tegrakernel/kernel/kernel-4.9/sound/soc/sunxi/sun4i-i2s.c

755 lines
18 KiB
C

/*
* Copyright (C) 2015 Andrea Venturi
* Andrea Venturi <be17068@iperbole.bo.it>
*
* Copyright (C) 2016 Maxime Ripard
* Maxime Ripard <maxime.ripard@free-electrons.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dai.h>
#define SUN4I_I2S_CTRL_REG 0x00
#define SUN4I_I2S_CTRL_SDO_EN_MASK GENMASK(11, 8)
#define SUN4I_I2S_CTRL_SDO_EN(sdo) BIT(8 + (sdo))
#define SUN4I_I2S_CTRL_MODE_MASK BIT(5)
#define SUN4I_I2S_CTRL_MODE_SLAVE (1 << 5)
#define SUN4I_I2S_CTRL_MODE_MASTER (0 << 5)
#define SUN4I_I2S_CTRL_TX_EN BIT(2)
#define SUN4I_I2S_CTRL_RX_EN BIT(1)
#define SUN4I_I2S_CTRL_GL_EN BIT(0)
#define SUN4I_I2S_FMT0_REG 0x04
#define SUN4I_I2S_FMT0_LRCLK_POLARITY_MASK BIT(7)
#define SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED (1 << 7)
#define SUN4I_I2S_FMT0_LRCLK_POLARITY_NORMAL (0 << 7)
#define SUN4I_I2S_FMT0_BCLK_POLARITY_MASK BIT(6)
#define SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED (1 << 6)
#define SUN4I_I2S_FMT0_BCLK_POLARITY_NORMAL (0 << 6)
#define SUN4I_I2S_FMT0_SR_MASK GENMASK(5, 4)
#define SUN4I_I2S_FMT0_SR(sr) ((sr) << 4)
#define SUN4I_I2S_FMT0_WSS_MASK GENMASK(3, 2)
#define SUN4I_I2S_FMT0_WSS(wss) ((wss) << 2)
#define SUN4I_I2S_FMT0_FMT_MASK GENMASK(1, 0)
#define SUN4I_I2S_FMT0_FMT_RIGHT_J (2 << 0)
#define SUN4I_I2S_FMT0_FMT_LEFT_J (1 << 0)
#define SUN4I_I2S_FMT0_FMT_I2S (0 << 0)
#define SUN4I_I2S_FMT1_REG 0x08
#define SUN4I_I2S_FIFO_TX_REG 0x0c
#define SUN4I_I2S_FIFO_RX_REG 0x10
#define SUN4I_I2S_FIFO_CTRL_REG 0x14
#define SUN4I_I2S_FIFO_CTRL_FLUSH_TX BIT(25)
#define SUN4I_I2S_FIFO_CTRL_FLUSH_RX BIT(24)
#define SUN4I_I2S_FIFO_CTRL_TX_MODE_MASK BIT(2)
#define SUN4I_I2S_FIFO_CTRL_TX_MODE(mode) ((mode) << 2)
#define SUN4I_I2S_FIFO_CTRL_RX_MODE_MASK GENMASK(1, 0)
#define SUN4I_I2S_FIFO_CTRL_RX_MODE(mode) (mode)
#define SUN4I_I2S_FIFO_STA_REG 0x18
#define SUN4I_I2S_DMA_INT_CTRL_REG 0x1c
#define SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN BIT(7)
#define SUN4I_I2S_DMA_INT_CTRL_RX_DRQ_EN BIT(3)
#define SUN4I_I2S_INT_STA_REG 0x20
#define SUN4I_I2S_CLK_DIV_REG 0x24
#define SUN4I_I2S_CLK_DIV_MCLK_EN BIT(7)
#define SUN4I_I2S_CLK_DIV_BCLK_MASK GENMASK(6, 4)
#define SUN4I_I2S_CLK_DIV_BCLK(bclk) ((bclk) << 4)
#define SUN4I_I2S_CLK_DIV_MCLK_MASK GENMASK(3, 0)
#define SUN4I_I2S_CLK_DIV_MCLK(mclk) ((mclk) << 0)
#define SUN4I_I2S_TX_CNT_REG 0x28
#define SUN4I_I2S_RX_CNT_REG 0x2c
#define SUN4I_I2S_TX_CHAN_SEL_REG 0x30
#define SUN4I_I2S_TX_CHAN_SEL(num_chan) (((num_chan) - 1) << 0)
#define SUN4I_I2S_TX_CHAN_MAP_REG 0x34
#define SUN4I_I2S_TX_CHAN_MAP(chan, sample) ((sample) << (chan << 2))
#define SUN4I_I2S_RX_CHAN_SEL_REG 0x38
#define SUN4I_I2S_RX_CHAN_MAP_REG 0x3c
struct sun4i_i2s {
struct clk *bus_clk;
struct clk *mod_clk;
struct regmap *regmap;
struct reset_control *rst;
struct snd_dmaengine_dai_dma_data playback_dma_data;
};
struct sun4i_i2s_clk_div {
u8 div;
u8 val;
};
static const struct sun4i_i2s_clk_div sun4i_i2s_bclk_div[] = {
{ .div = 2, .val = 0 },
{ .div = 4, .val = 1 },
{ .div = 6, .val = 2 },
{ .div = 8, .val = 3 },
{ .div = 12, .val = 4 },
{ .div = 16, .val = 5 },
};
static const struct sun4i_i2s_clk_div sun4i_i2s_mclk_div[] = {
{ .div = 1, .val = 0 },
{ .div = 2, .val = 1 },
{ .div = 4, .val = 2 },
{ .div = 6, .val = 3 },
{ .div = 8, .val = 4 },
{ .div = 12, .val = 5 },
{ .div = 16, .val = 6 },
{ .div = 24, .val = 7 },
};
static int sun4i_i2s_get_bclk_div(struct sun4i_i2s *i2s,
unsigned int oversample_rate,
unsigned int word_size)
{
int div = oversample_rate / word_size / 2;
int i;
for (i = 0; i < ARRAY_SIZE(sun4i_i2s_bclk_div); i++) {
const struct sun4i_i2s_clk_div *bdiv = &sun4i_i2s_bclk_div[i];
if (bdiv->div == div)
return bdiv->val;
}
return -EINVAL;
}
static int sun4i_i2s_get_mclk_div(struct sun4i_i2s *i2s,
unsigned int oversample_rate,
unsigned int module_rate,
unsigned int sampling_rate)
{
int div = module_rate / sampling_rate / oversample_rate;
int i;
for (i = 0; i < ARRAY_SIZE(sun4i_i2s_mclk_div); i++) {
const struct sun4i_i2s_clk_div *mdiv = &sun4i_i2s_mclk_div[i];
if (mdiv->div == div)
return mdiv->val;
}
return -EINVAL;
}
static int sun4i_i2s_oversample_rates[] = { 128, 192, 256, 384, 512, 768 };
static int sun4i_i2s_set_clk_rate(struct sun4i_i2s *i2s,
unsigned int rate,
unsigned int word_size)
{
unsigned int clk_rate;
int bclk_div, mclk_div;
int ret, i;
switch (rate) {
case 176400:
case 88200:
case 44100:
case 22050:
case 11025:
clk_rate = 22579200;
break;
case 192000:
case 128000:
case 96000:
case 64000:
case 48000:
case 32000:
case 24000:
case 16000:
case 12000:
case 8000:
clk_rate = 24576000;
break;
default:
return -EINVAL;
}
ret = clk_set_rate(i2s->mod_clk, clk_rate);
if (ret)
return ret;
/* Always favor the highest oversampling rate */
for (i = (ARRAY_SIZE(sun4i_i2s_oversample_rates) - 1); i >= 0; i--) {
unsigned int oversample_rate = sun4i_i2s_oversample_rates[i];
bclk_div = sun4i_i2s_get_bclk_div(i2s, oversample_rate,
word_size);
mclk_div = sun4i_i2s_get_mclk_div(i2s, oversample_rate,
clk_rate,
rate);
if ((bclk_div >= 0) && (mclk_div >= 0))
break;
}
if ((bclk_div < 0) || (mclk_div < 0))
return -EINVAL;
regmap_write(i2s->regmap, SUN4I_I2S_CLK_DIV_REG,
SUN4I_I2S_CLK_DIV_BCLK(bclk_div) |
SUN4I_I2S_CLK_DIV_MCLK(mclk_div) |
SUN4I_I2S_CLK_DIV_MCLK_EN);
return 0;
}
static int sun4i_i2s_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
int sr, wss;
u32 width;
if (params_channels(params) != 2)
return -EINVAL;
switch (params_physical_width(params)) {
case 16:
width = DMA_SLAVE_BUSWIDTH_2_BYTES;
break;
default:
return -EINVAL;
}
i2s->playback_dma_data.addr_width = width;
switch (params_width(params)) {
case 16:
sr = 0;
wss = 0;
break;
default:
return -EINVAL;
}
regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG,
SUN4I_I2S_FMT0_WSS_MASK | SUN4I_I2S_FMT0_SR_MASK,
SUN4I_I2S_FMT0_WSS(wss) | SUN4I_I2S_FMT0_SR(sr));
return sun4i_i2s_set_clk_rate(i2s, params_rate(params),
params_width(params));
}
static int sun4i_i2s_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
u32 val;
/* DAI Mode */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
val = SUN4I_I2S_FMT0_FMT_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
val = SUN4I_I2S_FMT0_FMT_LEFT_J;
break;
case SND_SOC_DAIFMT_RIGHT_J:
val = SUN4I_I2S_FMT0_FMT_RIGHT_J;
break;
default:
return -EINVAL;
}
regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG,
SUN4I_I2S_FMT0_FMT_MASK,
val);
/* DAI clock polarity */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_IB_IF:
/* Invert both clocks */
val = SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED |
SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED;
break;
case SND_SOC_DAIFMT_IB_NF:
/* Invert bit clock */
val = SUN4I_I2S_FMT0_BCLK_POLARITY_INVERTED |
SUN4I_I2S_FMT0_LRCLK_POLARITY_NORMAL;
break;
case SND_SOC_DAIFMT_NB_IF:
/* Invert frame clock */
val = SUN4I_I2S_FMT0_LRCLK_POLARITY_INVERTED |
SUN4I_I2S_FMT0_BCLK_POLARITY_NORMAL;
break;
case SND_SOC_DAIFMT_NB_NF:
/* Nothing to do for both normal cases */
val = SUN4I_I2S_FMT0_BCLK_POLARITY_NORMAL |
SUN4I_I2S_FMT0_LRCLK_POLARITY_NORMAL;
break;
default:
return -EINVAL;
}
regmap_update_bits(i2s->regmap, SUN4I_I2S_FMT0_REG,
SUN4I_I2S_FMT0_BCLK_POLARITY_MASK |
SUN4I_I2S_FMT0_LRCLK_POLARITY_MASK,
val);
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* BCLK and LRCLK master */
val = SUN4I_I2S_CTRL_MODE_MASTER;
break;
case SND_SOC_DAIFMT_CBM_CFM:
/* BCLK and LRCLK slave */
val = SUN4I_I2S_CTRL_MODE_SLAVE;
break;
default:
return -EINVAL;
}
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_MODE_MASK,
val);
/* Set significant bits in our FIFOs */
regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG,
SUN4I_I2S_FIFO_CTRL_TX_MODE_MASK |
SUN4I_I2S_FIFO_CTRL_RX_MODE_MASK,
SUN4I_I2S_FIFO_CTRL_TX_MODE(1) |
SUN4I_I2S_FIFO_CTRL_RX_MODE(1));
return 0;
}
static void sun4i_i2s_start_playback(struct sun4i_i2s *i2s)
{
/* Flush TX FIFO */
regmap_update_bits(i2s->regmap, SUN4I_I2S_FIFO_CTRL_REG,
SUN4I_I2S_FIFO_CTRL_FLUSH_TX,
SUN4I_I2S_FIFO_CTRL_FLUSH_TX);
/* Clear TX counter */
regmap_write(i2s->regmap, SUN4I_I2S_TX_CNT_REG, 0);
/* Enable TX Block */
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_TX_EN,
SUN4I_I2S_CTRL_TX_EN);
/* Enable TX DRQ */
regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG,
SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN,
SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN);
}
static void sun4i_i2s_stop_playback(struct sun4i_i2s *i2s)
{
/* Disable TX Block */
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_TX_EN,
0);
/* Disable TX DRQ */
regmap_update_bits(i2s->regmap, SUN4I_I2S_DMA_INT_CTRL_REG,
SUN4I_I2S_DMA_INT_CTRL_TX_DRQ_EN,
0);
}
static int sun4i_i2s_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
sun4i_i2s_start_playback(i2s);
else
return -EINVAL;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
sun4i_i2s_stop_playback(i2s);
else
return -EINVAL;
break;
default:
return -EINVAL;
}
return 0;
}
static int sun4i_i2s_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
/* Enable the whole hardware block */
regmap_write(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_GL_EN);
/* Enable the first output line */
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_SDO_EN_MASK,
SUN4I_I2S_CTRL_SDO_EN(0));
/* Enable the first two channels */
regmap_write(i2s->regmap, SUN4I_I2S_TX_CHAN_SEL_REG,
SUN4I_I2S_TX_CHAN_SEL(2));
/* Map them to the two first samples coming in */
regmap_write(i2s->regmap, SUN4I_I2S_TX_CHAN_MAP_REG,
SUN4I_I2S_TX_CHAN_MAP(0, 0) | SUN4I_I2S_TX_CHAN_MAP(1, 1));
return clk_prepare_enable(i2s->mod_clk);
}
static void sun4i_i2s_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
clk_disable_unprepare(i2s->mod_clk);
/* Disable our output lines */
regmap_update_bits(i2s->regmap, SUN4I_I2S_CTRL_REG,
SUN4I_I2S_CTRL_SDO_EN_MASK, 0);
/* Disable the whole hardware block */
regmap_write(i2s->regmap, SUN4I_I2S_CTRL_REG, 0);
}
static const struct snd_soc_dai_ops sun4i_i2s_dai_ops = {
.hw_params = sun4i_i2s_hw_params,
.set_fmt = sun4i_i2s_set_fmt,
.shutdown = sun4i_i2s_shutdown,
.startup = sun4i_i2s_startup,
.trigger = sun4i_i2s_trigger,
};
static int sun4i_i2s_dai_probe(struct snd_soc_dai *dai)
{
struct sun4i_i2s *i2s = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai, &i2s->playback_dma_data, NULL);
snd_soc_dai_set_drvdata(dai, i2s);
return 0;
}
static struct snd_soc_dai_driver sun4i_i2s_dai = {
.probe = sun4i_i2s_dai_probe,
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.ops = &sun4i_i2s_dai_ops,
.symmetric_rates = 1,
};
static const struct snd_soc_component_driver sun4i_i2s_component = {
.name = "sun4i-dai",
};
static bool sun4i_i2s_rd_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SUN4I_I2S_FIFO_TX_REG:
return false;
default:
return true;
}
}
static bool sun4i_i2s_wr_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SUN4I_I2S_FIFO_RX_REG:
case SUN4I_I2S_FIFO_STA_REG:
return false;
default:
return true;
}
}
static bool sun4i_i2s_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case SUN4I_I2S_FIFO_RX_REG:
case SUN4I_I2S_INT_STA_REG:
case SUN4I_I2S_RX_CNT_REG:
case SUN4I_I2S_TX_CNT_REG:
return true;
default:
return false;
}
}
static const struct reg_default sun4i_i2s_reg_defaults[] = {
{ SUN4I_I2S_CTRL_REG, 0x00000000 },
{ SUN4I_I2S_FMT0_REG, 0x0000000c },
{ SUN4I_I2S_FMT1_REG, 0x00004020 },
{ SUN4I_I2S_FIFO_CTRL_REG, 0x000400f0 },
{ SUN4I_I2S_DMA_INT_CTRL_REG, 0x00000000 },
{ SUN4I_I2S_CLK_DIV_REG, 0x00000000 },
{ SUN4I_I2S_TX_CHAN_SEL_REG, 0x00000001 },
{ SUN4I_I2S_TX_CHAN_MAP_REG, 0x76543210 },
{ SUN4I_I2S_RX_CHAN_SEL_REG, 0x00000001 },
{ SUN4I_I2S_RX_CHAN_MAP_REG, 0x00003210 },
};
static const struct regmap_config sun4i_i2s_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = SUN4I_I2S_RX_CHAN_MAP_REG,
.cache_type = REGCACHE_FLAT,
.reg_defaults = sun4i_i2s_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(sun4i_i2s_reg_defaults),
.writeable_reg = sun4i_i2s_wr_reg,
.readable_reg = sun4i_i2s_rd_reg,
.volatile_reg = sun4i_i2s_volatile_reg,
};
static int sun4i_i2s_runtime_resume(struct device *dev)
{
struct sun4i_i2s *i2s = dev_get_drvdata(dev);
int ret;
ret = clk_prepare_enable(i2s->bus_clk);
if (ret) {
dev_err(dev, "Failed to enable bus clock\n");
return ret;
}
regcache_cache_only(i2s->regmap, false);
regcache_mark_dirty(i2s->regmap);
ret = regcache_sync(i2s->regmap);
if (ret) {
dev_err(dev, "Failed to sync regmap cache\n");
goto err_disable_clk;
}
return 0;
err_disable_clk:
clk_disable_unprepare(i2s->bus_clk);
return ret;
}
static int sun4i_i2s_runtime_suspend(struct device *dev)
{
struct sun4i_i2s *i2s = dev_get_drvdata(dev);
regcache_cache_only(i2s->regmap, true);
clk_disable_unprepare(i2s->bus_clk);
return 0;
}
struct sun4i_i2s_quirks {
bool has_reset;
};
static const struct sun4i_i2s_quirks sun4i_a10_i2s_quirks = {
.has_reset = false,
};
static const struct sun4i_i2s_quirks sun6i_a31_i2s_quirks = {
.has_reset = true,
};
static int sun4i_i2s_probe(struct platform_device *pdev)
{
struct sun4i_i2s *i2s;
const struct sun4i_i2s_quirks *quirks;
struct resource *res;
void __iomem *regs;
int irq, ret;
i2s = devm_kzalloc(&pdev->dev, sizeof(*i2s), GFP_KERNEL);
if (!i2s)
return -ENOMEM;
platform_set_drvdata(pdev, i2s);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "Can't retrieve our interrupt\n");
return irq;
}
quirks = of_device_get_match_data(&pdev->dev);
if (!quirks) {
dev_err(&pdev->dev, "Failed to determine the quirks to use\n");
return -ENODEV;
}
i2s->bus_clk = devm_clk_get(&pdev->dev, "apb");
if (IS_ERR(i2s->bus_clk)) {
dev_err(&pdev->dev, "Can't get our bus clock\n");
return PTR_ERR(i2s->bus_clk);
}
i2s->regmap = devm_regmap_init_mmio(&pdev->dev, regs,
&sun4i_i2s_regmap_config);
if (IS_ERR(i2s->regmap)) {
dev_err(&pdev->dev, "Regmap initialisation failed\n");
return PTR_ERR(i2s->regmap);
}
i2s->mod_clk = devm_clk_get(&pdev->dev, "mod");
if (IS_ERR(i2s->mod_clk)) {
dev_err(&pdev->dev, "Can't get our mod clock\n");
return PTR_ERR(i2s->mod_clk);
}
if (quirks->has_reset) {
i2s->rst = devm_reset_control_get(&pdev->dev, NULL);
if (IS_ERR(i2s->rst)) {
dev_err(&pdev->dev, "Failed to get reset control\n");
return PTR_ERR(i2s->rst);
}
}
if (!IS_ERR(i2s->rst)) {
ret = reset_control_deassert(i2s->rst);
if (ret) {
dev_err(&pdev->dev,
"Failed to deassert the reset control\n");
return -EINVAL;
}
}
i2s->playback_dma_data.addr = res->start + SUN4I_I2S_FIFO_TX_REG;
i2s->playback_dma_data.maxburst = 4;
pm_runtime_enable(&pdev->dev);
if (!pm_runtime_enabled(&pdev->dev)) {
ret = sun4i_i2s_runtime_resume(&pdev->dev);
if (ret)
goto err_pm_disable;
}
ret = devm_snd_soc_register_component(&pdev->dev,
&sun4i_i2s_component,
&sun4i_i2s_dai, 1);
if (ret) {
dev_err(&pdev->dev, "Could not register DAI\n");
goto err_suspend;
}
ret = snd_dmaengine_pcm_register(&pdev->dev, NULL, 0);
if (ret) {
dev_err(&pdev->dev, "Could not register PCM\n");
goto err_suspend;
}
return 0;
err_suspend:
if (!pm_runtime_status_suspended(&pdev->dev))
sun4i_i2s_runtime_suspend(&pdev->dev);
err_pm_disable:
pm_runtime_disable(&pdev->dev);
if (!IS_ERR(i2s->rst))
reset_control_assert(i2s->rst);
return ret;
}
static int sun4i_i2s_remove(struct platform_device *pdev)
{
struct sun4i_i2s *i2s = dev_get_drvdata(&pdev->dev);
snd_dmaengine_pcm_unregister(&pdev->dev);
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
sun4i_i2s_runtime_suspend(&pdev->dev);
if (!IS_ERR(i2s->rst))
reset_control_assert(i2s->rst);
return 0;
}
static const struct of_device_id sun4i_i2s_match[] = {
{
.compatible = "allwinner,sun4i-a10-i2s",
.data = &sun4i_a10_i2s_quirks,
},
{
.compatible = "allwinner,sun6i-a31-i2s",
.data = &sun6i_a31_i2s_quirks,
},
{}
};
MODULE_DEVICE_TABLE(of, sun4i_i2s_match);
static const struct dev_pm_ops sun4i_i2s_pm_ops = {
.runtime_resume = sun4i_i2s_runtime_resume,
.runtime_suspend = sun4i_i2s_runtime_suspend,
};
static struct platform_driver sun4i_i2s_driver = {
.probe = sun4i_i2s_probe,
.remove = sun4i_i2s_remove,
.driver = {
.name = "sun4i-i2s",
.of_match_table = sun4i_i2s_match,
.pm = &sun4i_i2s_pm_ops,
},
};
module_platform_driver(sun4i_i2s_driver);
MODULE_AUTHOR("Andrea Venturi <be17068@iperbole.bo.it>");
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A10 I2S driver");
MODULE_LICENSE("GPL");