(icmpv6_key->icmpv6_type), is_mask);
|
|
SW_FLOW_KEY_PUT(match, tp.dst,
|
|
htons(icmpv6_key->icmpv6_code), is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
|
|
}
|
|
|
|
if (attrs & (1 << OVS_KEY_ATTR_ND)) {
|
|
const struct ovs_key_nd *nd_key;
|
|
|
|
nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
|
|
nd_key->nd_target,
|
|
sizeof(match->key->ipv6.nd.target),
|
|
is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
|
|
nd_key->nd_sll, ETH_ALEN, is_mask);
|
|
SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
|
|
nd_key->nd_tll, ETH_ALEN, is_mask);
|
|
attrs &= ~(1 << OVS_KEY_ATTR_ND);
|
|
}
|
|
|
|
if (attrs != 0) {
|
|
OVS_NLERR(log, "Unknown key attributes %llx",
|
|
(unsigned long long)attrs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nlattr_set(struct nlattr *attr, u8 val,
|
|
const struct ovs_len_tbl *tbl)
|
|
{
|
|
struct nlattr *nla;
|
|
int rem;
|
|
|
|
/* The nlattr stream should already have been validated */
|
|
nla_for_each_nested(nla, attr, rem) {
|
|
if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
|
|
nlattr_set(nla, val, tbl[nla_type(nla)].next ? : tbl);
|
|
else
|
|
memset(nla_data(nla), val, nla_len(nla));
|
|
|
|
if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
|
|
*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
|
|
}
|
|
}
|
|
|
|
static void mask_set_nlattr(struct nlattr *attr, u8 val)
|
|
{
|
|
nlattr_set(attr, val, ovs_key_lens);
|
|
}
|
|
|
|
/**
|
|
* ovs_nla_get_match - parses Netlink attributes into a flow key and
|
|
* mask. In case the 'mask' is NULL, the flow is treated as exact match
|
|
* flow. Otherwise, it is treated as a wildcarded flow, except the mask
|
|
* does not include any don't care bit.
|
|
* @net: Used to determine per-namespace field support.
|
|
* @match: receives the extracted flow match information.
|
|
* @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
|
|
* sequence. The fields should of the packet that triggered the creation
|
|
* of this flow.
|
|
* @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
|
|
* attribute specifies the mask field of the wildcarded flow.
|
|
* @log: Boolean to allow kernel error logging. Normally true, but when
|
|
* probing for feature compatibility this should be passed in as false to
|
|
* suppress unnecessary error logging.
|
|
*/
|
|
int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
|
|
const struct nlattr *nla_key,
|
|
const struct nlattr *nla_mask,
|
|
bool log)
|
|
{
|
|
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
|
|
struct nlattr *newmask = NULL;
|
|
u64 key_attrs = 0;
|
|
u64 mask_attrs = 0;
|
|
int err;
|
|
|
|
err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
|
|
if (err)
|
|
return err;
|
|
|
|
err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
|
|
if (err)
|
|
return err;
|
|
|
|
if (match->mask) {
|
|
if (!nla_mask) {
|
|
/* Create an exact match mask. We need to set to 0xff
|
|
* all the 'match->mask' fields that have been touched
|
|
* in 'match->key'. We cannot simply memset
|
|
* 'match->mask', because padding bytes and fields not
|
|
* specified in 'match->key' should be left to 0.
|
|
* Instead, we use a stream of netlink attributes,
|
|
* copied from 'key' and set to 0xff.
|
|
* ovs_key_from_nlattrs() will take care of filling
|
|
* 'match->mask' appropriately.
|
|
*/
|
|
newmask = kmemdup(nla_key,
|
|
nla_total_size(nla_len(nla_key)),
|
|
GFP_KERNEL);
|
|
if (!newmask)
|
|
return -ENOMEM;
|
|
|
|
mask_set_nlattr(newmask, 0xff);
|
|
|
|
/* The userspace does not send tunnel attributes that
|
|
* are 0, but we should not wildcard them nonetheless.
|
|
*/
|
|
if (match->key->tun_proto)
|
|
SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
|
|
0xff, true);
|
|
|
|
nla_mask = newmask;
|
|
}
|
|
|
|
err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
|
|
if (err)
|
|
goto free_newmask;
|
|
|
|
/* Always match on tci. */
|
|
SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
|
|
SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
|
|
|
|
err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
|
|
if (err)
|
|
goto free_newmask;
|
|
|
|
err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
|
|
log);
|
|
if (err)
|
|
goto free_newmask;
|
|
}
|
|
|
|
if (!match_validate(match, key_attrs, mask_attrs, log))
|
|
err = -EINVAL;
|
|
|
|
free_newmask:
|
|
kfree(newmask);
|
|
return err;
|
|
}
|
|
|
|
static size_t get_ufid_len(const struct nlattr *attr, bool log)
|
|
{
|
|
size_t len;
|
|
|
|
if (!attr)
|
|
return 0;
|
|
|
|
len = nla_len(attr);
|
|
if (len < 1 || len > MAX_UFID_LENGTH) {
|
|
OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
|
|
nla_len(attr), MAX_UFID_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
|
|
* or false otherwise.
|
|
*/
|
|
bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
|
|
bool log)
|
|
{
|
|
sfid->ufid_len = get_ufid_len(attr, log);
|
|
if (sfid->ufid_len)
|
|
memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
|
|
|
|
return sfid->ufid_len;
|
|
}
|
|
|
|
int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
|
|
const struct sw_flow_key *key, bool log)
|
|
{
|
|
struct sw_flow_key *new_key;
|
|
|
|
if (ovs_nla_get_ufid(sfid, ufid, log))
|
|
return 0;
|
|
|
|
/* If UFID was not provided, use unmasked key. */
|
|
new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
|
|
if (!new_key)
|
|
return -ENOMEM;
|
|
memcpy(new_key, key, sizeof(*key));
|
|
sfid->unmasked_key = new_key;
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
|
|
{
|
|
return attr ? nla_get_u32(attr) : 0;
|
|
}
|
|
|
|
/**
|
|
* ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
|
|
* @key: Receives extracted in_port, priority, tun_key and skb_mark.
|
|
* @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
|
|
* sequence.
|
|
* @log: Boolean to allow kernel error logging. Normally true, but when
|
|
* probing for feature compatibility this should be passed in as false to
|
|
* suppress unnecessary error logging.
|
|
*
|
|
* This parses a series of Netlink attributes that form a flow key, which must
|
|
* take the same form accepted by flow_from_nlattrs(), but only enough of it to
|
|
* get the metadata, that is, the parts of the flow key that cannot be
|
|
* extracted from the packet itself.
|
|
*/
|
|
|
|
int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
|
|
struct sw_flow_key *key,
|
|
bool log)
|
|
{
|
|
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
|
|
struct sw_flow_match match;
|
|
u64 attrs = 0;
|
|
int err;
|
|
|
|
err = parse_flow_nlattrs(attr, a, &attrs, log);
|
|
if (err)
|
|
return -EINVAL;
|
|
|
|
memset(&match, 0, sizeof(match));
|
|
match.key = key;
|
|
|
|
memset(&key->ct, 0, sizeof(key->ct));
|
|
key->phy.in_port = DP_MAX_PORTS;
|
|
|
|
return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
|
|
}
|
|
|
|
static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
|
|
bool is_mask)
|
|
{
|
|
__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
|
|
|
|
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
|
|
nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
|
|
return -EMSGSIZE;
|
|
return 0;
|
|
}
|
|
|
|
static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
|
|
const struct sw_flow_key *output, bool is_mask,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct ovs_key_ethernet *eth_key;
|
|
struct nlattr *nla;
|
|
struct nlattr *encap = NULL;
|
|
struct nlattr *in_encap = NULL;
|
|
|
|
if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
|
|
goto nla_put_failure;
|
|
|
|
if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
|
|
goto nla_put_failure;
|
|
|
|
if ((swkey->tun_proto || is_mask)) {
|
|
const void *opts = NULL;
|
|
|
|
if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
|
|
opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
|
|
|
|
if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
|
|
swkey->tun_opts_len, swkey->tun_proto))
|
|
goto nla_put_failure;
|
|
}
|
|
|
|
if (swkey->phy.in_port == DP_MAX_PORTS) {
|
|
if (is_mask && (output->phy.in_port == 0xffff))
|
|
if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
|
|
goto nla_put_failure;
|
|
} else {
|
|
u16 upper_u16;
|
|
upper_u16 = !is_mask ? 0 : 0xffff;
|
|
|
|
if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
|
|
(upper_u16 << 16) | output->phy.in_port))
|
|
goto nla_put_failure;
|
|
}
|
|
|
|
if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
|
|
goto nla_put_failure;
|
|
|
|
if (ovs_ct_put_key(output, skb))
|
|
goto nla_put_failure;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
|
|
eth_key = nla_data(nla);
|
|
ether_addr_copy(eth_key->eth_src, output->eth.src);
|
|
ether_addr_copy(eth_key->eth_dst, output->eth.dst);
|
|
|
|
if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
|
|
if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
|
|
goto nla_put_failure;
|
|
encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
|
|
if (!swkey->eth.vlan.tci)
|
|
goto unencap;
|
|
|
|
if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
|
|
if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
|
|
goto nla_put_failure;
|
|
in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
|
|
if (!swkey->eth.cvlan.tci)
|
|
goto unencap;
|
|
}
|
|
}
|
|
|
|
if (swkey->eth.type == htons(ETH_P_802_2)) {
|
|
/*
|
|
* Ethertype 802.2 is represented in the netlink with omitted
|
|
* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
|
|
* 0xffff in the mask attribute. Ethertype can also
|
|
* be wildcarded.
|
|
*/
|
|
if (is_mask && output->eth.type)
|
|
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
|
|
output->eth.type))
|
|
goto nla_put_failure;
|
|
goto unencap;
|
|
}
|
|
|
|
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
|
|
goto nla_put_failure;
|
|
|
|
if (eth_type_vlan(swkey->eth.type)) {
|
|
/* There are 3 VLAN tags, we don't know anything about the rest
|
|
* of the packet, so truncate here.
|
|
*/
|
|
WARN_ON_ONCE(!(encap && in_encap));
|
|
goto unencap;
|
|
}
|
|
|
|
if (swkey->eth.type == htons(ETH_P_IP)) {
|
|
struct ovs_key_ipv4 *ipv4_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
ipv4_key = nla_data(nla);
|
|
ipv4_key->ipv4_src = output->ipv4.addr.src;
|
|
ipv4_key->ipv4_dst = output->ipv4.addr.dst;
|
|
ipv4_key->ipv4_proto = output->ip.proto;
|
|
ipv4_key->ipv4_tos = output->ip.tos;
|
|
ipv4_key->ipv4_ttl = output->ip.ttl;
|
|
ipv4_key->ipv4_frag = output->ip.frag;
|
|
} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
|
|
struct ovs_key_ipv6 *ipv6_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
ipv6_key = nla_data(nla);
|
|
memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
|
|
sizeof(ipv6_key->ipv6_src));
|
|
memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
|
|
sizeof(ipv6_key->ipv6_dst));
|
|
ipv6_key->ipv6_label = output->ipv6.label;
|
|
ipv6_key->ipv6_proto = output->ip.proto;
|
|
ipv6_key->ipv6_tclass = output->ip.tos;
|
|
ipv6_key->ipv6_hlimit = output->ip.ttl;
|
|
ipv6_key->ipv6_frag = output->ip.frag;
|
|
} else if (swkey->eth.type == htons(ETH_P_ARP) ||
|
|
swkey->eth.type == htons(ETH_P_RARP)) {
|
|
struct ovs_key_arp *arp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
arp_key = nla_data(nla);
|
|
memset(arp_key, 0, sizeof(struct ovs_key_arp));
|
|
arp_key->arp_sip = output->ipv4.addr.src;
|
|
arp_key->arp_tip = output->ipv4.addr.dst;
|
|
arp_key->arp_op = htons(output->ip.proto);
|
|
ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
|
|
ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
|
|
} else if (eth_p_mpls(swkey->eth.type)) {
|
|
struct ovs_key_mpls *mpls_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
mpls_key = nla_data(nla);
|
|
mpls_key->mpls_lse = output->mpls.top_lse;
|
|
}
|
|
|
|
if ((swkey->eth.type == htons(ETH_P_IP) ||
|
|
swkey->eth.type == htons(ETH_P_IPV6)) &&
|
|
swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
|
|
|
|
if (swkey->ip.proto == IPPROTO_TCP) {
|
|
struct ovs_key_tcp *tcp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
tcp_key = nla_data(nla);
|
|
tcp_key->tcp_src = output->tp.src;
|
|
tcp_key->tcp_dst = output->tp.dst;
|
|
if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
|
|
output->tp.flags))
|
|
goto nla_put_failure;
|
|
} else if (swkey->ip.proto == IPPROTO_UDP) {
|
|
struct ovs_key_udp *udp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
udp_key = nla_data(nla);
|
|
udp_key->udp_src = output->tp.src;
|
|
udp_key->udp_dst = output->tp.dst;
|
|
} else if (swkey->ip.proto == IPPROTO_SCTP) {
|
|
struct ovs_key_sctp *sctp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
sctp_key = nla_data(nla);
|
|
sctp_key->sctp_src = output->tp.src;
|
|
sctp_key->sctp_dst = output->tp.dst;
|
|
} else if (swkey->eth.type == htons(ETH_P_IP) &&
|
|
swkey->ip.proto == IPPROTO_ICMP) {
|
|
struct ovs_key_icmp *icmp_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
icmp_key = nla_data(nla);
|
|
icmp_key->icmp_type = ntohs(output->tp.src);
|
|
icmp_key->icmp_code = ntohs(output->tp.dst);
|
|
} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
|
|
swkey->ip.proto == IPPROTO_ICMPV6) {
|
|
struct ovs_key_icmpv6 *icmpv6_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
|
|
sizeof(*icmpv6_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
icmpv6_key = nla_data(nla);
|
|
icmpv6_key->icmpv6_type = ntohs(output->tp.src);
|
|
icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
|
|
|
|
if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
|
|
icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
|
|
struct ovs_key_nd *nd_key;
|
|
|
|
nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
|
|
if (!nla)
|
|
goto nla_put_failure;
|
|
nd_key = nla_data(nla);
|
|
memcpy(nd_key->nd_target, &output->ipv6.nd.target,
|
|
sizeof(nd_key->nd_target));
|
|
ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
|
|
ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
|
|
}
|
|
}
|
|
}
|
|
|
|
unencap:
|
|
if (in_encap)
|
|
nla_nest_end(skb, in_encap);
|
|
if (encap)
|
|
nla_nest_end(skb, encap);
|
|
|
|
return 0;
|
|
|
|
nla_put_failure:
|
|
return -EMSGSIZE;
|
|
}
|
|
|
|
int ovs_nla_put_key(const struct sw_flow_key *swkey,
|
|
const struct sw_flow_key *output, int attr, bool is_mask,
|
|
struct sk_buff *skb)
|
|
{
|
|
int err;
|
|
struct nlattr *nla;
|
|
|
|
nla = nla_nest_start(skb, attr);
|
|
if (!nla)
|
|
return -EMSGSIZE;
|
|
err = __ovs_nla_put_key(swkey, output, is_mask, skb);
|
|
if (err)
|
|
return err;
|
|
nla_nest_end(skb, nla);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called with ovs_mutex or RCU read lock. */
|
|
int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
|
|
{
|
|
if (ovs_identifier_is_ufid(&flow->id))
|
|
return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
|
|
flow->id.ufid);
|
|
|
|
return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
|
|
OVS_FLOW_ATTR_KEY, false, skb);
|
|
}
|
|
|
|
/* Called with ovs_mutex or RCU read lock. */
|
|
int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
|
|
{
|
|
return ovs_nla_put_key(&flow->key, &flow->key,
|
|
OVS_FLOW_ATTR_KEY, false, skb);
|
|
}
|
|
|
|
/* Called with ovs_mutex or RCU read lock. */
|
|
int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
|
|
{
|
|
return ovs_nla_put_key(&flow->key, &flow->mask->key,
|
|
OVS_FLOW_ATTR_MASK, true, skb);
|
|
}
|
|
|
|
#define MAX_ACTIONS_BUFSIZE (32 * 1024)
|
|
|
|
static struct sw_flow_actions *nla_alloc_flow_actions(int size)
|
|
{
|
|
struct sw_flow_actions *sfa;
|
|
|
|
WARN_ON_ONCE(size > MAX_ACTIONS_BUFSIZE);
|
|
|
|
sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
|
|
if (!sfa)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
sfa->actions_len = 0;
|
|
return sfa;
|
|
}
|
|
|
|
static void ovs_nla_free_set_action(const struct nlattr *a)
|
|
{
|
|
const struct nlattr *ovs_key = nla_data(a);
|
|
struct ovs_tunnel_info *ovs_tun;
|
|
|
|
switch (nla_type(ovs_key)) {
|
|
case OVS_KEY_ATTR_TUNNEL_INFO:
|
|
ovs_tun = nla_data(ovs_key);
|
|
dst_release((struct dst_entry *)ovs_tun->tun_dst);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
|
|
{
|
|
const struct nlattr *a;
|
|
int rem;
|
|
|
|
if (!sf_acts)
|
|
return;
|
|
|
|
nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
|
|
switch (nla_type(a)) {
|
|
case OVS_ACTION_ATTR_SET:
|
|
ovs_nla_free_set_action(a);
|
|
break;
|
|
case OVS_ACTION_ATTR_CT:
|
|
ovs_ct_free_action(a);
|
|
break;
|
|
}
|
|
}
|
|
|
|
kfree(sf_acts);
|
|
}
|
|
|
|
static void __ovs_nla_free_flow_actions(struct rcu_head *head)
|
|
{
|
|
ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
|
|
}
|
|
|
|
/* Schedules 'sf_acts' to be freed after the next RCU grace period.
|
|
* The caller must hold rcu_read_lock for this to be sensible. */
|
|
void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
|
|
{
|
|
call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
|
|
}
|
|
|
|
static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
|
|
int attr_len, bool log)
|
|
{
|
|
|
|
struct sw_flow_actions *acts;
|
|
int new_acts_size;
|
|
size_t req_size = NLA_ALIGN(attr_len);
|
|
int next_offset = offsetof(struct sw_flow_actions, actions) +
|
|
(*sfa)->actions_len;
|
|
|
|
if (req_size <= (ksize(*sfa) - next_offset))
|
|
goto out;
|
|
|
|
new_acts_size = max(next_offset + req_size, ksize(*sfa) * 2);
|
|
|
|
if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
|
|
if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size) {
|
|
OVS_NLERR(log, "Flow action size exceeds max %u",
|
|
MAX_ACTIONS_BUFSIZE);
|
|
return ERR_PTR(-EMSGSIZE);
|
|
}
|
|
new_acts_size = MAX_ACTIONS_BUFSIZE;
|
|
}
|
|
|
|
acts = nla_alloc_flow_actions(new_acts_size);
|
|
if (IS_ERR(acts))
|
|
return (void *)acts;
|
|
|
|
memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
|
|
acts->actions_len = (*sfa)->actions_len;
|
|
acts->orig_len = (*sfa)->orig_len;
|
|
kfree(*sfa);
|
|
*sfa = acts;
|
|
|
|
out:
|
|
(*sfa)->actions_len += req_size;
|
|
return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
|
|
}
|
|
|
|
static struct nlattr *__add_action(struct sw_flow_actions **sfa,
|
|
int attrtype, void *data, int len, bool log)
|
|
{
|
|
struct nlattr *a;
|
|
|
|
a = reserve_sfa_size(sfa, nla_attr_size(len), log);
|
|
if (IS_ERR(a))
|
|
return a;
|
|
|
|
a->nla_type = attrtype;
|
|
a->nla_len = nla_attr_size(len);
|
|
|
|
if (data)
|
|
memcpy(nla_data(a), data, len);
|
|
memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
|
|
|
|
return a;
|
|
}
|
|
|
|
int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
|
|
int len, bool log)
|
|
{
|
|
struct nlattr *a;
|
|
|
|
a = __add_action(sfa, attrtype, data, len, log);
|
|
|
|
return PTR_ERR_OR_ZERO(a);
|
|
}
|
|
|
|
static inline int add_nested_action_start(struct sw_flow_actions **sfa,
|
|
int attrtype, bool log)
|
|
{
|
|
int used = (*sfa)->actions_len;
|
|
int err;
|
|
|
|
err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
|
|
if (err)
|
|
return err;
|
|
|
|
return used;
|
|
}
|
|
|
|
static inline void add_nested_action_end(struct sw_flow_actions *sfa,
|
|
int st_offset)
|
|
{
|
|
struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
|
|
st_offset);
|
|
|
|
a->nla_len = sfa->actions_len - st_offset;
|
|
}
|
|
|
|
static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
|
|
const struct sw_flow_key *key,
|
|
int depth, struct sw_flow_actions **sfa,
|
|
__be16 eth_type, __be16 vlan_tci, bool log);
|
|
|
|
static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
|
|
const struct sw_flow_key *key, int depth,
|
|
struct sw_flow_actions **sfa,
|
|
__be16 eth_type, __be16 vlan_tci, bool log)
|
|
{
|
|
const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
|
|
const struct nlattr *probability, *actions;
|
|
const struct nlattr *a;
|
|
int rem, start, err, st_acts;
|
|
|
|
memset(attrs, 0, sizeof(attrs));
|
|
nla_for_each_nested(a, attr, rem) {
|
|
int type = nla_type(a);
|
|
if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
|
|
return -EINVAL;
|
|
attrs[type] = a;
|
|
}
|
|
if (rem)
|
|
return -EINVAL;
|
|
|
|
probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
|
|
if (!probability || nla_len(probability) != sizeof(u32))
|
|
return -EINVAL;
|
|
|
|
actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
|
|
if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
|
|
return -EINVAL;
|
|
|
|
/* validation done, copy sample action. */
|
|
start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
|
|
if (start < 0)
|
|
return start;
|
|
err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
|
|
nla_data(probability), sizeof(u32), log);
|
|
if (err)
|
|
return err;
|
|
st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
|
|
if (st_acts < 0)
|
|
return st_acts;
|
|
|
|
err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
|
|
eth_type, vlan_tci, log);
|
|
if (err)
|
|
return err;
|
|
|
|
add_nested_action_end(*sfa, st_acts);
|
|
add_nested_action_end(*sfa, start);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void ovs_match_init(struct sw_flow_match *match,
|
|
struct sw_flow_key *key,
|
|
bool reset_key,
|
|
struct sw_flow_mask *mask)
|
|
{
|
|
memset(match, 0, sizeof(*match));
|
|
match->key = key;
|
|
match->mask = mask;
|
|
|
|
if (reset_key)
|
|
memset(key, 0, sizeof(*key));
|
|
|
|
if (mask) {
|
|
memset(&mask->key, 0, sizeof(mask->key));
|
|
mask->range.start = mask->range.end = 0;
|
|
}
|
|
}
|
|
|
|
static int validate_geneve_opts(struct sw_flow_key *key)
|
|
{
|
|
struct geneve_opt *option;
|
|
int opts_len = key->tun_opts_len;
|
|
bool crit_opt = false;
|
|
|
|
option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
|
|
while (opts_len > 0) {
|
|
int len;
|
|
|
|
if (opts_len < sizeof(*option))
|
|
return -EINVAL;
|
|
|
|
len = sizeof(*option) + option->length * 4;
|
|
if (len > opts_len)
|
|
return -EINVAL;
|
|
|
|
crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
|
|
|
|
option = (struct geneve_opt *)((u8 *)option + len);
|
|
opts_len -= len;
|
|
};
|
|
|
|
key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int validate_and_copy_set_tun(const struct nlattr *attr,
|
|
struct sw_flow_actions **sfa, bool log)
|
|
{
|
|
struct sw_flow_match match;
|
|
struct sw_flow_key key;
|
|
struct metadata_dst *tun_dst;
|
|
struct ip_tunnel_info *tun_info;
|
|
struct ovs_tunnel_info *ovs_tun;
|
|
struct nlattr *a;
|
|
int err = 0, start, opts_type;
|
|
|
|
ovs_match_init(&match, &key, true, NULL);
|
|
opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
|
|
if (opts_type < 0)
|
|
return opts_type;
|
|
|
|
if (key.tun_opts_len) {
|
|
switch (opts_type) {
|
|
case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
|
|
err = validate_geneve_opts(&key);
|
|
if (err < 0)
|
|
return err;
|
|
break;
|
|
case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
|
|
break;
|
|
}
|
|
};
|
|
|
|
start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
|
|
if (start < 0)
|
|
return start;
|
|
|
|
tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
|
|
if (!tun_dst)
|
|
return -ENOMEM;
|
|
|
|
err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
|
|
if (err) {
|
|
dst_release((struct dst_entry *)tun_dst);
|
|
return err;
|
|
}
|
|
|
|
a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
|
|
sizeof(*ovs_tun), log);
|
|
if (IS_ERR(a)) {
|
|
dst_release((struct dst_entry *)tun_dst);
|
|
return PTR_ERR(a);
|
|
}
|
|
|
|
ovs_tun = nla_data(a);
|
|
ovs_tun->tun_dst = tun_dst;
|
|
|
|
tun_info = &tun_dst->u.tun_info;
|
|
tun_info->mode = IP_TUNNEL_INFO_TX;
|
|
if (key.tun_proto == AF_INET6)
|
|
tun_info->mode |= IP_TUNNEL_INFO_IPV6;
|
|
tun_info->key = key.tun_key;
|
|
|
|
/* We need to store the options in the action itself since
|
|
* everything else will go away after flow setup. We can append
|
|
* it to tun_info and then point there.
|
|
*/
|
|
ip_tunnel_info_opts_set(tun_info,
|
|
TUN_METADATA_OPTS(&key, key.tun_opts_len),
|
|
key.tun_opts_len);
|
|
add_nested_action_end(*sfa, start);
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Return false if there are any non-masked bits set.
|
|
* Mask follows data immediately, before any netlink padding.
|
|
*/
|
|
static bool validate_masked(u8 *data, int len)
|
|
{
|
|
u8 *mask = data + len;
|
|
|
|
while (len--)
|
|
if (*data++ & ~*mask++)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int validate_set(const struct nlattr *a,
|
|
const struct sw_flow_key *flow_key,
|
|
struct sw_flow_actions **sfa,
|
|
bool *skip_copy, __be16 eth_type, bool masked, bool log)
|
|
{
|
|
const struct nlattr *ovs_key = nla_data(a);
|
|
int key_type = nla_type(ovs_key);
|
|
size_t key_len;
|
|
|
|
/* There can be only one key in a action */
|
|
if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
|
|
return -EINVAL;
|
|
|
|
key_len = nla_len(ovs_key);
|
|
if (masked)
|
|
key_len /= 2;
|
|
|
|
if (key_type > OVS_KEY_ATTR_MAX ||
|
|
!check_attr_len(key_len, ovs_key_lens[key_type].len))
|
|
return -EINVAL;
|
|
|
|
if (masked && !validate_masked(nla_data(ovs_key), key_len))
|
|
return -EINVAL;
|
|
|
|
switch (key_type) {
|
|
const struct ovs_key_ipv4 *ipv4_key;
|
|
const struct ovs_key_ipv6 *ipv6_key;
|
|
int err;
|
|
|
|
case OVS_KEY_ATTR_PRIORITY:
|
|
case OVS_KEY_ATTR_SKB_MARK:
|
|
case OVS_KEY_ATTR_CT_MARK:
|
|
case OVS_KEY_ATTR_CT_LABELS:
|
|
case OVS_KEY_ATTR_ETHERNET:
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_TUNNEL:
|
|
if (masked)
|
|
return -EINVAL; /* Masked tunnel set not supported. */
|
|
|
|
*skip_copy = true;
|
|
err = validate_and_copy_set_tun(a, sfa, log);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IPV4:
|
|
if (eth_type != htons(ETH_P_IP))
|
|
return -EINVAL;
|
|
|
|
ipv4_key = nla_data(ovs_key);
|
|
|
|
if (masked) {
|
|
const struct ovs_key_ipv4 *mask = ipv4_key + 1;
|
|
|
|
/* Non-writeable fields. */
|
|
if (mask->ipv4_proto || mask->ipv4_frag)
|
|
return -EINVAL;
|
|
} else {
|
|
if (ipv4_key->ipv4_proto != flow_key->ip.proto)
|
|
return -EINVAL;
|
|
|
|
if (ipv4_key->ipv4_frag != flow_key->ip.frag)
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_IPV6:
|
|
if (eth_type != htons(ETH_P_IPV6))
|
|
return -EINVAL;
|
|
|
|
ipv6_key = nla_data(ovs_key);
|
|
|
|
if (masked) {
|
|
const struct ovs_key_ipv6 *mask = ipv6_key + 1;
|
|
|
|
/* Non-writeable fields. */
|
|
if (mask->ipv6_proto || mask->ipv6_frag)
|
|
return -EINVAL;
|
|
|
|
/* Invalid bits in the flow label mask? */
|
|
if (ntohl(mask->ipv6_label) & 0xFFF00000)
|
|
return -EINVAL;
|
|
} else {
|
|
if (ipv6_key->ipv6_proto != flow_key->ip.proto)
|
|
return -EINVAL;
|
|
|
|
if (ipv6_key->ipv6_frag != flow_key->ip.frag)
|
|
return -EINVAL;
|
|
}
|
|
if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_TCP:
|
|
if ((eth_type != htons(ETH_P_IP) &&
|
|
eth_type != htons(ETH_P_IPV6)) ||
|
|
flow_key->ip.proto != IPPROTO_TCP)
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_UDP:
|
|
if ((eth_type != htons(ETH_P_IP) &&
|
|
eth_type != htons(ETH_P_IPV6)) ||
|
|
flow_key->ip.proto != IPPROTO_UDP)
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_MPLS:
|
|
if (!eth_p_mpls(eth_type))
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case OVS_KEY_ATTR_SCTP:
|
|
if ((eth_type != htons(ETH_P_IP) &&
|
|
eth_type != htons(ETH_P_IPV6)) ||
|
|
flow_key->ip.proto != IPPROTO_SCTP)
|
|
return -EINVAL;
|
|
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Convert non-masked non-tunnel set actions to masked set actions. */
|
|
if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
|
|
int start, len = key_len * 2;
|
|
struct nlattr *at;
|
|
|
|
*skip_copy = true;
|
|
|
|
start = add_nested_action_start(sfa,
|
|
OVS_ACTION_ATTR_SET_TO_MASKED,
|
|
log);
|
|
if (start < 0)
|
|
return start;
|
|
|
|
at = __add_action(sfa, key_type, NULL, len, log);
|
|
if (IS_ERR(at))
|
|
return PTR_ERR(at);
|
|
|
|
memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
|
|
memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
|
|
/* Clear non-writeable bits from otherwise writeable fields. */
|
|
if (key_type == OVS_KEY_ATTR_IPV6) {
|
|
struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
|
|
|
|
mask->ipv6_label &= htonl(0x000FFFFF);
|
|
}
|
|
add_nested_action_end(*sfa, start);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int validate_userspace(const struct nlattr *attr)
|
|
{
|
|
static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
|
|
[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
|
|
[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
|
|
[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
|
|
};
|
|
struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
|
|
int error;
|
|
|
|
error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
|
|
attr, userspace_policy);
|
|
if (error)
|
|
return error;
|
|
|
|
if (!a[OVS_USERSPACE_ATTR_PID] ||
|
|
!nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_action(const struct nlattr *from,
|
|
struct sw_flow_actions **sfa, bool log)
|
|
{
|
|
int totlen = NLA_ALIGN(from->nla_len);
|
|
struct nlattr *to;
|
|
|
|
to = reserve_sfa_size(sfa, from->nla_len, log);
|
|
if (IS_ERR(to))
|
|
return PTR_ERR(to);
|
|
|
|
memcpy(to, from, totlen);
|
|
return 0;
|
|
}
|
|
|
|
static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
|
|
const struct sw_flow_key *key,
|
|
int depth, struct sw_flow_actions **sfa,
|
|
__be16 eth_type, __be16 vlan_tci, bool log)
|
|
{
|
|
const struct nlattr *a;
|
|
int rem, err;
|
|
|
|
if (depth >= SAMPLE_ACTION_DEPTH)
|
|
return -EOVERFLOW;
|
|
|
|
nla_for_each_nested(a, attr, rem) {
|
|
/* Expected argument lengths, (u32)-1 for variable length. */
|
|
static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
|
|
[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
|
|
[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
|
|
[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
|
|
[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
|
|
[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
|
|
[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
|
|
[OVS_ACTION_ATTR_POP_VLAN] = 0,
|
|
[OVS_ACTION_ATTR_SET] = (u32)-1,
|
|
[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
|
|
[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
|
|
[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
|
|
[OVS_ACTION_ATTR_CT] = (u32)-1,
|
|
[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
|
|
};
|
|
const struct ovs_action_push_vlan *vlan;
|
|
int type = nla_type(a);
|
|
bool skip_copy;
|
|
|
|
if (type > OVS_ACTION_ATTR_MAX ||
|
|
(action_lens[type] != nla_len(a) &&
|
|
action_lens[type] != (u32)-1))
|
|
return -EINVAL;
|
|
|
|
skip_copy = false;
|
|
switch (type) {
|
|
case OVS_ACTION_ATTR_UNSPEC:
|
|
return -EINVAL;
|
|
|
|
case OVS_ACTION_ATTR_USERSPACE:
|
|
err = validate_userspace(a);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_OUTPUT:
|
|
if (nla_get_u32(a) >= DP_MAX_PORTS)
|
|
return -EINVAL;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_TRUNC: {
|
|
const struct ovs_action_trunc *trunc = nla_data(a);
|
|
|
|
if (trunc->max_len < ETH_HLEN)
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_HASH: {
|
|
const struct ovs_action_hash *act_hash = nla_data(a);
|
|
|
|
switch (act_hash->hash_alg) {
|
|
case OVS_HASH_ALG_L4:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_POP_VLAN:
|
|
vlan_tci = htons(0);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_VLAN:
|
|
vlan = nla_data(a);
|
|
if (!eth_type_vlan(vlan->vlan_tpid))
|
|
return -EINVAL;
|
|
if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
|
|
return -EINVAL;
|
|
vlan_tci = vlan->vlan_tci;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_RECIRC:
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_PUSH_MPLS: {
|
|
const struct ovs_action_push_mpls *mpls = nla_data(a);
|
|
|
|
if (!eth_p_mpls(mpls->mpls_ethertype))
|
|
return -EINVAL;
|
|
/* Prohibit push MPLS other than to a white list
|
|
* for packets that have a known tag order.
|
|
*/
|
|
if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
|
|
(eth_type != htons(ETH_P_IP) &&
|
|
eth_type != htons(ETH_P_IPV6) &&
|
|
eth_type != htons(ETH_P_ARP) &&
|
|
eth_type != htons(ETH_P_RARP) &&
|
|
!eth_p_mpls(eth_type)))
|
|
return -EINVAL;
|
|
eth_type = mpls->mpls_ethertype;
|
|
break;
|
|
}
|
|
|
|
case OVS_ACTION_ATTR_POP_MPLS:
|
|
if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
|
|
!eth_p_mpls(eth_type))
|
|
return -EINVAL;
|
|
|
|
/* Disallow subsequent L2.5+ set and mpls_pop actions
|
|
* as there is no check here to ensure that the new
|
|
* eth_type is valid and thus set actions could
|
|
* write off the end of the packet or otherwise
|
|
* corrupt it.
|
|
*
|
|
* Support for these actions is planned using packet
|
|
* recirculation.
|
|
*/
|
|
eth_type = htons(0);
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SET:
|
|
err = validate_set(a, key, sfa,
|
|
&skip_copy, eth_type, false, log);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SET_MASKED:
|
|
err = validate_set(a, key, sfa,
|
|
&skip_copy, eth_type, true, log);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SAMPLE:
|
|
err = validate_and_copy_sample(net, a, key, depth, sfa,
|
|
eth_type, vlan_tci, log);
|
|
if (err)
|
|
return err;
|
|
skip_copy = true;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_CT:
|
|
err = ovs_ct_copy_action(net, a, key, sfa, log);
|
|
if (err)
|
|
return err;
|
|
skip_copy = true;
|
|
break;
|
|
|
|
default:
|
|
OVS_NLERR(log, "Unknown Action type %d", type);
|
|
return -EINVAL;
|
|
}
|
|
if (!skip_copy) {
|
|
err = copy_action(a, sfa, log);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (rem > 0)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* 'key' must be the masked key. */
|
|
int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
|
|
const struct sw_flow_key *key,
|
|
struct sw_flow_actions **sfa, bool log)
|
|
{
|
|
int err;
|
|
|
|
*sfa = nla_alloc_flow_actions(min(nla_len(attr), MAX_ACTIONS_BUFSIZE));
|
|
if (IS_ERR(*sfa))
|
|
return PTR_ERR(*sfa);
|
|
|
|
(*sfa)->orig_len = nla_len(attr);
|
|
err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
|
|
key->eth.vlan.tci, log);
|
|
if (err)
|
|
ovs_nla_free_flow_actions(*sfa);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
|
|
{
|
|
const struct nlattr *a;
|
|
struct nlattr *start;
|
|
int err = 0, rem;
|
|
|
|
start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
|
|
if (!start)
|
|
return -EMSGSIZE;
|
|
|
|
nla_for_each_nested(a, attr, rem) {
|
|
int type = nla_type(a);
|
|
struct nlattr *st_sample;
|
|
|
|
switch (type) {
|
|
case OVS_SAMPLE_ATTR_PROBABILITY:
|
|
if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
|
|
sizeof(u32), nla_data(a)))
|
|
return -EMSGSIZE;
|
|
break;
|
|
case OVS_SAMPLE_ATTR_ACTIONS:
|
|
st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
|
|
if (!st_sample)
|
|
return -EMSGSIZE;
|
|
err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
|
|
if (err)
|
|
return err;
|
|
nla_nest_end(skb, st_sample);
|
|
break;
|
|
}
|
|
}
|
|
|
|
nla_nest_end(skb, start);
|
|
return err;
|
|
}
|
|
|
|
static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
|
|
{
|
|
const struct nlattr *ovs_key = nla_data(a);
|
|
int key_type = nla_type(ovs_key);
|
|
struct nlattr *start;
|
|
int err;
|
|
|
|
switch (key_type) {
|
|
case OVS_KEY_ATTR_TUNNEL_INFO: {
|
|
struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
|
|
struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
|
|
|
|
start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
|
|
if (!start)
|
|
return -EMSGSIZE;
|
|
|
|
err = ip_tun_to_nlattr(skb, &tun_info->key,
|
|
ip_tunnel_info_opts(tun_info),
|
|
tun_info->options_len,
|
|
ip_tunnel_info_af(tun_info));
|
|
if (err)
|
|
return err;
|
|
nla_nest_end(skb, start);
|
|
break;
|
|
}
|
|
default:
|
|
if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
|
|
return -EMSGSIZE;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int masked_set_action_to_set_action_attr(const struct nlattr *a,
|
|
struct sk_buff *skb)
|
|
{
|
|
const struct nlattr *ovs_key = nla_data(a);
|
|
struct nlattr *nla;
|
|
size_t key_len = nla_len(ovs_key) / 2;
|
|
|
|
/* Revert the conversion we did from a non-masked set action to
|
|
* masked set action.
|
|
*/
|
|
nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
|
|
if (!nla)
|
|
return -EMSGSIZE;
|
|
|
|
if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
|
|
return -EMSGSIZE;
|
|
|
|
nla_nest_end(skb, nla);
|
|
return 0;
|
|
}
|
|
|
|
int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
|
|
{
|
|
const struct nlattr *a;
|
|
int rem, err;
|
|
|
|
nla_for_each_attr(a, attr, len, rem) {
|
|
int type = nla_type(a);
|
|
|
|
switch (type) {
|
|
case OVS_ACTION_ATTR_SET:
|
|
err = set_action_to_attr(a, skb);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SET_TO_MASKED:
|
|
err = masked_set_action_to_set_action_attr(a, skb);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_SAMPLE:
|
|
err = sample_action_to_attr(a, skb);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
case OVS_ACTION_ATTR_CT:
|
|
err = ovs_ct_action_to_attr(nla_data(a), skb);
|
|
if (err)
|
|
return err;
|
|
break;
|
|
|
|
default:
|
|
if (nla_put(skb, type, nla_len(a), nla_data(a)))
|
|
return -EMSGSIZE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|