1230 lines
33 KiB
C
1230 lines
33 KiB
C
/*
|
|
* Misc utility routines used by kernel or app-level.
|
|
* Contents are wifi-specific, used by any kernel or app-level
|
|
* software that might want wifi things as it grows.
|
|
*
|
|
* Copyright (C) 1999-2015, Broadcom Corporation
|
|
*
|
|
* Unless you and Broadcom execute a separate written software license
|
|
* agreement governing use of this software, this software is licensed to you
|
|
* under the terms of the GNU General Public License version 2 (the "GPL"),
|
|
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
|
|
* following added to such license:
|
|
*
|
|
* As a special exception, the copyright holders of this software give you
|
|
* permission to link this software with independent modules, and to copy and
|
|
* distribute the resulting executable under terms of your choice, provided that
|
|
* you also meet, for each linked independent module, the terms and conditions of
|
|
* the license of that module. An independent module is a module which is not
|
|
* derived from this software. The special exception does not apply to any
|
|
* modifications of the software.
|
|
*
|
|
* Notwithstanding the above, under no circumstances may you combine this
|
|
* software in any way with any other Broadcom software provided under a license
|
|
* other than the GPL, without Broadcom's express prior written consent.
|
|
* $Id: bcmwifi_channels.c 309193 2012-01-19 00:03:57Z $
|
|
*/
|
|
|
|
#include <bcm_cfg.h>
|
|
#include <typedefs.h>
|
|
#include <bcmutils.h>
|
|
|
|
#ifdef BCMDRIVER
|
|
#include <osl.h>
|
|
#define strtoul(nptr, endptr, base) bcm_strtoul((nptr), (endptr), (base))
|
|
#define tolower(c) (bcm_isupper((c)) ? ((c) + 'a' - 'A') : (c))
|
|
#else
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
#ifndef ASSERT
|
|
#define ASSERT(exp)
|
|
#endif
|
|
#endif /* BCMDRIVER */
|
|
|
|
#include <bcmwifi_channels.h>
|
|
|
|
#if defined(WIN32) && (defined(BCMDLL) || defined(WLMDLL))
|
|
#include <bcmstdlib.h> /* For wl/exe/GNUmakefile.brcm_wlu and GNUmakefile.wlm_dll */
|
|
#endif
|
|
|
|
/* Definitions for D11AC capable Chanspec type */
|
|
|
|
/* Chanspec ASCII representation with 802.11ac capability:
|
|
* [<band> 'g'] <channel> ['/'<bandwidth> [<ctl-sideband>]['/'<1st80channel>'-'<2nd80channel>]]
|
|
*
|
|
* <band>:
|
|
* (optional) 2, 3, 4, 5 for 2.4GHz, 3GHz, 4GHz, and 5GHz respectively.
|
|
* Default value is 2g if channel <= 14, otherwise 5g.
|
|
* <channel>:
|
|
* channel number of the 5MHz, 10MHz, 20MHz channel,
|
|
* or primary channel of 40MHz, 80MHz, 160MHz, or 80+80MHz channel.
|
|
* <bandwidth>:
|
|
* (optional) 5, 10, 20, 40, 80, 160, or 80+80. Default value is 20.
|
|
* <primary-sideband>:
|
|
* (only for 2.4GHz band 40MHz) U for upper sideband primary, L for lower.
|
|
*
|
|
* For 2.4GHz band 40MHz channels, the same primary channel may be the
|
|
* upper sideband for one 40MHz channel, and the lower sideband for an
|
|
* overlapping 40MHz channel. The U/L disambiguates which 40MHz channel
|
|
* is being specified.
|
|
*
|
|
* For 40MHz in the 5GHz band and all channel bandwidths greater than
|
|
* 40MHz, the U/L specificaion is not allowed since the channels are
|
|
* non-overlapping and the primary sub-band is derived from its
|
|
* position in the wide bandwidth channel.
|
|
*
|
|
* <1st80Channel>:
|
|
* <2nd80Channel>:
|
|
* Required for 80+80, otherwise not allowed.
|
|
* Specifies the center channel of the first and second 80MHz band.
|
|
*
|
|
* In its simplest form, it is a 20MHz channel number, with the implied band
|
|
* of 2.4GHz if channel number <= 14, and 5GHz otherwise.
|
|
*
|
|
* To allow for backward compatibility with scripts, the old form for
|
|
* 40MHz channels is also allowed: <channel><ctl-sideband>
|
|
*
|
|
* <channel>:
|
|
* primary channel of 40MHz, channel <= 14 is 2GHz, otherwise 5GHz
|
|
* <ctl-sideband>:
|
|
* "U" for upper, "L" for lower (or lower case "u" "l")
|
|
*
|
|
* 5 GHz Examples:
|
|
* Chanspec BW Center Ch Channel Range Primary Ch
|
|
* 5g8 20MHz 8 - -
|
|
* 52 20MHz 52 - -
|
|
* 52/40 40MHz 54 52-56 52
|
|
* 56/40 40MHz 54 52-56 56
|
|
* 52/80 80MHz 58 52-64 52
|
|
* 56/80 80MHz 58 52-64 56
|
|
* 60/80 80MHz 58 52-64 60
|
|
* 64/80 80MHz 58 52-64 64
|
|
* 52/160 160MHz 50 36-64 52
|
|
* 36/160 160MGz 50 36-64 36
|
|
* 36/80+80/42-106 80+80MHz 42,106 36-48,100-112 36
|
|
*
|
|
* 2 GHz Examples:
|
|
* Chanspec BW Center Ch Channel Range Primary Ch
|
|
* 2g8 20MHz 8 - -
|
|
* 8 20MHz 8 - -
|
|
* 6 20MHz 6 - -
|
|
* 6/40l 40MHz 8 6-10 6
|
|
* 6l 40MHz 8 6-10 6
|
|
* 6/40u 40MHz 4 2-6 6
|
|
* 6u 40MHz 4 2-6 6
|
|
*/
|
|
|
|
/* bandwidth ASCII string */
|
|
static const char *wf_chspec_bw_str[] =
|
|
{
|
|
"5",
|
|
"10",
|
|
"20",
|
|
"40",
|
|
"80",
|
|
"160",
|
|
"80+80",
|
|
"na"
|
|
};
|
|
|
|
static const uint8 wf_chspec_bw_mhz[] =
|
|
{5, 10, 20, 40, 80, 160, 160};
|
|
|
|
#define WF_NUM_BW \
|
|
(sizeof(wf_chspec_bw_mhz)/sizeof(uint8))
|
|
|
|
/* 40MHz channels in 5GHz band */
|
|
static const uint8 wf_5g_40m_chans[] =
|
|
{38, 46, 54, 62, 102, 110, 118, 126, 134, 142, 151, 159};
|
|
#define WF_NUM_5G_40M_CHANS \
|
|
(sizeof(wf_5g_40m_chans)/sizeof(uint8))
|
|
|
|
/* 80MHz channels in 5GHz band */
|
|
static const uint8 wf_5g_80m_chans[] =
|
|
{42, 58, 106, 122, 138, 155};
|
|
#define WF_NUM_5G_80M_CHANS \
|
|
(sizeof(wf_5g_80m_chans)/sizeof(uint8))
|
|
|
|
/* 160MHz channels in 5GHz band */
|
|
static const uint8 wf_5g_160m_chans[] =
|
|
{50, 114};
|
|
#define WF_NUM_5G_160M_CHANS \
|
|
(sizeof(wf_5g_160m_chans)/sizeof(uint8))
|
|
|
|
|
|
/* convert bandwidth from chanspec to MHz */
|
|
static uint
|
|
bw_chspec_to_mhz(chanspec_t chspec)
|
|
{
|
|
uint bw;
|
|
|
|
bw = (chspec & WL_CHANSPEC_BW_MASK) >> WL_CHANSPEC_BW_SHIFT;
|
|
return (bw >= WF_NUM_BW ? 0 : wf_chspec_bw_mhz[bw]);
|
|
}
|
|
|
|
/* bw in MHz, return the channel count from the center channel to the
|
|
* the channel at the edge of the band
|
|
*/
|
|
static uint8
|
|
center_chan_to_edge(uint bw)
|
|
{
|
|
/* edge channels separated by BW - 10MHz on each side
|
|
* delta from cf to edge is half of that,
|
|
* MHz to channel num conversion is 5MHz/channel
|
|
*/
|
|
return (uint8)(((bw - 20) / 2) / 5);
|
|
}
|
|
|
|
/* return channel number of the low edge of the band
|
|
* given the center channel and BW
|
|
*/
|
|
static uint8
|
|
channel_low_edge(uint center_ch, uint bw)
|
|
{
|
|
return (uint8)(center_ch - center_chan_to_edge(bw));
|
|
}
|
|
|
|
/* return side band number given center channel and control channel
|
|
* return -1 on error
|
|
*/
|
|
static int
|
|
channel_to_sb(uint center_ch, uint ctl_ch, uint bw)
|
|
{
|
|
uint lowest = channel_low_edge(center_ch, bw);
|
|
uint sb;
|
|
|
|
if ((ctl_ch - lowest) % 4) {
|
|
/* bad ctl channel, not mult 4 */
|
|
return -1;
|
|
}
|
|
|
|
sb = ((ctl_ch - lowest) / 4);
|
|
|
|
/* sb must be a index to a 20MHz channel in range */
|
|
if (sb >= (bw / 20)) {
|
|
/* ctl_ch must have been too high for the center_ch */
|
|
return -1;
|
|
}
|
|
|
|
return sb;
|
|
}
|
|
|
|
/* return control channel given center channel and side band */
|
|
static uint8
|
|
channel_to_ctl_chan(uint center_ch, uint bw, uint sb)
|
|
{
|
|
return (uint8)(channel_low_edge(center_ch, bw) + sb * 4);
|
|
}
|
|
|
|
/* return index of 80MHz channel from channel number
|
|
* return -1 on error
|
|
*/
|
|
static int
|
|
channel_80mhz_to_id(uint ch)
|
|
{
|
|
uint i;
|
|
for (i = 0; i < WF_NUM_5G_80M_CHANS; i ++) {
|
|
if (ch == wf_5g_80m_chans[i])
|
|
return i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* wrapper function for wf_chspec_ntoa. In case of an error it puts
|
|
* the original chanspec in the output buffer, prepended with "invalid".
|
|
* Can be directly used in print routines as it takes care of null
|
|
*/
|
|
char *
|
|
wf_chspec_ntoa_ex(chanspec_t chspec, char *buf)
|
|
{
|
|
if (wf_chspec_ntoa(chspec, buf) == NULL)
|
|
snprintf(buf, CHANSPEC_STR_LEN, "invalid 0x%04x", chspec);
|
|
return buf;
|
|
}
|
|
|
|
/* given a chanspec and a string buffer, format the chanspec as a
|
|
* string, and return the original pointer a.
|
|
* Min buffer length must be CHANSPEC_STR_LEN.
|
|
* On error return NULL
|
|
*/
|
|
char *
|
|
wf_chspec_ntoa(chanspec_t chspec, char *buf)
|
|
{
|
|
const char *band;
|
|
uint ctl_chan;
|
|
|
|
if (wf_chspec_malformed(chspec))
|
|
return NULL;
|
|
|
|
band = "";
|
|
|
|
/* check for non-default band spec */
|
|
if ((CHSPEC_IS2G(chspec) && CHSPEC_CHANNEL(chspec) > CH_MAX_2G_CHANNEL) ||
|
|
(CHSPEC_IS5G(chspec) && CHSPEC_CHANNEL(chspec) <= CH_MAX_2G_CHANNEL))
|
|
band = (CHSPEC_IS2G(chspec)) ? "2g" : "5g";
|
|
|
|
/* ctl channel */
|
|
ctl_chan = wf_chspec_ctlchan(chspec);
|
|
|
|
/* bandwidth and ctl sideband */
|
|
if (CHSPEC_IS20(chspec)) {
|
|
snprintf(buf, CHANSPEC_STR_LEN, "%s%d", band, ctl_chan);
|
|
} else if (!CHSPEC_IS8080(chspec)) {
|
|
const char *bw;
|
|
const char *sb = "";
|
|
|
|
bw = wf_chspec_bw_str[(chspec & WL_CHANSPEC_BW_MASK) >> WL_CHANSPEC_BW_SHIFT];
|
|
|
|
#ifdef CHANSPEC_NEW_40MHZ_FORMAT
|
|
/* ctl sideband string if needed for 2g 40MHz */
|
|
if (CHSPEC_IS40(chspec) && CHSPEC_IS2G(chspec)) {
|
|
sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l";
|
|
}
|
|
|
|
snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s%s", band, ctl_chan, bw, sb);
|
|
#else
|
|
/* ctl sideband string instead of BW for 40MHz */
|
|
if (CHSPEC_IS40(chspec)) {
|
|
sb = CHSPEC_SB_UPPER(chspec) ? "u" : "l";
|
|
snprintf(buf, CHANSPEC_STR_LEN, "%s%d%s", band, ctl_chan, sb);
|
|
} else {
|
|
snprintf(buf, CHANSPEC_STR_LEN, "%s%d/%s", band, ctl_chan, bw);
|
|
}
|
|
#endif /* CHANSPEC_NEW_40MHZ_FORMAT */
|
|
|
|
} else {
|
|
/* 80+80 */
|
|
uint chan1 = (chspec & WL_CHANSPEC_CHAN1_MASK) >> WL_CHANSPEC_CHAN1_SHIFT;
|
|
uint chan2 = (chspec & WL_CHANSPEC_CHAN2_MASK) >> WL_CHANSPEC_CHAN2_SHIFT;
|
|
|
|
/* convert to channel number */
|
|
chan1 = (chan1 < WF_NUM_5G_80M_CHANS) ? wf_5g_80m_chans[chan1] : 0;
|
|
chan2 = (chan2 < WF_NUM_5G_80M_CHANS) ? wf_5g_80m_chans[chan2] : 0;
|
|
|
|
/* Outputs a max of CHANSPEC_STR_LEN chars including '\0' */
|
|
snprintf(buf, CHANSPEC_STR_LEN, "%d/80+80/%d-%d", ctl_chan, chan1, chan2);
|
|
}
|
|
|
|
return (buf);
|
|
}
|
|
|
|
static int
|
|
read_uint(const char **p, unsigned int *num)
|
|
{
|
|
unsigned long val;
|
|
char *endp = NULL;
|
|
|
|
val = strtoul(*p, &endp, 10);
|
|
/* if endp is the initial pointer value, then a number was not read */
|
|
if (endp == *p)
|
|
return 0;
|
|
|
|
/* advance the buffer pointer to the end of the integer string */
|
|
*p = endp;
|
|
/* return the parsed integer */
|
|
*num = (unsigned int)val;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* given a chanspec string, convert to a chanspec.
|
|
* On error return 0
|
|
*/
|
|
chanspec_t
|
|
wf_chspec_aton(const char *a)
|
|
{
|
|
chanspec_t chspec;
|
|
uint chspec_ch, chspec_band, bw, chspec_bw, chspec_sb;
|
|
uint num, ctl_ch;
|
|
uint ch1, ch2;
|
|
char c, sb_ul = '\0';
|
|
int i;
|
|
|
|
bw = 20;
|
|
chspec_sb = 0;
|
|
chspec_ch = ch1 = ch2 = 0;
|
|
|
|
/* parse channel num or band */
|
|
if (!read_uint(&a, &num))
|
|
return 0;
|
|
|
|
/* if we are looking at a 'g', then the first number was a band */
|
|
c = tolower((int)a[0]);
|
|
if (c == 'g') {
|
|
a ++; /* consume the char */
|
|
|
|
/* band must be "2" or "5" */
|
|
if (num == 2)
|
|
chspec_band = WL_CHANSPEC_BAND_2G;
|
|
else if (num == 5)
|
|
chspec_band = WL_CHANSPEC_BAND_5G;
|
|
else
|
|
return 0;
|
|
|
|
/* read the channel number */
|
|
if (!read_uint(&a, &ctl_ch))
|
|
return 0;
|
|
|
|
c = tolower((int)a[0]);
|
|
}
|
|
else {
|
|
/* first number is channel, use default for band */
|
|
ctl_ch = num;
|
|
chspec_band = ((ctl_ch <= CH_MAX_2G_CHANNEL) ?
|
|
WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G);
|
|
}
|
|
|
|
if (c == '\0') {
|
|
/* default BW of 20MHz */
|
|
chspec_bw = WL_CHANSPEC_BW_20;
|
|
goto done_read;
|
|
}
|
|
|
|
a ++; /* consume the 'u','l', or '/' */
|
|
|
|
/* check 'u'/'l' */
|
|
if (c == 'u' || c == 'l') {
|
|
sb_ul = c;
|
|
chspec_bw = WL_CHANSPEC_BW_40;
|
|
goto done_read;
|
|
}
|
|
|
|
/* next letter must be '/' */
|
|
if (c != '/')
|
|
return 0;
|
|
|
|
/* read bandwidth */
|
|
if (!read_uint(&a, &bw))
|
|
return 0;
|
|
|
|
/* convert to chspec value */
|
|
if (bw == 20) {
|
|
chspec_bw = WL_CHANSPEC_BW_20;
|
|
} else if (bw == 40) {
|
|
chspec_bw = WL_CHANSPEC_BW_40;
|
|
} else if (bw == 80) {
|
|
chspec_bw = WL_CHANSPEC_BW_80;
|
|
} else if (bw == 160) {
|
|
chspec_bw = WL_CHANSPEC_BW_160;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
/* So far we have <band>g<chan>/<bw>
|
|
* Can now be followed by u/l if bw = 40,
|
|
* or '+80' if bw = 80, to make '80+80' bw.
|
|
*/
|
|
|
|
c = tolower((int)a[0]);
|
|
|
|
/* if we have a 2g/40 channel, we should have a l/u spec now */
|
|
if (chspec_band == WL_CHANSPEC_BAND_2G && bw == 40) {
|
|
if (c == 'u' || c == 'l') {
|
|
a ++; /* consume the u/l char */
|
|
sb_ul = c;
|
|
goto done_read;
|
|
}
|
|
}
|
|
|
|
/* check for 80+80 */
|
|
if (c == '+') {
|
|
/* 80+80 */
|
|
static const char *plus80 = "80/";
|
|
|
|
/* must be looking at '+80/'
|
|
* check and consume this string.
|
|
*/
|
|
chspec_bw = WL_CHANSPEC_BW_8080;
|
|
|
|
a ++; /* consume the char '+' */
|
|
|
|
/* consume the '80/' string */
|
|
for (i = 0; i < 3; i++) {
|
|
if (*a++ != *plus80++) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* read primary 80MHz channel */
|
|
if (!read_uint(&a, &ch1))
|
|
return 0;
|
|
|
|
/* must followed by '-' */
|
|
if (a[0] != '-')
|
|
return 0;
|
|
a ++; /* consume the char */
|
|
|
|
/* read secondary 80MHz channel */
|
|
if (!read_uint(&a, &ch2))
|
|
return 0;
|
|
}
|
|
|
|
done_read:
|
|
/* skip trailing white space */
|
|
while (a[0] == ' ') {
|
|
a ++;
|
|
}
|
|
|
|
/* must be end of string */
|
|
if (a[0] != '\0')
|
|
return 0;
|
|
|
|
/* Now have all the chanspec string parts read;
|
|
* chspec_band, ctl_ch, chspec_bw, sb_ul, ch1, ch2.
|
|
* chspec_band and chspec_bw are chanspec values.
|
|
* Need to convert ctl_ch, sb_ul, and ch1,ch2 into
|
|
* a center channel (or two) and sideband.
|
|
*/
|
|
|
|
/* if a sb u/l string was given, just use that,
|
|
* guaranteed to be bw = 40 by sting parse.
|
|
*/
|
|
if (sb_ul != '\0') {
|
|
if (sb_ul == 'l') {
|
|
chspec_ch = UPPER_20_SB(ctl_ch);
|
|
chspec_sb = WL_CHANSPEC_CTL_SB_LLL;
|
|
} else if (sb_ul == 'u') {
|
|
chspec_ch = LOWER_20_SB(ctl_ch);
|
|
chspec_sb = WL_CHANSPEC_CTL_SB_LLU;
|
|
}
|
|
}
|
|
/* if the bw is 20, center and sideband are trivial */
|
|
else if (chspec_bw == WL_CHANSPEC_BW_20) {
|
|
chspec_ch = ctl_ch;
|
|
chspec_sb = WL_CHANSPEC_CTL_SB_NONE;
|
|
}
|
|
/* if the bw is 40/80/160, not 80+80, a single method
|
|
* can be used to to find the center and sideband
|
|
*/
|
|
else if (chspec_bw != WL_CHANSPEC_BW_8080) {
|
|
/* figure out ctl sideband based on ctl channel and bandwidth */
|
|
const uint8 *center_ch = NULL;
|
|
int num_ch = 0;
|
|
int sb = -1;
|
|
|
|
if (chspec_bw == WL_CHANSPEC_BW_40) {
|
|
center_ch = wf_5g_40m_chans;
|
|
num_ch = WF_NUM_5G_40M_CHANS;
|
|
} else if (chspec_bw == WL_CHANSPEC_BW_80) {
|
|
center_ch = wf_5g_80m_chans;
|
|
num_ch = WF_NUM_5G_80M_CHANS;
|
|
} else if (chspec_bw == WL_CHANSPEC_BW_160) {
|
|
center_ch = wf_5g_160m_chans;
|
|
num_ch = WF_NUM_5G_160M_CHANS;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < num_ch; i ++) {
|
|
sb = channel_to_sb(center_ch[i], ctl_ch, bw);
|
|
if (sb >= 0) {
|
|
chspec_ch = center_ch[i];
|
|
chspec_sb = sb << WL_CHANSPEC_CTL_SB_SHIFT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* check for no matching sb/center */
|
|
if (sb < 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
/* Otherwise, bw is 80+80. Figure out channel pair and sb */
|
|
else {
|
|
int ch1_id = 0, ch2_id = 0;
|
|
int sb;
|
|
|
|
/* look up the channel ID for the specified channel numbers */
|
|
ch1_id = channel_80mhz_to_id(ch1);
|
|
ch2_id = channel_80mhz_to_id(ch2);
|
|
|
|
/* validate channels */
|
|
if (ch1_id < 0 || ch2_id < 0)
|
|
return 0;
|
|
|
|
/* combine 2 channel IDs in channel field of chspec */
|
|
chspec_ch = (((uint)ch1_id << WL_CHANSPEC_CHAN1_SHIFT) |
|
|
((uint)ch2_id << WL_CHANSPEC_CHAN2_SHIFT));
|
|
|
|
/* figure out primary 20 MHz sideband */
|
|
|
|
/* is the primary channel contained in the 1st 80MHz channel? */
|
|
sb = channel_to_sb(ch1, ctl_ch, bw);
|
|
if (sb < 0) {
|
|
/* no match for primary channel 'ctl_ch' in segment0 80MHz channel */
|
|
return 0;
|
|
}
|
|
|
|
chspec_sb = sb << WL_CHANSPEC_CTL_SB_SHIFT;
|
|
}
|
|
|
|
chspec = (chspec_ch | chspec_band | chspec_bw | chspec_sb);
|
|
|
|
if (wf_chspec_malformed(chspec))
|
|
return 0;
|
|
|
|
return chspec;
|
|
}
|
|
|
|
/*
|
|
* Verify the chanspec is using a legal set of parameters, i.e. that the
|
|
* chanspec specified a band, bw, ctl_sb and channel and that the
|
|
* combination could be legal given any set of circumstances.
|
|
* RETURNS: TRUE is the chanspec is malformed, false if it looks good.
|
|
*/
|
|
bool
|
|
wf_chspec_malformed(chanspec_t chanspec)
|
|
{
|
|
uint chspec_bw = CHSPEC_BW(chanspec);
|
|
uint chspec_ch = CHSPEC_CHANNEL(chanspec);
|
|
|
|
/* must be 2G or 5G band */
|
|
if (CHSPEC_IS2G(chanspec)) {
|
|
/* must be valid bandwidth */
|
|
if (chspec_bw != WL_CHANSPEC_BW_20 &&
|
|
chspec_bw != WL_CHANSPEC_BW_40) {
|
|
return TRUE;
|
|
}
|
|
} else if (CHSPEC_IS5G(chanspec)) {
|
|
if (chspec_bw == WL_CHANSPEC_BW_8080) {
|
|
uint ch1_id, ch2_id;
|
|
|
|
/* channel IDs in 80+80 must be in range */
|
|
ch1_id = CHSPEC_CHAN1(chanspec);
|
|
ch2_id = CHSPEC_CHAN2(chanspec);
|
|
if (ch1_id >= WF_NUM_5G_80M_CHANS || ch2_id >= WF_NUM_5G_80M_CHANS)
|
|
return TRUE;
|
|
|
|
} else if (chspec_bw == WL_CHANSPEC_BW_20 || chspec_bw == WL_CHANSPEC_BW_40 ||
|
|
chspec_bw == WL_CHANSPEC_BW_80 || chspec_bw == WL_CHANSPEC_BW_160) {
|
|
|
|
if (chspec_ch > MAXCHANNEL) {
|
|
return TRUE;
|
|
}
|
|
} else {
|
|
/* invalid bandwidth */
|
|
return TRUE;
|
|
}
|
|
} else {
|
|
/* must be 2G or 5G band */
|
|
return TRUE;
|
|
}
|
|
|
|
/* side band needs to be consistent with bandwidth */
|
|
if (chspec_bw == WL_CHANSPEC_BW_20) {
|
|
if (CHSPEC_CTL_SB(chanspec) != WL_CHANSPEC_CTL_SB_LLL)
|
|
return TRUE;
|
|
} else if (chspec_bw == WL_CHANSPEC_BW_40) {
|
|
if (CHSPEC_CTL_SB(chanspec) > WL_CHANSPEC_CTL_SB_LLU)
|
|
return TRUE;
|
|
} else if (chspec_bw == WL_CHANSPEC_BW_80 ||
|
|
chspec_bw == WL_CHANSPEC_BW_8080) {
|
|
if (CHSPEC_CTL_SB(chanspec) > WL_CHANSPEC_CTL_SB_LUU)
|
|
return TRUE;
|
|
}
|
|
else if (chspec_bw == WL_CHANSPEC_BW_160) {
|
|
ASSERT(CHSPEC_CTL_SB(chanspec) <= WL_CHANSPEC_CTL_SB_UUU);
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* Verify the chanspec specifies a valid channel according to 802.11.
|
|
* RETURNS: TRUE if the chanspec is a valid 802.11 channel
|
|
*/
|
|
bool
|
|
wf_chspec_valid(chanspec_t chanspec)
|
|
{
|
|
uint chspec_bw = CHSPEC_BW(chanspec);
|
|
uint chspec_ch = CHSPEC_CHANNEL(chanspec);
|
|
|
|
if (wf_chspec_malformed(chanspec))
|
|
return FALSE;
|
|
|
|
if (CHSPEC_IS2G(chanspec)) {
|
|
/* must be valid bandwidth and channel range */
|
|
if (chspec_bw == WL_CHANSPEC_BW_20) {
|
|
if (chspec_ch >= 1 && chspec_ch <= 14)
|
|
return TRUE;
|
|
} else if (chspec_bw == WL_CHANSPEC_BW_40) {
|
|
if (chspec_ch >= 3 && chspec_ch <= 11)
|
|
return TRUE;
|
|
}
|
|
} else if (CHSPEC_IS5G(chanspec)) {
|
|
if (chspec_bw == WL_CHANSPEC_BW_8080) {
|
|
uint16 ch1, ch2;
|
|
|
|
ch1 = wf_5g_80m_chans[CHSPEC_CHAN1(chanspec)];
|
|
ch2 = wf_5g_80m_chans[CHSPEC_CHAN2(chanspec)];
|
|
|
|
/* the two channels must be separated by more than 80MHz by VHT req */
|
|
if ((ch2 > ch1 + CH_80MHZ_APART) ||
|
|
(ch1 > ch2 + CH_80MHZ_APART))
|
|
return TRUE;
|
|
} else {
|
|
const uint8 *center_ch;
|
|
uint num_ch, i;
|
|
|
|
if (chspec_bw == WL_CHANSPEC_BW_20 || chspec_bw == WL_CHANSPEC_BW_40) {
|
|
center_ch = wf_5g_40m_chans;
|
|
num_ch = WF_NUM_5G_40M_CHANS;
|
|
} else if (chspec_bw == WL_CHANSPEC_BW_80) {
|
|
center_ch = wf_5g_80m_chans;
|
|
num_ch = WF_NUM_5G_80M_CHANS;
|
|
} else if (chspec_bw == WL_CHANSPEC_BW_160) {
|
|
center_ch = wf_5g_160m_chans;
|
|
num_ch = WF_NUM_5G_160M_CHANS;
|
|
} else {
|
|
/* invalid bandwidth */
|
|
return FALSE;
|
|
}
|
|
|
|
/* check for a valid center channel */
|
|
if (chspec_bw == WL_CHANSPEC_BW_20) {
|
|
/* We don't have an array of legal 20MHz 5G channels, but they are
|
|
* each side of the legal 40MHz channels. Check the chanspec
|
|
* channel against either side of the 40MHz channels.
|
|
*/
|
|
for (i = 0; i < num_ch; i ++) {
|
|
if (chspec_ch == (uint)LOWER_20_SB(center_ch[i]) ||
|
|
chspec_ch == (uint)UPPER_20_SB(center_ch[i]))
|
|
break; /* match found */
|
|
}
|
|
|
|
if (i == num_ch) {
|
|
/* check for channel 165 which is not the side band
|
|
* of 40MHz 5G channel
|
|
*/
|
|
if (chspec_ch == 165)
|
|
i = 0;
|
|
|
|
/* check for legacy JP channels on failure */
|
|
if (chspec_ch == 34 || chspec_ch == 38 ||
|
|
chspec_ch == 42 || chspec_ch == 46)
|
|
i = 0;
|
|
}
|
|
} else {
|
|
/* check the chanspec channel to each legal channel */
|
|
for (i = 0; i < num_ch; i ++) {
|
|
if (chspec_ch == center_ch[i])
|
|
break; /* match found */
|
|
}
|
|
}
|
|
|
|
if (i < num_ch) {
|
|
/* match found */
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* This function returns the channel number that control traffic is being sent on, for 20MHz
|
|
* channels this is just the channel number, for 40MHZ, 80MHz, 160MHz channels it is the 20MHZ
|
|
* sideband depending on the chanspec selected
|
|
*/
|
|
uint8
|
|
wf_chspec_ctlchan(chanspec_t chspec)
|
|
{
|
|
uint center_chan;
|
|
uint bw_mhz;
|
|
uint sb;
|
|
|
|
ASSERT(!wf_chspec_malformed(chspec));
|
|
|
|
/* Is there a sideband ? */
|
|
if (CHSPEC_IS20(chspec)) {
|
|
return CHSPEC_CHANNEL(chspec);
|
|
} else {
|
|
sb = CHSPEC_CTL_SB(chspec) >> WL_CHANSPEC_CTL_SB_SHIFT;
|
|
|
|
if (CHSPEC_IS8080(chspec)) {
|
|
/* For an 80+80 MHz channel, the sideband 'sb' field is an 80 MHz sideband
|
|
* (LL, LU, UL, LU) for the 80 MHz frequency segment 0.
|
|
*/
|
|
uint chan_id = CHSPEC_CHAN1(chspec);
|
|
|
|
bw_mhz = 80;
|
|
|
|
/* convert from channel index to channel number */
|
|
center_chan = wf_5g_80m_chans[chan_id];
|
|
}
|
|
else {
|
|
bw_mhz = bw_chspec_to_mhz(chspec);
|
|
center_chan = CHSPEC_CHANNEL(chspec) >> WL_CHANSPEC_CHAN_SHIFT;
|
|
}
|
|
|
|
return (channel_to_ctl_chan(center_chan, bw_mhz, sb));
|
|
}
|
|
}
|
|
|
|
/* given a chanspec, return the bandwidth string */
|
|
char *
|
|
wf_chspec_to_bw_str(chanspec_t chspec)
|
|
{
|
|
return (char *)wf_chspec_bw_str[(CHSPEC_BW(chspec) >> WL_CHANSPEC_BW_SHIFT)];
|
|
}
|
|
|
|
/*
|
|
* This function returns the chanspec of the control channel of a given chanspec
|
|
*/
|
|
chanspec_t
|
|
wf_chspec_ctlchspec(chanspec_t chspec)
|
|
{
|
|
chanspec_t ctl_chspec = chspec;
|
|
uint8 ctl_chan;
|
|
|
|
ASSERT(!wf_chspec_malformed(chspec));
|
|
|
|
/* Is there a sideband ? */
|
|
if (!CHSPEC_IS20(chspec)) {
|
|
ctl_chan = wf_chspec_ctlchan(chspec);
|
|
ctl_chspec = ctl_chan | WL_CHANSPEC_BW_20;
|
|
ctl_chspec |= CHSPEC_BAND(chspec);
|
|
}
|
|
return ctl_chspec;
|
|
}
|
|
|
|
/* return chanspec given control channel and bandwidth
|
|
* return 0 on error
|
|
*/
|
|
uint16
|
|
wf_channel2chspec(uint ctl_ch, uint bw)
|
|
{
|
|
uint16 chspec;
|
|
const uint8 *center_ch = NULL;
|
|
int num_ch = 0;
|
|
int sb = -1;
|
|
int i = 0;
|
|
|
|
chspec = ((ctl_ch <= CH_MAX_2G_CHANNEL) ? WL_CHANSPEC_BAND_2G : WL_CHANSPEC_BAND_5G);
|
|
|
|
chspec |= bw;
|
|
|
|
if (bw == WL_CHANSPEC_BW_40) {
|
|
center_ch = wf_5g_40m_chans;
|
|
num_ch = WF_NUM_5G_40M_CHANS;
|
|
bw = 40;
|
|
} else if (bw == WL_CHANSPEC_BW_80) {
|
|
center_ch = wf_5g_80m_chans;
|
|
num_ch = WF_NUM_5G_80M_CHANS;
|
|
bw = 80;
|
|
} else if (bw == WL_CHANSPEC_BW_160) {
|
|
center_ch = wf_5g_160m_chans;
|
|
num_ch = WF_NUM_5G_160M_CHANS;
|
|
bw = 160;
|
|
} else if (bw == WL_CHANSPEC_BW_20) {
|
|
chspec |= ctl_ch;
|
|
return chspec;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < num_ch; i ++) {
|
|
sb = channel_to_sb(center_ch[i], ctl_ch, bw);
|
|
if (sb >= 0) {
|
|
chspec |= center_ch[i];
|
|
chspec |= (sb << WL_CHANSPEC_CTL_SB_SHIFT);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* check for no matching sb/center */
|
|
if (sb < 0) {
|
|
return 0;
|
|
}
|
|
|
|
return chspec;
|
|
}
|
|
|
|
/*
|
|
* This function returns the chanspec for the primary 40MHz of an 80MHz channel.
|
|
* The control sideband specifies the same 20MHz channel that the 80MHz channel is using
|
|
* as the primary 20MHz channel.
|
|
*/
|
|
extern chanspec_t wf_chspec_primary40_chspec(chanspec_t chspec)
|
|
{
|
|
chanspec_t chspec40 = chspec;
|
|
uint center_chan;
|
|
uint sb;
|
|
|
|
ASSERT(!wf_chspec_malformed(chspec));
|
|
|
|
/* if the chanspec is > 80MHz, use the helper routine to find the primary 80 MHz channel */
|
|
if (CHSPEC_IS8080(chspec) || CHSPEC_IS160(chspec)) {
|
|
chspec = wf_chspec_primary80_chspec(chspec);
|
|
}
|
|
|
|
/* determine primary 40 MHz sub-channel of an 80 MHz chanspec */
|
|
if (CHSPEC_IS80(chspec)) {
|
|
center_chan = CHSPEC_CHANNEL(chspec);
|
|
sb = CHSPEC_CTL_SB(chspec);
|
|
|
|
if (sb < WL_CHANSPEC_CTL_SB_UL) {
|
|
/* Primary 40MHz is on lower side */
|
|
center_chan -= CH_20MHZ_APART;
|
|
/* sideband bits are the same for LL/LU and L/U */
|
|
} else {
|
|
/* Primary 40MHz is on upper side */
|
|
center_chan += CH_20MHZ_APART;
|
|
/* sideband bits need to be adjusted by UL offset */
|
|
sb -= WL_CHANSPEC_CTL_SB_UL;
|
|
}
|
|
|
|
/* Create primary 40MHz chanspec */
|
|
chspec40 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_40 |
|
|
sb | center_chan);
|
|
}
|
|
|
|
return chspec40;
|
|
}
|
|
|
|
/*
|
|
* Return the channel number for a given frequency and base frequency.
|
|
* The returned channel number is relative to the given base frequency.
|
|
* If the given base frequency is zero, a base frequency of 5 GHz is assumed for
|
|
* frequencies from 5 - 6 GHz, and 2.407 GHz is assumed for 2.4 - 2.5 GHz.
|
|
*
|
|
* Frequency is specified in MHz.
|
|
* The base frequency is specified as (start_factor * 500 kHz).
|
|
* Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_5_G are defined for
|
|
* 2.4 GHz and 5 GHz bands.
|
|
*
|
|
* The returned channel will be in the range [1, 14] in the 2.4 GHz band
|
|
* and [0, 200] otherwise.
|
|
* -1 is returned if the start_factor is WF_CHAN_FACTOR_2_4_G and the
|
|
* frequency is not a 2.4 GHz channel, or if the frequency is not and even
|
|
* multiple of 5 MHz from the base frequency to the base plus 1 GHz.
|
|
*
|
|
* Reference 802.11 REVma, section 17.3.8.3, and 802.11B section 18.4.6.2
|
|
*/
|
|
int
|
|
wf_mhz2channel(uint freq, uint start_factor)
|
|
{
|
|
int ch = -1;
|
|
uint base;
|
|
int offset;
|
|
|
|
/* take the default channel start frequency */
|
|
if (start_factor == 0) {
|
|
if (freq >= 2400 && freq <= 2500)
|
|
start_factor = WF_CHAN_FACTOR_2_4_G;
|
|
else if (freq >= 5000 && freq <= 6000)
|
|
start_factor = WF_CHAN_FACTOR_5_G;
|
|
}
|
|
|
|
if (freq == 2484 && start_factor == WF_CHAN_FACTOR_2_4_G)
|
|
return 14;
|
|
|
|
base = start_factor / 2;
|
|
|
|
/* check that the frequency is in 1GHz range of the base */
|
|
if ((freq < base) || (freq > base + 1000))
|
|
return -1;
|
|
|
|
offset = freq - base;
|
|
ch = offset / 5;
|
|
|
|
/* check that frequency is a 5MHz multiple from the base */
|
|
if (offset != (ch * 5))
|
|
return -1;
|
|
|
|
/* restricted channel range check for 2.4G */
|
|
if (start_factor == WF_CHAN_FACTOR_2_4_G && (ch < 1 || ch > 13))
|
|
return -1;
|
|
|
|
return ch;
|
|
}
|
|
|
|
/*
|
|
* Return the center frequency in MHz of the given channel and base frequency.
|
|
* The channel number is interpreted relative to the given base frequency.
|
|
*
|
|
* The valid channel range is [1, 14] in the 2.4 GHz band and [0, 200] otherwise.
|
|
* The base frequency is specified as (start_factor * 500 kHz).
|
|
* Constants WF_CHAN_FACTOR_2_4_G, WF_CHAN_FACTOR_4_G, and WF_CHAN_FACTOR_5_G
|
|
* are defined for 2.4 GHz, 4 GHz, and 5 GHz bands.
|
|
* The channel range of [1, 14] is only checked for a start_factor of
|
|
* WF_CHAN_FACTOR_2_4_G (4814 = 2407 * 2).
|
|
* Odd start_factors produce channels on .5 MHz boundaries, in which case
|
|
* the answer is rounded down to an integral MHz.
|
|
* -1 is returned for an out of range channel.
|
|
*
|
|
* Reference 802.11 REVma, section 17.3.8.3, and 802.11B section 18.4.6.2
|
|
*/
|
|
int
|
|
wf_channel2mhz(uint ch, uint start_factor)
|
|
{
|
|
int freq;
|
|
|
|
if ((start_factor == WF_CHAN_FACTOR_2_4_G && (ch < 1 || ch > 14)) ||
|
|
(ch > 200))
|
|
freq = -1;
|
|
else if ((start_factor == WF_CHAN_FACTOR_2_4_G) && (ch == 14))
|
|
freq = 2484;
|
|
else
|
|
freq = ch * 5 + start_factor / 2;
|
|
|
|
return freq;
|
|
}
|
|
|
|
static const uint16 sidebands[] = {
|
|
WL_CHANSPEC_CTL_SB_LLL, WL_CHANSPEC_CTL_SB_LLU,
|
|
WL_CHANSPEC_CTL_SB_LUL, WL_CHANSPEC_CTL_SB_LUU,
|
|
WL_CHANSPEC_CTL_SB_ULL, WL_CHANSPEC_CTL_SB_ULU,
|
|
WL_CHANSPEC_CTL_SB_UUL, WL_CHANSPEC_CTL_SB_UUU
|
|
};
|
|
|
|
/*
|
|
* Returns the chanspec 80Mhz channel corresponding to the following input
|
|
* parameters
|
|
*
|
|
* primary_channel - primary 20Mhz channel
|
|
* center_channel - center frequecny of the 80Mhz channel
|
|
*
|
|
* The center_channel can be one of {42, 58, 106, 122, 138, 155}
|
|
*
|
|
* returns INVCHANSPEC in case of error
|
|
*/
|
|
chanspec_t
|
|
wf_chspec_80(uint8 center_channel, uint8 primary_channel)
|
|
{
|
|
|
|
chanspec_t chanspec = INVCHANSPEC;
|
|
chanspec_t chanspec_cur;
|
|
uint i;
|
|
|
|
for (i = 0; i < WF_NUM_SIDEBANDS_80MHZ; i++) {
|
|
chanspec_cur = CH80MHZ_CHSPEC(center_channel, sidebands[i]);
|
|
if (primary_channel == wf_chspec_ctlchan(chanspec_cur)) {
|
|
chanspec = chanspec_cur;
|
|
break;
|
|
}
|
|
}
|
|
/* If the loop ended early, we are good, otherwise we did not
|
|
* find a 80MHz chanspec with the given center_channel that had a primary channel
|
|
*matching the given primary_channel.
|
|
*/
|
|
return chanspec;
|
|
}
|
|
|
|
/*
|
|
* Returns the 80+80 chanspec corresponding to the following input parameters
|
|
*
|
|
* primary_20mhz - Primary 20 MHz channel
|
|
* chan0 - center channel number of one frequency segment
|
|
* chan1 - center channel number of the other frequency segment
|
|
*
|
|
* Parameters chan0 and chan1 are channel numbers in {42, 58, 106, 122, 138, 155}.
|
|
* The primary channel must be contained in one of the 80MHz channels. This routine
|
|
* will determine which frequency segment is the primary 80 MHz segment.
|
|
*
|
|
* Returns INVCHANSPEC in case of error.
|
|
*
|
|
* Refer to IEEE802.11ac section 22.3.14 "Channelization".
|
|
*/
|
|
chanspec_t
|
|
wf_chspec_get8080_chspec(uint8 primary_20mhz, uint8 chan0, uint8 chan1)
|
|
{
|
|
int sb = 0;
|
|
uint16 chanspec = 0;
|
|
int chan0_id = 0, chan1_id = 0;
|
|
int seg0, seg1;
|
|
|
|
chan0_id = channel_80mhz_to_id(chan0);
|
|
chan1_id = channel_80mhz_to_id(chan1);
|
|
|
|
/* make sure the channel numbers were valid */
|
|
if (chan0_id == -1 || chan1_id == -1)
|
|
return INVCHANSPEC;
|
|
|
|
/* does the primary channel fit with the 1st 80MHz channel ? */
|
|
sb = channel_to_sb(chan0, primary_20mhz, 80);
|
|
if (sb >= 0) {
|
|
/* yes, so chan0 is frequency segment 0, and chan1 is seg 1 */
|
|
seg0 = chan0_id;
|
|
seg1 = chan1_id;
|
|
} else {
|
|
/* no, so does the primary channel fit with the 2nd 80MHz channel ? */
|
|
sb = channel_to_sb(chan1, primary_20mhz, 80);
|
|
if (sb < 0) {
|
|
/* no match for ctl_ch to either 80MHz center channel */
|
|
return INVCHANSPEC;
|
|
}
|
|
/* swapped, so chan1 is frequency segment 0, and chan0 is seg 1 */
|
|
seg0 = chan1_id;
|
|
seg1 = chan0_id;
|
|
}
|
|
|
|
chanspec = ((seg0 << WL_CHANSPEC_CHAN1_SHIFT) |
|
|
(seg1 << WL_CHANSPEC_CHAN2_SHIFT) |
|
|
(sb << WL_CHANSPEC_CTL_SB_SHIFT) |
|
|
WL_CHANSPEC_BW_8080 |
|
|
WL_CHANSPEC_BAND_5G);
|
|
|
|
return chanspec;
|
|
}
|
|
|
|
/*
|
|
* This function returns the 80Mhz channel for the given id.
|
|
*/
|
|
static uint8
|
|
wf_chspec_get80Mhz_ch(uint8 chan_80Mhz_id)
|
|
{
|
|
if (chan_80Mhz_id < WF_NUM_5G_80M_CHANS)
|
|
return wf_5g_80m_chans[chan_80Mhz_id];
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns the primary 80 Mhz channel for the provided chanspec
|
|
*
|
|
* chanspec - Input chanspec for which the 80MHz primary channel has to be retrieved
|
|
*
|
|
* returns -1 in case the provided channel is 20/40 Mhz chanspec
|
|
*/
|
|
|
|
uint8
|
|
wf_chspec_primary80_channel(chanspec_t chanspec)
|
|
{
|
|
uint8 primary80_chan;
|
|
|
|
if (CHSPEC_IS80(chanspec)) {
|
|
primary80_chan = CHSPEC_CHANNEL(chanspec);
|
|
}
|
|
else if (CHSPEC_IS8080(chanspec)) {
|
|
/* Channel ID 1 corresponds to frequency segment 0, the primary 80 MHz segment */
|
|
primary80_chan = wf_chspec_get80Mhz_ch(CHSPEC_CHAN1(chanspec));
|
|
}
|
|
else if (CHSPEC_IS160(chanspec)) {
|
|
uint8 center_chan = CHSPEC_CHANNEL(chanspec);
|
|
uint sb = CHSPEC_CTL_SB(chanspec) >> WL_CHANSPEC_CTL_SB_SHIFT;
|
|
|
|
/* based on the sb value primary 80 channel can be retrieved
|
|
* if sb is in range 0 to 3 the lower band is the 80Mhz primary band
|
|
*/
|
|
if (sb < 4) {
|
|
primary80_chan = center_chan - CH_40MHZ_APART;
|
|
}
|
|
/* if sb is in range 4 to 7 the upper band is the 80Mhz primary band */
|
|
else
|
|
{
|
|
primary80_chan = center_chan + CH_40MHZ_APART;
|
|
}
|
|
}
|
|
else {
|
|
/* for 20 and 40 Mhz */
|
|
primary80_chan = -1;
|
|
}
|
|
return primary80_chan;
|
|
}
|
|
|
|
/*
|
|
* Returns the secondary 80 Mhz channel for the provided chanspec
|
|
*
|
|
* chanspec - Input chanspec for which the 80MHz secondary channel has to be retrieved
|
|
*
|
|
* returns -1 in case the provided channel is 20/40/80 Mhz chanspec
|
|
*/
|
|
uint8
|
|
wf_chspec_secondary80_channel(chanspec_t chanspec)
|
|
{
|
|
uint8 secondary80_chan;
|
|
|
|
if (CHSPEC_IS8080(chanspec)) {
|
|
secondary80_chan = wf_chspec_get80Mhz_ch(CHSPEC_CHAN2(chanspec));
|
|
}
|
|
else if (CHSPEC_IS160(chanspec)) {
|
|
uint8 center_chan = CHSPEC_CHANNEL(chanspec);
|
|
uint sb = CHSPEC_CTL_SB(chanspec) >> WL_CHANSPEC_CTL_SB_SHIFT;
|
|
|
|
/* based on the sb value secondary 80 channel can be retrieved
|
|
* if sb is in range 0 to 3 upper band is the secondary 80Mhz band
|
|
*/
|
|
if (sb < 4) {
|
|
secondary80_chan = center_chan + CH_40MHZ_APART;
|
|
}
|
|
/* if sb is in range 4 to 7 the lower band is the secondary 80Mhz band */
|
|
else
|
|
{
|
|
secondary80_chan = center_chan - CH_40MHZ_APART;
|
|
}
|
|
}
|
|
else {
|
|
/* for 20, 40, and 80 Mhz */
|
|
secondary80_chan = -1;
|
|
}
|
|
return secondary80_chan;
|
|
}
|
|
|
|
/*
|
|
* This function returns the chanspec for the primary 80MHz of an 160MHz or 80+80 channel.
|
|
*
|
|
* chanspec - Input chanspec for which the primary 80Mhz chanspec has to be retreived
|
|
*
|
|
* returns the input chanspec in case the provided chanspec is an 80 MHz chanspec
|
|
* returns INVCHANSPEC in case the provided channel is 20/40 MHz chanspec
|
|
*/
|
|
chanspec_t
|
|
wf_chspec_primary80_chspec(chanspec_t chspec)
|
|
{
|
|
chanspec_t chspec80;
|
|
uint center_chan;
|
|
uint sb;
|
|
|
|
ASSERT(!wf_chspec_malformed(chspec));
|
|
if (CHSPEC_IS80(chspec)) {
|
|
chspec80 = chspec;
|
|
}
|
|
else if (CHSPEC_IS8080(chspec)) {
|
|
|
|
/* Channel ID 1 corresponds to frequency segment 0, the primary 80 MHz segment */
|
|
center_chan = wf_chspec_get80Mhz_ch(CHSPEC_CHAN1(chspec));
|
|
|
|
sb = CHSPEC_CTL_SB(chspec);
|
|
|
|
/* Create primary 80MHz chanspec */
|
|
chspec80 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_80 | sb | center_chan);
|
|
}
|
|
else if (CHSPEC_IS160(chspec)) {
|
|
center_chan = CHSPEC_CHANNEL(chspec);
|
|
sb = CHSPEC_CTL_SB(chspec);
|
|
|
|
if (sb < WL_CHANSPEC_CTL_SB_ULL) {
|
|
/* Primary 80MHz is on lower side */
|
|
center_chan -= CH_40MHZ_APART;
|
|
}
|
|
else {
|
|
/* Primary 80MHz is on upper side */
|
|
center_chan += CH_40MHZ_APART;
|
|
sb -= WL_CHANSPEC_CTL_SB_ULL;
|
|
}
|
|
/* Create primary 80MHz chanspec */
|
|
chspec80 = (WL_CHANSPEC_BAND_5G | WL_CHANSPEC_BW_80 | sb | center_chan);
|
|
}
|
|
else {
|
|
chspec80 = INVCHANSPEC;
|
|
}
|
|
|
|
return chspec80;
|
|
}
|
|
|
|
#ifdef WL11AC_80P80
|
|
uint8
|
|
wf_chspec_channel(chanspec_t chspec)
|
|
{
|
|
if (CHSPEC_IS8080(chspec)) {
|
|
return wf_chspec_primary80_channel(chspec);
|
|
}
|
|
else {
|
|
return ((uint8)((chspec) & WL_CHANSPEC_CHAN_MASK));
|
|
}
|
|
}
|
|
#endif /* WL11AC_80P80 */
|