/* AnycubicSerial.cpp --- Support for Anycubic i3 Mega TFT serial connection Created by Christian Hopp on 09.12.17. Original file: HardwareSerial.cpp - Hardware serial library for Wiring Copyright (c) 2006 Nicholas Zambetti. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Modified 23 November 2006 by David A. Mellis Modified 28 September 2010 by Mark Sproul Modified 14 August 2012 by Alarus */ #include #include #include #include #include "Arduino.h" #include "wiring_private.h" #include "MarlinConfig.h" #ifdef ANYCUBIC_TFT_MODEL // this next line disables the entire HardwareSerial.cpp, // this is so I can support Attiny series and any other chip without a uart #if defined(UBRR3H) #include "AnycubicSerial.h" // Define constants and variables for buffering incoming serial data. We're // using a ring buffer (I think), in which head is the index of the location // to which to write the next incoming character and tail is the index of the // location from which to read. #if (RAMEND < 1000) #define SERIAL_BUFFER_SIZE 64 #else #define SERIAL_BUFFER_SIZE 128 #endif struct ring_buffer { unsigned char buffer[SERIAL_BUFFER_SIZE]; volatile unsigned int head; volatile unsigned int tail; }; #if defined(UBRR3H) ring_buffer rx_buffer_ajg = { { 0 }, 0, 0 }; ring_buffer tx_buffer_ajg = { { 0 }, 0, 0 }; #endif inline void store_char(unsigned char c, ring_buffer *buffer) { int i = (unsigned int)(buffer->head + 1) % SERIAL_BUFFER_SIZE; // if we should be storing the received character into the location // just before the tail (meaning that the head would advance to the // current location of the tail), we're about to overflow the buffer // and so we don't write the character or advance the head. if (i != buffer->tail) { buffer->buffer[buffer->head] = c; buffer->head = i; } } #if defined(USART3_RX_vect) && defined(UDR3) void serialEvent3() __attribute__((weak)); void serialEvent3() {} #define serialEvent3_implemented ISR(USART3_RX_vect) { if (bit_is_clear(UCSR3A, UPE3)) { unsigned char c = UDR3; store_char(c, &rx_buffer_ajg); } else { unsigned char c = UDR3; }; } #endif #ifdef USART3_UDRE_vect ISR(USART3_UDRE_vect) { if (tx_buffer_ajg.head == tx_buffer_ajg.tail) { // Buffer empty, so disable interrupts cbi(UCSR3B, UDRIE3); } else { // There is more data in the output buffer. Send the next byte unsigned char c = tx_buffer_ajg.buffer[tx_buffer_ajg.tail]; tx_buffer_ajg.tail = (tx_buffer_ajg.tail + 1) % SERIAL_BUFFER_SIZE; UDR3 = c; } } #endif // Constructors //////////////////////////////////////////////////////////////// AnycubicSerialClass::AnycubicSerialClass(ring_buffer *rx_buffer, ring_buffer *tx_buffer, volatile uint8_t *ubrrh, volatile uint8_t *ubrrl, volatile uint8_t *ucsra, volatile uint8_t *ucsrb, volatile uint8_t *ucsrc, volatile uint8_t *udr, uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udrie, uint8_t u2x) { _rx_buffer = rx_buffer; _tx_buffer = tx_buffer; _ubrrh = ubrrh; _ubrrl = ubrrl; _ucsra = ucsra; _ucsrb = ucsrb; _ucsrc = ucsrc; _udr = udr; _rxen = rxen; _txen = txen; _rxcie = rxcie; _udrie = udrie; _u2x = u2x; } // Public Methods ////////////////////////////////////////////////////////////// void AnycubicSerialClass::begin(unsigned long baud) { uint16_t baud_setting; bool use_u2x = true; #if F_CPU == 16000000UL // hardcoded exception for compatibility with the bootloader shipped // with the Duemilanove and previous boards and the firmware on the 8U2 // on the Uno and Mega 2560. if (baud == 57600) { use_u2x = false; } #endif try_again: if (use_u2x) { *_ucsra = 1 << _u2x; baud_setting = (F_CPU / 4 / baud - 1) / 2; } else { *_ucsra = 0; baud_setting = (F_CPU / 8 / baud - 1) / 2; } if ((baud_setting > 4095) && use_u2x) { use_u2x = false; goto try_again; } // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register) *_ubrrh = baud_setting >> 8; *_ubrrl = baud_setting; transmitting = false; sbi(*_ucsrb, _rxen); sbi(*_ucsrb, _txen); sbi(*_ucsrb, _rxcie); cbi(*_ucsrb, _udrie); } void AnycubicSerialClass::begin(unsigned long baud, byte config) { uint16_t baud_setting; uint8_t current_config; bool use_u2x = true; #if F_CPU == 16000000UL // hardcoded exception for compatibility with the bootloader shipped // with the Duemilanove and previous boards and the firmware on the 8U2 // on the Uno and Mega 2560. if (baud == 57600) { use_u2x = false; } #endif try_again: if (use_u2x) { *_ucsra = 1 << _u2x; baud_setting = (F_CPU / 4 / baud - 1) / 2; } else { *_ucsra = 0; baud_setting = (F_CPU / 8 / baud - 1) / 2; } if ((baud_setting > 4095) && use_u2x) { use_u2x = false; goto try_again; } // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register) *_ubrrh = baud_setting >> 8; *_ubrrl = baud_setting; //set the data bits, parity, and stop bits #if defined(__AVR_ATmega8__) config |= 0x80; // select UCSRC register (shared with UBRRH) #endif *_ucsrc = config; sbi(*_ucsrb, _rxen); sbi(*_ucsrb, _txen); sbi(*_ucsrb, _rxcie); cbi(*_ucsrb, _udrie); } void AnycubicSerialClass::end() { // wait for transmission of outgoing data while (_tx_buffer->head != _tx_buffer->tail) ; cbi(*_ucsrb, _rxen); cbi(*_ucsrb, _txen); cbi(*_ucsrb, _rxcie); cbi(*_ucsrb, _udrie); // clear any received data _rx_buffer->head = _rx_buffer->tail; } int AnycubicSerialClass::available(void) { return (int)(SERIAL_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % SERIAL_BUFFER_SIZE; } int AnycubicSerialClass::peek(void) { if (_rx_buffer->head == _rx_buffer->tail) { return -1; } else { return _rx_buffer->buffer[_rx_buffer->tail]; } } int AnycubicSerialClass::read(void) { // if the head isn't ahead of the tail, we don't have any characters if (_rx_buffer->head == _rx_buffer->tail) { return -1; } else { unsigned char c = _rx_buffer->buffer[_rx_buffer->tail]; _rx_buffer->tail = (unsigned int)(_rx_buffer->tail + 1) % SERIAL_BUFFER_SIZE; return c; } } void AnycubicSerialClass::flush() { // UDR is kept full while the buffer is not empty, so TXC triggers when EMPTY && SENT while (transmitting && ! (*_ucsra & _BV(TXC0))); transmitting = false; } size_t AnycubicSerialClass::write(uint8_t c) { int i = (_tx_buffer->head + 1) % SERIAL_BUFFER_SIZE; // If the output buffer is full, there's nothing for it other than to // wait for the interrupt handler to empty it a bit // ???: return 0 here instead? while (i == _tx_buffer->tail) ; _tx_buffer->buffer[_tx_buffer->head] = c; _tx_buffer->head = i; sbi(*_ucsrb, _udrie); // clear the TXC bit -- "can be cleared by writing a one to its bit location" transmitting = true; sbi(*_ucsra, TXC0); return 1; } AnycubicSerialClass::operator bool() { return true; } // Preinstantiate Objects ////////////////////////////////////////////////////// #if defined(UBRR3H) AnycubicSerialClass AnycubicSerial(&rx_buffer_ajg, &tx_buffer_ajg, &UBRR3H, &UBRR3L, &UCSR3A, &UCSR3B, &UCSR3C, &UDR3, RXEN3, TXEN3, RXCIE3, UDRIE3, U2X3); #endif #endif #endif // whole file