Merge Marlin 1.1.8
This commit is contained in:
387
Marlin/Marlin.h
387
Marlin/Marlin.h
@@ -29,13 +29,14 @@
|
||||
#include <inttypes.h>
|
||||
|
||||
#include <util/delay.h>
|
||||
#include <avr/pgmspace.h>
|
||||
#include <avr/eeprom.h>
|
||||
#include <avr/interrupt.h>
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
|
||||
#ifdef DEBUG_GCODE_PARSER
|
||||
#include "parser.h"
|
||||
#include "gcode.h"
|
||||
#endif
|
||||
|
||||
#include "enum.h"
|
||||
@@ -44,15 +45,19 @@
|
||||
#include "utility.h"
|
||||
#include "serial.h"
|
||||
|
||||
#if ENABLED(PRINTCOUNTER)
|
||||
#include "printcounter.h"
|
||||
#else
|
||||
#include "stopwatch.h"
|
||||
#endif
|
||||
|
||||
void idle(
|
||||
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
||||
bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
|
||||
#endif
|
||||
);
|
||||
|
||||
void manage_inactivity(const bool ignore_stepper_queue=false);
|
||||
|
||||
extern const char axis_codes[XYZE];
|
||||
void manage_inactivity(bool ignore_stepper_queue = false);
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
||||
extern bool extruder_duplication_enabled;
|
||||
@@ -60,10 +65,10 @@ extern const char axis_codes[XYZE];
|
||||
|
||||
#if HAS_X2_ENABLE
|
||||
#define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
|
||||
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
|
||||
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
|
||||
#elif HAS_X_ENABLE
|
||||
#define enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
|
||||
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
|
||||
#define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
|
||||
#else
|
||||
#define enable_X() NOOP
|
||||
#define disable_X() NOOP
|
||||
@@ -71,10 +76,10 @@ extern const char axis_codes[XYZE];
|
||||
|
||||
#if HAS_Y2_ENABLE
|
||||
#define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
|
||||
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
|
||||
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
|
||||
#elif HAS_Y_ENABLE
|
||||
#define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
|
||||
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
|
||||
#define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
|
||||
#else
|
||||
#define enable_Y() NOOP
|
||||
#define disable_Y() NOOP
|
||||
@@ -82,10 +87,10 @@ extern const char axis_codes[XYZE];
|
||||
|
||||
#if HAS_Z2_ENABLE
|
||||
#define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
|
||||
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
|
||||
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
|
||||
#elif HAS_Z_ENABLE
|
||||
#define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
|
||||
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
|
||||
#define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
|
||||
#else
|
||||
#define enable_Z() NOOP
|
||||
#define disable_Z() NOOP
|
||||
@@ -96,10 +101,7 @@ extern const char axis_codes[XYZE];
|
||||
/**
|
||||
* Mixing steppers synchronize their enable (and direction) together
|
||||
*/
|
||||
#if MIXING_STEPPERS > 4
|
||||
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); E4_ENABLE_WRITE( E_ENABLE_ON); }
|
||||
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); E4_ENABLE_WRITE(!E_ENABLE_ON); }
|
||||
#elif MIXING_STEPPERS > 3
|
||||
#if MIXING_STEPPERS > 3
|
||||
#define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
|
||||
#define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
|
||||
#elif MIXING_STEPPERS > 2
|
||||
@@ -162,69 +164,31 @@ extern const char axis_codes[XYZE];
|
||||
|
||||
#endif // !MIXING_EXTRUDER
|
||||
|
||||
#if ENABLED(HANGPRINTER)
|
||||
|
||||
#define enable_A() enable_X()
|
||||
#define enable_B() enable_Y()
|
||||
#define enable_C() enable_Z()
|
||||
#define __D_ENABLE(p) E##p##_ENABLE_WRITE(E_ENABLE_ON)
|
||||
#define _D_ENABLE(p) __D_ENABLE(p)
|
||||
#define enable_D() _D_ENABLE(EXTRUDERS)
|
||||
|
||||
// Don't allow any axes to be disabled
|
||||
#undef disable_X
|
||||
#undef disable_Y
|
||||
#undef disable_Z
|
||||
#define disable_X() NOOP
|
||||
#define disable_Y() NOOP
|
||||
#define disable_Z() NOOP
|
||||
|
||||
#if EXTRUDERS >= 1
|
||||
#undef disable_E1
|
||||
#define disable_E1() NOOP
|
||||
#if EXTRUDERS >= 2
|
||||
#undef disable_E2
|
||||
#define disable_E2() NOOP
|
||||
#if EXTRUDERS >= 3
|
||||
#undef disable_E3
|
||||
#define disable_E3() NOOP
|
||||
#if EXTRUDERS >= 4
|
||||
#undef disable_E4
|
||||
#define disable_E4() NOOP
|
||||
#endif // EXTRUDERS >= 4
|
||||
#endif // EXTRUDERS >= 3
|
||||
#endif // EXTRUDERS >= 2
|
||||
#endif // EXTRUDERS >= 1
|
||||
|
||||
#endif // HANGPRINTER
|
||||
|
||||
#if ENABLED(G38_PROBE_TARGET)
|
||||
extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run
|
||||
G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active
|
||||
#endif
|
||||
|
||||
/**
|
||||
* The axis order in all axis related arrays is X, Y, Z, E
|
||||
*/
|
||||
#define _AXIS(AXIS) AXIS ##_AXIS
|
||||
|
||||
void enable_all_steppers();
|
||||
void disable_e_stepper(const uint8_t e);
|
||||
void disable_e_steppers();
|
||||
void disable_all_steppers();
|
||||
|
||||
void sync_plan_position();
|
||||
void sync_plan_position_e();
|
||||
|
||||
#if IS_KINEMATIC
|
||||
void sync_plan_position_kinematic();
|
||||
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
|
||||
#else
|
||||
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
|
||||
#endif
|
||||
|
||||
void flush_and_request_resend();
|
||||
void FlushSerialRequestResend();
|
||||
void ok_to_send();
|
||||
|
||||
void kill(const char*);
|
||||
|
||||
void quickstop_stepper();
|
||||
|
||||
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
||||
void handle_filament_runout();
|
||||
#endif
|
||||
|
||||
extern uint8_t marlin_debug_flags;
|
||||
#define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
|
||||
|
||||
@@ -232,58 +196,37 @@ extern bool Running;
|
||||
inline bool IsRunning() { return Running; }
|
||||
inline bool IsStopped() { return !Running; }
|
||||
|
||||
bool enqueue_and_echo_command(const char* cmd); // Add a single command to the end of the buffer. Return false on failure.
|
||||
void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command.
|
||||
bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); // Add a single command to the end of the buffer. Return false on failure.
|
||||
void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command.
|
||||
void clear_command_queue();
|
||||
|
||||
#if ENABLED(M100_FREE_MEMORY_WATCHER) || ENABLED(POWER_LOSS_RECOVERY)
|
||||
extern char command_queue[BUFSIZE][MAX_CMD_SIZE];
|
||||
#endif
|
||||
extern millis_t previous_cmd_ms;
|
||||
inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
|
||||
|
||||
#define HAS_LCD_QUEUE_NOW (ENABLED(MALYAN_LCD) || (ENABLED(ULTIPANEL) && (ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(PID_AUTOTUNE_MENU) || ENABLED(ADVANCED_PAUSE_FEATURE))))
|
||||
#define HAS_QUEUE_NOW (ENABLED(SDSUPPORT) || HAS_LCD_QUEUE_NOW)
|
||||
#if HAS_QUEUE_NOW
|
||||
// Return only when commands are actually enqueued
|
||||
void enqueue_and_echo_command_now(const char* cmd);
|
||||
#if HAS_LCD_QUEUE_NOW
|
||||
void enqueue_and_echo_commands_now_P(const char * const cmd);
|
||||
#endif
|
||||
#if ENABLED(FAST_PWM_FAN)
|
||||
void setPwmFrequency(uint8_t pin, int val);
|
||||
#endif
|
||||
|
||||
extern millis_t previous_move_ms;
|
||||
inline void reset_stepper_timeout() { previous_move_ms = millis(); }
|
||||
|
||||
/**
|
||||
* Feedrate scaling and conversion
|
||||
*/
|
||||
extern float feedrate_mm_s;
|
||||
extern int16_t feedrate_percentage;
|
||||
|
||||
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01f)
|
||||
|
||||
extern bool axis_relative_modes[XYZE];
|
||||
|
||||
extern uint8_t axis_homed, axis_known_position;
|
||||
|
||||
constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
|
||||
FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; }
|
||||
FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; }
|
||||
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
|
||||
|
||||
extern bool axis_relative_modes[];
|
||||
extern bool axis_known_position[XYZ];
|
||||
extern bool axis_homed[XYZ];
|
||||
extern volatile bool wait_for_heatup;
|
||||
|
||||
#if HAS_RESUME_CONTINUE
|
||||
extern volatile bool wait_for_user;
|
||||
#endif
|
||||
|
||||
#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
|
||||
extern bool suspend_auto_report;
|
||||
#endif
|
||||
|
||||
extern float current_position[XYZE], destination[XYZE];
|
||||
|
||||
/**
|
||||
* Workspace offsets
|
||||
*/
|
||||
// Workspace offsets
|
||||
#if HAS_WORKSPACE_OFFSET
|
||||
#if HAS_HOME_OFFSET
|
||||
extern float home_offset[XYZ];
|
||||
@@ -291,26 +234,36 @@ extern float current_position[XYZE], destination[XYZE];
|
||||
#if HAS_POSITION_SHIFT
|
||||
extern float position_shift[XYZ];
|
||||
#endif
|
||||
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
||||
extern float workspace_offset[XYZ];
|
||||
#define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
|
||||
#elif HAS_HOME_OFFSET
|
||||
#define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
|
||||
#elif HAS_POSITION_SHIFT
|
||||
#define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
|
||||
#endif
|
||||
#define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
|
||||
#define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
|
||||
#else
|
||||
#define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
|
||||
#define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
|
||||
#endif
|
||||
#define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
|
||||
#define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
|
||||
#define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
|
||||
#define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
|
||||
#define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
|
||||
#define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
|
||||
|
||||
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
||||
extern float workspace_offset[XYZ];
|
||||
#define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
|
||||
#elif HAS_HOME_OFFSET
|
||||
#define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
|
||||
#elif HAS_POSITION_SHIFT
|
||||
#define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
|
||||
#else
|
||||
#define WORKSPACE_OFFSET(AXIS) 0
|
||||
#endif
|
||||
|
||||
#define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
|
||||
#define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
|
||||
|
||||
#if HAS_POSITION_SHIFT || DISABLED(DELTA)
|
||||
#define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
|
||||
#define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
|
||||
#define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
|
||||
#define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
|
||||
#else
|
||||
#define LOGICAL_X_POSITION(POS) (POS)
|
||||
#define LOGICAL_Y_POSITION(POS) (POS)
|
||||
#define RAW_X_POSITION(POS) (POS)
|
||||
#define RAW_Y_POSITION(POS) (POS)
|
||||
#endif
|
||||
|
||||
#define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
|
||||
#define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
|
||||
|
||||
// Hotend Offsets
|
||||
#if HOTENDS > 1
|
||||
@@ -332,24 +285,16 @@ extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
|
||||
void update_software_endstops(const AxisEnum axis);
|
||||
#endif
|
||||
|
||||
#define MAX_COORDINATE_SYSTEMS 9
|
||||
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
||||
#define MAX_COORDINATE_SYSTEMS 9
|
||||
extern float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
|
||||
bool select_coordinate_system(const int8_t _new);
|
||||
#endif
|
||||
|
||||
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
|
||||
|
||||
void home_all_axes();
|
||||
|
||||
void report_current_position();
|
||||
|
||||
#if IS_KINEMATIC
|
||||
#if ENABLED(HANGPRINTER)
|
||||
extern float line_lengths[ABCD];
|
||||
#else
|
||||
extern float delta[ABC];
|
||||
#endif
|
||||
extern float delta[ABC];
|
||||
void inverse_kinematics(const float raw[XYZ]);
|
||||
#endif
|
||||
|
||||
@@ -368,65 +313,27 @@ void report_current_position();
|
||||
void recalc_delta_settings();
|
||||
float delta_safe_distance_from_top();
|
||||
|
||||
#if ENABLED(DELTA_FAST_SQRT)
|
||||
float Q_rsqrt(const float number);
|
||||
#define _SQRT(n) (1.0f / Q_rsqrt(n))
|
||||
#else
|
||||
#define _SQRT(n) SQRT(n)
|
||||
#endif
|
||||
|
||||
// Macro to obtain the Z position of an individual tower
|
||||
#define DELTA_Z(V,T) V[Z_AXIS] + SQRT( \
|
||||
#define DELTA_Z(V,T) V[Z_AXIS] + _SQRT( \
|
||||
delta_diagonal_rod_2_tower[T] - HYPOT2( \
|
||||
delta_tower[T][X_AXIS] - V[X_AXIS], \
|
||||
delta_tower[T][Y_AXIS] - V[Y_AXIS] \
|
||||
) \
|
||||
)
|
||||
|
||||
#define DELTA_IK(V) do { \
|
||||
#define DELTA_IK(V) do { \
|
||||
delta[A_AXIS] = DELTA_Z(V, A_AXIS); \
|
||||
delta[B_AXIS] = DELTA_Z(V, B_AXIS); \
|
||||
delta[C_AXIS] = DELTA_Z(V, C_AXIS); \
|
||||
}while(0)
|
||||
|
||||
#elif ENABLED(HANGPRINTER)
|
||||
|
||||
// Don't collect anchor positions in array because there are no A_x, D_x or D_y
|
||||
extern float anchor_A_y,
|
||||
anchor_A_z,
|
||||
anchor_B_x,
|
||||
anchor_B_y,
|
||||
anchor_B_z,
|
||||
anchor_C_x,
|
||||
anchor_C_y,
|
||||
anchor_C_z,
|
||||
anchor_D_z,
|
||||
delta_segments_per_second,
|
||||
line_lengths_origin[ABCD];
|
||||
|
||||
void recalc_hangprinter_settings();
|
||||
|
||||
#define HANGPRINTER_IK(V) do { \
|
||||
line_lengths[A_AXIS] = SQRT(sq(anchor_A_z - V[Z_AXIS]) \
|
||||
+ sq(anchor_A_y - V[Y_AXIS]) \
|
||||
+ sq( V[X_AXIS])); \
|
||||
line_lengths[B_AXIS] = SQRT(sq(anchor_B_z - V[Z_AXIS]) \
|
||||
+ sq(anchor_B_y - V[Y_AXIS]) \
|
||||
+ sq(anchor_B_x - V[X_AXIS])); \
|
||||
line_lengths[C_AXIS] = SQRT(sq(anchor_C_z - V[Z_AXIS]) \
|
||||
+ sq(anchor_C_y - V[Y_AXIS]) \
|
||||
+ sq(anchor_C_x - V[X_AXIS])); \
|
||||
line_lengths[D_AXIS] = SQRT(sq( V[X_AXIS]) \
|
||||
+ sq( V[Y_AXIS]) \
|
||||
+ sq(anchor_D_z - V[Z_AXIS])); \
|
||||
}while(0)
|
||||
|
||||
// Inverse kinematics at origin
|
||||
#define HANGPRINTER_IK_ORIGIN(LL) do { \
|
||||
LL[A_AXIS] = SQRT(sq(anchor_A_z) \
|
||||
+ sq(anchor_A_y)); \
|
||||
LL[B_AXIS] = SQRT(sq(anchor_B_z) \
|
||||
+ sq(anchor_B_y) \
|
||||
+ sq(anchor_B_x)); \
|
||||
LL[C_AXIS] = SQRT(sq(anchor_C_z) \
|
||||
+ sq(anchor_C_y) \
|
||||
+ sq(anchor_C_x)); \
|
||||
LL[D_AXIS] = anchor_D_z; \
|
||||
}while(0)
|
||||
|
||||
#elif IS_SCARA
|
||||
void forward_kinematics_SCARA(const float &a, const float &b);
|
||||
#endif
|
||||
@@ -455,9 +362,9 @@ void report_current_position();
|
||||
float bilinear_z_offset(const float raw[XYZ]);
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
|
||||
typedef float (*element_2d_fn)(const uint8_t, const uint8_t);
|
||||
void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn);
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
typedef struct { double A, B, D; } linear_fit;
|
||||
linear_fit* lsf_linear_fit(double x[], double y[], double z[], const int);
|
||||
#endif
|
||||
|
||||
#if HAS_LEVELING
|
||||
@@ -470,19 +377,18 @@ void report_current_position();
|
||||
void set_z_fade_height(const float zfh, const bool do_report=true);
|
||||
#endif
|
||||
|
||||
#if ENABLED(X_DUAL_ENDSTOPS)
|
||||
extern float x_endstop_adj;
|
||||
#endif
|
||||
#if ENABLED(Y_DUAL_ENDSTOPS)
|
||||
extern float y_endstop_adj;
|
||||
#endif
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
extern float z_endstop_adj;
|
||||
#endif
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
extern float zprobe_zoffset;
|
||||
bool set_probe_deployed(const bool deploy);
|
||||
#ifdef Z_AFTER_PROBING
|
||||
void move_z_after_probing();
|
||||
#endif
|
||||
enum ProbePtRaise : unsigned char {
|
||||
PROBE_PT_NONE, // No raise or stow after run_z_probe
|
||||
PROBE_PT_STOW, // Do a complete stow after run_z_probe
|
||||
PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe
|
||||
PROBE_PT_BIG_RAISE // Raise to big clearance after run_z_probe
|
||||
};
|
||||
float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true);
|
||||
#define DEPLOY_PROBE() set_probe_deployed(true)
|
||||
#define STOW_PROBE() set_probe_deployed(false)
|
||||
#else
|
||||
@@ -509,10 +415,6 @@ void report_current_position();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(USE_CONTROLLER_FAN)
|
||||
extern int controllerFanSpeed;
|
||||
#endif
|
||||
|
||||
#if ENABLED(BARICUDA)
|
||||
extern uint8_t baricuda_valve_pressure, baricuda_e_to_p_pressure;
|
||||
#endif
|
||||
@@ -527,16 +429,30 @@ void report_current_position();
|
||||
#endif
|
||||
|
||||
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
||||
extern int8_t did_pause_print;
|
||||
extern AdvancedPauseMenuResponse advanced_pause_menu_response;
|
||||
extern float filament_change_unload_length[EXTRUDERS],
|
||||
filament_change_load_length[EXTRUDERS];
|
||||
#endif
|
||||
|
||||
#if HAS_POWER_SWITCH
|
||||
extern bool powersupply_on;
|
||||
#define PSU_PIN_ON() do{ OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); powersupply_on = true; }while(0)
|
||||
#define PSU_PIN_OFF() do{ OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); powersupply_on = false; }while(0)
|
||||
#if ENABLED(PID_EXTRUSION_SCALING)
|
||||
extern int lpq_len;
|
||||
#endif
|
||||
|
||||
#if ENABLED(FWRETRACT)
|
||||
extern bool autoretract_enabled; // M209 S - Autoretract switch
|
||||
extern float retract_length, // M207 S - G10 Retract length
|
||||
retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
|
||||
retract_zlift, // M207 Z - G10 Retract hop size
|
||||
retract_recover_length, // M208 S - G11 Recover length
|
||||
retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
|
||||
swap_retract_length, // M207 W - G10 Swap Retract length
|
||||
swap_retract_recover_length, // M208 W - G11 Swap Recover length
|
||||
swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
|
||||
#endif
|
||||
|
||||
// Print job timer
|
||||
#if ENABLED(PRINTCOUNTER)
|
||||
extern PrintCounter print_job_timer;
|
||||
#else
|
||||
extern Stopwatch print_job_timer;
|
||||
#endif
|
||||
|
||||
// Handling multiple extruders pins
|
||||
@@ -553,14 +469,10 @@ void prepare_move_to_destination();
|
||||
/**
|
||||
* Blocking movement and shorthand functions
|
||||
*/
|
||||
void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0);
|
||||
void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0);
|
||||
void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0);
|
||||
void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0);
|
||||
|
||||
#if ENABLED(ARC_SUPPORT)
|
||||
void plan_arc(const float(&cart)[XYZE], const float(&offset)[2], const bool clockwise);
|
||||
#endif
|
||||
void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s=0.0);
|
||||
void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0);
|
||||
void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0);
|
||||
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0);
|
||||
|
||||
#define HAS_AXIS_UNHOMED_ERR ( \
|
||||
ENABLED(Z_PROBE_ALLEN_KEY) \
|
||||
@@ -587,61 +499,44 @@ void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm
|
||||
extern const float L1, L2;
|
||||
#endif
|
||||
|
||||
// Return true if the given point is within the printable area
|
||||
inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
|
||||
inline bool position_is_reachable(const float &rx, const float &ry) {
|
||||
#if ENABLED(DELTA)
|
||||
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset);
|
||||
#elif ENABLED(HANGPRINTER)
|
||||
// TODO: This is over simplified. Hangprinter's build volume is _not_ cylindrical.
|
||||
return HYPOT2(rx, ry) <= sq(HANGPRINTER_PRINTABLE_RADIUS - inset);
|
||||
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS);
|
||||
#elif IS_SCARA
|
||||
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
|
||||
return (
|
||||
R2 <= sq(L1 + L2) - inset
|
||||
#if MIDDLE_DEAD_ZONE_R > 0
|
||||
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
|
||||
#endif
|
||||
);
|
||||
#if MIDDLE_DEAD_ZONE_R > 0
|
||||
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
|
||||
return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
|
||||
#else
|
||||
return HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y) <= sq(L1 + L2);
|
||||
#endif
|
||||
#else // CARTESIAN
|
||||
// To be migrated from MakerArm branch in future
|
||||
#endif
|
||||
}
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
// Return true if the both nozzle and the probe can reach the given point.
|
||||
// Note: This won't work on SCARA since the probe offset rotates with the arm.
|
||||
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
|
||||
return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
|
||||
&& position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE));
|
||||
}
|
||||
#endif
|
||||
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
|
||||
|
||||
// Both the nozzle and the probe must be able to reach the point.
|
||||
// This won't work on SCARA since the probe offset rotates with the arm.
|
||||
|
||||
return position_is_reachable(rx, ry)
|
||||
&& position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER));
|
||||
}
|
||||
|
||||
#else // CARTESIAN
|
||||
|
||||
// Return true if the given position is within the machine bounds.
|
||||
inline bool position_is_reachable(const float &rx, const float &ry) {
|
||||
// Add 0.001 margin to deal with float imprecision
|
||||
return WITHIN(rx, X_MIN_POS - 0.001f, X_MAX_POS + 0.001f)
|
||||
&& WITHIN(ry, Y_MIN_POS - 0.001f, Y_MAX_POS + 0.001f);
|
||||
// Add 0.001 margin to deal with float imprecision
|
||||
return WITHIN(rx, X_MIN_POS - 0.001, X_MAX_POS + 0.001)
|
||||
&& WITHIN(ry, Y_MIN_POS - 0.001, Y_MAX_POS + 0.001);
|
||||
}
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
/**
|
||||
* Return whether the given position is within the bed, and whether the nozzle
|
||||
* can reach the position required to put the probe at the given position.
|
||||
*
|
||||
* Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
|
||||
* nozzle must be be able to reach +10,-10.
|
||||
*/
|
||||
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
|
||||
return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
|
||||
&& WITHIN(rx, MIN_PROBE_X - 0.001f, MAX_PROBE_X + 0.001f)
|
||||
&& WITHIN(ry, MIN_PROBE_Y - 0.001f, MAX_PROBE_Y + 0.001f);
|
||||
}
|
||||
#endif
|
||||
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
|
||||
// Add 0.001 margin to deal with float imprecision
|
||||
return WITHIN(rx, MIN_PROBE_X - 0.001, MAX_PROBE_X + 0.001)
|
||||
&& WITHIN(ry, MIN_PROBE_Y - 0.001, MAX_PROBE_Y + 0.001);
|
||||
}
|
||||
|
||||
#endif // CARTESIAN
|
||||
|
||||
#if !HAS_BED_PROBE
|
||||
FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
|
||||
#endif
|
||||
|
||||
#endif // MARLIN_H
|
||||
|
||||
Reference in New Issue
Block a user