tegrakernel/kernel/nvidia/drivers/misc/therm_est.c

850 lines
21 KiB
C

/*
* drivers/misc/therm_est.c
*
* Copyright (c) 2010-2017, NVIDIA CORPORATION. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/platform_device.h>
#include <linux/kernel.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
#include <linux/therm_est.h>
#include <linux/thermal.h>
#include <linux/module.h>
#include <linux/hwmon-sysfs.h>
#include <linux/suspend.h>
#include <linux/version.h>
#define DEFAULT_TSKIN 25000 /* default tskin in mC */
struct therm_estimator {
struct thermal_zone_device *thz;
struct thermal_cooling_device *cdev; /* activation device */
struct workqueue_struct *workqueue;
struct delayed_work therm_est_work;
long cur_temp;
long low_limit;
long high_limit;
long polling_period;
int polling_enabled;
int tc1;
int tc2;
struct therm_est_subdevice *subdevice;
bool *tripped_info;
int use_activator;
#ifdef CONFIG_PM
struct notifier_block pm_nb;
#endif
};
static int therm_est_subdev_match(struct thermal_zone_device *thz, void *data)
{
return strcmp((char *)data, thz->type) == 0;
}
static int therm_est_subdev_get_temp(struct thermal_zone_device *thz,
int *temp)
{
if (!thz || !thz->ops->get_temp || thz->ops->get_temp(thz, temp))
*temp = 25000;
return 0;
}
static void therm_est_update_limits(struct therm_estimator *est)
{
const int MAX_HIGH_TEMP = 128000;
long low_temp = 0, high_temp = MAX_HIGH_TEMP;
int trip_temp, passive_low_temp = MAX_HIGH_TEMP;
enum thermal_trip_type trip_type;
int hysteresis, zone_temp;
int i;
zone_temp = est->thz->temperature;
for (i = 0; i < est->thz->trips; i++) {
est->thz->ops->get_trip_temp(est->thz, i, &trip_temp);
est->thz->ops->get_trip_hyst(est->thz, i, &hysteresis);
est->thz->ops->get_trip_type(est->thz, i, &trip_type);
if (zone_temp >= trip_temp) {
trip_temp -= hysteresis;
est->tripped_info[i] = true;
} else if (est->tripped_info[i]) {
trip_temp -= hysteresis;
if (zone_temp < trip_temp)
est->tripped_info[i] = false;
}
if (!est->tripped_info[i]) { /* not tripped? update high */
if (trip_temp < high_temp)
high_temp = trip_temp;
} else { /* tripped? update low */
if (trip_type != THERMAL_TRIP_PASSIVE) {
/* get highest ACTIVE */
if (trip_temp > low_temp)
low_temp = trip_temp;
} else {
/* get lowest PASSIVE */
if (trip_temp < passive_low_temp)
passive_low_temp = trip_temp;
}
}
}
if (passive_low_temp != MAX_HIGH_TEMP)
low_temp = max_t(long, low_temp, passive_low_temp);
est->low_limit = low_temp;
est->high_limit = high_temp;
}
static void therm_est_work_func(struct work_struct *work)
{
struct delayed_work *dwork = container_of(work,
struct delayed_work, work);
struct therm_estimator *est = container_of(dwork,
struct therm_estimator,
therm_est_work);
struct therm_est_subdevice *subdevice;
struct therm_est_coeffs *coeffs_set;
s32 *thz_coeffs;
long *hist;
int temp;
int i, j, index, sum = 0;
subdevice = est->subdevice;
coeffs_set = &subdevice->coeffs_set[subdevice->active_coeffs];
subdevice->ntemp = (subdevice->ntemp + 1) % HIST_LEN;
for (i = 0; i < subdevice->num_devs; i++) {
if (therm_est_subdev_get_temp(subdevice->sub_thz[i].thz, &temp))
continue;
subdevice->sub_thz[i].hist[subdevice->ntemp] = temp;
}
for (i = 0; i < subdevice->num_devs; i++) {
hist = subdevice->sub_thz[i].hist;
thz_coeffs = coeffs_set->coeffs[i];
for (j = 0; j < HIST_LEN; j++) {
index = (subdevice->ntemp - j + HIST_LEN) % HIST_LEN;
sum += hist[index] * thz_coeffs[j];
}
}
est->cur_temp = sum / 100 + coeffs_set->toffset;
if (est->thz && ((est->cur_temp < est->low_limit) ||
(est->cur_temp >= est->high_limit))) {
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
thermal_zone_device_update(est->thz, THERMAL_EVENT_UNSPECIFIED);
#else
thermal_zone_device_update(est->thz);
#endif
therm_est_update_limits(est);
}
if (est->polling_enabled > 0 || !est->use_activator) {
queue_delayed_work(est->workqueue, &est->therm_est_work,
msecs_to_jiffies(est->polling_period));
}
}
static int therm_est_get_temp(void *of_data, int *temp)
{
struct therm_estimator *est = (struct therm_estimator *)of_data;
*temp = est->cur_temp;
return 0;
}
static int therm_est_get_trend(void *of_data, int trip,
enum thermal_trend *trend)
{
struct therm_estimator *est = (struct therm_estimator *)of_data;
if (IS_ERR_OR_NULL(est->thz))
*trend = THERMAL_TREND_STABLE;
else if (est->thz->temperature > est->thz->last_temperature + 100)
*trend = THERMAL_TREND_RAISING;
else if (est->thz->temperature < est->thz->last_temperature - 100)
*trend = THERMAL_TREND_DROPPING;
else
*trend = THERMAL_TREND_STABLE;
return 0;
}
static int therm_est_trip_update(void *of_data, int trip)
{
struct therm_estimator *est = (struct therm_estimator *)of_data;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
thermal_zone_device_update(est->thz, THERMAL_EVENT_UNSPECIFIED);
#else
thermal_zone_device_update(est->thz);
#endif
therm_est_update_limits(est);
return 0;
}
static int therm_est_init_history(struct therm_estimator *est)
{
struct therm_est_sub_thz *sub_thz;
int temp;
int i, j;
sub_thz = est->subdevice->sub_thz;
for (i = 0; i < est->subdevice->num_devs; i++) {
if (therm_est_subdev_get_temp(sub_thz[i].thz, &temp))
return -EINVAL;
for (j = 0; j < HIST_LEN; j++)
sub_thz[i].hist[j] = temp;
}
return 0;
}
static int therm_est_polling(struct therm_estimator *est,
int polling)
{
est->polling_enabled = polling > 0;
if (est->polling_enabled > 0) {
est->low_limit = 0;
est->high_limit = 0;
therm_est_init_history(est);
queue_delayed_work(est->workqueue,
&est->therm_est_work,
msecs_to_jiffies(est->polling_period));
} else {
cancel_delayed_work_sync(&est->therm_est_work);
est->cur_temp = DEFAULT_TSKIN;
}
return 0;
}
static int switch_active_coeffs(struct therm_estimator *est, int active_coeffs)
{
struct therm_est_subdevice *subdevice = est->subdevice;
if (active_coeffs < 0 || active_coeffs >= subdevice->num_coeffs)
return -EINVAL;
subdevice->active_coeffs = active_coeffs;
return 0;
}
static ssize_t show_coeff(struct device *dev,
struct device_attribute *da,
char *buf)
{
struct therm_estimator *est = dev_get_drvdata(dev);
struct therm_est_subdevice *subdevice = est->subdevice;
struct therm_est_coeffs *coeffs_set;
s32 *coeffs;
ssize_t total_len = 0;
int i, j, k;
total_len += snprintf(buf + total_len, PAGE_SIZE - total_len,
"Total %02d set(s) are available\n\n",
subdevice->num_coeffs);
for (i = 0; i < subdevice->num_coeffs; i++) {
total_len += snprintf(buf + total_len, PAGE_SIZE - total_len,
"- SET %02d - %s\n", i,
(i == subdevice->active_coeffs)?"active":"");
coeffs_set = subdevice->coeffs_set + i;
for (j = 0; j < subdevice->num_devs; j++) {
total_len += snprintf(buf + total_len,
PAGE_SIZE - total_len,
"%s : ",
subdevice->sub_thz[j].thz->type);
coeffs = coeffs_set->coeffs[j];
for (k = 0; k < HIST_LEN; k++) {
total_len += snprintf(buf + total_len,
PAGE_SIZE - total_len, " %d",
coeffs[k]);
}
total_len += snprintf(buf + total_len,
PAGE_SIZE - total_len, "\n");
}
total_len += snprintf(buf + total_len,
PAGE_SIZE - total_len,
"toffset : %ld\n\n",
coeffs_set->toffset);
}
return strlen(buf);
}
static ssize_t set_coeff(struct device *dev,
struct device_attribute *da,
const char *buf, size_t count)
{
struct therm_estimator *est = dev_get_drvdata(dev);
int coeffs_index, dev_index, scount;
s32 coeff[20];
if (HIST_LEN > 20)
return -EINVAL;
scount = sscanf(buf, "[%d][%d] %d %d %d %d %d %d %d %d %d " \
"%d %d %d %d %d %d %d %d %d %d %d",
&coeffs_index, &dev_index,
&coeff[0],
&coeff[1],
&coeff[2],
&coeff[3],
&coeff[4],
&coeff[5],
&coeff[6],
&coeff[7],
&coeff[8],
&coeff[9],
&coeff[10],
&coeff[11],
&coeff[12],
&coeff[13],
&coeff[14],
&coeff[15],
&coeff[16],
&coeff[17],
&coeff[18],
&coeff[19]);
if (scount != HIST_LEN + 2)
return -1;
if (dev_index < 0 || dev_index >= est->subdevice->num_devs)
return -EINVAL;
if (coeffs_index < 0 || coeffs_index >= est->subdevice->num_coeffs)
return -EINVAL;
/* This has obvious locking issues but don't worry about it */
memcpy(est->subdevice->coeffs_set[coeffs_index].coeffs[dev_index],
coeff,
sizeof(coeff[0]) * HIST_LEN);
return count;
}
static ssize_t show_offset(struct device *dev,
struct device_attribute *da,
char *buf)
{
return show_coeff(dev, da, buf);
}
static ssize_t set_offset(struct device *dev,
struct device_attribute *da,
const char *buf, size_t count)
{
struct therm_estimator *est = dev_get_drvdata(dev);
int offset, scount, coeffs_index;
scount = sscanf(buf, "[%d] %d", &coeffs_index, &offset);
if (scount != 2)
return -EINVAL;
if (coeffs_index < 0 || coeffs_index >= est->subdevice->num_coeffs)
return -EINVAL;
est->subdevice->coeffs_set[coeffs_index].toffset = offset;
return count;
}
static ssize_t show_active_coeffs(struct device *dev,
struct device_attribute *da,
char *buf)
{
struct therm_estimator *est = dev_get_drvdata(dev);
struct therm_est_subdevice *subdevice = est->subdevice;
struct therm_est_coeffs *coeffs_set;
s32 *coeffs;
ssize_t total_len = 0;
int i, j;
total_len += snprintf(buf + total_len, PAGE_SIZE - total_len,
"There are %d set(s) and the active set is [%02d]\n\n",
subdevice->num_coeffs, subdevice->active_coeffs);
coeffs_set = subdevice->coeffs_set + subdevice->active_coeffs;
for (i = 0; i < subdevice->num_devs; i++) {
total_len += snprintf(buf + total_len, PAGE_SIZE - total_len,
"%s : ", subdevice->sub_thz[i].thz->type);
coeffs = coeffs_set->coeffs[i];
for (j = 0; j < HIST_LEN; j++) {
total_len += snprintf(buf + total_len,
PAGE_SIZE - total_len, " %d",
coeffs[j]);
}
total_len += snprintf(buf + total_len,
PAGE_SIZE - total_len, "\n");
}
total_len += snprintf(buf + total_len, PAGE_SIZE - total_len,
"toffset : %ld\n",
coeffs_set->toffset);
return strlen(buf);
}
static ssize_t set_active_coeffs(struct device *dev,
struct device_attribute *da,
const char *buf, size_t count)
{
struct therm_estimator *est = dev_get_drvdata(dev);
int active_coeffs, ret;
if (kstrtoint(buf, 0, &active_coeffs))
return -EINVAL;
ret = switch_active_coeffs(est, active_coeffs);
if (ret)
return ret;
return count;
}
static ssize_t show_temps(struct device *dev,
struct device_attribute *da,
char *buf)
{
struct therm_estimator *est = dev_get_drvdata(dev);
struct therm_est_subdevice *subdevice = est->subdevice;
long *hist;
ssize_t total_len = 0;
int i, j;
int index;
/* This has obvious locking issues but don't worry about it */
for (i = 0; i < subdevice->num_devs; i++) {
total_len += snprintf(buf + total_len,
PAGE_SIZE - total_len, "[%d]", i);
hist = subdevice->sub_thz[i].hist;
for (j = 0; j < HIST_LEN; j++) {
index = (subdevice->ntemp - j + HIST_LEN) % HIST_LEN;
total_len += snprintf(buf + total_len,
PAGE_SIZE - total_len, " %ld",
hist[index]);
}
total_len += snprintf(buf + total_len,
PAGE_SIZE - total_len, "\n");
}
return strlen(buf);
}
static ssize_t show_tc1(struct device *dev,
struct device_attribute *da,
char *buf)
{
struct therm_estimator *est = dev_get_drvdata(dev);
snprintf(buf, PAGE_SIZE, "%d\n", est->tc1);
return strlen(buf);
}
static ssize_t set_tc1(struct device *dev,
struct device_attribute *da,
const char *buf, size_t count)
{
struct therm_estimator *est = dev_get_drvdata(dev);
int tc1;
if (kstrtoint(buf, 0, &tc1))
return -EINVAL;
est->tc1 = tc1;
return count;
}
static ssize_t show_tc2(struct device *dev,
struct device_attribute *da,
char *buf)
{
struct therm_estimator *est = dev_get_drvdata(dev);
snprintf(buf, PAGE_SIZE, "%d\n", est->tc2);
return strlen(buf);
}
static ssize_t set_tc2(struct device *dev,
struct device_attribute *da,
const char *buf, size_t count)
{
struct therm_estimator *est = dev_get_drvdata(dev);
int tc2;
if (kstrtoint(buf, 0, &tc2))
return -EINVAL;
est->tc2 = tc2;
return count;
}
static struct sensor_device_attribute therm_est_nodes[] = {
SENSOR_ATTR(coeff, S_IRUGO | S_IWUSR, show_coeff, set_coeff, 0),
SENSOR_ATTR(offset, S_IRUGO | S_IWUSR, show_offset, set_offset, 0),
SENSOR_ATTR(active_coeffs, S_IRUGO | S_IWUSR, show_active_coeffs,
set_active_coeffs, 0),
SENSOR_ATTR(tc1, S_IRUGO | S_IWUSR, show_tc1, set_tc1, 0),
SENSOR_ATTR(tc2, S_IRUGO | S_IWUSR, show_tc2, set_tc2, 0),
SENSOR_ATTR(temps, S_IRUGO, show_temps, 0, 0),
};
#ifdef CONFIG_PM
static int therm_est_pm_notify(struct notifier_block *nb,
unsigned long event, void *data)
{
struct therm_estimator *est = container_of(
nb,
struct therm_estimator,
pm_nb);
switch (event) {
case PM_SUSPEND_PREPARE:
cancel_delayed_work_sync(&est->therm_est_work);
break;
case PM_POST_SUSPEND:
est->low_limit = 0;
est->high_limit = 0;
therm_est_init_history(est);
queue_delayed_work(est->workqueue,
&est->therm_est_work,
msecs_to_jiffies(est->polling_period));
break;
}
return NOTIFY_OK;
}
#endif
static int
thermal_est_activation_get_max_state(struct thermal_cooling_device *cdev,
unsigned long *max_state)
{
*max_state = 1;
return 0;
}
static int
thermal_est_activation_get_cur_state(struct thermal_cooling_device *cdev,
unsigned long *cur_state)
{
struct therm_estimator *est = cdev->devdata;
*cur_state = est->polling_enabled;
return 0;
}
static int
thermal_est_activation_set_cur_state(struct thermal_cooling_device *cdev,
unsigned long cur_state)
{
struct therm_estimator *est = cdev->devdata;
if (est->use_activator)
therm_est_polling(est, cur_state > 0);
return 0;
}
static struct thermal_cooling_device_ops thermal_est_activation_device_ops = {
.get_max_state = thermal_est_activation_get_max_state,
.get_cur_state = thermal_est_activation_get_cur_state,
.set_cur_state = thermal_est_activation_set_cur_state,
};
struct thermal_cooling_device *thermal_est_activation_device_register(
struct therm_estimator *est,
char *type)
{
struct thermal_cooling_device *cdev;
cdev = thermal_cooling_device_register(
type,
est,
&thermal_est_activation_device_ops);
if (IS_ERR(cdev))
return NULL;
pr_debug("Therm_est: Cooling-device REGISTERED\n");
return cdev;
}
static int therm_est_get_subdev(struct device *dev,
struct device_node *subdev_np,
struct therm_est_subdevice *subdevice)
{
struct thermal_zone_device *thz;
struct device_node *coeffs_np;
char *thz_name;
int num_subdevs;
int num_coeffs;
int i, ret = 0;
s32 val;
num_subdevs = of_property_count_strings(subdev_np, "subdev_names");
if (num_subdevs == 0)
return -ENOENT;
num_coeffs = of_get_child_count(subdev_np);
if (num_coeffs == 0)
return -ENOENT;
subdevice->sub_thz = devm_kzalloc(dev,
sizeof(*subdevice->sub_thz) * num_subdevs, GFP_KERNEL);
if (!subdevice->sub_thz)
return -ENOMEM;
subdevice->coeffs_set = devm_kzalloc(dev,
sizeof(*subdevice->coeffs_set) * num_coeffs,
GFP_KERNEL);
if (!subdevice->coeffs_set)
return -ENOMEM;
for (i = 0; i < num_coeffs; i++) {
subdevice->coeffs_set[i].coeffs = devm_kzalloc(dev,
sizeof(*subdevice->coeffs_set->coeffs) * num_subdevs,
GFP_KERNEL);
if (!subdevice->coeffs_set[i].coeffs)
return -ENOMEM;
}
for (i = 0; i < num_subdevs; i++) {
ret = of_property_read_string_index(subdev_np,
"subdev_names",
i, (const char**)&thz_name);
if (ret)
return -EINVAL;
thz = thermal_zone_device_find(thz_name,
therm_est_subdev_match);
if (!thz)
return -EINVAL;
subdevice->sub_thz[i].thz = thz;
}
i = 0;
for_each_child_of_node(subdev_np, coeffs_np) {
ret = of_property_read_s32(coeffs_np, "toffset", &val);
if (ret)
return ret;
subdevice->coeffs_set[i].toffset = val;
/*
* casting from s32* to u32* is safe here
*/
ret = of_property_read_u32_array(coeffs_np, "coeffs",
(u32 *)subdevice->coeffs_set[i].coeffs,
num_subdevs * HIST_LEN);
i++;
}
of_node_put(coeffs_np);
subdevice->num_coeffs = num_coeffs;
subdevice->num_devs = num_subdevs;
return 0;
}
static struct therm_est_data *therm_est_get_pdata(struct device *dev)
{
struct device_node *np, *subdev_np;
struct therm_est_data *data;
u32 val;
int ret;
np = dev->of_node;
if (!np)
return ERR_PTR(-ENOENT);
data = devm_kzalloc(dev, sizeof(struct therm_est_data), GFP_KERNEL);
if (!data)
return ERR_PTR(-ENOMEM);
ret = of_property_read_u32(np, "polling-period", &val);
if (ret < 0)
return ERR_PTR(ret);
data->polling_period = val;
ret = of_property_read_u32(np, "tc1", &val);
if (ret < 0)
return ERR_PTR(ret);
data->tc1 = val;
ret = of_property_read_u32(np, "tc2", &val);
if (ret < 0)
return ERR_PTR(ret);
data->tc2 = val;
ret = of_property_read_u32(np, "use_activator", &val);
if (ret < 0)
return ERR_PTR(ret);
data->use_activator = val;
subdev_np = of_get_child_by_name(np, "subdev");
if (!subdev_np)
return ERR_PTR(-ENOENT);
ret = therm_est_get_subdev(dev, subdev_np, &data->subdevice);
if (ret)
return ERR_PTR(ret);
of_node_put(subdev_np);
return data;
}
static struct thermal_zone_of_device_ops sops = {
.get_temp = therm_est_get_temp,
.get_trend = therm_est_get_trend,
.trip_update = therm_est_trip_update,
};
static int therm_est_probe(struct platform_device *pdev)
{
int i, ret;
struct therm_estimator *est;
struct therm_est_data *data;
est = kzalloc(sizeof(struct therm_estimator), GFP_KERNEL);
if (IS_ERR_OR_NULL(est))
return -ENOMEM;
platform_set_drvdata(pdev, est);
data = pdev->dev.platform_data;
if (!data) {
data = therm_est_get_pdata(&pdev->dev);
if (IS_ERR_OR_NULL(data))
goto err;
}
est->subdevice = &data->subdevice;
est->polling_period = data->polling_period;
est->tc1 = data->tc1;
est->tc2 = data->tc2;
est->cur_temp = DEFAULT_TSKIN;
est->use_activator = data->use_activator;
/* initialize history */
therm_est_init_history(est);
est->workqueue = alloc_workqueue(dev_name(&pdev->dev),
WQ_HIGHPRI | WQ_UNBOUND, 1);
if (!est->workqueue)
goto err;
INIT_DELAYED_WORK(&est->therm_est_work, therm_est_work_func);
est->cdev = thermal_est_activation_device_register(est,
"therm_est_activ");
est->thz = thermal_zone_of_sensor_register(&pdev->dev, 0, est, &sops);
if (IS_ERR(est->thz)) {
ret = PTR_ERR(est->thz);
dev_err(&pdev->dev,
"Device can not register as thermal sensor: %d\n", ret);
goto err;
}
est->tripped_info = devm_kzalloc(&pdev->dev,
sizeof(bool) * est->thz->trips,
GFP_KERNEL);
if (IS_ERR_OR_NULL(est->thz))
goto err;
for (i = 0; i < ARRAY_SIZE(therm_est_nodes); i++)
device_create_file(&pdev->dev, &therm_est_nodes[i].dev_attr);
#ifdef CONFIG_PM
est->pm_nb.notifier_call = therm_est_pm_notify,
register_pm_notifier(&est->pm_nb);
#endif
if (!est->use_activator)
queue_delayed_work(est->workqueue, &est->therm_est_work,
msecs_to_jiffies(est->polling_period));
return 0;
err:
if (est->workqueue)
destroy_workqueue(est->workqueue);
kfree(est);
return -EINVAL;
}
static int therm_est_remove(struct platform_device *pdev)
{
struct therm_estimator *est = platform_get_drvdata(pdev);
int i;
cancel_delayed_work_sync(&est->therm_est_work);
#ifdef CONFIG_PM
unregister_pm_notifier(&est->pm_nb);
#endif
for (i = 0; i < ARRAY_SIZE(therm_est_nodes); i++)
device_remove_file(&pdev->dev, &therm_est_nodes[i].dev_attr);
thermal_cooling_device_unregister(est->cdev);
kfree(est->thz);
destroy_workqueue(est->workqueue);
kfree(est);
return 0;
}
static void therm_est_shutdown(struct platform_device *pdev)
{
struct therm_estimator *est = platform_get_drvdata(pdev);
cancel_delayed_work_sync(&est->therm_est_work);
thermal_cooling_device_unregister(est->cdev);
}
static struct of_device_id therm_est_of_match[] = {
{ .compatible = "nvidia,therm-est", },
{ },
};
static struct platform_driver therm_est_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "therm_est",
.of_match_table = of_match_ptr(therm_est_of_match),
},
.probe = therm_est_probe,
.remove = therm_est_remove,
.shutdown = therm_est_shutdown,
};
static int __init therm_est_driver_init(void)
{
return platform_driver_register(&therm_est_driver);
}
device_initcall_sync(therm_est_driver_init);